

Real-Time In Situ Prediction of Ocean Currents

Alexandre Immas ¹, Ninh Do ¹, Mohammad-Reza Alam

*Department of Mechanical Engineering, University of California, Berkeley,
California 94720, USA*

Abstract

The prediction of ocean currents is essential for the path planning and control of Autonomous Underwater Vehicles. Regional physics-based forecast models provide valid predictions but are too computationally expensive for real-time prediction necessary for AUV navigation. While vehicle sensors allow to measure the spatial evolution of current, temporal prediction remains an open problem as existing data-driven models with real-time capabilities have only been shown to work at locations where data have been used to develop the model. We propose in this paper two predictive tools using deep learning techniques, a Long Short-Term Memory Recurrent Neural Network and a Transformer, to perform real-time in-situ prediction of ocean currents at any location. We use a data set from the National Oceanic and Atmospheric Administration to show that they provide state-of-the-art predictions at various locations across the United States where no data have previously been used to train the models.

Keywords: Ocean currents prediction, Recurrent Neural Network, Attention mechanism, AUV navigation

¹ 1. Introduction

² Ocean currents prediction is critical for the safe and reliable navigation
³ of Unmanned Underwater Vehicles (UUVs). Path planning of Autonomous
⁴ Underwater Vehicles (AUVs) use oceanographic predictions from numerical
⁵ forecast models based on mass and hydrostatic momentum balance [1, 2]

¹These authors contributed equally

6 such as the Regional Ocean Model Systems (ROMS) [3], the Navy Coastal
7 Ocean Model (NCOM) [4] and the Global Real-Time Ocean Forecast System
8 (RTOFS-Global) [5]. These predictive tools have computation time of 24
9 hours and a resolution respectively of 3, 3.7 and 9.3km. They are therefore
10 not suited for trajectory re-planning and control where the spatio-temporal
11 variations of the current must be computed on the vehicle's embedded system
12 with relatively high frequency for precise navigation [6]. In this situation, the
13 current speed vector has been estimated in real-time using Kalman Filtering
14 combined with the vehicle navigation sensors [7] or with acoustic position-
15 ing [8]. These techniques however do not provide any information on the
16 spatio-temporal evolution of the ocean current. The spatial evolution can
17 be measured with an on-board Acoustic Doppler Current Profiler (ADCP)
18 that provides an instantaneous current profile along one or multiple lines.
19 This technique has been used for AUV navigation [9, 10] but neglecting the
20 temporal evolution leads to suboptimal trajectories that can turn out catas-
21 trophic.

22

23 Ocean current temporal prediction has historically been made with the
24 Harmonic Method (HM) [11] that uses sets of harmonic constituents pre-
25 computed at a finite number of near-shore sites from current data acquired
26 with ADCPs. The predictions are therefore only valid where the data have
27 been acquired which is obviously not suitable for AUVs navigation. Machine
28 learning techniques such as Support Vector Regression [12, 13] or Genetic
29 Algorithm [14] have been proposed to reduce the amount of data necessary
30 to train the predictive tools and to improve predictions accuracy. Other
31 researchers have proposed the use of artificial neural networks using fully
32 connected layers [15] or recurrent LSTM layers [16] with similar motivations.
33 These models have been trained and tested with data coming from the same
34 sites providing no information on their generalization to locations where data
35 have not been used during training. A new predictive tool allowing real-time
36 in-situ prediction of ocean currents at any location is therefore needed for
37 AUV navigation.

38

39 In this paper, we propose a Recurrent Neural Network (RNN) Long-Short
40 Term Memory (LSTM) model [17] and a Transformer model [18] to perform
41 predictions of ocean current speed and direction as described in section 2.
42 These two methods have outperformed fully connected neural networks and
43 other machine learning techniques in Natural Language Processing [19, 20]

44 that has many similarities with ocean currents prediction. RNNs have been
45 the state-of-the-art method in modelling time series data in the last decade.
46 Recently, attention-based methods and in particular the Transformer have
47 however exceeded RNN performance in many Natural Language Processing
48 tasks [20]. We show in section 3 that these deep learning techniques can
49 predict ocean currents at various locations across the United States with a
50 state-of-the-art accuracy and without having been trained with data from
51 these locations.

52

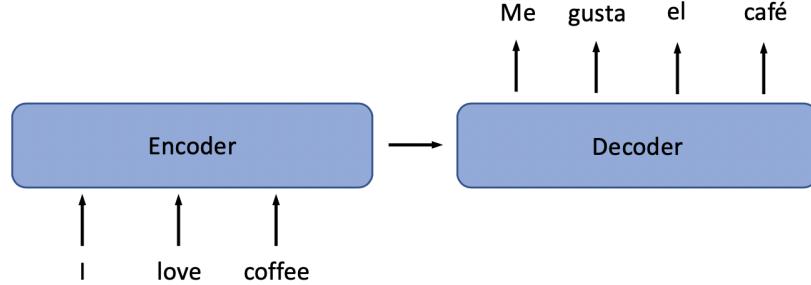
53 2. Methodology

54 2.1. Deep Auto-Regressive Networks

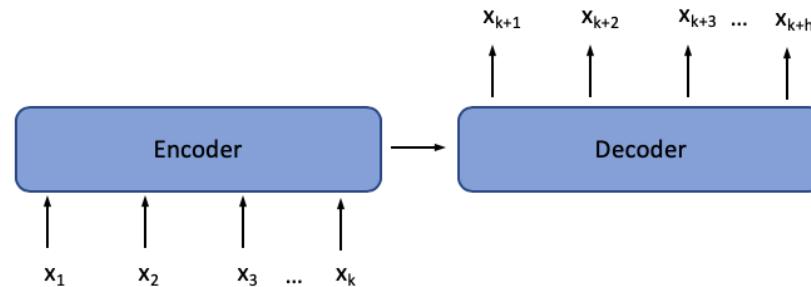
55 Our approach is inspired from the latest progress in Natural Language
56 Processing (NLP) and particularly in sequence-to-sequence models. The lat-
57 ter have obtained great results on complex tasks involving time series data
58 such as translation, speech recognition, video captioning, etc. These models
59 are made of two parts, an encoder and a decoder, as shown on Figure 1a for
60 machine translation. On the Encoder side, the neural network collects infor-
61 mation from embedded words and propagates the information forward. The
62 Decoder starts with a special token indicating that the model should now
63 predict output words. As words of the output sentence are predicted, addi-
64 tional information is propagated forward in the neural network until a special
65 token is predicted, signifying the end of the sentence. It is straightforward to
66 modify this model for time series and thus, creating a deep auto-regressive
67 network. Vectors with numerical values now replace embedded words in both
68 Encoder and Decoder. The model is therefore able to predict time series val-
69 ues based on previous values as shown on Figure 1b. For the prediction of
70 ocean currents, we propose deep auto-regressive networks that have inputs
71 and outputs of similar length. A network can thus be trained to use 24 hours,
72 1 week or 1 month of data to respectively predict the next 24 hours, 1 week
73 or 1 month.

74

75 Recurrent Neural Network (RNN) Long Short-Term Memory (LSTM)
76 and Transformer are special types of neural networks that are commonly
77 used for sequence-to-sequence models. Loosely speaking, a neural network
78 is a matrix-based algorithm to be used for approximating a process which
79 is, in the scope of this paper, defined as a black-box function that takes as



(a) Machine Translation from English to Spanish.



(b) Deep Auto-regressive Model for time series.

Figure 1: Sequence-to-Sequence Models

80 input and outputs data. Neural network emerged in recent years as a state-
 81 of-the-art approach to data modelling thanks to its universal approximating
 82 ability through a sequence of matrix operations and nonlinear activations.
 83 Among its core components are its weights that act on and transform input
 84 into output. The visualization of a neural network with multi-dimensional
 85 input and scalar output is presented in Figure 2 [21]. It is noticed that there
 86 is a component σ at each hidden node, called activation function. It plays
 87 an important role in adding nonlinearity to the model, thereby enabling the
 88 model to approximate the nonlinear processes. Otherwise, a sequence of
 89 linear matrix operations can be reduced to a single linear matrix operation,
 90 and a neural network without activation is not able to simulate a nonlinear
 91 process.

92

93 Initially, all the weights are generated randomly, simulating a random
 94 process that outputs random results no matter what input it takes. After

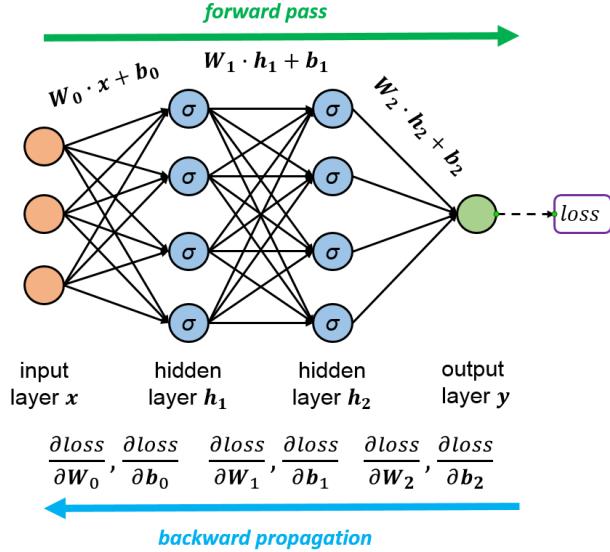


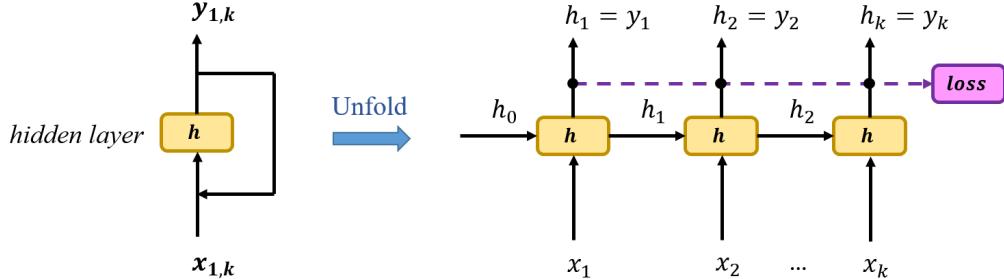
Figure 2: Neural network scheme and its operations.

95 being trained on the collected data from a true process using the backpropagation
 96 algorithm, neural network has its weights converging to the state that
 97 can closely imitate the behavior of the true process. The backpropagation
 98 algorithm involves a forward pass and a backward pass using the chain rule
 99 on the pre-defined loss. It then usually uses the stochastic gradient descent
 100 to update the weights with a fraction of the loss gradient. The procedure is
 101 illustrated in Figure 2 with forward pass and backpropagation.

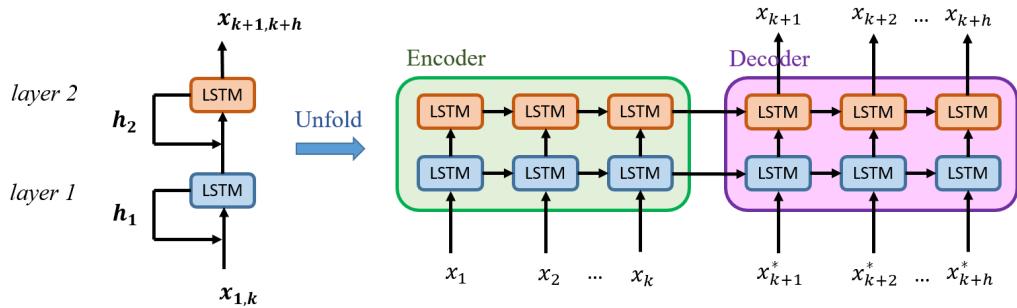
102

103 *2.2. Long Short-Term Memory*

104 Recurrent neural network is a recurrent version of neural network in which
 105 the input components, along with the hidden outputs, are recurrently fed into
 106 the network. Its architecture is similar to that of neural network with a sin-
 107 gle set of weight and bias per layer, but they differ in the ways they work.
 108 Figure 3a illustrates the structure of a typical recurrent neural network and
 109 its unfolds in operation. Let us say the input x has n components x_1, \dots, x_n ,
 110 i.e. n -dimensional input. First, x_1 and the all-zero hidden state h_0 are fed
 111 into the RNN to output the hidden state h_1 . Next, x_2 and the hidden state
 112 h_1 are fed into the RNN to output the hidden state h_2 , and so on until x_n
 113 and the hidden state h_{n-1} to output h_n which is also the output y . RNN is



(a) Recurrent neural network and its unfold in operation. LSTM neural network shares the same architecture except that the hidden layer h is replaced with a LSTM layer.



(b) Long Short-Term Memory based model consists of an encoder and a decoder.

Figure 3: The proposed LSTM-based model is the seq2seq based on LSTM.

114 also trained using backpropagation and stochastic gradient descent similar
 115 to a regular neural network.

116

117 Long-Short Term Memory (LSTM) is a special type of RNN whose hid-
 118 den layers have a more complicated architecture with several combinations
 119 of nonlinear activations on matrix operations. In specific, a LSTM hidden
 120 layer has a cell, an input gate, an output gate and a forget gate [22]. These
 121 three gates regulate the flow of information into and out of the cell which in
 122 turn selectively memorizes the information throughout the past. This feature
 123 makes LSTM particularly suitable for modelling long sequence data such as
 124 texts, signals, time series. For its efficiency in solving similar problems, LSTM
 125 is attempted as an approach to modelling and predicting the ocean currents.

126

127 The proposed LSTM model in this paper consists of two sequentially
128 connected LSTM networks, each of two hidden layers, serving as an encoder
129 and a decoder as depicted in figure 3b. This is a typical seq2seq model based
130 on LSTM. The encoder first encodes the information in the past $\mathbf{x}_{1,k}$, storing
131 the data patterns in the LSTM cells. The encoder output combined with the
132 information query $\mathbf{x}_{k+1,k+h}^*$ are subsequently fed into the decoder to produce
133 the future values. In our problem, $\mathbf{x}_{1,k}$ composes of time, speed and direction
134 of ocean currents while $\mathbf{x}_{k+1,k+h}^*$ includes only time as query for speed and
135 direction.

136 *2.3. Attention*

137 In the simplest words the attention is a mechanism to capture the cor-
138 relation between difference data sequences. Its output is employed to boost
139 the accuracy of the existing neural network models thanks to the extra infor-
140 mation of correlation that is incorporated into the models. The correlation is
141 obtained through the cross-product of two data sequences. Give two random
142 variable vectors $\mathbf{X} = [\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n]^T$ and $\mathbf{Y} = [\mathbf{Y}_1, \mathbf{Y}_2, \dots, \mathbf{Y}_n]^T$, for in-
143 stance, the correlation of \mathbf{X} with itself is given by $\mathbf{X} \times \mathbf{X}^T$ and the correlation
144 between \mathbf{X} and \mathbf{Y} is $\mathbf{X} \times \mathbf{Y}^T$. These are called, in the scope of this paper,
145 the self-attention and the cross-attention, respectively, each represented by
146 a correlation matrix.

147 The correlation mechanism is not new but its application in the neural
148 networks makes a real difference. Each element in a correlation matrix rep-
149 resents the correlation of only two random variables, and thus, of the limited
150 use. In order to capture more information, instead of gaining the correlation
151 of raw input and target sequences the attention obtains the correlation of
152 the encoder and decoder outputs, each of which is the nonlinear combina-
153 tion of different random variables of the raw input and target, respectively.
154 Thus, the captured correlation matrix turns more informative as each of its
155 elements represents correlation of the combined random variables. Since the
156 encoder and decoder are trainable, the attention is trained consequently and
157 converges to the optimal state in which the most correlated information is
158 stored.

159
160 The attention output is incorporated as a context into the neural net-
161 work models, adding more information to the predictions, thereby enhancing
162 the models accuracy. In brief, the attention operations are summarized as

follows:

```
correlations ← encoder output × decoder output
weights ← normalized correlations
context ← weights · encoder output
predicted output ← decoder output + context
```

161 where, the *weights* are the normalized *correlations*, and the *context* is the
162 weighted *encoder output*. The name *attention* comes from the fact that the
163 *predicted output* attend to the *encoder output*, which is the encoded version
164 of input, through the *context*.

165
166 Figure 4 visualizes the attention of the predicted output to the input,
167 i.e. the normalized correlations map indicating how much each output value
168 attends to all the input values. The normalized weights sum up to 1 for each
169 column. The red predicted output on the top correlate with the black input
170 on the left through two obvious periodic trends: daily and half-daily, shown
171 by a main diagonal bright strip and two subordinate diagonal less-bright
172 strips, respectively. The trends are more separating towards future values
173 in both the input and output forward directions. This could be because the
174 earlier values rely more on the past while the later values leverages the earlier
175 ones and attend less but more specific points in the past.

176 2.4. Transformer

177 The Transformer is a neural network with an encoder-decoder structure
178 that is solely based on attention mechanisms [18]. Originally developed for
179 NLP, both encoder and decoder use attention layers and fully connected
180 feed-forward layers as shown on Figure 5. Both layers include a residual
181 connection and a normalization layer to improve the learning process. The
182 model uses self-attention to encode information about other time steps when
183 processing an input at a specific time. The input representation therefore
184 includes contextual information allowing the model to account for depen-
185 dencies. While the encoder self-attention layer can access inputs at all time
186 steps, the decoder self-attention can only access inputs up to the time step
187 being processed to respect the auto-regression. Finally, the encoder-decoder
188 attention layer allows the decoder to focus on the most relevant inputs to
189 carry out its predictions.

190

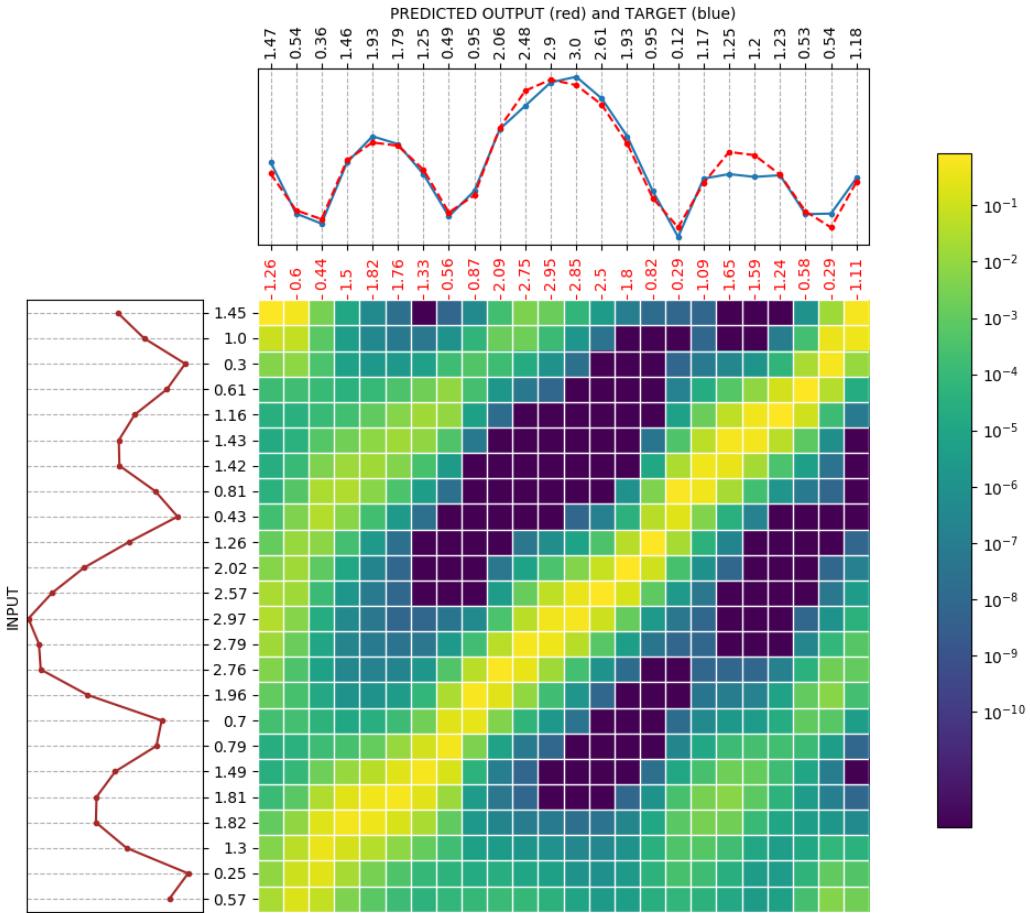


Figure 4: The attention visualization shows the weights or normalized correlations map of the input and output. The range of weights is 0-1. The y axis includes the input values in the chronological order upward. The x axis includes the predicted output (red) and target (blue) values in the chronological order rightward. The brighter color indicates the more correlation.

191 In this paper, we propose to use a Transformer encoder-decoder structure
 192 modified to work for time-series. An embedding layer is used in the
 193 original Transformer [18] to map words into vectors. For time series, we re-
 194 place this layer by a linear fully connected layer to transform input vectors
 195 into m -dimensional vectors [23]. A similar fully connected layer is used at
 196 the decoder end to convert back predictions into physical quantities and the

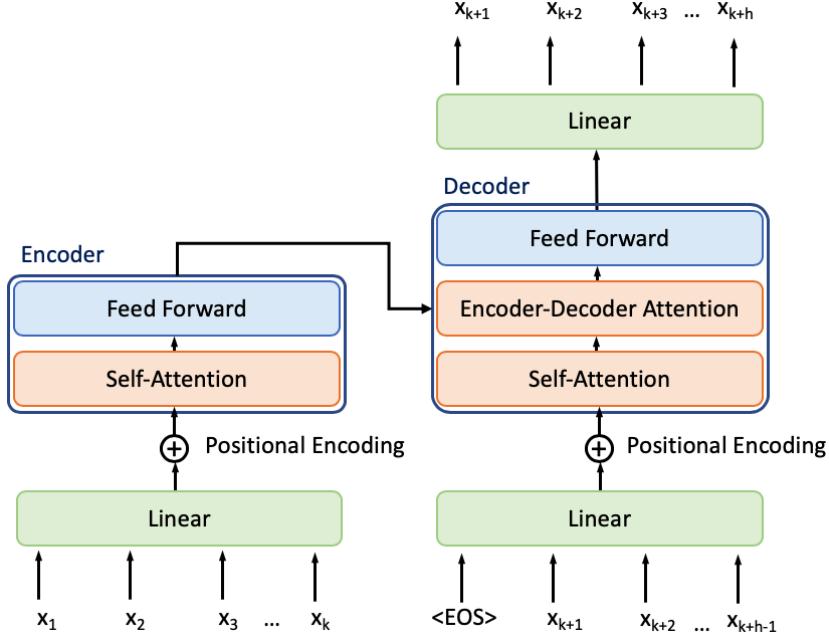


Figure 5: Transformer model architecture adapted for ocean currents prediction.

197 softmax loss is replaced by a L2 loss. Current speed and direction x_1, x_2, \dots, x_k
 198 are used as input of the Encoder and predicted current speed and direction
 199 $x_{k+1}, x_{k+2}, \dots, x_{k+h}$ are the output of the Decoder. Decoder input is first an
 200 empty time series with a start-of-prediction token in first position. Predictions
 201 are made step-by-step and are added to the decoder input to predict
 202 current speed and direction at the next time step using attention mechanism
 203 to account for dependencies.

204

205 *2.5. Data*

206 Ocean current data at 831 sites was downloaded from the Historic Sta-
 207 tions dataset on the National Oceanic and Atmospheric Adminministration
 208 (NOAA) website [24]. Current speed and directions have been acquired with
 209 ADCPs that were either bottom-mounted or shore-mounted over measure-
 210 ment campaigns from 1 to 4 months. On this dataset, 222 stations have data
 211 length greater than 2 months. Sampling interval of the raw data are either 6
 212 minutes or 10 minutes. We estimated that this was the minimum amount of

213 data necessary to train and test the Transformer and the LSTM and there-
214 fore set the maximum time horizon of the models to 1 month. After training,
215 both models can predict ocean current for 1 month based on 1 month of data
216 acquired anywhere in the United States. Note that the length restriction
217 is only due to the data available and that there is no numerical restriction
218 to increase the model prediction length. Depending on the AUV mission, a
219 shorter horizon time may also be more practical as less data is required to
220 start the predictions. The authors decided to present the predictions with
221 the highest time horizon allowed by the database because shorter horizon
222 models mechanically benefit from a higher quantity of data points leading to
223 better predictive capabilities. The performance of the models presented in
224 this paper is therefore a lower bound for models with shorter horizons.

225
226 Two data cleaning steps were applied to form the final dataset. First,
227 we observed that currents at some sites had complex directions change that
228 may be due to local specificity or data acquisition error. A typical example
229 is shown on Figure 6. We decided to remove these sites from our dataset
230 as we did not have enough information to conclude on the validity of the
231 data. Second, we observed that missing data points in the raw time series
232 coincided with a non-physical variation of the ocean current speed as shown
233 on Figure 7. We observe a tidal pattern from May 20, 2012 to August 6, 2012
234 with clear semidiurnal, diurnal and monthly variations and a sudden change
235 of pattern around August 6, 2012. As tides are generated by steady-state
236 periodic gravitational forces of the Sun and the Moon, the authors believe
237 that this is a consequence of a faulty sensor or of data acquisition errors.
238 Corresponding sequences were therefore removed from the time series. Fi-
239 nally, an interpolation was carried out to obtain a uniform sampling interval
240 of 1 hour. This value was set to reduce the size of the models while capturing
241 the important variation of the currents. A dataset including 78 stations was
242 finally selected. 66 stations were used to train the model and 12 stations
243 were used in a test set to show the ability of the models to predict ocean
244 currents at various locations across the United States where no data have
245 previously been used to train the models.

246
247 In addition to the aforementioned Historic Stations, NOAA is currently
248 deploying ADCPs over 61 stations that actively collect the ocean current data
249 at various locations around the United States [24]. These active stations are
250 similar to the historic stations in most senses but actively working at the

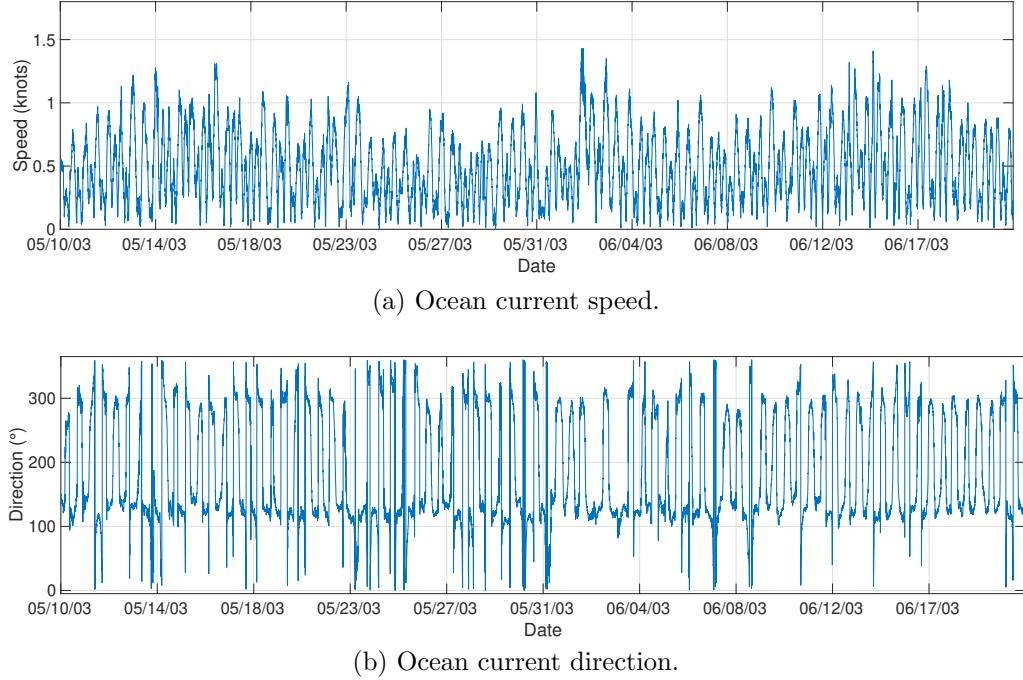


Figure 6: Ocean current measured at Chesapeake Bay (CHB0303) from May 9, 2003 to August 21, 2003. Depth: 11.7ft.

251 moment, collecting and sending data in real time. The time granule of data
 252 sampling is 6 minutes. The sensors are deployed over every 5-8 months,
 253 then recovered for a couple of hours for maintenance and checking purpose,
 254 which causes some data gaps. In addition, there are several data gaps within
 255 any deployment time span that might probably be caused by the sensing
 256 inconsistency of the sensors due to their harsh working environment. Indeed,
 257 we found it challenging to obtain any complete two-month data in any active
 258 station. We instead looked for the incomplete two-month data with small
 259 data gaps and interpolated the missing data points. The data cleansing is
 260 conducted in the same manner as that for the historic stations. We completed
 261 the test set with 3 active stations to ensure that the models work consistently
 262 not only with historic data, but also with data recently acquired without the
 263 need of re-training the models

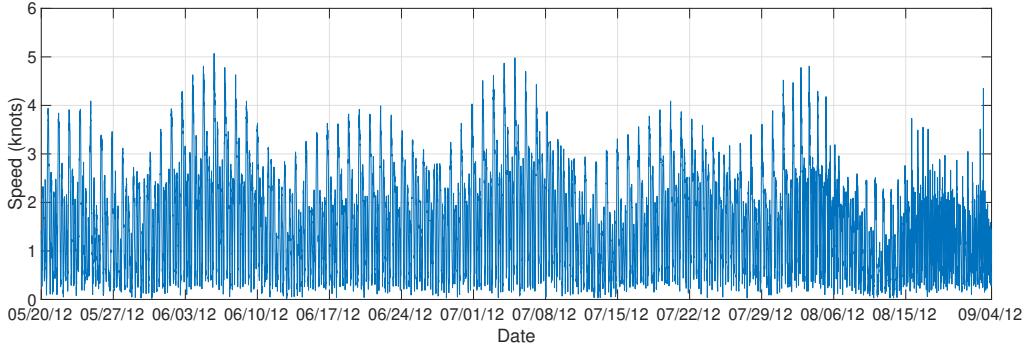


Figure 7: Ocean current speed measured at San Francisco Bay entrance (SFB1201) from May 19, 2012 to September 11, 2012. Depth: 38.6ft.

264 **3. Results and discussion**

265 *3.1. Validation with measurements from historic stations*

266 We present in this section the validation of the models on the 12 historic
 267 stations, 2 depths for each, set aside in the test set, as described in section
 268 2.5. We used the Adam optimization algorithm [25] to train the Transformer
 269 model for 10 epochs and the LSTM model for 2 epochs with a constant learn-
 270 ing rate of 10^{-3} and a batch size of 64 [26, 27]. The models were built on the
 271 TensorFlow platform supporting the implementation of neural network, and
 272 their training was carried out on a GPU NVIDIA TITAN V with a mem-
 273 ory of 12 GB. After hyperparameter optimization, we found that the best
 274 Transformer architecture has a single layer of encoder and decoder as shown
 275 on Figure 5, a model dimension $m = 128$ and a fully connected feed-forward
 276 network with a single layer of dimensionality 256 with ReLu action and a
 277 dropout of 0.5. On the other hand, the best LSTM model adopts a slightly
 278 different architecture with two LSTM layers, each of dimensionality 512, as
 279 demonstrated in Figure 3b.

280

281 To analyze the performance of the models, we computed the speed Nor-
 282 malized Root Mean Squared Error (NRMSE), defined as the speed RMSE
 283 normalized by the maximum speed amplitude, that allows to compare the
 284 predictions accuracy at sites with different currents speed magnitude. In ad-
 285 dition, we computed the direction Mean Absolute Error (MAE) to evaluate
 286 the predictions of the speed vector orientation. While the RMSE has been

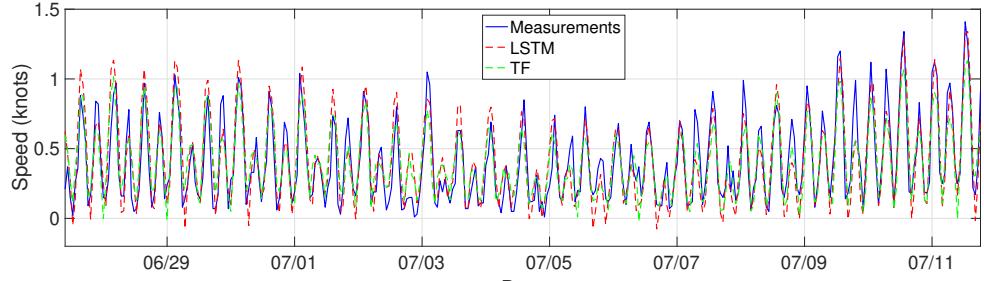
Table 1: Speed Normalized Root Mean Squared Error (NRMSE) and Direction Mean Absolute Error (MAE) for the Long Short-Term Memory model (LSTM) and the Transformer (TF) at various locations across the United States.

Station ID	Depth (ft)	Speed NRMSE		Direction MAE (°)	
		LSTM	TF	LSTM	TF
CAB1401	9	0.09	0.10	21	22
CAB1401	35	0.10	0.10	27	22
CHB9904	15	0.12	0.13	30	29
CHB9904	42	0.13	0.15	29	28
FPI0903	9	0.11	0.13	22	20
FPI0903	16	0.12	0.14	23	18
HUB0402	15	0.14	0.13	25	24
HUB0402	34	0.14	0.15	25	25
KOD0903	6	0.09	0.09	28	26
KOD0903	16	0.08	0.08	25	25
PEV0901	16	0.12	0.13	19	19
PEV0901	35	0.14	0.16	27	25
PIR0705	8	0.06	0.06	12	9
PIR0705	31	0.06	0.05	12	8
SEA0624	147	0.1	0.12	24	24
SEA0624	252	0.13	0.14	28	27
SFB1202	54	0.08	0.07	19	18
SFB1202	126	0.08	0.08	24	20
SFB1316	17	0.08	0.07	15	13
SFB1316	33	0.09	0.09	20	19
SJR9801	16	0.09	0.09	16	16
SJR9801	30	0.09	0.10	16	15
UNI1010	128	0.09	0.09	21	26
UNI1010	207	0.09	0.08	22	24

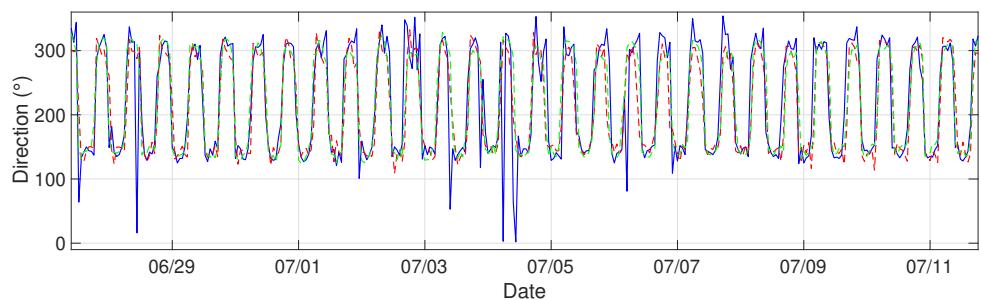
²⁸⁷ commonly used to evaluate the prediction accuracy of current speed, no standard error has been defined to evaluate prediction accuracy of the current direction. The MAE represents well the error observed on temporal compar-

290 isons because it is proportional to the error at each time step and is therefore
291 presented here. Both errors are computed on an identical sample for each
292 site and depth with the LSTM and the Transformer and are shown in Table
293 1 . The LSTM and Transformer have a global averaged NRMSE, defined
294 as the average of the NRMSE for all sites, respectively of 0.100 and 0.105
295 with a corresponding standard deviation respectively of 0.024 and 0.031. In
296 addition, the direction MAE of the two models remains lower than 30° for
297 all depths and sites. As current direction follows a simple repeating pattern,
298 this error can be easily corrected using a heuristic technique. The similar
299 performance achieved by both models show that the Transformer’s attention
300 mechanism and the LSTM’s gating mechanism are able to adequately regulate
301 the flow of information for ocean currents data processing.

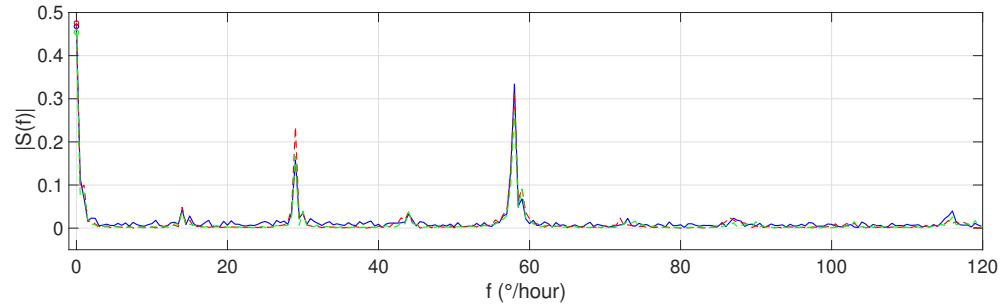
302
303 To better understand the predicting capabilities of the Transformer and
304 of the LSTM, we show on Figure 8 the speed and direction as a function of
305 time as well as the speed Fourier transform for station CAB1401 at a depth
306 of 35 ft. Station CAB1401 is located at the harbor entrance of Portland,
307 Maine. We chose this station to illustrate the performance of the models
308 because station CAB1401 has speed NRMSE at a depth of 35 ft equal to
309 the global averaged NRMSE for both models as shown in Table 1 and is
310 therefore representative of the models accuracy. Speed Predictions for station
311 CAB1401 match well with experimental measurements as shown on Figure
312 8a. The timing of the slack before flood, slack before ebb, maximum flood
313 and ebb currents are well predicted as well as well as the alternating high
314 and low tides but maximum flood and ebb currents speed shows some slight
315 discrepancies. Direction predictions, shown on Figure 8b, match well with
316 measurements and confirm that the timing of the currents variation is well
317 captured. We observe that the regularization of the models, i.e. dropout
318 for the Transformer, dropout and early stopping for the LSTM, prevents
319 them from overfitting as they do not capture the spikes in the measured
320 data that are probably due to data acquisition errors. We observe on the
321 Fourier transform of the currents speed on Figure 8c that ocean currents
322 at station CAB1401 are driven by long-period constituents around $0^\circ/\text{hour}$,
323 semidiurnal constituents at $30^\circ/\text{hour}$ as well as constituents generated by
324 nonlinear mechanisms in shallow water at $60^\circ/\text{hour}$. The models are able
325 to capture all the harmonic constituents up to $120^\circ/\text{hour}$ which corresponds
326 to the angular speed range covered by the 37 tidal harmonic constituents
327 typically used in harmonic analysis [28].



(a) Ocean currents speed.



(b) Ocean currents direction.



(c) Spectral analysis of ocean currents speed.

Figure 8: Comparison of Transformer and LSTM predictions with experimental measurements at Portland Harbor Entrance (CAB1401) from June 12 to July 12, 2014. Depth: 35ft. Only the last two weeks of the comparisons are shown on figures (a) and (b) to facilitate reading.

328 3.2. Comparison with Harmonic Method on measurements from active sta-
 329 tions

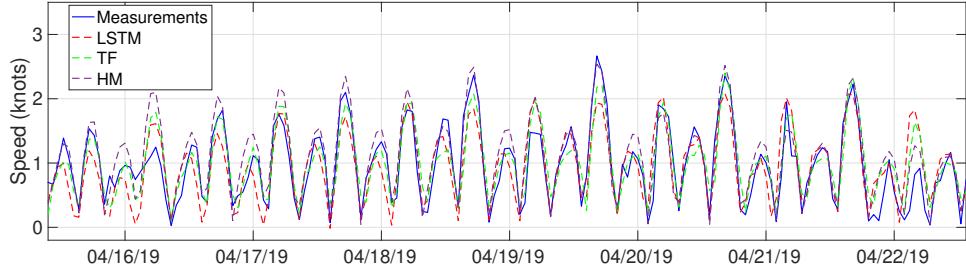
330 Harmonic method is one of the most popular approaches to modelling
 331 time series data, particularly to those whose visualization exposes some pe-

Table 2: Comparison of Speed Prediction Normalized Root Mean Squared Error (NRMSE) in knots for the Long Short-Term Memory model (LSTM), Transformer model and Harmonic Method (HM) in Active Stations.

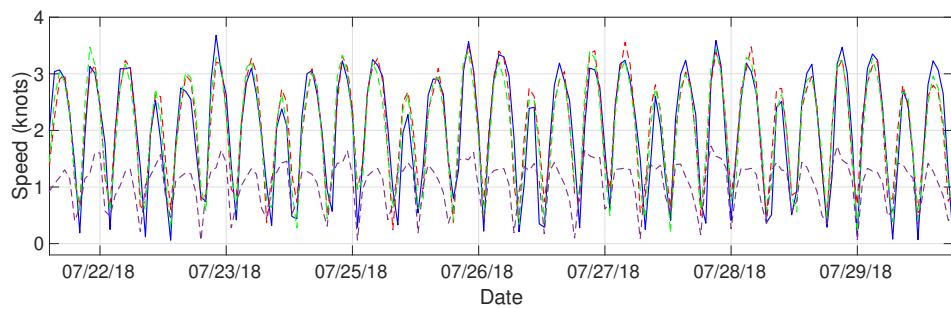
Station ID	Depth (ft)	Speed NRMSE		
		LSTM	TF	HM
cb0701	13.9	0.18	0.18	0.2
hb0401	15.7	0.14	0.12	0.12
jx0302	29.5	0.1	0.09	0.33
jx0701	15	0.09	0.10	0.12

332 riodic pattern. It is, along with ARIMA models, classified as of the classic
 333 methods as opposed to the modern ones using neural network, yet it is still
 334 widely used today. The essence of harmonic method is to find harmonic
 335 components that can be obtained by applying the Fourier transform to the
 336 selected data windows and filtering out the harmonic components with small
 337 weights. If the harmonic components are identified beforehand, the method
 338 is focused on determining their weights using, for instance, least square fit,
 339 and adjusting for the variations due to the non-harmonic factors. In mod-
 340 elling ocean currents, NOAA took the second approach. It is obvious that
 341 the harmonic patterns of ocean currents could be identified with specific fre-
 342 quencies since they are governed by the sun and the moon. NOAA applied
 343 different procedures, the choice of which is based on the available data vol-
 344 ume, in order to determine the harmonic weights. The final models were
 345 subsequently adjusted for variations such as de-tiding the time series data.
 346

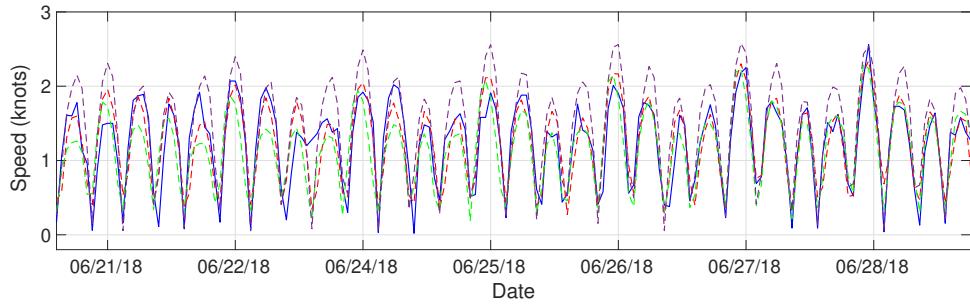
347 It is essential to note that each time series data requires a model that
 348 is a set of harmonic constants with their amplitudes. Thus, the number of
 349 models is corresponding to the number of stations in the ocean current mod-
 350 eling problem, which results in a huge workload. In specific, NOAA used
 351 the historic stations data to build the separate models for the correspond-
 352 ing sites. Depending on the amount of collected data in the stations, the
 353 models were built independently using different procedures. The predictions
 354 using these models are called harmonic predictions as they are based directly
 355 on the harmonic models, and these station are called reference station. Be-
 356 side the harmonic prediction, the subordinate predictions are made for the
 357 subordinate stations close to the reference station but without the collected



(a) hb0401



(b) jx0302



(c) jx0701

Figure 9: Comparison of Transformer and LSTM ocean currents speed predictions with experimental measurements and predictions obtained with Harmonic Method at various locations across the United States. Only one week of comparisons is shown to facilitate reading.

358 data. We are interested in the harmonic predictions as we want to compare
 359 our models performance to the harmonic model performance. Table 2 sum-

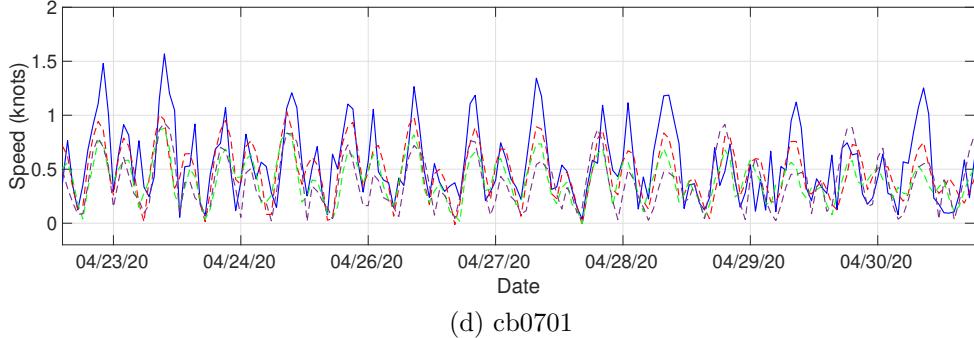


Figure 9: Comparison of Transformer and LSTM ocean currents speed predictions with experimental measurements and predictions obtained with Harmonic Method at various locations across the United States. Only one week of comparisons is shown to facilitate reading.

360 marizes the speed NRMSEs by LSTM, Transfomer, and harmonic methods,
 361 followed by Figure 9 visualizing their performances on speed prediction. The
 362 number of tests on active stations are limited since, although there are a
 363 total of 61 active stations as of this study's time, few ones have sufficient
 364 continuous data for testing purpose.

365

366 Table 2 shows that our models LSTM and Transformer outperform the
 367 harmonic model in 3 out of 4 active stations. Due to the limitation of active
 368 data, this may not be a fair comparison but it shows some interesting points
 369 regarding the prediction capacities of these models. As can be seen in Figure
 370 9, all the models do a good job in catching the periodic time points when
 371 the flood and ebb currents occur. The harmonic method, however, fails to
 372 match the peak values in the stations jx0302 and jx0701 due to its inflexibil-
 373 ity. That is, the harmonic method can identify well the current patterns but
 374 it is not adapting to the changes of current amplitudes due to its fixed har-
 375 monic constituents. The neural network-based methods, on the other hand,
 376 take into account the most recent information combined with the memorized
 377 patterns to produce the predictions that incorporate the details of long and
 378 short time. Thus, the proposed methods are more adapting to the change of
 379 currents over time.

380

381 It is interesting to notice that the neural network-based models perform

382 better than the harmonic one in cb0701 and worse in hb0401 while the former
383 station looks less patterned than the latter, i.e. more noisy. The authors
384 do not have solid explanation for this. Our conjecture is that the proposed
385 models are more capable of capturing minor details in time series. The reason
386 for that is, when training the network-based models, we do not deliberately
387 select patterns beforehand, the training procedure converges the network
388 weights to embrace all major and minor patterns except the randomness. In
389 the harmonic method, on the other hand, people do determine the harmonic
390 periods before identifying its constituents so the number of patterns is limited.

391 4. Conclusions

392 We developed deep auto-regressive networks to predict ocean currents
393 speed and direction at various locations across the United States. A LSTM
394 Recurrent Neural Network and a Transformer, using attention mechanisms,
395 have been modified and trained with the Historic Stations dataset from
396 NOAA. Both models are able to predict ocean currents for one month at
397 any site in the territorial sea of the United States using one month of mea-
398 sured data as input. They have similar performance and their accuracy is
399 equivalent to the well known harmonic method. The LSTM is likely to be
400 a better choice for future deployments because it is easier to train and more
401 widely spread among the scientific and engineering community. These mod-
402 els provide a significant improvement compared to harmonic method where
403 harmonic constituents need to be analyzed and computed for each site before
404 predictions can be carried out. Notably, these models allow the real-time in-
405 situ prediction of ocean currents for AUVs navigation. AUVs are expected
406 to be widely deployed in the near future for seafloor mapping. Both models
407 could, for instance, be used to support the seafloor mapping of the United
408 States Exclusive Economic Zone (EEZ) and of the Alaskan coastline. The
409 extension of the models to other regions in the world remain to be evaluated.
410 Both models have been trained to learn the principal ocean currents varia-
411 tions and should therefore be able to provide, to some extent, predictions at
412 any location in the world. Re-training of the models on a dataset representa-
413 tive of the regional ocean currents distribution should however be considered
414 to fully exploit the predictive power of the neural networks.

⁴¹⁵ **5. Acknowledgement**

⁴¹⁶ This work was partially supported by the Link OE foundation; and by the
⁴¹⁷ National Science Foundation under Grant No. 1932595.

418 **References**

- 419 [1] R. N. Smith, Y. Chao, P. P. Li, D. A. Caron, B. H. Jones, G. S.
420 Sukhatme, Planning and implementing trajectories for autonomous un-
421 derwater vehicles to track evolving ocean processes based on predictions
422 from a regional ocean model, *The International Journal of Robotics
423 Research* 29 (2010) 1475–1497.
- 424 [2] Z. Zeng, H. Zhou, L. Lian, Exploiting ocean energy for improved auv
425 persistent presence: path planning based on spatiotemporal current fore-
426 casts, *Journal of Marine Science and Technology* 25 (2020) 26–47.
- 427 [3] A. F. Shchepetkin, J. C. McWilliams, The regional oceanic model-
428 ing system (roms): a split-explicit, free-surface, topography-following-
429 coordinate oceanic model, *Ocean modelling* 9 (2005) 347–404.
- 430 [4] P. J. Martin, Description of the navy coastal ocean model version 1.0,
431 Technical Report, Naval Research Lab Stennis Space Center MS, 2000.
- 432 [5] Z. Yang, P. H. Richardson, R. A. Schmaltz Jr, Assessment of noaa water
433 level, sea-surface temperature, and salinity guidance from the global
434 real-time ocean forecast system (g-rtofs) and water level guidance from
435 the extratropical storm surge (etss) system in western us coastal waters
436 (2015).
- 437 [6] A. Immas, M.-R. Alam, Optimization of a swarm of autonomous un-
438 derwater vehicles for high-bandwidth underwater wireless communica-
439 tion, in: *International Conference on Offshore Mechanics and Arctic
440 Engineering*, volume 58851, American Society of Mechanical Engineers,
441 2019, p. V07BT06A053.
- 442 [7] B. Allotta, R. Costanzi, F. Fanelli, N. Monni, L. Paolucci, A. Ridolfi,
443 Sea currents estimation during auv navigation using unscented kalman
444 filter, *IFAC-PapersOnLine* 50 (2017) 13668–13673.
- 445 [8] P. Baccou, B. Jouvencel, V. Creuze, Single beacon acoustic for auv
446 navigation, in: *International Conference on Advanced Robotics*, 2001,
447 pp. 22–25.
- 448 [9] B. Garau, A. Alvarez, G. Oliver, Auv navigation through turbulent
449 ocean environments supported by onboard h-adcp, in: *Proceedings*

- 450 2006 IEEE International Conference on Robotics and Automation, 2006.
451 ICRA 2006., IEEE, 2006, pp. 3556–3561.
- 452 [10] L. Medagoda, S. B. Williams, Model predictive control of an autonomous
453 underwater vehicle in an in situ estimated water current profile, in: 2012
454 Oceans-Yeosu, IEEE, 2012, pp. 1–8.
- 455 [11] R. Pawlowicz, B. Beardsley, S. Lentz, Classical tidal harmonic analysis
456 including error estimates in matlab using t_tide, Computers & Geo-
457 sciences 28 (2002) 929–937.
- 458 [12] Y. Guozhen, W. Haifeng, Q. Hui, F. Jianming, Tidal current short-
459 term prediction based on support vector regression, in: IOP Conference
460 Series: Materials Science and Engineering, volume 199, IOP Publishing,
461 2017, p. 012024.
- 462 [13] A. Kavousi-Fard, W. Su, A combined prognostic model based on ma-
463 chine learning for tidal current prediction, IEEE Transactions on Geo-
464 science and Remote Sensing 55 (2017) 3108–3114.
- 465 [14] P. Remya, R. Kumar, S. Basu, Forecasting tidal currents from tidal
466 levels using genetic algorithm, Ocean engineering 40 (2012) 62–68.
- 467 [15] S. Dauji, M. C. Deo, K. Bhargava, Prediction of ocean currents with
468 artificial neural networks, ISH Journal of Hydraulic Engineering 21
469 (2015) 14–27.
- 470 [16] C. Bayindir, Predicting the ocean currents using deep learning, arXiv
471 preprint arXiv:1906.08066 (2019).
- 472 [17] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural com-
473 putation 9 (1997) 1735–1780.
- 474 [18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
475 L. Kaiser, I. Polosukhin, Attention is all you need (2017) 5998–6008.
- 476 [19] H. Salehinejad, S. Sankar, J. Barfett, E. Colak, S. Valaee, Recent ad-
477 vances in recurrent neural networks, arXiv preprint arXiv:1801.01078
478 (2017).
- 479 [20] R. Al-Rfou, D. Choe, N. Constant, M. Guo, L. Jones, Character-level
480 language modeling with deeper self-attention 33 (2019) 3159–3166.

- 481 [21] N. Do, M.-R. Alam, Data-based approach to optimizing the ocean wave
482 energy carpet using deep neural network, Proceedings of the ASME
483 2020 39th International Conference on Ocean, Offshore and Arctic En-
484 gineering OMAE2020 (June 2020).
- 485 [22] C. Olah, Understanding LSTM Networks, 2015. URL: <http://colah.github.io/posts/2015-08-Understanding-LSTMs/>.
- 487 [23] M. Allard, What is a transformer?, 2019. URL: <https://medium.com/inside-machine-learning/what-is-a-transformer-d07dd1fbec04>.
- 489 [24] Co-ops current station data, 2020. URL: <https://tidesandcurrents.noaa.gov/cdata/>.
- 491 [25] D. P. Kingma, J. L. Ba, Adam: A method for stochastic optimization, in: ICLR, 2015.
- 493 [26] L. Bottou, Online algorithms and stochastic approximations, in: D. Saad (Ed.), Online Learning and Neural Networks, Cambridge University Press, Cambridge, UK, 1998. URL: <http://leon.bottou.org/papers/bottou-98x>, revised, oct 2012.
- 497 [27] L. Bottou, Stochastic gradient learning in neural networks, ATT Bell
498 Laboratories, (1991).
- 499 [28] B. B. Parker, Tidal analysis and prediction., NOAA, NOS Center for
500 Operational Oceanographic Products and Services (2007).