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Abstract
Point cloud is an essential format for three-dimensional (3-D) object modelling and interaction in Augmented Reality and
Virtual Reality applications. In the current state of the art video-based point cloud compression (V-PCC), a dynamic point
cloud is projected onto geometry and attribute videos patch by patch, each represented by its texture, depth, and occupancy
map for reconstruction. To deal with occlusion, each patch is projected onto near and far depth fields in the geometry video.
Once there are artifacts on the compressed two-dimensional (2-D) geometry video, they would be propagated to the 3-D point-
cloud frames. In addition, in the lossy compression, there always exists a tradeoff between the rate of bitstream and distortion.
Although some geometry-related methods were proposed to attenuate these artifacts and improve the coding efficiency, the
interactive correlation between projected near and far depth fields has been ignored. Moreover, the non-linear representation
ability of Convolutional Neural Network has not been fully considered. Therefore, we propose a learning-based approach
to remove the geometry artifacts and improve the compressing efficiency. We have the following contributions. We devise
a two-step method working on the near and far depth fields decomposed from geometry. The first stage is learning-based
Pseudo-Motion Compensation. The second stage exploits the potential of the strong correlations between near and far depth
fields. Our proposed algorithm is embedded in the V-PCC reference software. To the best of our knowledge, this is the
first learning-based solution of the geometry artifacts removal in V-PCC. The extensive experimental results show that the
proposed approach achieves significant gains on geometry artifacts removal and quality improvement of 3-D point-cloud
reconstruction compared to the state-of-the-art schemes.
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1 Introduction

Due to the massive demands for stereoscopic experience,
three-dimensional (3-D) sensing and scanning instruments
including Light Detection and Ranging (LIDAR) scanners
(Jang et al. 2019; d’Eon et al. 2017) and RGB-D cameras
(Guo et al. 2017; d’Eon et al. 2017) are developing unprece-
dentedly. Those 3-D devices daily generate an enormous
amount of data. To visualize these 3-D data vividly, some 3-D
representing methods, such as point clouds, light fields, and
polygon meshes, progress rapidly. Those stereo expressing
approaches are capable of representing the 3-D volumetric
data in a realistic and immersive way. Point cloud is espe-
cially popular among these methods since we can acquire
themmore easily, render themmore realistically, and manip-
ulate them more feasibly.

Point cloud is an important format for various 3-D based
volumetric technologies such as virtual reality (VR), aug-
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mented reality (AR), and mixed reality (MR) (Bruder et al.
2014) all advancing rapidly. The number of 3-D applications
(Tulvan et al. 2016; Chen et al. 2014) is therefore increasing
significantly based on these immersive and realistic technolo-
gies.

For instance, an applying case is navigation (Chen et al.
2017; Mobile Mobile). The mobile navigation (Mobile
Mobile) aims to create a 3-D map with localization data,
global positioning system (GPS) images, and depth data.
Other applications are VR/AR immsersive videos, games
(Sportillo et al. 2017) and telecommunications (Fuchs et al.
2014). Since it is feasible to render and visualize point clouds,
we can use a collection of 3-D point clouds to represent
the low delay 3-D stream of the high quality (4K or 8K)
immersive telecommunications. In addition, the historic relic
(Culture Culture) is another interesting application. This type
of heritage application is capable of providing an immersive
stereo experience by visualizing the real historical relic to
billions of points. However, point clouds contain a lot of dig-
ital data, so that storing and streaming such massive data is
very difficult. The conflict between demands and capacity
of the storage pushes an emergence of useful point cloud
compression (PCC) solutions.

Driven by this technique requirement, Moving Pictures
Experts Group (MPEG) starts the standardization (Schwarz
et al. 2018) of PCC. Owing to the different densities of
point clouds, there are two types of schemes incorporat-
ing video-based point cloud compression (V-PCC) (Schwarz
et al. 2018) and geometry-based point cloud compression (G-
PCC) (Schwarz et al. 2018). V-PCC mainly works on dense
point clouds while G-PCCworks on sparse point clouds such
as large-scale point cloud maps that are produced by simul-
taneous localization and mapping (SLAM) algorithms (Sun
et al. 2017). We mainly discuss the V-PCC development in
thiswork.V-PCCdivides a point cloud intomany3-Dpatches
at first. V-PCC then projects the generated 3-D patches onto
2-D planes and packs them into a 2-D geometry video and a
texture video. Subsequently, to encode 2-Dvideos efficiently,
V-PCCmaintains spatial continuity by padding the void area
of geometry and texture videos before the 2-D compression.
V-PCC eventually compresses the padded geometry and tex-
ture videos with 2-D video codecs such as Advanced Video
Coding (AVC) (Wiegand et al. 2003), High Efficiency Video
Coding (HEVC) (Sullivan et al. 2012), and Versatile Video
Coding (VVC) (Bross et al. 2019) in the lossy mode.

Due to this lossy compression of V-PCC, distortions exist
in the 2-D geometry reconstruction and 3-D point-cloud
reconstruction. Essentially, the 2-D geometry video is the
depth information of the 3-D point cloud. Once the 2-D
geometry reconstruction distorts, the 3-D point-cloud recon-
struction will also have artifacts. For instance, when the 2-D
geometry reconstruction loses some pixels, the correspond-
ing points of the 3-D point-cloud reconstruction will miss as

well. Similarly, if the 2-D geometry reconstruction inserts a
few noisy redundant pixels, the 3-D point-cloud reconstruc-
tion will introduce the corresponding redundant points. In
addition, if some values of the 2-D geometry reconstruction
verify, compared to the origin, the corresponding points of
the 3-D reconstruction will locate in mistaken positions. All
these cases degrade the quality of 3-D point-cloud recon-
struction and result in artifacts.

To attenuate artifacts, researchers proposed some 2-D
geometry-related methods (Andrivon et al. 2020; Cai et al.
2018; Dawar et al. 2018; Nakagami 2018). Among them,
(Rhyu et al. 2018) as a geometry padding approach proposed
padding the empty space between patches with neighboring
patch information. This method is especially beneficial for
coding efficiency in all the intra cases. To further decrease
the distance between the point-cloud reconstruction and its
origin, Graziosi and Tabatabai (2019) searched and picked
up a depth value from a depth candidate list in the 2-D geom-
etry video for padding the 3-D geometry. This encoder-only
method is the first method using geometry reconstruction to
process the inserted redundant positions.

Although thesemethods have achieved successes, the non-
linear representation ability of the learning-based Voulodi-
mos et al. (2018) approach has not been fully considered.
There is still considerable space to develop a better learning-
based geometry distortion removal algorithm.

Therefore, to take care of the tradeoff between the distor-
tion and bitrate, in this work, we propose for the first time
a learning-based approach removing the geometry artifacts
for a better quality of the 3-D point-cloud reconstruction. We
make the following contributions.

– To address the geometry artifacts problem, we propose a
two-step method working on the near and far depth fields
decomposed from geometry. The first stage is learning-
based Pseudo-Motion Compensation. The second stage
exploits the potential of the strong correlations between
near and far depth fields. To the best of our knowledge,
this is the first learning-based solution of the geometry
artifacts removal in V-PCC.

– Our proposed algorithm is embedded in the V-PCC
reference software for simulation. We have conducted
extensive experiments to compare with state-of-the-art
(SOTA) methods to demonstrate the effectiveness of the
proposedmethod.We thoroughly analyze the experimen-
tal results to give more insights into the problem.

We organize the remainder of this paper as follows. We
review the related works on point cloud compression in
Sect. 2, followed by our motivation and observations on
geometry in Sect. 3. We introduce the proposed geometry
artifacts removal with two stages in Sect. 4. In Sect. 5, we
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report and analyze the experimental results comprehensively.
We summarize this paper in Sect. 6 briefly.

2 RelatedWork

This section briefly reviews the previous point cloud com-
pression (PCC) works and the geometry improvement meth-
ods in V-PCC.

2.1 Point Cloud Compression

The PCC methods can be roughly summarized into two
groups, which are the group of 3-D-based and 2-D-based
approaches and the group of deep learning-based approaches.

1) 3-D-based and 2-D-based methods. Because there is
no strong time correlation between the neighboring frames,
the 3-D-based methods can not precisely estimate a motion
between points in neighboring frames. Kammerl et al. (2012)
devised a lossy compression approach for dynamic point
cloud streaming. The co-located octree node of the reference
point-cloud frame predicted the current point-cloud frame.
However, we can only apply this approach to a few moved
point-cloud frames. Thanou et al. (2016) used a set of graphs
to represent the time-varying geometry of these point-cloud
frames. Based on this, they cast 3-D motion estimation as
a feature-matching issue between consecutive point-cloud
frames. However, this method did not precisely estimate the
motion vectors of some objects in point-cloud frames.

de Queiroz and Chou (2017) proposed a simple codec.
This coder segmented the voxelized point cloud at each frame
into blocks of voxels. Their proposed method executed the
3-D translational motion estimation block by block to find
the corresponding block in the reference point-cloud frame.

In addition, Mekuria et al. (2016) further imported itera-
tive closest point (ICP) instead of translational motion model
to better formulate the motions in neighboring point-cloud
frames.

These methods could relieve the suffering from 3-D
motion estimation and motion compensation to some extent.

To solve the bottleneck that streaming and caching the
point clouds requires large bandwidth and storage space, Sun
et al. (2019) proposed a clustering method starting with a
range image-based 3-D segmentation. In addition, it intro-
duced a prediction with the depth modeling modes for depth
map coding. Nevertheless, without flexible block partition
and more efficient motion estimation schemes, the coding
efficiency of the dynamic point cloud compression (DPCC)
still cannot be compatible with the 2-D-based approach.

Because codecs such as AVC, HEVC, and VVC have
proven that the 2-D video compression algorithms are effi-
cient, researchers proposed 2-D-based methods to transform
the 3-D dynamic point cloud to 2-D videos for compression.

Budagavi et al. (2017) developed a method to code a pro-
jected 2-D video acquired from ordering points in a 3-D point
cloud with HEVC. However, this work could not further
utilize the inter-prediction information since the obtained
video did not have many spatial and temporal correlations.
To attenuate this deficiency, He et al. (2017) proposed a cubic
projection method to convert a 3-D dynamic point cloud to a
2-D video. Although this work improved video coding per-
formance, this approach resulted in missing points due to
occlusion.

Tominimize the number of occluded points, Lasserre et al.
(2017) proposed an approach that combined the octree and
projection. Mammou et al. (2017) devised a method that
projected a 3-D dynamic point cloud to 2-D videos by a
patch-based scheme. Their motivation was to consider pro-
jecting more points while reducing the bit cost on 2-D video
coding as much as possible. Packing a group of patches that
consists of 2-D pixels converted from 3-D points was the
main philosophy of the patching method. This work packed
these 2-D patches onto a video then compressed by codecs
such as HEVC. Li et al. (2019) proposed a general model
utilizing the 3-D motion and 3-D to 2-D correspondence to
calculate the 2-D motion vector (MV). Compared to other
proposals, the patch-based method (Preda 2017) performed
better in coding efficiency.MPEG Immersivemedia working
group (MPEG-I) adopted (Preda 2017) as a V-PCC standard.
This approach has shown its efficiency with excellent perfor-
mance. However, we have not improved the geometry video
to its full potential extent, which intrinsically guides the 3-D
point-cloud reconstruction process.

2) Deep learning-based methods. Point cloud processing
is the fundamental component for any deep-learning-based
point-cloud applications. Rather than compress point cloud
data directly, Tu et al. (2016) proposed converting the packet
data, which is raw point cloud data, losslessly into range
images previously. To avoid unnecessarily voluminous ren-
dering data,Qi et al. (2017) proposed a type of neural network
that directly consumes point clouds, which well respects the
permutation invariance of points in the input.

However, many works process the 3-D videos frame-
by-frame either through 2-D convents or 3-D perception
algorithms. Choy et al. (2019) proposed a new sparse tensor-
based 3-D point-cloud processingmethod calledMinkowski.
This network for spatio-temporal perception can directly pro-
cess such 3-D videos using high-dimensional convolutions.

Gojcic et al. (2020) proposed an end-to-end algorithm for
joint learning of both parts of initial pairwise and the globally
consistent refinement.

The deep learning-based PCC methods utilized the non-
linear ability of Convolutional Neural Network (CNN) and
Recurrent Neural Network (RNN) to improve the efficiency
of PCC.To require less volumewhile giving the same decom-
pression accuracy, Tu et al. (2019) used an RNN and residual
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blocks to compress one frame from 3-D LiDAR. However,
these twomethods did not use joint optimization. Quach et al.
(2019) performed the joint optimization of both rate and dis-
tortion with a tradeoff parameter on a data-driven method.
They created this method for the geometry static point cloud
compression (SPCC) based on learned convolutional trans-
forms and uniform quantization. Nevertheless, there is still
space to improve the architecture of the network. Huang and
Liu (2019) presented a new3-Dgeometry PCCmethod based
on an auto-encoder network. They used the extracted features
of the rawmodel in the encoder to compress the original data
to be bitstream. They further compressed the bitstream with
sparse coding. Nevertheless, thismethodworked on thewell-
segmented objects.

To reduce the bitrate, Huang et al. (2020) proposed a deep
compression method to decrease the memory footprint of
LiDAR point clouds with the sparsity and structural redun-
dancy between points. Nevertheless, the spatio-temporal
relationships had not been fully considered. To reduce the
bitrate of both geometry and intensity values, Biswas et al.
(2020) exploited spatio-temporal relationships across mul-
tiple LiDAR sweeps and proposed a conditional entropy
model. This models the probabilities of the octree symbols
by utilizing both coarse level geometry, previous sweeps’
geometric, and intensity information.

2.2 Geometry RelatedMethods in V-PCC

MPEG calls some geometry-related works to improve the
point cloud quality and compression efficiency during the
V-PCC standardization. Cai et al. (2018) proposed encoding
the projected information as an absolute depth value instead
of an error between the far layer and near layer.

However, this solution can not improve the quality of
the point-cloud reconstruction. To obtain a better tradeoff
between these artifacts and bitrate, Olivier and Llach (2018)
proposed improving the projection of connected components
into patches.

Nevertheless, it did not resolve the empty space between
patches, which directly impacted the coding efficiency. In
order to take care of the empty space, Rhyu et al. (2018)
proposed dilating the gap between patches by expanding the
geometry from boundaries of patches. Although this way
minimized block artifacts in the decoded 2-D video, it still
compressed the near and far geometry frames separately.

To get better encoding efficiency, Dawar et al. (2018) pro-
posed using one frame instead of two frames to encode 2-D
near and far layers.

However, this method interpolated pixels from spatial
neighbors leading to distortions to some extent and did not
save decoding time.

To keep the reconstruction quality but decrease the decod-
ing time complexity,Nakagami (2018) proposed an upgraded

geometry smoothing. The geometry smoothing of V-PCC
aims at alleviating potential discontinuities that may arise at
the patch boundaries due to compression artifacts. This pro-
posed approach moved boundary points to the centroid of
their nearest neighbors. It skipped the smoothing for points
inside a patch and pre-calculated the neighbor points centroid
instead of the nearest neighbor (NN) search. Nevertheless,
this approach did not exploit the geometry information of
the 3-D reconstruction.

Graziosi andTabatabai (2019) therefore proposed padding
the geometry with the reconstructed depth value for those
positions introducedbyoccupancymap rescaling.Todecrease
the distance between the geometry reconstruction and ori-
gin, this encoder-only method searched and selected a depth
value from a range of possible geometry depth values for an
inserted point. Thismethod only used some limited neighbor-
hoods and geometry characteristics. The color consistency
and surface consistency of the lines in the reconstruction
could be beneficial. In addition, this method could still be
improved further by occupancymap reconstructionmethods.

Although V-PCC adopted these two works into the refer-
ence software due to their good performances, they did not
fully exploit the strong correlations and interactions between
the geometry near and far layers. In addition, the non-linear
representation ability of CNN has not been considered care-
fully in the V-PCC geometry distortion removal.

3 Motivation

To explain the importance and necessity of the 2-D geometry
improvement in V-PCC, we need to figure out the property of
the geometry step by step. We first elaborate on how V-PCC
converts the 3-D point cloud to the 2-D near and far layers
of geometry frames in the projecting process. Then we state
the strong correlations between near and far layers of the
geometry. We explain all these above in Sect. 3.1. To better
understand that howgeometry propagates its impact onpoint-
cloud reconstruction, we previously introduce the important
role that geometry plays in the point cloud reconstructing
process in Sect. 3.2. Finally, we explain the impact of 2-D
geometry on 3-Dpoint-cloud reconstruction in both objective
and subjective performance in Sect. 3.3.

3.1 The Projection from 3-D to 2-D

A point-cloud frame consists of a collection of points within
a 3-D volumetric space that is with its coordinates, geome-
try, and attributes information, as shown in Fig. 1a. To use
the proven powerful 2-D codecs such as HEVC and VCC,
V-PCC first projects the volumetric 3-D point-cloud frames
to 2-D video frames. The whole projection process contains
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Bound box

3-D Point Cloud Projected 2-D patches
X axis Y axis Z axis

(a) (b)

Fig. 1 The projection process (Committee 2020) from 3-D to 2-D in
V-PCC. The segmented 3-D patches are projected to six planes of its
bounding box.

three stages: patch segmentation, patch generation, and patch
packing. The V-PCC patch denotes a set of information that
describes the point cloud in a 3-D bounding box. This infor-
mation incorporates points, corresponding geometry, and
attribute descriptions along with the atlas information.

The patch segmentation aims to decompose the 3-D point
clouds into many patches. Then during the process of patch
generation, as shown in Fig. 1,V-PCCprojects the segmented
3-D patches to six planes of its bounding box. To appro-
priately resolve the problem that different 3-D points are
projected onto the identical 2-D pixel, V-PCC projects each
patch onto two depth fields. More specifically, we assume
that P(u, v) is the collection of points of a patch projected to
the identical sample (u, v). The near layer stashes the point
of P(u, v)with the lowest depth d0. The far layer projects the
point of P(u, v) with the highest depth within [d0, d0 + δ],
where δ denotes the thickness of the projected surface. Intrin-
sically, as illustrated in Fig. 2, a 2-D near layer with picture
order count (POC) 2N and a far layer with POC 2N + 1 are
both derived from the same 3-D point-cloud frame with POC
N . Fig. 3 visualizes an example of the near layer frame with
POC 2N , corresponding POC 2N + 1 far layer frame and
their difference. Since generally, the δ is a minimal value,
it is difficult to directly see the difference between the near
and far layer frames unless we make subtraction with them
as Fig. 3c. Afterward, to generate the 2-D geometry and
attributes videos, V-PCC arranges the projected 2-D patches
compactly onto a 2-D frame with size W × H . We call this
stage patch packing. Once we obtain 2-D geometry videos,
codecs can compress them efficiently.

3.2 The Reconstruction Process

Before reconstructing point clouds, the V-PCC decoder
first demultiplexes the compressed bitstream into geome-
try, attributes, occupancy map, and atlas streams. The atlas
mainly contains auxiliary patch information. The occupancy

0

Far Layer

Near Layer

3-D Point clouds 
Sequence 1 NN-1

2-D 
Geometry 

video
...

...

Fig. 2 The correlations between 3-D point clouds sequence and 2-D
geometry video. A 2-D patch with picture order count (POC) 2N of
near layer and one with 2N + 1 of far layer are both derived from the
same 3-D point cloud patch with POC N .

Fig. 3 Near a and far b layer frames in 2-D geometry video. c is the
difference δ between the near layer frame with POC 2N and its corre-
sponding POC 2N + 1 far layer frame. Since generally, the difference
δ is a minimal value, it is difficult to directly see the difference between
the near and far layer frames unless making subtraction with them as c.

map is a binary signal video implicating whether a 2-D pixel
exists in the original 3-D point cloud as a point. Once the
reconstructing process starts, as described in Fig. 4, V-PCC
reconstructs the atlas first. We can see from Fig. 4a that V-
PCC only builds padded patch rough sketches. After V-PCC
merges the decoded occupancy map into the reconstruction,
the occupancy status of the points becomes clear because the
occupancy map removes the padded area.

However, there is still no clear person shape information.
When V-PCC adds the geometry information into the recon-
struction, all 3-D point clouds are almost created except the
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(a) atlas

(b) add occupancy 
map on (a)

(c) add geometry on 
(b)

(d) add textures on 
(c)

Fig. 4 The process of 3-D point-cloud reconstruction (Committee
2020) in V-PCC. The atlas a is first reconstructed. Only padded patch
rough sketches are built. After the decoded occupancy map is merged
into the reconstruction b, the points occupancy status becomes clearly
shown because the occupancy map has removed the padded area. When
the geometry information is added into the reconstruction c, all 3-D
point clouds are almost created except the color attributes. Finally, the
attributes are drawnon the reconstructiond. This visualizing reconstruc-
tion process demonstrates how the 2-D geometry enormously impacts
the subjective quality of 3-D point clouds reconstruction.

color attributes. Finally, V-PCC draws the attributes on the
reconstruction.

3.3 The Impact of the 2-D Geometry to the 3-D Point
Cloud

The visualizing reconstruction process above has demon-
strated that how the 2-D geometry enormously impacts the
subjective quality of 3-D point clouds reconstruction. Fur-
thermore, Fig. 5 shows that how the V-PCC propagates the
2-D geometry artifacts significantly to the 3-D point-cloud
reconstruction. The sub-figures of the first row (a), (b), and
(c) are the 2-D geometry, attributes, and 3-D point cloud

of ground truths, respectively. With the same arrangement,
the sub-figures of the second row are from anchor recon-
structions. Because it is difficult to directly recognize the
difference of the geometry value between the anchor and
ground truth with our eyes, we visualize their difference
in (d). We can clearly see the geometry value distortion
of the gun in the enlarged area of (d). As explained in
Sect. 3.2, the V-PCC reconstructs the 2-D attributes video
with a 2-D reconstructed geometry video, containing useful
pixel location information. The V-PCC finally reconstructs
the 3-D point clouds with recolored and smoothed attributes
video in 3-D space. From the enlarged areas, we can clearly
see that the V-PCC propagates the 2-D geometry distor-
tion to attributes reconstruction. Then, the V-PCC brings the
attributes artifacts into the 3-D point-cloud reconstruction.

On the aspect of objective influence, we can find the same
importance of geometry video in Table 1. The higher bitrate
r2 outperforms the lower one r1 on the PSNR of 2-D geome-
try video on either near or far layer. These gains are obviously
propagated to 3-D point clouds on either point-to-point or
point-to-plane (Tian et al. 2017) PSNR. These altogether
demonstrate the consistency of objective geometry quali-
ties on both 2-D and 3-D sides. Based on the analysis and
observations above, if an efficient algorithm improving 2-D
geometry can be carefully devised, we can expect similar
ideal performance on the 3-D point cloud.

4 The Proposed Algorithm

Based on the observations and analysis above in Sect. 3, the
2-D geometry impacts the 3-D point-cloud reconstruction
significantly. Therefore, to remove artifacts of the near and far
layers in geometry, we develop an algorithm with a two-step
strategy. In the first step, we not only improve the near and far
layers with individual CNNs, but also use the enhanced near
reconstruction as the Pseudo-Motion Compensation (PMC)
for augmenting the far layer. In the second step, we dive into
the interactions between near and far layers and devise an
X-like interacting network (XInteractNet) to fully use their
strong similarities for further enhancement. Specifically, we
elaborate an in-depth discussion on the two-step scheme in
Sect. 4.1, design of XInteractNet in Sect. 4.2, loss function in
Sect. 4.3, dataset in Sect. 4.4, and training process inSect. 4.5.

4.1 Artifacts Removal of Geometry with Two Steps

We carefully devise our algorithm on two aspects. On the
one hand, as observed in Sect. 3.2 and Sect. 3.3, the geometry
plays an important role in the 3-Dpoint-cloud reconstruction.
We, therefore, focus on removing artifacts of geometry to
improve the quality of 3-D point clouds further. On the other
hand, as elaborated in Sect. 3.1, in the projection process of
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Fig. 5 Impact of the 2-D geometry artifacts to the 3-D point cloud arti-
facts. The sub-figures of the first row a, b, and c are the 2-D geometry,
attributes, and 3-D point cloud of ground truths, respectively. With the
same arrangement, the sub-figures of the second row are from anchor
reconstructions. Because it is difficult to directly recognize the differ-
ence of the geometry value between the anchor and ground truth with
our eyes, we visualize their difference in d. White and black pixels rep-

resent the different ones, while gray pixels are the same ones. We can
clearly see the geometry value distortion of the gun in the enlarged area
of d. From the enlarged areas, we can clearly see that the V-PCC prop-
agates the 2-D geometry distortion to attributes reconstruction. Then,
the V-PCC brings the attributes artifacts into the 3-D point-cloud recon-
struction.

Table 1 2-D and 3-D geometry
PSNR comparison between
lower and higher bitrates of
V-PCC Anchor (Point Point)
within soldier first 32 frames

PSNR (dB) Metrics r1 (lower) r2 (higher)

2-D geometry video Near layer 46.8062 49.1117

Far layer 46.4561 48.7152

Avg. all 46.6312 48.9134

3-D point clouds Point-to-point error 65.66 67.45

Point-to-plane error 67.42 69.48
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Fig. 6 Theproposed two-stepmethod is embedded in theV-PCCencod-
ing scheme. The target of the first step is to denoise the coarse artifacts of
the reconstructed near layer r0 and far layer r1 first. The augmented near
layer reconstruction r

′
0 as PMC iteratively participates into the far layer

gp1 prediction to generate the far layer reconstruction r1. Afterward, r1
is fed into the far layer step one CNN to produce a better reconstruction

r
′
1. The objective of the second step is to utilize the interactive informa-
tion Is(r

′
0, r

′
1) between near layer r

′
0 and far layer r

′
1 in full extent for

further removing artifacts. We input the outputs of step one including r
′
0

and r
′
1 into XInteractNet to achieve enhanced corresponding near layer

reconstruction r
′′
0 and far layer reconstruction r

′′
1 . They are finally used

for reconstructing the 3-D point cloud.
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Algorithm 1 The flow of two-step approach
Input: The near depth field reconstruction r0, the far depth field gp1.
Output: The artifacts removed near depth field r

′′
0 and far depth field

r
′′
1 .

if Step one initialization successes then

Input r0 into the step one S0(·) CNN and output the augmented
near reconstruction r

′
0;

Input gp1 and Pseudo-Motion Compensation r
′
0 into the predictor

and output the far reconstruction r1;
Input r1 into the step one S1(·) CNN and output the augmented far
reconstruction r

′
1;

end
if Step two initialization successes then

Input r
′
0 and r

′
1 into the step two XInteractNet;

Compute the down features xd0 and xd1 with X Down Block
"d (x0(i), x1(i));
Compute the up features yu0 and yu1 with X Up Block
"u(y0(i), y1(i));
Output the artifacts removed near depth field r

′′
0 and far depth field

r
′′
1 ;

end

geometry, V-PCC projects a 3-D point-cloud frame to two
2-D different layer frames, including a near one denoted as
g0 with depth d0 and a far one denoted as g1 with depth
d1. Since we essentially acquire these two 2-D frames from
the same 3-D point-cloud frame, we consider utilizing their
similarities and interactive information Is(g0, g1) as much as
possible for denoising geometry. Hence, we propose a CNN-
based two-step method that uses the interaction Is(g0, g1)
to enhance near layer g0 and far layer g1 as frequently as
possible.

Figure 6 describes the upgraded V-PCC encoding scheme
embedded in the proposed two-step approach. Initially, the
upgraded V-PCC uses the 3-D input of point clouds P(i) to
generate patch information T ( j). V-PCC then generates the
occupancy map O(k) with these patches information T ( j)
during the patch packing process. Afterwards, V-PCC gener-
ates the 2-D near layer g0 and far layer g1 from the 3-D input
P(i), patch information T ( j) and occupancy map O(k) for
further padding. V-PCC then pads far layer g0 and near layer
g1 to generate corresponding gp0 and gp1 that are beneficial
for predicting, transforming and quantizing.

The target of the first step is to denoise the coarse arti-
facts of the reconstructed near layer r0 and far layer r1 first.
This way can provide step two with reconstructions of better
quality as dual inputs. The inter prediction in HEVC adopts
motion compensation technologies. The principle of motion
compensation in codec is to search out a reference frame
containing reference blocks for predicting the current frame.
Since we replace the reference frame with an enhanced near
layer reconstruction in the upgraded codec for predicting the
far layer reconstruction, we call this process as PMC. Specif-

ically, at first, we feed r0 into a CNN S(·) (near CNN) that
is an autoencoder structure with four convolutional layers.
Then the augmented near layer reconstruction r

′
0 as PMC

iteratively participates into the padded far layer gp1 predic-
tion to generate the far layer reconstruction r1.We embed the
algorithm of step one into the V-PCC and HECV encoders,
configuring the near layer reconstruction r

′
0 as an I frame

while the geometry far layer reconstruction r1 as a P frame.
The overhauled codec sets the near layer r

′
0 (I frame) as a ref-

erence frame for predicting the far layer reconstruction r1 (P
frame). The updated encoder estimates and compensates the
motions for the far layer reconstruction r1 with the enhanced
near layer reference frame r

′
0. Accordingly, due to this PMC,

if the quality of the near layer reference frame r
′
0 is better,

the quality of the far layer reconstruction r1 will be better.
Afterward, we feed the far reconstruction r1 into the far layer
step one CNN (far CNN), which has the same architecture
as near CNN, to produce a better reconstruction r

′
1.

The objective of the second step is to utilize the interactive
information Is(r

′
0, r

′
1) between near layer r

′
0 and far layer r

′
1

in full extent for further removing artifacts. Accordingly, we
devise a network with two inputs and two outputs, namely
XInteractNet mining the interactive information Is(r

′
0, r

′
1) as

much as possible. We input the outputs of step one including
r

′
0 and r

′
1 into XInteractNet to achieve enhanced correspond-

ing near layer reconstruction r
′′
0 and far layer reconstruction

r
′′
1 . We finally use r

′′
0 and r

′′
1 for reconstructing the 3-D point

cloud. We elaborate the proposed two-step artifacts removal
algorithm of near and far depth fields in Algorithm 1.

4.2 XInteractNet

The architecture of the proposed XInteractNet in the second
step is illustrated in Fig. 7. Let us define x0(i) and x1(i)
are the near and far layer feature map of No. i level of the
XInteractNet, respectively. In order to share the interactive
information Is(x0(i), x1(i)) between near and far layers as
much as possible, we devise a network model pair called X
interactive down and up blocks as the basic unit of XInter-
actNet. According to the observations above in Sect. 3, for a
given near and far layer pairs, there exists a high correlation
between the near and far layer feature maps at every level in
the network. Therefore, the main idea behind the design of
the proposed x interactive down and up blocks is sharing the
interactive information Is(x0(i), x1(i)) after every convolu-
tional computation level.

Specifically, in the X down block, to share the interactive
information Id(x0(i), x1(i)) at level i before themax-pooling
operation, we merge the previous convolutional near layer’s
feature x0(i − 1) and far layer’s feature x1(i − 1) into x(i −
1) first. Then we fed x(i − 1) into the max-pooling model
f (x(i − 1);w) to decrease its size from H ×W to (H/2)×
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Fig. 7 XInteractNet architecture. In the X down block, to share the
interactive information Id (x0(i), x1(i)) at level i before the max-
pooling operation, the previous convolutional near layer’s feature
x0(i −1) and far layer’s feature x1(i −1) are merged into x(i −1) first.
The No. i+1 convolutional near and far layers take the pooled x(i) fea-
ture as input to tackle the next convolution computation. Similarly, the

X up block shares the interactive information Iu(y0( j), y1( j)) at level
j before the transposed-convolution operation. The previous convolu-
tional near layer’s feature y0( j −1) and far layer’s feature y1( j −1) are
shared andmerged into y( j−1). The obtained y0( j) and y1( j) features
are concatenated again and fed into the next NO. j + 1 convolutional
near and far layers for computation.

(W/2) while aggregate more features from C channels to
2 × C channels. The No. i + 1 convolutional near and far
layers take the pooled x(i) feature as input to tackle the next
convolution computation. We set the kernel size to 3 × 3,
stride to 1, padding to 1 for all convolutional layers of X
down block. Formally, the X interactive down block is able
to be concluded as

#d (x0(i), x1(i)) = C("d
0 ∗ x0 (i) ,"d

1 ∗ x1 (i)) (1)

where x0(i) and x1(i) are the near and far features input that
stands on the No. i layer. "d

0 and "d
1 are denoted as the the

near and far layers model parameters including correspond-
ing weights and bias matrices, respectively. C denotes the
concatenation function.

Similarly, the X up block shares the interactive infor-
mation Iu(y0( j), y1( j)) at level j before the transposed-
convolution operation. The previous convolutional near
layer’s feature y0( j−1) and far layer’s feature y1( j−1) share
interactions for each other and we merge them into y( j −1).
Afterward, the No. j transposed-convolutional layer takes
it as input to recover its size from (H/2) × (W/2) back to
H ×W while decreasing the feature channels from 2C to C .
Then we concatenate the achieved y0( j) and y1( j) features
again and feed it into the next NO. j + 1 convolutional near

and far layers for computation. Table 2 shows the convolu-
tional layer parameters of X up block. Mathematically, the
X interactive up block is able to be represented by

#u (y0( j), y1( j)) = C("u
0 ∗ y0 ( j) ,"u

1 ∗ y1 ( j)) (2)

where y0( j) and y1( j) are the near and far features input that
stands on the No. j layer. "u

0 and "u
1 denote the the near and

far layersmodel parameters including correspondingweights
and bias matrices, respectively. C denote the concatenation
function.

4.3 Interactive Loss Function

To properly fit the second step of XInteractNet, we devise a
loss function called Interactive loss function to measure the
XInteractNet. During the design process of the interactive
loss function, we have two primary considerations.

First, as a dual inputs and dual outputs supervised net-
work, XInteractNet should be capable of recovering the near
and far depth fields to be close to their original ones on the
pixel level, respectively. We, therefore, define the near Mean

123



International Journal of Computer Vision

Table 2 The convolutional and transposed convolutional layers param-
eters of the first X Up Block in Fig. 7

Layer 1 2 3

Level Near conv Near transposed conv Near conv

Far conv Far transposed conv Far conv

Kernel size 3 × 3 2 × 2 3 × 3

3 × 3 2 × 2 3 × 3

Feature map 64 64 32

Number 64 64 32

Stride 1 2 1

1 2 1

Padding 1 0 1

1 0 1

Square Error (MSE):

L0($0) =
1
N

N∑

i=1

||ϒ0(r
′′
0 (i)|$0) − g0(i)||22 (3)

where $0 encapsulates the whole near depth field parame-
ter set of the XInteractNet, that contains weights and bias.
ϒ0(r

′′
0 (i)|$0) is denoted as corresponding near depth field

modules in the XInteractNet that output r
′′
0 . As explained

in Sect. 4.2, g0(i) is the original near depth field, where i
indexes each of them. r

′
0(i) is the near depth field output of

the XInteractNet. N is the number of frames. Similarly, the
far MSE is defined as

L1($1) =
1
N

N∑

i=1

||ϒ1(r
′′
1 (i)|$1) − g1(i)||22 (4)

Hence, the sum of near MSE L0($0) and far MSE L1($1)

can be defined as Dual MSE (DMSE)

LD($0,$1) = L0($0)+ L1($1) (5)

Second, as explained in Sect. 4.2 above, the XInteractNet
aims to utilize the interactive information Is(r0, r1) between
the near and far depth fields as much as possible. Relying on
the interactive information, the XInteractNet should be able
to handle two types of depth field problemswell. Specifically,
one non-occlusive case is that the original near depth field
is the same as the original far depth field. V-PCC essentially
converts the same 3-D point to the original near and far pixel
with the same value. The XInteractNet should recognize this
non-occlusive case and do its best to assimilate them with
their Is(g0, g1). In this way, the XInteractNet can be helpful
to reconstruct only one point in 3-D space correctly. In the
other occlusive case, the correlation between near and far
depth fields is quite weak, and this means that the near depth

field is quite different from the far depth field. The XInteract-
Net should then learn from Is(g0, g1) to discriminate them
and help reconstruct two different points in 3-D space. Based
on the considerations above, we need to design a special term
in the loss function that can recover the interactive status of
Is(r0, r1) to be as close as possible to the original interactive
status Is(g0, g1). We, therefore, devise an interactive term

L IT (r
′′
0 , r

′′
1 , g0, g1) = λLs1(|r

′′
0 − r

′′
1 |, |g0 − g1|) (6)

where Ls1 denotes smooth L one loss function. r
′′
0 and r

′′
1 are

the near and far depth fields outputs of XInteractNet while
g0 and g1 are their corresponding origins. λ is a tuning coef-
ficient and is set to 0.001 by default. This interactive term
pushes the XInteractNet to learn from interactive informa-
tion so that it could squeeze the difference between near and
far reconstructions and the difference of their labels.

We finally propose the interactive loss function:

L I (($0,$1); (r ′′
0 , r

′′
1 , g0, g1)) = LD($0,$1)+

L IT (r
′′
0 , r

′′
1 , g0, g1)

(7)

The interactive loss function L I (($0,$1); (r ′′
0 , r

′′
1 , g0, g1))

effectively constrain the XInteractNet to learn from the inter-
active information Is(g0, g1) for correctly recognizing the
correlation between the near and far depth fields.

4.4 Dataset

Weadopt theCommonTest Conditions(CTC) (Schwarz et al.
2018) consisting of dynamic point cloud sequences recom-
mended by MPEG for training, validating, and testing. 8i
captured and collected these raw 3-D point cloud sequences.
For our two-step algorithm, to train and validate our near
and far S(·) CNNs of step one and XInteractNet of step two
models,weuseQueen sequence.We test the proposedmodels
with the other four sequences containingLoot, RedandBlack,
Soldier, and Longdress, as shown in Sect. 5. On step one, V-
PCC generates 250 near depth field and 250 far depth field
origins and reconstructions of Queen. Among these data, for
both near and far depth fields, we use 192 frames for training
while 58 frames for validating. Then, we extract the 64× 64
Coding Tree Units (CTU) from the luminance component of
the generated near and far depth field of origins and recon-
structions. Finally, we generate a total of 76, 800 near and
far depth field frames for training, and 23, 200 frames for
validating our S(·) CNNs. In step two, we use the V-PCC
embedded step one models, instead of anchor V-PCC refer-
ence software, to generate both training and validating data.
The other data preparation process is the same as the step
one generation process. The amount of training or validating
CTUs is the same as the one of step one as well.
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4.5 Training

To train the first step S(·) CNNs, we feed the near and
far depth field reconstruction CTUs obtained from V-PCC
anchor into the near and far S(·) CNNs, respectively. The
corresponding near and far origins generated from the
anchor supervise the training procedure. During training the
XInteractNet of the second step,we feed the generated recon-
struction CTUs of near and far depth fields from step one S(·)
CNNs into XInteractNet by batch-size of 16, respectively.
The corresponding near and far origins generated from S(·)
CNNs supervise theXInteractNet training procedure. Table 4
shows the parameters of the XInteractNet training process.
Once the interactive loss is convergent, the training state is
considered as completion. According to our experiments and
observations, the loss is convergent before 60 epochs so we
set the total XInteractNet training epochs to 60. Addition-
ally, we set the base learning rate to 1e−4. We degrade the
learning rate by multiplying γ of 0.1 after each interval of 50
epochs. In fact, γ just means the learning rate adjusting coef-
ficient. We apply the Adaptive Moment Estimation (Adam)
(Kingma and Ba 2014) algorithm as the gradient optimizer.
We setAdammomentum to 0.9 and theweight decay to 1e−4.
We use these hyper-parameters for the first step S(·) training
as well.

5 Experimental Results

To evaluate the performance of the proposed approaches,
we implement our proposed two-step and one-step algo-
rithms into the V-PCC and HEVC reference software. As
explained in Sect. 4, the two-step method represents the pro-
posed geometry artifacts removal approach in two stages,
including step one with near and far CNNs and step two
using our designed XInteractNet. The one-step method of
near and far CNNs means it executes one stage utilizing the
near CNN and far CNN for corresponding depth fields. The
one-step method of mixed geometry is inputted with a mix-
ture of near and far depth fields. In this section, we compare
the V-PCC geometry smoothing method (Nakagami 2018),
state-of-the-art(SOTA), namely geometry padding method
(Graziosi and Tabatabai 2019), the one-step methods above,
and the proposed two-stepmethod. On the aspect of test data,
we experiment within the first 32 frames of four V-PCCCTC
(Schwarz et al. 2018) sequences, as mentioned in Sect. 4.5.

5.1 Comparison with SOTA Under All Intra

AsTable 3 shown,we compare the proposed two-stepmethod
and SOTA geometry padding (Graziosi and Tabatabai 2019)
against the V-PCC geometry smoothing (Nakagami 2018)
under all intra case within the first 32 frames of four CTC

Table 4 Training parameters

Parameters Value

Base learning rate 1e−4

γ adjusting coefficient 0.1

Adjusting epochs interval 50

Weight decay 1e−4

Momentum 0.9

Total epochs 60

sequences (Schwarz et al. 2018). Note that, to be fair, we set
both the proposed two-step method and the other two V-PCC
methods to 8 bits for the geometry encoder. We experiment
with all these methods under four level bitrate settings. On
point-to-plane D2 Geom.BD-TotalRate, we can see that the
proposed two-step approach outperforms V-PCC geometry
smoothing by an average of −14.0% while the SOTA geom-
etry paddingmethod gains−8.3%on thismetric. In addition,
the proposed two-step method surpasses SOTA and geome-
try smoothing methods in every sequence on point-to-plane
D2. Specifically, the proposed two-step approach performs
better than SOTA by −5.7% and −5.5% related to Class A
andBonpoint-to-planeD2, respectively. Especially, the peak
difference even reaches −8.3% on Loot of Class A.

Compared to the SOTA geometry padding method, the
proposed two-step method gains an average of −12.4% on
point-to-point D1 Geom.BD-TotalRate. We can see that the
proposed two-step method outperforms SOTA and geometry
smoothing methods in all sequences on point-to-point D1.
Specifically, the proposed two-step method surpasses SOTA
on Class A and B correspondingly by −12.7% and −11.5%
at the point-to-point error D1. In addition, the top difference
climbs to −16.4% on Loot of Class A.

Two reasons lead to these comparison results. Both geom-
etry smoothing (Nakagami 2018) and geometry padding
(Graziosi and Tabatabai 2019) do not exploit the strong cor-
relations and interactions between the geometry near and far
layers. In addition, the non-linear representation ability of
CNN has not been considered in these two geometry dis-
tortion removal methods. All these above implicate that our
proposed two-step mechanism and designed XInteractNet
achieves a clear improvement on the problem of geometry
artifacts removal. Besides, the design of XInteractNet effec-
tively exploiting the strong correlations between near and far
depth fields is beneficial for the enhancement of geometry.

As illustrated in Fig. 8, we count the number of points
nr of the reconstructed 3-D point cloud within the first 32
frames of four CTC sequences. From level r1 to level r4, the
bitrate labeled on the Y axis gradually increases. Our pro-
posed algorithm aims to remove the artifacts and restore the
points that initially exist in ground truth as much as possible.
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(a) Loot (b) Redandblack

(c) Soldier (d) Longdress

Fig. 8 Number of points NR in reconstructed 3-D point clouds within
first 32 frames of four CTC sequences. The bitrate of Y axis grad-
ually increases from level r1 to level r4. The number of points NR
of our proposed two-step method clearly restore more points than V-

PCC geometry pading and smoothing methods. These statistics fully
demonstrate that the proposed two-step method effectively restores the
3-D point clouds.

We can obviously see that the number of points nr of our
proposed two-step method is more than the one of SOTA,
geometry smoothing. These statistics fully demonstrate that
the proposed two-step methods efficiently restore the origi-
nal points in the 3-D point-cloud reconstruction to improve
its quality.

Figure 9 shows the comparison of Geometry Rate-
Distortion (RD) curves in all the intra cases onLoot sequence.
As shown, the point-to-plane D2 PSNRs of all 4 bitrate set-
tings in the proposed two-step method is higher than the
ones of the SOTA and geometry smoothing method. Simi-
larly, the point-to-point D1 PSNRs of r1, r2, and r3 bitrate
levels in the proposed two-step method are higher than those
of the SOTA and geometry smoothing method as well. These
results significantly prove that the proposed two-stepmethod
is superior to the SOTA and geometry smoothing on remov-
ing geometry artifacts and improving the PCC quality.

The time complexity (Li et al. 2019) is shown in Table 3 as
well. For all methods, we configure the same environments.
Specifically, theCPUconfiguration is Intel core i5-8400CPU
@ 2.80GHz, and the GPU configuration is GTX 1080ti.

The ‘Enc.Self’ represents the encoder side of V-PCC, and
‘Enc.Child’ means the encoder side of HEVC. Similarly,
the ‘Dec.Self’ represents the decoder side of V-PCC, and
‘Dec.Child’ means the decoder side of HEVC. Under the
all intra case, on the encoder side of V-PCC, the proposed
two-step method takes 103% time of geometry smoothing
method. On the decoder side of V-PCC, it takes 121% time
of geometry smoothing method. Their time complexities are
similar.

5.2 Comparison with One-StepMethods

Table 5 shows the BD-rate and time complexity compari-
son between the proposed two-step method and the one-step
method of near and far CNNs all against the one-step method
inputted into mixed geometry within the first 32 frames of
four CTC sequences. The proposed two-step method out-
performs the one-step method of near and far CNNs by an
average of −4.2% and −3.6% on point-to-point error D1
and point-to-plane D2, respectively. Meanwhile, the pro-
posed two-step method performs better than the one-step
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(a) Point-to-pointRD Curves on Loot (b) Point-to-plane RD Curves on Loot

Fig. 9 Comparison of Geometry point-to-point and point-to-plane
Rate-Distortion (RD) curves on Loot sequence in all the intra cases.
As shown, the point-to-point and point-to-plane PSNRs of first three
rate points in the proposed two-step method is higher than the ones of

all other V-PCCgeometry padding and smoothingmethods. This proves
that the proposed algorithm performs obviously better than SOTAmeth-
ods on improving coding efficiency.

method inputted into mixed geometry−8.1% and−5.4% on
point-to-point error D1 and point-to-plane error D2, respec-
tively. These performances significantly demonstrate that the
proposed two-step method outperforms one-step methods on
objective qualities and PCC coding efficiency. These results
also prove that XInteractNet in the second step explores the
similarities between the near layer and far layer effectively. In
addition, thanks to the architecture design with X similarity
down and up blocks, XInteractNet could mine the interac-
tions between the near layer and far layer in a full extent.

Regarding timecomplexity, the proposed two-stepmethod
takes almost the same time as the geometry smoothing

method on the encoder side of V-PCC and HEVC. Mean-
while, on the decoder side of V-PCC and HEVC, it takes
118% and 113% time of geometry smoothing method,
respectively.

As exhibited in Fig. 8, we compare the number of points
nr in the reconstructed 3-D point cloud between the pro-
posed two-step method and one-step methods within the first
32 frames of four CTC sequences as well. We can see that
the number of points nr of the proposed two-step method is
more than either the one of the one-step method of near and
far CNNs or the one of the one-stepmethod inputted intomix
geometry in all sequences. These statistics fully prove that

Table 5 Proposed two-step method and one-step method of near and far CNNs against the one-step method of mixed geometry respectively on
BD-rate and time complexity within the first 32 frames of sequences under the all intra case

Class Sequence One-step method of near and far CNNs Proposed two-step method
Geom.BD-Totalrate Attr.BD-Totalrate Geom.BD-Totalrate Attr.BD-Totalrate
D1 ↓ D2 ↓ Luma ↓ Cb ↓ Cr ↓ D1 ↓ D2 ↓ Luma ↓ Cb ↓ Cr ↓

A Loot −4.4% −1.9% 0.0% 1.1% 0.6% −12.2% −8.0% −0.3% −0.1% −1.0%

Redandblack −3.3% −2.1% −0.1% −0.2% −0.1% −6.1% −4.9% −0.4% −1.1% −1.2%

Soldier −3.8% −1.5% −0.1% 0.4% 0.0% −8.1% −4.8% −0.8% −0.7% −1.3%

b Longdress −4.2% −1.8% −0.2% 0.1% 0.2% −5.9% −3.9% −1.2% −1.0% −1.1%

Class A −3.9% −1.8% −0.1% 0.4% 0.1% −8.8% −5.9% −0.5% −0.6% −1.1%

Class B −4.2% −1.8% −0.2% 0.1% 0.2% −5.9% −3.9% −1.2% −1.0% −1.1%

Avg. All −3.9% −1.8% −0.1% 0.3% 0.2% −8.1% −5.4% −0.7% −0.7% −1.1%

Enc.Self 100% 100%

Enc.Child 103% 103%

Dec.Self 108% 118%

Dec.Child 101% 113%
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Table 6 Proposed two-step
method against the geometry
smoothing (Nakagami 2018) on
BD-rate and Time complexity
under the random access case

Sequence Geom.BD- Attr.BD-TotalRate
TotalRate
D1 ↓ D2 ↓ Luma ↓ Cb ↓ Cr ↓

A.Loot −20.2% −19.2% −6.0% −3.8% −5.9%

A.Red&black −10.3% −11.5% −2.0% −1.2% −2.2%

A.Soldier −6.1% −6.6% −5.0% −1.6% −1.9%

B.Longdress −12.1% −14.1% −3.9% −2.4% −2.8%

Class A −12.2% −12.4% −4.3% −2.2% −3.3%

Class B −12.1% −14.1% −3.9% −2.4% −2.8%

Avg. All −12.2% −12.8% −4.2% −2.3% −3.2%

Enc.Self 103%

Enc.Child 100%

Dec.Self 119%

Dec.Child 211%

the proposed two-step method significantly performs better
than other one-step methods on restoring points for artifact
removal. Additionally, Fig. 9 shows the RD curves compar-
ison between the proposed two-step method and the other
one-step methods. The proposed two-step method leads the
higher PSNRs of point-to-point error D1 and points to plane
error D2 than other one-step methods.

5.3 Performances of the Proposed Two-Step
Algorithm Under RandomAccess Case

As shown in Table 6, in the random access case, we can see
that compared to the V-PCC geometry smoothing method,
the proposed two-step method gains an average of −12.2%
and −12.8% on Geom.BD-TotalRate point-to-point error
D1 and point-to-plane error D2, respectively. Again, we
can also see that the proposed two-step method leads the
geometry smoothing method on point-to-point error D1 and
point-to-plane error D2 in every class. Additionally, the
top difference between the two-step method and geometry
smoothingmethod climbs to−20.2%and−19.2%at Loot on
point-to-point error D1 and point-to-plane D2, respectively.
This comparison fully proves that the benefits brought by the
proposed two-step methods can be similarly propagated to
random access case.

5.4 Subjective Results

Figure 10 shows the visual comparisons of ground truth,
point-cloud reconstructions of geometry smoothing, geom-
etry padding (SOTA), and the proposed two-step method.
These figures are from sequences of Loot, RedandBlack,
and Longdress. We generate the figures (a), (b), (c), and (d)
from the point cloudground truth, the point-cloud reconstruc-
tions of geometry smoothing, geometry padding (SOTA),

and the proposed two-step methods, respectively. From these
sequences, we can clearly see from the zoomed red and green
blocks that there are apparent distortions in the reconstruc-
tions of geometry smoothing, geometry padding. However,
the reconstructions of the proposed two-step method exhibit
better visual qualities. For instance, the green rectangles of
Loot and Longdress and red ones of Redandblack and Long-
dress show significantly smoother boundary edges processed
by the proposed two-step method. Meanwhile, the green
rectangle of Redandblack and the red one of Loot exhibits
obviously more abundant graph information as well. The
subjective results demonstrate that compared to the geom-
etry smoothing and geometry padding (SOTA) methods, the
proposed two-step approach could significantly bring better
visual qualities.

6 Conclusion

The geometry video intrinsically represents the depth fields
of 3-D point clouds. Once there are artifacts on the com-
pressed 2-D geometry video, they would be propagated to
the 3-D point-cloud frames. In the lossy compression, there
always exists a tradeoff between the rate of bitstream and
distortion. This paper proposes a learning-based approach to
remove the geometry artifacts and improve the compressing
efficiency. We devise a two-step method working on the near
and far depth fields decomposed from geometry. The first
stage is learning-based Pseudo-Motion Compensation. The
second stage exploits the potential of the strong correlations
between near and far depth fields. We embed the proposed
algorithm into the V-PCC reference software. To the best of
our knowledge, this is the first learning-based solution of the
geometry artifacts removal in V-PCC. The extensive exper-
imental results show that the proposed approach achieves
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Fig. 10 Visual comparisons of ground truth, point-cloud reconstruc-
tions of geometry smoothing, padding and proposed two-step methods.
The figures are derived from Loot, RedandBlack, and Longdress. From
the three sequences, we can clearly see from the red and green rectan-
gles that there are significant artifacts and noises in the reconstructions

of V-PCC Geometry smoothing and padding methods, while the recon-
structions of the proposed two-stepmethod show a smoother effect. The
visual results obviously demonstrate that compared to the SOTA, the
proposed two-step method brings better subjective qualities.

significant gains on geometry artifacts removal and quality
improvement of 3-D point-cloud reconstruction compared to
state-of-the-art schemes. In the future, we can still exploit
the temporal relationships of the 2-D geometry and 3-D
point-cloud frames to assist the artifact removal further. The
multi-frames-based method is another reasonable potential
solution utilizing the learned features for motion compensa-

tion. In addition, we consider using sparse convolution for
PCC, which is a promising direction as well.
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