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Abstract

The prediction of ocean currents is essential for the path planning and con-
trol of Autonomous Underwater Vehicles. Regional physics-based forecast
models provide valid predictions but are too computationally expensive for
real-time prediction necessary for AUV navigation. While vehicle sensors al-
low to measure the spatial evolution of current, temporal prediction remains
an open problem as existing data-driven models with real-time capabilities
have only been shown to work at locations where data have been used to
develop the model. We propose in this paper two predictive tools using deep
learning techniques, a Long Short-Term Memory Recurrent Neural Network
and a Transformer, to perform real-time in-situ prediction of ocean currents
at any location. We use a data set from the National Oceanic and Atmo-
spheric Administration to show that they provide state-of-the-art predictions
at various locations across the United States where no data have previously
been used to train the models.

Keywords: Ocean currents prediction, Recurrent Neural Network,
Attention mechanism, AUV navigation

1. Introduction

Ocean currents prediction is critical for the safe and reliable navigation
of Unmanned Underwater Vehicles (UUVs). Path planning of Autonomous
Underwater Vehicles (AUVs) use oceanographic predictions from numerical
forecast models based on mass and hydrostatic momentum balance [1, 2]
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such as the Regional Ocean Model Systems (ROMS) [3], the Navy Coastal
Ocean Model (NCOM) [4] and the Global Real-Time Ocean Forecast System
(RTOFS-Global) [5]. These predictive tools have computation time of 24
hours and a resolution respectively of 3, 3.7 and 9.3km. They are therefore
not suited for trajectory re-planning and control where the spatio-temporal
variations of the current must be computed on the vehicle’s embedded system
with relatively high frequency for precise navigation [6]. In this situation, the
current speed vector has been estimated in real-time using Kalman Filtering
combined with the vehicle navigation sensors [7] or with acoustic position-
ing [8]. These techniques however do not provide any information on the
spatio-temporal evolution of the ocean current. The spatial evolution can
be measured with an on-board Acoustic Doppler Current Profiler (ADCP)
that provides an instantaneous current profile along one or multiple lines.
This technique has been used for AUV navigation [9, 10] but neglecting the
temporal evolution leads to suboptimal trajectories that can turn out catas-
trophic.

Ocean current temporal prediction has historically been made with the
Harmonic Method (HM) [11] that uses sets of harmonic constituents pre-
computed at a finite number of near-shore sites from current data acquired
with ADCPs. The predictions are therefore only valid where the data have
been acquired which is obviously not suitable for AUVs navigation. Machine
learning techniques such as Support Vector Regression [12, 13] or Genetic
Algorithm [14] have been proposed to reduce the amount of data necessary
to train the predictive tools and to improve predictions accuracy. Other
researchers have proposed the use of artificial neural networks using fully
connected layers [15] or recurent LSTM layers [16] with similar motivations.
These models have been trained and tested with data coming from the same
sites providing no information on their generalization to locations where data
have not been used during training. A new predictive tool allowing real-time
in-situ prediction of ocean currents at any location is therefore needed for
AUV navigation.

In this paper, we propose a Recurrent Neural Network (RNN) Long-Short
Term Memory (LSTM) model [17] and a Transformer model [18] to perform
predictions of ocean current speed and direction as described in section 2.
These two methods have outperformed fully connected neural networks and
other machine learning techniques in Natural Language Processing [19, 20]
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that has many similarities with ocean currents prediction. RNNs have been
the state-of-the-art method in modelling time series data in the last decade.
Recently, attention-based methods and in particular the Transformer have
however exceeded RNN performance in many Natural Language Processing
tasks [20]. We show in section 3 that these deep learning techniques can
predict ocean currents at various locations across the United States with a
state-of-the-art accuracy and without having been trained with data from
these locations.

2. Methodology

2.1. Deep Auto-Regressive Networks

Our approach is inspired from the latest progress in Natural Language
Processing (NLP) and particularly in sequence-to-sequence models. The lat-
ter have obtained great results on complex tasks involving time series data
such as translation, speech recognition, video captioning, etc. These models
are made of two parts, an encoder and a decoder, as shown on Figure 1a for
machine translation. On the Encoder side, the neural network collects infor-
mation from embedded words and propagates the information forward. The
Decoder starts with a special token indicating that the model should now
predict output words. As words of the output sentence are predicted, addi-
tional information is propagated forward in the neural network until a special
token is predicted, signifying the end of the sentence. It is straightforward to
modify this model for time series and thus, creating a deep auto-regressive
network. Vectors with numerical values now replace embedded words in both
Encoder and Decoder. The model is therefore able to predict time series val-
ues based on previous values as shown on Figure 1b. For the prediction of
ocean currents, we propose deep auto-regressive networks that have inputs
and outputs of similar length. A network can thus be trained to use 24 hours,
1 week or 1 month of data to respectively predict the next 24 hours, 1 week
or 1 month.

Recurrent Neural Network (RNN) Long Short-Term Memory (LSTM)
and Transformer are special types of neural networks that are commonly
used for sequence-to-sequence models. Loosely speaking, a neural network
is a matrix-based algorithm to be used for approximating a process which
is, in the scope of this paper, defined as a black-box function that takes as
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(b) Deep Auto-regressive Model for time series.

Figure 1: Sequence-to-Sequence Models

input and outputs data. Neural network emerged in recent years as a state-
of-the-art approach to data modelling thanks to its universal approximating
ability through a sequence of matrix operations and nonlinear activations.
Among its core components are its weights that act on and transform input
into output. The visualization of a neural network with multi-dimensional
input and scalar output is presented in Figure 2 [21]. It is noticed that there
is a component ¢ at each hidden node, called activation function. It plays
an important role in adding nonlinearity to the model, thereby enabling the
model to approximate the nonlinear processes. Otherwise, a sequence of
linear matrix operations can be reduced to a single linear matrix operation,
and a neural network without activation is not able to simulate a nonlinear
process.

Initially, all the weights are generated randomly, simulating a random
process that outputs random results no matter what input it takes. After
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Figure 2: Neural network scheme and its operations.

being trained on the collected data from a true process using the backpropa-
gation algorithm, neural network has its weights converging to the state that
can closely imitate the behavior of the true process. The backpropagation
algorithm involves a forward pass and a backward pass using the chain rule
on the pre-defined loss. It then usually uses the stochastic gradient descent
to update the weights with a fraction of the loss gradient. The procedure is
illustrated in Figure 2 with forward pass and backpropagation.

2.2. Long Short-Term Memory

Recurrent neural network is a recurrent version of neural network in which
the input components, along with the hidden outputs, are recurrently fed into
the network. Its architecture is similar to that of neural network with a sin-
gle set of weight and bias per layer, but they differ in the ways they work.
Figure 3a illustrates the structure of a typical recurrent neural network and
its unfolds in operation. Let us say the input x has n components z1, ..., z,,
i.e. n-dimensional input. First, x; and the all-zero hidden state hq are fed
into the RNN to output the hidden state h;. Next, o and the hidden state
hy are fed into the RNN to output the hidden state hy, and so on until z,,
and the hidden state h,_; to output h,, which is also the output y. RNN is
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Figure 3: The proposed LSTM-based model is the seq2seq based on LSTM.
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to a regular neural network.

Long-Short Term Memory (LSTM) is a special type of RNN whose hid-
den layers have a more complicated architecture with several combinations
of nonlinear activations on matrix operations. In specific, a LSTM hidden
layer has a cell, an input gate, an output gate and a forget gate [22]. These
three gates regulate the flow of information into and out of the cell which in
turn selectively memorizes the information throughout the past. This feature
makes LSTM particularly suitable for modelling long sequence data such as
124 texts, signals, time series. For it efficiency in solving similar problems, LSTM
is attempted as an approach to modelling and predicting the ocean currents.
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The proposed LSTM model in this paper consists of two sequentially
connected LSTM networks, each of two hidden layers, serving as an encoder
and a decoder as depicted in figure 3b. This is a typical seq2seq model based
on LSTM. The encoder first encodes the information in the past x; x, storing
the data patterns in the LSTM cells. The encoder output combined with the
information query Xy 4,y are subsequently fed into the decoder to produce
the future values. In our problem, x; x composes of time, speed and direction
of ocean currents while xj , .}, includes only time as query for speed and
direction.

2.3. Attention

In the simplest words the attention is a mechanism to capture the cor-
relation between difference data sequences. Its output is employed to boost
the accuracy of the existing neural network models thanks to the extra infor-
mation of correlation that is incorporated into the models. The correlation is
obtained through the cross-product of two data sequences. Give two random
variable vectors X = [Xy,Xs,..., X7 and Y = [Y1,Y2,..., Y], for in-
stance, the correlation of X with itself is given by X x XT and the correlation
between X and Y is X x Y7Z. These are called, in the scope of this paper,
the self-attention and the cross-attention, respectively, each represented by
a correlation matrix.

The correlation mechanism is not new but its application in the neural
networks makes a real difference. Each element in a correlation matrix rep-
resents the correlation of only two random variables, and thus, of the limited
use. In order to capture more information, instead of gaining the correlation
of raw input and target sequences the attention obtains the correlation of
the encoder and decoder outputs, each of which is the nonlinear combina-
tion of different random variables of the raw input and target, respectively.
Thus, the captured correlation matrix turns more informative as each of its
elements represents correlation of the combined random variables. Since the
encoder and decoder are trainable, the attention is trained consequently and
converges to the optimal state in which the most correlated information is
stored.

The attention output is incorporated as a context into the neural net-

work models, adding more information to the predictions, thereby enhancing
the models accuracy. In brief, the attention operations are summarized as
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follows:

correlations < encoder output X decoder output
weights < normalized correlations
context < weights - encoder output

predicted output < decoder output + context

where, the weights are the normalized correlations, and the context is the
weighted encoderoutput. The name attention comes from the fact that the
predicted output attend to the encoder output, which is the encoded version
of input, through the context.

Figure 4 visualizes the attention of the predicted output to the input,
i.e. the normalized correlations map indicating how much each output value
attends to all the input values. The normalized weights sum up to 1 for each
column. The red predicted output on the top correlate with the black input
on the left through two obvious periodic trends: daily and half-daily, shown
by a main diagonal bright strip and two subordinate diagonal less-bright
strips, respectively. The trends are more separating towards future values
in both the input and output forward directions. This could be because the
earlier values rely more on the past while the later values leverages the earlier
ones and attend less but more specific points in the past.

2.4. Transformer

The Transformer is a neural network with an encoder-decoder structure
that is solely based on attention mechanisms [18]. Originally developed for
NLP, both encoder and decoder use attention layers and fully connected
feed-forward layers as shown on Figure 5. Both layers include a residual
connection and a normalization layer to improve the learning process. The
model uses self-attention to encode information about other time steps when
processing an input at a specific time. The input representation therefore
includes contextual information allowing the model to account for depen-
dencies. While the encoder self-attention layer can access inputs at all time
steps, the decoder self-attention can only access inputs up to the time step
being processed to respect the auto-regression. Finally, the encoder-decoder
attention layer allows the decoder to focus on the most relevant inputs to
carry out is predictions.
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Figure 4: The attention visualization shows the weights or normalized correlations map of
the input and output. The range of weights is 0-1 The y axis includes the input values in
the chronological order upward. The x axis includes the predicted output (red) and target
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correlation.

In this paper, we propose to use a Transformer encoder-decoder struc-
ture modified to work for time-series. An embedding layer is used in the
original Transformer [18] to map words into vectors. For time series, we re-
place this layer by a linear fully connected layer to transform input vectors
into m-dimensional vectors [23]. A similar fully connected layer is used at
the decoder end to convert back predictions into physical quantities and the
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Figure 5: Transformer model architecture adapted for ocean currents prediction.

softmax loss is replaced by a L2 loss. Current speed and direction x4, xo, ...,
x, are used as input of the Encoder and predicted current speed and direction
Thil, Thi2, ---, Tpop are the output of the Decoder. Decoder input is first an
empty time series with a start-of-prediction token in first position. Predic-
tions are made step-by-step and are added to the decoder input to predict
current speed and direction at the next time step using attention mechanism
to account for dependencies.

2.5. Data

Ocean current data at 831 sites was downloaded from the Historic Sta-
tions dataset on the National Oceanic and Atmospheric Admninistration
(NOAA) website [24]. Current speed and directions have been acquired with
ADCPs that were either bottom-mounted or shore-mounted over measure-
ment campaigns from 1 to 4 months. On this dataset, 222 stations have data
length greater than 2 months. Sampling interval of the raw data are either 6
minutes or 10 minutes. We estimated that this was the minimum amount of
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data necessary to train and test the Transformer and the LSTM and there-
fore set the maximum time horizon of the models to 1 month. After training,
both models can predict ocean current for 1 month based on 1 month of data
acquired anywhere in the United States. Note that the length restriction
is only due to the data available and that there is no numerical restriction
to increase the model prediction length. Depending on the AUV mission, a
shorter horizon time may also be more practical as less data is required to
start the predictions. The authors decided to present the predictions with
the highest time horizon allowed by the database because shorter horizon
models mechanically benefit from a higher quantity of data points leading to
better predictive capabilities. The performance of the models presented in
this paper is therefore a lower bound for models with shorter horizons.

Two data cleaning steps were applied to form the final dataset. First,
we observed that currents at some sites had complex directions change that
may be due to local specificity or data acquisition error. A typical example
is shown on Figure 6. We decided to remove these sites from our dataset
as we did not have enough information to conclude on the validity of the
data. Second, we observed that missing data points in the raw time series
coincided with a non-physical variation of the ocean current speed as shown
on Figure 7. We observe a tidal pattern from May 20, 2012 to August 6, 2012
with clear semidiurnal, diurnal and monthly variations and a sudden change
of pattern around August 6, 2012. As tides are generated by steady-state
periodic gravitational forces of the Sun and the Moon, the authors believe
that this is a consequence of a faulty sensor or of data acquisition errors.
Corresponding sequences were therefore removed from the time series. Fi-
nally, an interpolation was carried out to obtain a uniform sampling interval
of 1 hour. This value was set to reduce the size of the models while capturing
the important variation of the currents. A dataset including 78 stations was
finally selected. 66 stations were used to train the model and 12 stations
were used in a test set to show the ability of the models to predict ocean
currents at various locations across the United States where no data have
previously been used to train the models.

In addition to the aforementioned Historic Stations, NOAA is currently
deploying ADCPs over 61 stations that actively collect the ocean current data
at various locations around the United States [24]. These active stations are
similar to the historic stations in most senses but actively working at the

11
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Figure 6: Ocean current measured at Chesapeake Bay (CHB0303) from May 9, 2003 to
August 21, 2003. Depth: 11.7ft.

moment, collecting and sending data in real time. The time granule of data
sampling is 6 minutes. The sensors are deployed over every 5-8 months,
then recovered for a couple of hours for maintenance and checking purpose,
which causes some data gaps. In addition, there are several data gaps within
any deployment time span that might probably be caused by the sensing
inconsistency of the sensors due to their harsh working environment. Indeed,
we found it challenging to obtain any complete two-month data in any active
station. We instead looked for the incomplete two-month data with small
data gaps and interpolated the missing data points. The data cleansing is
conducted in the same manner as that for the historic stations. We completed
the test set with 3 active stations to ensure that the models work consistently
not only with historic data, but also with data recently acquired without the
need of re-training the models

12
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Figure 7: Ocean current speed measured at San Francisco Bay entrance (SFB1201) from
May 19, 2012 to September 11, 2012. Depth: 38.6ft.

3. Results and discussion

3.1. Validation with measurements from historic stations

We present in this section the validation of the models on the 12 historic
stations, 2 depths for each, set aside in the test set, as described in section
2.5. We used the Adam optimization algorithm [25] to train the Transformer
model for 10 epochs and the LSTM model for 2 epochs with a constant learn-
ing rate of 1072 and a batch size of 64 [26, 27]. The models were built on the
TensorFlow platform supporting the implementation of neural network, and
their training was carried out on a GPU NVIDIA TITAN V with a mem-
ory of 12 GB. After hyperparameter optimization, we found that the best
Transformer architecture has a single layer of encoder and decoder as shown
on Figure 5, a model dimension m = 128 and a fully connected feed-forward
network with a single layer of dimensionality 256 with ReLu action and a
dropout of 0.5. On the other hand, the best LSTM model adopts a slightly
different architecture with two LSTM layers, each of dimensionality 512, as
demonstrated in Figure 3b.

To analyze the performance of the models, we computed the speed Nor-
malized Root Mean Squared Error (NRMSE), defined as the speed RMSE
normalized by the maximum speed amplitude, that allows to compare the
predictions accuracy at sites with different currents speed magnitude. In ad-
dition, we computed the direction Mean Absolute Error (MAE) to evaluate
the predictions of the speed vector orientation. While the RMSE has been

13



Table 1: Speed Normalized Root Mean Squared Error (NRMSE) and Direction Mean Ab-
solute Error (MAE) for the Long Short-Term Memory model (LSTM) and the Transformer
(TF) at various locations across the United States.

. Depth Speed NRMSE Direction MAE (°
Station ID. | “¢)" —{mq [ TF LSTM | T
CAB1401 9 0.09 0.10 21 22
CAB1401 35 0.10 0.10 27 22
CHB9904 15 0.12 0.13 30 29
CHB9904 42 0.13 0.15 29 28
FPI0903 9 0.11 0.13 22 20
FPI0903 16 0.12 0.14 23 18
HUB0402 15 0.14 0.13 25 24
HUB0402 34 0.14 0.15 25 25
KOD0903 6 0.09 0.09 28 26
KODO0903 16 0.08 0.08 25 25
PEV0901 16 0.12 0.13 19 19
PEV0901 35 0.14 0.16 27 25
PIRO0705 8 0.06 0.06 12 9
PIR0705 31 0.06 0.05 12 8
SEA0624 147 0.1 0.12 24 24
SEA0624 252 0.13 0.14 28 27
SFB1202 54 0.08 0.07 19 18
SFB1202 126 0.08 0.08 24 20
SFB1316 17 0.08 0.07 15 13
SFB1316 33 0.09 0.09 20 19
SJRI801 16 0.09 0.09 16 16
SJR9801 30 0.09 0.10 16 15
UNI1010 128 0.09 0.09 21 26
UNI1010 207 0.09 0.08 22 24

257 commonly used to evaluate the prediction accuracy of current speed, no stan-
s dard error has been defined to evaluate prediction accuracy of the current
280 direction. The MAE represents well the error observed on temporal compar-

14
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isons because it is proportional to the error at each time step and is therefore
presented here. Both errors are computed on an identical sample for each
site and depth with the LSTM and the Transformer and are shown in Table
1. The LSTM and Transformer have a global averaged NRMSE, defined
as the average of the NRMSE for all sites, respectively of 0.100 and 0.105
with a corresponding standard deviation respectively of 0.024 and 0.031. In
addition, the direction MAE of the two models remains lower than 30° for
all depths and sites. As current direction follows a simple repeating pattern,
this error can be easily corrected using a heuristic technique. The similar
performance achieved by both models show that the Transformer’s attention
mechanism and the LSTM’s gating mechanism are able to adequately regu-
late the flow of information for ocean currents data processing.

To better understand the predicting capabilities of the Transformer and
of the LSTM, we show on Figure 8 the speed and direction as a function of
time as well as the speed Fourier transform for station CAB1401 at a depth
of 35 ft. Station CAB1401 is located at the harbor entrance of Portland,
Maine. We chose this station to illustrate the performance of the models
because station CAB1401 has speed NRMSE at a depth of 35 ft equal to
the global averaged NRMSE for both models as shown in Table 1 and is
therefore representative of the models accuracy. Speed Predictions for station
CAB1401 match well with experimental measurements as shown on Figure
8a. The timing of the slack before flood, slack before ebb, maximum flood
and ebb currents are well predicted as well as well as the alternating high
and low tides but maximum flood and ebb currents speed shows some slight
discrepancies. Direction predictions, shown on Figure 8b, match well with
measurements and confirm that the timing of the currents variation is well
captured. We observe that the regularization of the models, i.e. dropout
for the Transformer, dropout and early stopping for the LSTM, prevents
them from overfitting as they do not capture the spikes in the measured
data that are probably due to data acquisition errors. We observe on the
Fourier transform of the currents speed on Figure 8c that ocean currents
at station CAB1401 are driven by long-period constituents around 0°/hour,
semidiurnal constituents at 30°/hour as well as constituents generated by
nonlinear mechanisms in shallow water at 60°/hour. The models are able
to capture all the harmonic constituents up to 120°/hour which corresponds
to the angular speed range covered by the 37 tidal harmonic constituents
typically used in harmonic analysis [28].

15
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Figure 8: Comparison of Transformer and LSTM predictions with experimental measure-
ments at Portland Harbor Entrance (CAB1401) from June 12 to July 12, 2014. Depth:
35ft. Only the last two weeks of the comparisons are shown on figures (a) and (b) to
facilitate reading.

3.2. Comparison with Harmonic Method on measurements from active sta-
tions
Harmonic method is one of the most popular approaches to modelling

time series data, particularly to those whose visualization exposes some pe-
16
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Table 2: Comparison of Speed Prediction Normalized Root Mean Squared Error (NRMSE)
in knots for the Long Short-Term Memory model (LSTM), Transformer model and Har-
monic Method (HM) in Active Stations.

. Depth Speed NRMSE
Station ID |~ 10 LSTM | T M
cb0701 13.9 0.18 0.18 02
hb0401 157 0.14 0.12 0.12
10302 295 0.1 0.09 033
ix0701 15 0.09 0.10 0.12

riodic pattern. It is, along with ARIMA models, classified as of the classic
methods as opposed to the modern ones using neural network, yet it is still
widely used today. The essence of harmonic method is to find harmonic
components that can be obtained by applying the Fourier transform to the
selected data windows and filtering out the harmonic components with small
weights. If the harmonic components are identified beforehand, the method
is focused on determining their weights using, for instance, least square fit,
and adjusting for the variations due to the non-harmonic factors. In mod-
elling ocean currents, NOAA took the second approach. It is obvious that
the harmonic patterns of ocean currents could be identified with specific fre-
quencies since they are governed by the sun and the moon. NOAA applied
different procedures, the choice of which is based on the available data vol-
ume, in order to determine the harmonic weights. The final models were
subsequently adjusted for variations such as de-tiding the time series data.

It is essential to note that each time series data requires a model that
is a set of harmonic constants with their amplitudes. Thus, the number of
models is corresponding to the number of stations in the ocean current mod-
eling problem, which results in a huge workload. In specific, NOAA used
the historic stations data to build the separate models for the correspond-
ing sites. Depending on the amount of collected data in the stations, the
models were built independently using different procedures. The predictions
using these models are called harmonic predictions as they are based directly
on the harmonic models, and these station are called reference station. Be-
side the harmonic prediction, the subordinate predictions are made for the
subordinate stations close to the reference station but without the collected

17
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Figure 9: Comparison of Transformer and LSTM ocean currents speed predictions with
experimental measurements and predictions obtained with Harmonic Method at various

locations across the United States. Only one week of comparisons is shown to facilitate
reading.

s data. We are interested in the harmonic predictions as we want to compare

19 our models performance to the harmonic model performance. Table 2 sum-
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Figure 9: Comparison of Transformer and LSTM ocean currents speed predictions with
experimental measurements and predictions obtained with Harmonic Method at various
locations across the United States. Only one week of comparisons is shown to facilitate
reading.

marizes the speed NRMSEs by LSTM, Transfomer, and harmonic methods,
followed by Figure 9 visualizing their performances on speed prediction. The
number of tests on active stations are limited since, although there are a
total of 61 active stations as of this study’s time, few ones have sufficient
continuous data for testing purpose.

Table 2 shows that our models LSTM and Transformer outperform the
harmonic model in 3 out of 4 active stations. Due to the limitation of active
data, this may not be a fair comparison but it shows some interesting points
regarding the prediction capacities of these models. As can be seen in Figure
9, all the models do a good job in catching the periodic time points when
the flood and ebb currents occur. The harmonic method, however, fails to
match the peak values in the stations jx0302 and jx0701 due to its inflexibil-
ity. That is, the harmonic method can identify well the current patterns but
it is not adapting to the changes of current amplitudes due to its fixed har-
monic constituents. The neural network-based methods, on the other hand,
take into account the most recent information combined with the memorized
patterns to produce the predictions that incorporate the details of long and
short time. Thus, the proposed methods are more adapting to the change of
currents over time.

It is interesting to notice that the neural network-based models perform
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better than the harmonic one in ¢cb0701 and worse in hb0401 while the former
station looks less patterned than the latter, i.e. more noisy. The authors
do not have solid explanation for this. Our conjecture is that the proposed
models are more capable of capturing minor details in time series. The reason
for that is, when training the network-based models, we do not deliberately
select patterns beforehand, the training procedure converges the network
weights to embrace all major and minor patterns except the randomness. In
the harmonic method, on the other hand, people do determine the harmonic
periods before identifying it constituents so the number of patterns is limited.

4. Conclusions

We developed deep auto-regressive networks to predict ocean currents
speed and direction at various locations across the United States. A LSTM
Recurrent Neural Network and a Transformer, using attention mechanisms,
have been modified and trained with the Historic Stations dataset from
NOAA. Both models are able to predict ocean currents for one month at
any site in the territorial sea of the United States using one month of mea-
sured data as input. They have similar performance and their accuracy is
equivalent to the well known harmonic method. The LSTM is likely to be
a better choice for future deployments because it is easier to train and more
widely spread among the scientific and engineering community. These mod-
els provide a significant improvement compared to harmonic method where
harmonic constituents need to be analyzed and computed for each site before
predictions can be carried out. Notably, these models allow the real-time in-
situ prediction of ocean currents for AUVs navigation. AUVs are expected
to be widely deployed in the near future for seafloor mapping. Both models
could, for instance, be used to support the seafloor mapping of the United
States Exclusive Economic Zone (EEZ) and of the Alaskan coastline. The
extension of the models to other regions in the world remain to be evaluated.
Both models have been trained to learn the principal ocean currents varia-
tions and should therefore be able to provide, to some extent, predictions at
any location in the world. Re-training of the models on a dataset representa-
tive of the regional ocean currents distribution should however be considered
to fully exploit the predictive power of the neural networks.
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