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ARTICLE INFO ABSTRACT

Keywords: Ultrasonic metal welding (UMW) has been widely applied as a high throughput solid-state joining technology for
Ultrasonic metal welding multilayers of sheet metal. During a typical UMW process, multilayer work materials are mechanically com-
Modeling

pressed by a knurl-patterned horn (also known as a sonotrode) onto an anvil tool, and a simultaneous in-plane
sliding is applied to the horn at an ultrasonic frequency (20 kHz or higher) to help form the weld at the material
interfaces. There is a great challenge in modeling and simulating the dynamic behavior of the work material and
the whole weld formation process is subject to ultrasonic mechanical loadings imposed by the knurl-patterned
horn tool. In this work, finite element (FE) models are developed to simulate the multilayer UMW process
using knurl-patterned tools by directly applying the ultrasonic vibration as a model input. For a short weld
duration of 0.1~0.5 s, a high-fidelity FE modeling approach is developed using ABAQUS/Explicit to simulate the
dynamic material response under the 20 kHz horn vibration. For an extended long welding duration of
approximately 1.0 s, a computationally efficient hybrid approach is developed using both ABAQUS/Explicit and
DEFORM-3D in order to leverage the strengths of each software package. The developed models are validated
using experimental data of dynamic welding force, temperature, and weld geometry from in-situ process mea-
surements of UMW. The 3D FE models developed in this study are the most comprehensive solution to date to
simulate the complex material response subject to UMW process conditions and provide engineering guidance for
the design of UMW applications.

Finite element method
Dynamic welding force

1. Introduction

Ultrasonic metal welding (UMW) has been widely applied as a solid-
state joining technology for multilayer malleable materials [1]. UMW is
a high throughput process for joining both similar and dissimilar ma-
terials due to its fast processing speed (e.g., UMW process duration for
welding a single weld is typically 0.5~1 s), low energy consumption,
low cost, and environment-friendliness [2,3]. Taking advantage of
UMW’s solid-state joining nature for dissimilar materials, it has been
extensively applied to join aluminum and copper tabs in lithium-ion
battery cells for electric vehicles [2] and other applications for elec-
tronic components [4-8]. During a typical UMW process, sheet metal
materials are mechanically compressed by knurl-patterned welder horn
(also known as a sonotrode) onto anvil tool, and simultaneously in-plane
sliding is applied to the horn at an ultrasonic frequency (20 kHz or
higher) to help form the weld between the work materials. Ultrasonic

* Corresponding author.
E-mail address: hongtao-ding@uiowa.edu (H. Ding).

https://doi.org/10.1016/j.jmapro.2020.12.039

vibration energy is mostly consumed at the work material interfaces,
resulting in a significant temperature increase, severe plastic deforma-
tion, and solid-state bonding.

The processing principles of UMW have been extensively investi-
gated using experimental approaches in past decades. The mechanical
system response of the UMW machine configuration was studied using
analytical models to determine the effect of ultrasonic loading on the
weld quality [9,10]. Various UMW process parameters such as welding
energy and welding process duration have been investigated to evaluate
the welding quality defined by weld nugget size, bond density, post-weld
thickness, and thermomechanically affected zone size [2,11]. Zhao et al.
developed a fatigue life cycle model based on the monitoring of elec-
trical resistance to foresee the life of ultrasonic weld aluminum
(Al)/copper (Cu) tab joints [12]. The weld strength by UMW and its
microstructural attributes particularly at the welding interface were
found to be dependent on these processing parameters [2]. Formation of
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intermetallic compound (IMC) has been reported at the weld interface
during the UMW process of dissimilar materials [7,13,14]. Process
robustness and layer-wise microstructures were studied for multilayer
UMW process with dissimilar material combinations [15,16]. Particu-
larly, diffusion bonding has been observed at the interface between
copper and aluminum for an extended period of welding time [7,14,
17-20]. The diffusion phenomena at the joining interface were also
investigated through molecular dynamics simulation [5,21]. Online
monitoring systems have been developed to monitor and measure the
dynamic welding power and horn displacement during the process [11,
22]. Lee et al. [23] analyzed displacement of tool and coupons during
the multilayer UMW process using a high-speed imaging technique and
demonstrated that weld quality deteriorated from top to bottom layers
due to less heat generation at the interfaces of bottom layers. In-situ
monitoring and measurement of UMW process provide critical pro-
cessing information, including horn movement, temperature history,
force history, and power requirement [11,24-26]. Additionally, moni-
toring the tool wear at different stages of tool-life is important to have
good weld quality [27,28].

Process modeling and simulation are important for designing and
optimizing the UMW process by linking its process parameters and weld
properties and performance. For instance, process models can provide
insights on the design of knurl geometry by providing its effect on the
contact and friction behavior of the joint formation [29,30]. They can
also help provide understandings on the heat generation and deforma-
tion at the joint interface that greatly influence the weld quality [31,32].
However, great challenges exist to date preventing the development of
computationally efficient UMW process models. First challenge is to
model the strong coupling effects among the mechanical, thermal, and
metallurgical fields. During the UMW process, materials undergo
nonlinear hardening under 20 kHz cyclic loading and predominately
friction-induced thermal softening, which affects heat generation [30,
33]. Additionally, materials often exhibit a significant acoustic softening
under ultrasonic loading [34,35], which reduces the flow stress during
the operation. The acoustic energy of the ultrasonic sonotrode transfers
into the working material and is consumed at defects of the crystalline
lattice, including dislocations, vacancies, and grain boundaries [34].
Consequently, the activation energy required for the movement of dis-
locations is substantially lowered [35]. Experimental investigation and
dislocation dynamics simulation have shown that application of ultra-
sonic vibration during material deformation can result in reduction of
dislocation density and/or subgrain formation [36-39]. Therefore, the
acoustic softening effect is an intrinsic material phenomenon that
prompts dislocation annihilation and/or subgrain formation [38]. To
consider the acoustic softening effect, Siddiq and Ghassemieh [40]
introduced an empirical term on flow stress calculation using a
phenomenological constitutive model to combine with the kinematic
hardening model under cyclic loading. They incorporated the constitu-
tive flow stress model in a three-dimensional (3D) thermomechanical FE
model for an ultrasonic seam welding process and predicted weld ma-
terial response under applied load, ultrasonic vibration amplitude, and
tool velocity [40,41].

The second challenge is to model the dynamic weld formation pro-
cess and capture the detailed material response under constraints
imposed by the 3D geometry of UMW welder tools and high frequency
vibration loading. Elangovan et al. [33] developed a FE model to
simulate heat generation due to friction and deformation during UMW,
while a simplified two-dimensional (2D) process setup was considered
without modeling the knurl patterned tools or high frequency ultrasonic
transverse movement of the tool. Lee et al. [42] developed a 3D ther-
momechanical FE model for multi-sheet dissimilar materials (Al and Cu)
to predict temperature and stress at the welded area; however, simpli-
fied welder tool geometry was assumed without considering the knurl
pattern, and the ultrasonic motion was not used as a loading condition
for the tool. Shen et al. [43] developed a metallo-thermo-mechanically
coupled 3D FE model to simulate both weld formation and
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microstructural evolution for a knurl patterned tool. 20 kHz ultrasonic
loading was considered indirectly through the material modeling during
the welding duration. Li et al. [44] developed a 3D thermomechanical
FE model for dissimilar materials (Al & Cu) in a two-layer lap welding
configuration. They considered material softening, and high convection
boundary conditions in their modeling approach, while ultrasonic vi-
bration of the horn was not directly modeled. Chen et al. [45] developed
a 3D thermomechanical FE model for UMW of Al-Cu stackups by directly
incorporating ultrasonic vibration loading to a knurl patterned horn.
The simulated welding process duration was limited to 0.05 s for a vi-
bration amplitude of 9 pm, which is a moderate condition compared
with the typical UMW conditions. Later, an enhanced FE model was
developed to simulate multilayer USW of Cu with a pyramid-knurl horn
tool [26]. The simulation time was extended to 0.2 s with a greater horn
vibration amplitude of 23 pm, which is still a shorter duration than that
of the typical UMW process.

Realizing that the duration of most ultrasonic metal welding is on the
order of 0.5 s or greater, it remains a great challenge in modeling and
simulating the dynamic behaviors of the work material and the full
UMW process imposed by the welder tools. The process models devel-
oped in literature do not have the capability for simulating the full UMW
cycle using practical 3D knurl-patterned tools. In this work, 3D nu-
merical models were developed for the first time to simulate the com-
plete multilayer UMW process involving complex material thermo-
mechanical response. For a short weld duration up to 0.5 s, a high-
fidelity FE modeling approach was developed using ABAQUS/Explicit
to simulate the dynamic material response under the 20 kHz horn vi-
bration. However, excessive element distortion remained a technical
barrier for the high-fidelity approach as the work material was more
severely deformed for longer welding durations. Therefore, for a long
welding duration of approximately 1.0 s or longer, a computationally
efficient hybrid approach was developed using both ABAQUS/Explicit
and DEFORM-3D, which took advantage of the strengths of both soft-
ware packages. The developed model will be able to provide guidance to
optimized process parameters to have a good weld quality. Additionally,
it will be able to provide guidance to design future knurl patterns for
horn and anvil. Therefore, the developed model has significant impor-
tance for the process development in manufacturing industries.

2. In-situ monitoring and measurement of ultrasonic metal
welding process

An in-situ monitoring system was implemented in this work to pro-
vide valuable dynamic attributes during the UMW process, including
high-frequency dynamic welding force, temperature histories in the
work materials, high-frequency vibrations of welder horn and anvil, and
slippage between coupon and anvil. Four-layer UMW experiments were
performed using the Stapla ultrasonic metal welder-based system. Ni-
plated C11000 Cu was used as the testing material for three identical
battery tabs and one busbar coupon to mimic a typical electrical battery
cell joining application. Each experiment was repeated two additional
times. All the testing coupons were 45 mm x 41 mm in size, while the
thickness of the tab and busbar coupons was 0.2 mm and 0.9 mm,
respectively. The UMW experimental parameters are listed in Table 1.

The in-situ experimental apparatus for UMW is presented in Fig. 1a

Table 1
Experimental conditions.

Tab materials 0.2 mm Ni-plated C11000 Cu (Ni coating of 0.1~0.2

pm)

Busbar material 0.9 mm Ni-plated C11000 Cu (Ni coating 1.0~2.5 pm)

Clamping pressure (bar) 4.2
Vibration amplitude (pm) 8, 30
Vibration frequency 20

(kHz)

Welding energy (J) 1600, 2400, 3200
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a. Real-time measurements for ultrasonic welding
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b. IR temperature measurement

250
—1600]
—2400]
. E 200
External
LVDT -
& 150
Cu -
Coupons E
g
2 100
£
e
50
0 . r .
0 2 4 6
Time (s)
c. Dynamic welding force measurement
Preburst period Entire welding process Welding period
3000 3000
2500 ‘i" 07 2500
. 2000 i 1 2008 I — 2000 HE=-ft<—
s AT 5 \'HH | ‘
T el ©
£ 1000 e g 1000
5 WWYVVVYYY 5 5
Z 500 B < 500
0 0
-500 -500 -500
1.0218 1.0221 1.0224 0 1 2 1.6048 1.6051 1.6053
Time (s) Time (s) Time (s)

Fig. 1. Dynamic measurements for the UMW process: (a) experimental setup; (b) infrared temperature measurement; (c) dynamic welding force measurement.

with various instruments and sensors for force, temperature and vibra-
tion dynamics. The high frequency vibrations of the horn during the
welding process were measured using the Polytec® (OFV 5000) single
point laser vibrometer. In addition, the displacement of the horn under
ultrasonic loading was measured using the Omega® LVDT sensor
mounted on the welder. An infrared camera (Flir® ThermaCAM S60)
was used to capture the surface temperature history of test coupons
during the welding process. As a major portion of the coupons and tabs
was blocked by the weld tool, temperature was only measured at the
middle portion of the coupons. Emissivity tapes were used to enhance
measurement sensitivity and accuracy. Reflective tapes were used to
ensure good reflection of the laser beam. The infrared camera captured
the temperature history on the emissivity tape covered area only as
observed from View A in Fig. 1a. The temperature of only the focused
area (Fig. 1b) could be captured, while other areas were blocked by the
anvil and the fixture. A representative infrared image at peak temper-
atures for the Cu busbar coupon is presented in Fig. 1b. The temperature
profiles of the Cu busbar are compared for three different ultrasonic
welding energies in Fig. 1b. As the welding energy increased from 1600
J to 3200 J, the peak temperature increased from 135 °C to 195 °C.
Additionally, the peak temperature position shifted towards the right,
indicating that the peak temperature was achieved faster for a low
welding energy as compared to a with high welding energy.

Kistler ® SlimLine 1-component load cell was embedded in the anvil
mounting plate to measure the clamping and welding forces between the
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anvil and mounting plate. Fig. 1c are plots of representative force
measurements in the normal direction versus time during UMW process
at a welding energy of 2400 J and 8 pm amplitude. The force signal also
follows sinusoidal fluctuation with mean value of 1500 N at a frequency
of 20 kHz. The dynamic force during welding can be significantly higher
than the static clamping force, varying between 500 N (valley) and 2500
N (peak).

3. Finite element models

Two 3D FE models were developed to simulate UMW of multilayer
work materials. As shown in Fig. 2a, for a short welding duration of
0.1-0.5 s, the high-fidelity FE model directly modeled the ultrasonic
loading as model input and simulated the whole weld formation process
from knurl patterned ultrasonic tools. ABAQUS/Explicit solver with the
use of Arbitrary Lagrangian-Eulerian (ALE) was selected for the high-
fidelity model of the highly dynamic thermomechanically coupled
UMW process imposed by 20 kHz horn vibration. Implicit time inte-
gration method available from either ABAQUS or DEFORM-3D was
found not suitable for such a computation-costly simulation. The high-
fidelity method was limited to a short welding duration as the simula-
tion would abort when the weld duration was long with more severe
mesh distortion. For a long welding duration such as 1.0 s with more
severe plastic deformation, a computationally efficient hybrid model
was developed using both ABAQUS/Explicit and DEFORM-3D as



N. Shen et al.

Journal of Manufacturing Processes 62 (2021) 302-312

3D High-fidelity Model
for a short welding duration 0.1~0.5 s
(ABAQUS)

Inputs:

e 20 kHz horn vibration (in-plane)
* Clamping force (out-of-plane)

ABAQUS
simulation

Outputs:

Horn displacement

e & o o

* Dynamic welding force (20 kHz)

Anvil vibration and coupon slippage
Temperature and heat generation
Deformation, stress, strain, strain rate

:
>
)

N F

3D Hybrid Model
for a long welding duration 0.5~1 s
(DEFORM)

\

Inputs:

* ABAQUS simulation of equivalent horn Z-displacement
e ABAQUS simulation of equivalent heat flux
¢ Reduced (50Hz) in-plane horn vibration

DEFORM

simulation

Outputs:

e Welding force history of the whole process
¢ Temperature history of the whole process
e Weld zone deformation

o

/

Fig. 2. 3D finite element models for ultrasonic welding.

illustrated in Fig. 2b. For the hybrid method, the DEFORM model
ensured the simulation of the whole process duration while maintaining
the simulation accuracy by using the high-fidelity ABAQUS model re-
sults as its inputs.

3.1. High-fidelity model for short-duration welding

The high-fidelity FE modeling approach used the explicit scheme in
ABAQUS to simulate dynamic material response during the UMW pro-
cess by directly applying the 20 kHz horn vibration as model input. For
the UMW experiments described in Section 2, the Stapla ultrasonic
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welder horn tool comprised three identical and equally spaced welding
pads. In order to reduce the computational cost, a single horn tool pad or
1/3 of the horn tool geometry was modeled in this work, and hence 1/3
of the clamping force was applied in the simulation accordingly. The
horn pad with truncated pyramid knurl pattern and anvil pad with fine
diamond knurl pattern were modeled respectively in this FE model, as
shown in Fig. 3. For the finite element model configuration, the anvil
was assumed fully rigid with constraints for all degrees of freedom.
Three Cu tab layers and one Cu busbar layer were modeled as work
materials. ALE adaptive meshing technique was applied to the work
material domains to maintain a high-quality mesh when large
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Fig. 3. 3D ABAQUS model configuration for ultrasonic welding [the scalebar represents dimension in Y direction].

deformations occurred in the weld zone.

The loadings of the welding process were defined by the vertical out-
of-plane clamping force (in z-direction) and a 20 kHz in-plane vibration
(x-y plane) through the simulation. The ultrasonic horn vibration was
directly modeled as the loading for the horn. A 20 kHz sinusoidal vi-
bration was applied to the horn along the y-axis in the model, refer to
Fig. 3. The clamping force was modeled by a constant pressure on the
horn top surface. The magnitude of this pressure was determined with
the actual clamping force on this pad and the horn top surface area. Cai
et al. [46] experimentally determined the friction coefficient between
battery tabs and busbar during multilayer UMW process. They studied
the effects of vibration frequency, condition of the surface and normal
load on the friction coefficient between layers. In this model, a friction
coefficient of 1.2 was adopted at the interface between tab and busbar.

3.2. Hybrid model for long-duration welding

The computationally efficient hybrid approach was developed to
simulate a long duration UMW process and its subsequent cooling cycle.
DEFORM-3D is a practical and efficient software package specially
designed to simulate the 3D flow of complex metal forming processes. It
uses a powerful adaptive remeshing technique during the simulation
process [47,48], which effectively addressed the high-fidelity model
limitation in excessive element distortions subject to severe plastic
deformation. However, its implicit time integration method suffered
from a prohibitively high computation cost when 20 kHz vibration
loading was directly applied as model input. The hybrid model in this
work combined the strengths of both ABAQUS and DEFORM-3D pack-
ages and ensured the simulation of the long duration UMW process
while maintaining the simulation accuracy by using the high-fidelity
ABAQUS model results as its inputs.

A two-step procedure was implemented in the hybrid model. The
first step involved the high-fidelity ABAQUS/Explicit simulation for the
initial short period, e.g., 0.2 s, of the UMW process. In the second step,
the DEFORM-3D model simulates the whole UMW process from the
beginning with model inputs calibrated from the high-fidelity model.
The high-fidelity model outputs from Step 1 helped calibrate the inputs
to the DEFORM-3D model in Step 2, which are described as follows:

(1) Equivalent z-displacement history of horn calibrated from the
high-fidelity simulation;

(2) Equivalent heat flux calibrated from the high-fidelity simulation;

(3) A reduced frequency (e.g., 50 Hz) in-plane horn vibration.

These equivalent loadings were determined from the high-fidelity
ABAQUS model simulation for a 0.2 s weld duration. The equivalent
horn z-displacement loading was determined by extrapolating the high-
fidelity simulation result to the whole weld duration. The heat genera-
tion for the frictional heat dissipation due to the 20-kHz horn vibration
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was determined from the friction heat dissipation for the whole model
over a welding duration of 0.2 s simulated using ABAQUS/Explicit. The
frictional heat dissipation rate was determined following the thermal
analysis. Then, the ABAQUS/Explicit simulated heat dissipation rate
was applied to the contact area between the horn and topmost tab in the
DEFORM-3D model. The effects of a 20-kHz horn vibration loading
therefore were well considered using the equivalent horn Z-displace-
ment history, equivalent heat generations, and acoustic softening on the
flow stress of coupon materials. Although a 20-kHz horn vibration input
made the DEFORM-3D simulation non-convergent, a reduced frequency
horn vibration, e.g., 50 Hz, with the same vibration amplitude can be
applied in the model to account for the horn vibrating movement. The
reduced frequency horn vibration loading was directly defined as tem-
poral displacement history in DEFORM by tabular data.

3.3. Material constitutive model under ultrasonic loading

The material flow stress during UMW was determined from three
competing mechanics, including material hardening with increased
straining due to high frequency cyclic loading, thermal softening due to
heat generation at the interface, and acoustic softening caused by ul-
trasonic vibration. The fundamental constitutive equations for the cyclic
plasticity model that includes isotropic hardening and kinematic hard-
ening terms were adopted from uniaxial loading. The effect of thermal
softening was incorporated in the calculation of isotropic hardening and

kinematic hardening model by inserting the temperature term |1 —

m
(Tfn*_T{r> } [49]. To incorporate the acoustic softening effect in the

flow stress calculation, a phenomenological softening term
[(1 — duEu)®] was introduced. This acoustic softening term was a func-
tion of the ultrasonic energy density per unit time [40]. After the in-
clusion of the thermal softening and acoustic softening terms, the
modified equations of isotropic and kinematic hardening are given by
[50]:

Rumase = (001 =] 1= (£ [10- 0.8 M
Ctirsomic. = {%(1 - e*ﬁ"') + a]e*ﬁ"‘} {1 - (TTmiTT) }[(1 —d,E,)]
@

where d, and e are the material constants related to ultrasonic softening
and E,, is the ultrasonic energy density per unit time transferred from the
horn to the material. The material constant values of copper are given in
Table 2. These values were calibrated from experimental work for cyclic
loading on copper [51], except that e was adopted from the previous
simulation work of ultrasonic seam welding [40]. E,, was adopted as 3 .
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Table 2

Material parameters in the flow stress model [40,51].
Q (MPa) b C (MPa) Y m Tm (°C) T, (°C) dy (m?/W) E, (W/m?) e
40 11 22,300 340 1.09 1083 25 1.3e-6 3.5e5 for tabs 8.1e4 for busbar 2

5 x 105 W/m? for tab layers, while a smaller E, of 8.1 x 104 W/m? was
assumed for the busbar which was subjected to less acoustic softening.
As a result, the flow stress of the tab material softened approximately 50
%, while that of the busbar material softened approximately 30 %.

4. Simulation results and discussions
4.1. Dynamic welding simulation by high-fidelity model

The dynamic welding force simulation was compared with experi-
mental measurements, which were acquired at a high sampling fre-
quency, refer to as shown in Fig. 1, using the Kistler® SlimLine load cell.
Fig. 4a is a snapshot of the simulation of dynamic welding force for a
short period (0.4 — 0.405 s) in the out of plane direction from the high-
fidelity model. The force oscillated in a sinusoidal fashion about a mean
value of 1500 N with an oscillation amplitude varying from 150 N to 300
N. The average vertical force magnitude predicted from the ABAQUS
model agreed well with the measurement data. A Fourier analysis of the
force simulation data also indicated that the high-fidelity model
correctly captured the 20 kHz fundamental frequency imposed by the
horn vibration. It is the first attempt to the authors’ best knowledge to
validate the UMW process model using the high-frequency welding force
data.

A more detailed comparison (cycle by cycle) of simulated Z-force and
experimentally measured force signal is presented in Fig. 4b. It can be
clearly seen that the frequency of the simulated Z-force matches the
measured force signal. However, the simulated force oscillation ampli-
tudes were significantly lower than those experimentally observed. The
experimental measurement system demonstrated a much lower stiffness
and resulted in a higher oscillation amplitude, approximately 1000 N
(varying between 500 N and 2500 N), refer to Fig. 1. Similarly, it was
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Fig. 4. High-fidelity model simulation under 8 pm amplitude horn vibration;
(a) 20 kHz welding force in z-direction; (b) zoom in comparison of experimental
and simulated force signal.

307

also experimentally observed during the vibration displacement mea-
surement using the laser vibrometer that the amplitude of the out-of-
plane horn vibration increased from just a few microns under the
normal welding condition of a conventional welder system (without
force sensors) to 0.6 mm under the experimental measurement system.
The stiffness reduction in the welder in-situ measurement system was
primarily due to the inclusion of the Kistler® SlimLine load cell between
the anvil and mounting plate, refer to Fig. 1, which consequently
resulted in a high-amplitude oscillation in both force and vibration data.
However, for the current in-situ monitoring system, it was extremely
challenging to acquire the high-frequency dynamic welding force his-
tory without significantly compromising the welder system stiffness.
Based on the above analysis, the high-fidelity ABAQUS model developed
in this study is considered adequate to predict the high-frequency dy-
namic force in the UMW process.

Fig. 5 presents screenshots of the simulation contours for von Mises
stress and equivalent plastic strains in the work materials during the
UMW process after 0.2 s of welding duration. The stress was highest at
the peak and valley of the indentation here the plastic deformation was
maximum (Fig. 5a). It was found that the plastic strain in the vibration
direction was compressive on the side of the peak in which the knurl was
moving whereas tensile on the opposite side (Fig. 5b). This indicates that
the knurl pattern compressed the tab on one side and released the
compression on other side of the peak within one oscillation cycle. The
out-of-plane strain was tensile on the peaks of the deformed area as the
material was subjected to flow in that direction. Conversely, it was
compressive on the valleys as the material was pressed against the other
tabs and busbar (Fig. 5¢). Fig. 5d shows the comparison of deformation
behavior of all the layers in terms of plastic strain in the out of plane
direction after 0.2 s of the welding duration. As the top tab has direct
contact with the vibrating horn, it endured the most severe plastic
deformation with tensile and compressive plastic strain of 0.42 (at the
peak) and 0.84 (at the valley), respectively at the deformed area
(Fig. 5¢). The severity of plastic deformation went down gradually in
tab2 and tab3. There is no distinct peak and valleys of the deformed
areas in those two layers and the plastic strain also went down one order
compare with the top layer (Fig. 5d (T2 and T3)). However, the locations
of the tensile and compressive plastic strain remain at the same areas
under the top tab. The top side of the bus also has relatively low plastic
deformation (Fig. 5d (B)).

The heat generation during UMW was evaluated with the high-
fidelity model using three history outputs, namely, friction heat dissi-
pation (FD), plastic deformation heat dissipation (PD), and internal heat
energy (IHE). As it can be observed in Fig. 6a, the change of internal heat
energy (AIHE) was equal to the sum of friction heat dissipation and
plastic heat dissipation. The plastic heat dissipation accounts for 1 %-4
% of the friction heat dissipation, which means that the friction heat
dissipation provided at least 95 % of the internal energy for the tem-
perature rise in the whole system. Fig. 6b is a plot of rate of friction heat
dissipation and plastic deformation heat dissipation versus time, which
are time derivatives of the simulated heat dissipation. From the results it
can be seen that the friction heat dissipation rate slightly decreased
during the 0.2 s welding duration, while the plastic deformation heat
dissipation rate increased during the process. But, the magnitude of
friction heat dissipation rate was still significantly greater than that of
the plastic deformation heat dissipation. In addition, it was found that
the peak temperature was located at the interface between the horn and
the tab in the ABAQUS/Explicit simulation, indicating that the friction
between the horn and the tab contributed to the majority of the heat
dissipation. In addition, in reference to Fig. 6¢c, the peak temperature
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a. Von Mises stress

S, Mises
(Avg: 75%)
+1.610e+02
+1.479e+02
+1.347e+02
+1.216e+02
+1.084e+02
+9.529e+01
+8.213e+01
+6.898e+01
+5.583e+01
+4.268e+01
+2.953e+01
+1.638e+01
+3.227e+00

b. Plastic strain, vibration direction

PE, PE23

(Avg: 75%)
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d. Out-of-plane plastic strain of
intermediate layers

N

PE, PE33
(Avg: 75%)

+3.162e-02

- +2.208e-02

+1.254e-02

+2.958e-03

77333e-02
281387-02

PE, PE33
(Avg: 75%)
+8.852e-03

Fig. 5. 3D high-fidelity simulation of UMW process variables: (a) Von Mises stress in MPa; (b) plastic strain in vibration direction; (c) plastic strain in the out-of-plane
direction; and (d) plastic strain in the out-of-plane direction of intermediate tab layers (T2 and T3) and busbar (B) [The scalebar represents dimension in Y direction].

was located at the interface between the horn and the tab in the ABA-
QUS/Explicit simulation, indicating that the friction between the horn
and the tab contributed to the majority of the heat dissipation.

However, due to severe element distortions in the topmost tab layer,
the simulation time of the high-fidelity model was limited to less than
0.45 s when the horn vibration amplitude was 8 ym. The model could
only simulate up to 0.2 s when the horn vibration amplitude increased to
30 pm. Hence, the high-fidelity model is capable of simulating the long
duration welding process. Nonetheless, this model can simulate the
deformation and heat generation in the weld zone, dynamic welding
force, horn displacement, metal slippage, material stress, strain, and
strain rate. These predictions also provided critical loading inputs for
DEFORM-3D simulation in the hybrid approach.

4.2. Long duration welding simulation by hybrid model

The hybrid model was able to simulate the long duration UMW
process without directly modeling the 20 kHz dynamic attributes. Fig. 7
shows the dynamic welding force history over a 0.6 s welding period of
the DEFORM-3D simulation. It correctly predicted an average welding
force of 1500 N, while underestimating the oscillation in force compared
with the high-fidelity ABAQUS model. It is worth noting that the sudden
decrease in force for the DEFORM simulated force history at approxi-
mately 0.46 s was a result of a temporary contact area loss due to
simulated material damage in the topmost tab. The force simulation
restored to the nominal value when the tab deformed, and a full horn-tab
contact was established again.
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The temperature simulation of the long duration UMW process was
validated using the temperature measurements as presented in Fig. 1.
Fig. 8a is a plot of the DEFORM-3D simulated temperature histories over
both welding duration and cooling cycle at different locations, i.e., P1-
at the center of the tab/bus interface; P2 - close to the edge on the bus
top surface; P3 — a position in the anvil. Fig. 8b is a plot of the experi-
mentally measured temperature histories at P2 and P3, which were
measured using IR camera and thermocouple, respectively. The com-
parison of the simulated and measured temperature histories exhibited a
positive result on the temperature prediction, validating the method of
equivalent heat generation for the hybrid approach.

4.3. Weld geometry simulation

The results of both the high-fidelity and hybrid model simulations
identified that the top tab material between the knurl tips bulged and
gradually filled the cavity of the knurl pattern due to the ultrasonic horn
vibration, and the thickness gradually decreased for the material below
the knurl tip. Meanwhile, the top tab material beyond the knurl pattern
gradually deflected upward due to the combined effect of compression
and ultrasonic horn vibration. Fig. 9 is a comparison of the simulated
weld zone geometry to the micrograph of the corresponding experi-
mental welds on the short-axis section (4.2 bar clamping pressure, 25 pm
amplitude, and 2400 J ultrasonic energy). Comparing Fig. 9a and c, the
simulated deformed geometry was very close to the micrograph in this
section. Comparing Fig. 9b and d, it shows that this model can even
capture the kink near the boundary of the weld zone. Fig. 9b also shows
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Fig. 6. Simulated heat generation: (a) histories of heat dissipation and internal
heat energy change; (b) calculated heat dissipation rate histories; (c) temper-
ature distribution on the cross section, which shows the heat dissipation mainly
occurred at the topmost tab layer.

some small gaps between the topmost and second tab layers. This is
attributed to the short simulation time of 0.2 s. These results support the
conclusion that the deformation on the short-axis section was greater
and occurred earlier due to the horn vibration, while it would take more
time for the tab materials to coalesce on the long-axis section. This trend
can be seen in another comparison to the laser-scan measured weld spot
surface profile, refer to Fig. 10, which shows an excellent agreement
between the simulation results and experimental data.

As it can be seen in the above discussions, the 3D models developed
from this work can evaluate the effectiveness (e.g., deformation or heat
generation) of a new knurl pattern for horn/anvil tools to narrow down
the design choices without expensive tooling and prototyping. Likewise,
the model can simulate the effect of any change in raw material or form
factors. These simulation results can be very useful to significantly

309

Journal of Manufacturing Processes 62 (2021) 302-312

[y

o

o

o
1

Z-reaction Force (N)

500 -

0 T T T T T
0.1 0.2 0.3 0.4 0.5
Time (s)

0.6

Fig. 7. Hybrid model (DEFORM-3D) simulation of dynamic welding force
history using.

Welding duration, Cooling cycle,
d. 0.6s 6s
600 /
~ 500 - ——Bus-P1
g ~  Bus-P2
o 400
E 300
£
2 200
g
= 100
0 —r+r rrrrrrorr o rr
0 2 1 6
Time (s)
b.
200 —
7 =~ —
/ —\\\
;G 150 A /-/‘ . o
:‘ ;LN
~
5 100 { / / -
- T s oo
© I/ S
% /
2 504,/
£ 2 ~ ~Bus-P2 —--Anvil-P3
=
O T T T T T T T T T T T T T T
0 1 2 3

Time (s)

Fig. 8. Comparison of the DEFORM simulated temperature histories and the
experimental measured at multiple locations: (a) DEFORM simulated and (b)
experimental measured temperature histories.

shorten the learning curve for design engineering and understand the
concerns from manufacturing engineering for the process development.
This modeling work is more meaningful for a complicated process like
UMW, which is very difficult to implement all necessary in-process
transient monitoring with a high sampling frequency.

5. Conclusions

Two 3D finite element models were developed in this work to
simulate the dynamic process of multilayer UMW process.
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d. b. Kink
N

P4.2A25E2400

Fig. 9. High-fidelity ABAQUS model simulation of weld zone geometry compared with the micrographs on the short-axis section (horn vibration is within the
section): (a) simulated weld zone geometry and (b) its zoom-in view at the right imprint; (c) optical micrograph of weld zone geometry and (d) its zoom-in view at the
right imprint.

P4.2A30E2400

-0.1

0 0.5 1 1.5 2 2.5 3 3.5 4

Fig. 10. Deformation results compared with the laser-scanned surface profile (1500 N clamping force and 30 pm amplitude): (a) the simulated out-of-plane direction
deformation contour; (b) weld spot (original image adopted from [30]); (c) comparison of the simulated and laser-scan measured weld spot surface profile.

e For a short welding duration of 0.1-0.5 s, a high-fidelity FE e Both models were validated using experimental measurements of
modeling approach was developed using ABAQUS/Explicit to UMW in terms of welding forces, temperatures and weld geometry.
simulate dynamic material response under a 20 kHz horn vibration
during UMW process. This portion of the simulation generates the The 3D numerical procedure developed in this study is the most
most accurate FE results for the transient welding process since it comprehensive solution to date to simulate the complex material
models the actual cycle-by-cycle process dynamics. response during the UMW process and provides scientific understanding

e For an extended welding duration of more than 0.5 s, a computa- and engineering guidelines for improved the quality of ultrasonic weld

tionally efficient hybrid approach was developed using both ABA- battery packs. In the future work, the 3D model can be applied to
QUS/Explicit and DEFORM to take advantage of the strengths of the facilitate the welding process development and reduce uncertainty by

two software packages. The DEFORM simulation used time-scaled performing simulations with low and upper bounds of input process
welding cycles to reduce the computational cost associated with parameters. Empirical correlations could also be established between
the expensive cycle-by-cycle simulations in ABAQUS/Explicit. the weld quality and the simulations including dynamic material be-

haviors, temperature distribution, or thermal histories.
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