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Abstract

The prediction of ocean currents is essential for the path planning and con-
trol of Autonomous Underwater Vehicles. Regional physics-based forecast
models provide valid predictions but are too computationally expensive for
real-time prediction necessary for AUV navigation. While vehicle sensors al-
low to measure the spatial evolution of current, temporal prediction remains
an open problem as existing data-driven models with real-time capabilities
have only been shown to work at locations where data have been used to
develop the model. We propose in this paper two predictive tools using deep
learning techniques, a Long Short-Term Memory Recurrent Neural Network
and a Transformer, to perform real-time in-situ prediction of ocean currents
at any location. We use a data set from the National Oceanic and Atmo-
spheric Administration to show that they provide state-of-the-art predictions
at various locations across the United States where no data have previously
been used to train the models.

Keywords: Ocean currents prediction, Recurrent Neural Network,
Attention mechanism, AUV navigation

1. Introduction1

Ocean currents prediction is critical for the safe and reliable navigation2

of Unmanned Underwater Vehicles (UUVs). Path planning of Autonomous3

Underwater Vehicles (AUVs) use oceanographic predictions from numerical4

forecast models based on mass and hydrostatic momentum balance [1, 2]5

1These authors contributed equally
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such as the Regional Ocean Model Systems (ROMS) [3], the Navy Coastal6

Ocean Model (NCOM) [4] and the Global Real-Time Ocean Forecast System7

(RTOFS-Global) [5]. These predictive tools have computation time of 248

hours and a resolution respectively of 3, 3.7 and 9.3km. They are therefore9

not suited for trajectory re-planning and control where the spatio-temporal10

variations of the current must be computed on the vehicle’s embedded system11

with relatively high frequency for precise navigation [6]. In this situation, the12

current speed vector has been estimated in real-time using Kalman Filtering13

combined with the vehicle navigation sensors [7] or with acoustic position-14

ing [8]. These techniques however do not provide any information on the15

spatio-temporal evolution of the ocean current. The spatial evolution can16

be measured with an on-board Acoustic Doppler Current Profiler (ADCP)17

that provides an instantaneous current profile along one or multiple lines.18

This technique has been used for AUV navigation [9, 10] but neglecting the19

temporal evolution leads to suboptimal trajectories that can turn out catas-20

trophic.21

22

Ocean current temporal prediction has historically been made with the23

Harmonic Method (HM) [11] that uses sets of harmonic constituents pre-24

computed at a finite number of near-shore sites from current data acquired25

with ADCPs. The predictions are therefore only valid where the data have26

been acquired which is obviously not suitable for AUVs navigation. Machine27

learning techniques such as Support Vector Regression [12, 13] or Genetic28

Algorithm [14] have been proposed to reduce the amount of data necessary29

to train the predictive tools and to improve predictions accuracy. Other30

researchers have proposed the use of artificial neural networks using fully31

connected layers [15] or recurent LSTM layers [16] with similar motivations.32

These models have been trained and tested with data coming from the same33

sites providing no information on their generalization to locations where data34

have not been used during training. A new predictive tool allowing real-time35

in-situ prediction of ocean currents at any location is therefore needed for36

AUV navigation.37

38

In this paper, we propose a Recurrent Neural Network (RNN) Long-Short39

Term Memory (LSTM) model [17] and a Transformer model [18] to perform40

predictions of ocean current speed and direction as described in section 2.41

These two methods have outperformed fully connected neural networks and42

other machine learning techniques in Natural Language Processing [19, 20]43
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that has many similarities with ocean currents prediction. RNNs have been44

the state-of-the-art method in modelling time series data in the last decade.45

Recently, attention-based methods and in particular the Transformer have46

however exceeded RNN performance in many Natural Language Processing47

tasks [20]. We show in section 3 that these deep learning techniques can48

predict ocean currents at various locations across the United States with a49

state-of-the-art accuracy and without having been trained with data from50

these locations.51

52

2. Methodology53

2.1. Deep Auto-Regressive Networks54

Our approach is inspired from the latest progress in Natural Language55

Processing (NLP) and particularly in sequence-to-sequence models. The lat-56

ter have obtained great results on complex tasks involving time series data57

such as translation, speech recognition, video captioning, etc. These models58

are made of two parts, an encoder and a decoder, as shown on Figure 1a for59

machine translation. On the Encoder side, the neural network collects infor-60

mation from embedded words and propagates the information forward. The61

Decoder starts with a special token indicating that the model should now62

predict output words. As words of the output sentence are predicted, addi-63

tional information is propagated forward in the neural network until a special64

token is predicted, signifying the end of the sentence. It is straightforward to65

modify this model for time series and thus, creating a deep auto-regressive66

network. Vectors with numerical values now replace embedded words in both67

Encoder and Decoder. The model is therefore able to predict time series val-68

ues based on previous values as shown on Figure 1b. For the prediction of69

ocean currents, we propose deep auto-regressive networks that have inputs70

and outputs of similar length. A network can thus be trained to use 24 hours,71

1 week or 1 month of data to respectively predict the next 24 hours, 1 week72

or 1 month.73

74

Recurrent Neural Network (RNN) Long Short-Term Memory (LSTM)75

and Transformer are special types of neural networks that are commonly76

used for sequence-to-sequence models. Loosely speaking, a neural network77

is a matrix-based algorithm to be used for approximating a process which78

is, in the scope of this paper, defined as a black-box function that takes as79
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(a) Machine Translation from English to Spanish.

(b) Deep Auto-regressive Model for time series.

Figure 1: Sequence-to-Sequence Models

input and outputs data. Neural network emerged in recent years as a state-80

of-the-art approach to data modelling thanks to its universal approximating81

ability through a sequence of matrix operations and nonlinear activations.82

Among its core components are its weights that act on and transform input83

into output. The visualization of a neural network with multi-dimensional84

input and scalar output is presented in Figure 2 [21]. It is noticed that there85

is a component σ at each hidden node, called activation function. It plays86

an important role in adding nonlinearity to the model, thereby enabling the87

model to approximate the nonlinear processes. Otherwise, a sequence of88

linear matrix operations can be reduced to a single linear matrix operation,89

and a neural network without activation is not able to simulate a nonlinear90

process.91

92

Initially, all the weights are generated randomly, simulating a random93

process that outputs random results no matter what input it takes. After94
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Figure 2: Neural network scheme and its operations.

being trained on the collected data from a true process using the backpropa-95

gation algorithm, neural network has its weights converging to the state that96

can closely imitate the behavior of the true process. The backpropagation97

algorithm involves a forward pass and a backward pass using the chain rule98

on the pre-defined loss. It then usually uses the stochastic gradient descent99

to update the weights with a fraction of the loss gradient. The procedure is100

illustrated in Figure 2 with forward pass and backpropagation.101

102

2.2. Long Short-Term Memory103

Recurrent neural network is a recurrent version of neural network in which104

the input components, along with the hidden outputs, are recurrently fed into105

the network. Its architecture is similar to that of neural network with a sin-106

gle set of weight and bias per layer, but they differ in the ways they work.107

Figure 3a illustrates the structure of a typical recurrent neural network and108

its unfolds in operation. Let us say the input x has n components x1, ..., xn,109

i.e. n-dimensional input. First, x1 and the all-zero hidden state h0 are fed110

into the RNN to output the hidden state h1. Next, x2 and the hidden state111

h1 are fed into the RNN to output the hidden state h2, and so on until xn112

and the hidden state hn−1 to output hn which is also the output y. RNN is113
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(a) Recurrent neural network and its unfold in operation. LSTM neural network shares the
same architecture except that the hidden layer h is replaced with a LSTM layer.

(b) Long Short-Term Memory based model consists of an encoder and a decoder.

Figure 3: The proposed LSTM-based model is the seq2seq based on LSTM.

also trained using backpropagation and stochastic gradient descent similar114

to a regular neural network.115

116

Long-Short Term Memory (LSTM) is a special type of RNN whose hid-117

den layers have a more complicated architecture with several combinations118

of nonlinear activations on matrix operations. In specific, a LSTM hidden119

layer has a cell, an input gate, an output gate and a forget gate [22]. These120

three gates regulate the flow of information into and out of the cell which in121

turn selectively memorizes the information throughout the past. This feature122

makes LSTM particularly suitable for modelling long sequence data such as123

texts, signals, time series. For it efficiency in solving similar problems, LSTM124

is attempted as an approach to modelling and predicting the ocean currents.125

126
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The proposed LSTM model in this paper consists of two sequentially127

connected LSTM networks, each of two hidden layers, serving as an encoder128

and a decoder as depicted in figure 3b. This is a typical seq2seq model based129

on LSTM. The encoder first encodes the information in the past x1,k, storing130

the data patterns in the LSTM cells. The encoder output combined with the131

information query x∗
k+1,k+h are subsequently fed into the decoder to produce132

the future values. In our problem, x1,k composes of time, speed and direction133

of ocean currents while x∗
k+1,k+h includes only time as query for speed and134

direction.135

2.3. Attention136

In the simplest words the attention is a mechanism to capture the cor-137

relation between difference data sequences. Its output is employed to boost138

the accuracy of the existing neural network models thanks to the extra infor-139

mation of correlation that is incorporated into the models. The correlation is140

obtained through the cross-product of two data sequences. Give two random141

variable vectors X = [X1,X2, . . . ,Xn]T and Y = [Y1,Y2, . . . ,Yn]T , for in-142

stance, the correlation of X with itself is given by X×XT and the correlation143

between X and Y is X ×YT . These are called, in the scope of this paper,144

the self-attention and the cross-attention, respectively, each represented by145

a correlation matrix.146

147

The correlation mechanism is not new but its application in the neural148

networks makes a real difference. Each element in a correlation matrix rep-149

resents the correlation of only two random variables, and thus, of the limited150

use. In order to capture more information, instead of gaining the correlation151

of raw input and target sequences the attention obtains the correlation of152

the encoder and decoder outputs, each of which is the nonlinear combina-153

tion of different random variables of the raw input and target, respectively.154

Thus, the captured correlation matrix turns more informative as each of its155

elements represents correlation of the combined random variables. Since the156

encoder and decoder are trainable, the attention is trained consequently and157

converges to the optimal state in which the most correlated information is158

stored.159

160

The attention output is incorporated as a context into the neural net-
work models, adding more information to the predictions, thereby enhancing
the models accuracy. In brief, the attention operations are summarized as
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follows:

correlations← encoder output× decoder output
weights← normalized correlations

context← weights · encoder output
predicted output← decoder output + context

where, the weights are the normalized correlations, and the context is the161

weighted encoderoutput. The name attention comes from the fact that the162

predicted output attend to the encoder output, which is the encoded version163

of input, through the context.164

165

Figure 4 visualizes the attention of the predicted output to the input,166

i.e. the normalized correlations map indicating how much each output value167

attends to all the input values. The normalized weights sum up to 1 for each168

column. The red predicted output on the top correlate with the black input169

on the left through two obvious periodic trends: daily and half-daily, shown170

by a main diagonal bright strip and two subordinate diagonal less-bright171

strips, respectively. The trends are more separating towards future values172

in both the input and output forward directions. This could be because the173

earlier values rely more on the past while the later values leverages the earlier174

ones and attend less but more specific points in the past.175

2.4. Transformer176

The Transformer is a neural network with an encoder-decoder structure177

that is solely based on attention mechanisms [18]. Originally developed for178

NLP, both encoder and decoder use attention layers and fully connected179

feed-forward layers as shown on Figure 5. Both layers include a residual180

connection and a normalization layer to improve the learning process. The181

model uses self-attention to encode information about other time steps when182

processing an input at a specific time. The input representation therefore183

includes contextual information allowing the model to account for depen-184

dencies. While the encoder self-attention layer can access inputs at all time185

steps, the decoder self-attention can only access inputs up to the time step186

being processed to respect the auto-regression. Finally, the encoder-decoder187

attention layer allows the decoder to focus on the most relevant inputs to188

carry out is predictions.189

190
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Figure 4: The attention visualization shows the weights or normalized correlations map of
the input and output. The range of weights is 0-1 The y axis includes the input values in
the chronological order upward. The x axis includes the predicted output (red) and target
(blue) values in the chronological order rightward. The brighter color indicates the more
correlation.

In this paper, we propose to use a Transformer encoder-decoder struc-191

ture modified to work for time-series. An embedding layer is used in the192

original Transformer [18] to map words into vectors. For time series, we re-193

place this layer by a linear fully connected layer to transform input vectors194

into m-dimensional vectors [23]. A similar fully connected layer is used at195

the decoder end to convert back predictions into physical quantities and the196
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Figure 5: Transformer model architecture adapted for ocean currents prediction.

softmax loss is replaced by a L2 loss. Current speed and direction x1, x2, ...,197

xk are used as input of the Encoder and predicted current speed and direction198

xk+1, xk+2, ..., xk+h are the output of the Decoder. Decoder input is first an199

empty time series with a start-of-prediction token in first position. Predic-200

tions are made step-by-step and are added to the decoder input to predict201

current speed and direction at the next time step using attention mechanism202

to account for dependencies.203

204

2.5. Data205

Ocean current data at 831 sites was downloaded from the Historic Sta-206

tions dataset on the National Oceanic and Atmospheric Admninistration207

(NOAA) website [24]. Current speed and directions have been acquired with208

ADCPs that were either bottom-mounted or shore-mounted over measure-209

ment campaigns from 1 to 4 months. On this dataset, 222 stations have data210

length greater than 2 months. Sampling interval of the raw data are either 6211

minutes or 10 minutes. We estimated that this was the minimum amount of212

10



data necessary to train and test the Transformer and the LSTM and there-213

fore set the maximum time horizon of the models to 1 month. After training,214

both models can predict ocean current for 1 month based on 1 month of data215

acquired anywhere in the United States. Note that the length restriction216

is only due to the data available and that there is no numerical restriction217

to increase the model prediction length. Depending on the AUV mission, a218

shorter horizon time may also be more practical as less data is required to219

start the predictions. The authors decided to present the predictions with220

the highest time horizon allowed by the database because shorter horizon221

models mechanically benefit from a higher quantity of data points leading to222

better predictive capabilities. The performance of the models presented in223

this paper is therefore a lower bound for models with shorter horizons.224

225

Two data cleaning steps were applied to form the final dataset. First,226

we observed that currents at some sites had complex directions change that227

may be due to local specificity or data acquisition error. A typical example228

is shown on Figure 6. We decided to remove these sites from our dataset229

as we did not have enough information to conclude on the validity of the230

data. Second, we observed that missing data points in the raw time series231

coincided with a non-physical variation of the ocean current speed as shown232

on Figure 7. We observe a tidal pattern from May 20, 2012 to August 6, 2012233

with clear semidiurnal, diurnal and monthly variations and a sudden change234

of pattern around August 6, 2012. As tides are generated by steady-state235

periodic gravitational forces of the Sun and the Moon, the authors believe236

that this is a consequence of a faulty sensor or of data acquisition errors.237

Corresponding sequences were therefore removed from the time series. Fi-238

nally, an interpolation was carried out to obtain a uniform sampling interval239

of 1 hour. This value was set to reduce the size of the models while capturing240

the important variation of the currents. A dataset including 78 stations was241

finally selected. 66 stations were used to train the model and 12 stations242

were used in a test set to show the ability of the models to predict ocean243

currents at various locations across the United States where no data have244

previously been used to train the models.245

246

In addition to the aforementioned Historic Stations, NOAA is currently247

deploying ADCPs over 61 stations that actively collect the ocean current data248

at various locations around the United States [24]. These active stations are249

similar to the historic stations in most senses but actively working at the250
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(a) Ocean current speed.
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(b) Ocean current direction.

Figure 6: Ocean current measured at Chesapeake Bay (CHB0303) from May 9, 2003 to
August 21, 2003. Depth: 11.7ft.

moment, collecting and sending data in real time. The time granule of data251

sampling is 6 minutes. The sensors are deployed over every 5-8 months,252

then recovered for a couple of hours for maintenance and checking purpose,253

which causes some data gaps. In addition, there are several data gaps within254

any deployment time span that might probably be caused by the sensing255

inconsistency of the sensors due to their harsh working environment. Indeed,256

we found it challenging to obtain any complete two-month data in any active257

station. We instead looked for the incomplete two-month data with small258

data gaps and interpolated the missing data points. The data cleansing is259

conducted in the same manner as that for the historic stations. We completed260

the test set with 3 active stations to ensure that the models work consistently261

not only with historic data, but also with data recently acquired without the262

need of re-training the models263
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Figure 7: Ocean current speed measured at San Francisco Bay entrance (SFB1201) from
May 19, 2012 to September 11, 2012. Depth: 38.6ft.

3. Results and discussion264

3.1. Validation with measurements from historic stations265

We present in this section the validation of the models on the 12 historic266

stations, 2 depths for each, set aside in the test set, as described in section267

2.5. We used the Adam optimization algorithm [25] to train the Transformer268

model for 10 epochs and the LSTM model for 2 epochs with a constant learn-269

ing rate of 10−3 and a batch size of 64 [26, 27]. The models were built on the270

TensorFlow platform supporting the implementation of neural network, and271

their training was carried out on a GPU NVIDIA TITAN V with a mem-272

ory of 12 GB. After hyperparameter optimization, we found that the best273

Transformer architecture has a single layer of encoder and decoder as shown274

on Figure 5, a model dimension m = 128 and a fully connected feed-forward275

network with a single layer of dimensionality 256 with ReLu action and a276

dropout of 0.5. On the other hand, the best LSTM model adopts a slightly277

different architecture with two LSTM layers, each of dimensionality 512, as278

demonstrated in Figure 3b.279

280

To analyze the performance of the models, we computed the speed Nor-281

malized Root Mean Squared Error (NRMSE), defined as the speed RMSE282

normalized by the maximum speed amplitude, that allows to compare the283

predictions accuracy at sites with different currents speed magnitude. In ad-284

dition, we computed the direction Mean Absolute Error (MAE) to evaluate285

the predictions of the speed vector orientation. While the RMSE has been286
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Table 1: Speed Normalized Root Mean Squared Error (NRMSE) and Direction Mean Ab-
solute Error (MAE) for the Long Short-Term Memory model (LSTM) and the Transformer
(TF) at various locations across the United States.

Station ID
Depth Speed NRMSE Direction MAE (◦)

(ft) LSTM TF LSTM TF

CAB1401 9 0.09 0.10 21 22
CAB1401 35 0.10 0.10 27 22

CHB9904 15 0.12 0.13 30 29
CHB9904 42 0.13 0.15 29 28

FPI0903 9 0.11 0.13 22 20
FPI0903 16 0.12 0.14 23 18

HUB0402 15 0.14 0.13 25 24
HUB0402 34 0.14 0.15 25 25

KOD0903 6 0.09 0.09 28 26
KOD0903 16 0.08 0.08 25 25

PEV0901 16 0.12 0.13 19 19
PEV0901 35 0.14 0.16 27 25

PIR0705 8 0.06 0.06 12 9
PIR0705 31 0.06 0.05 12 8

SEA0624 147 0.1 0.12 24 24
SEA0624 252 0.13 0.14 28 27

SFB1202 54 0.08 0.07 19 18
SFB1202 126 0.08 0.08 24 20

SFB1316 17 0.08 0.07 15 13
SFB1316 33 0.09 0.09 20 19

SJR9801 16 0.09 0.09 16 16
SJR9801 30 0.09 0.10 16 15

UNI1010 128 0.09 0.09 21 26
UNI1010 207 0.09 0.08 22 24

commonly used to evaluate the prediction accuracy of current speed, no stan-287

dard error has been defined to evaluate prediction accuracy of the current288

direction. The MAE represents well the error observed on temporal compar-289
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isons because it is proportional to the error at each time step and is therefore290

presented here. Both errors are computed on an identical sample for each291

site and depth with the LSTM and the Transformer and are shown in Table292

1 . The LSTM and Transformer have a global averaged NRMSE, defined293

as the average of the NRMSE for all sites, respectively of 0.100 and 0.105294

with a corresponding standard deviation respectively of 0.024 and 0.031. In295

addition, the direction MAE of the two models remains lower than 30◦ for296

all depths and sites. As current direction follows a simple repeating pattern,297

this error can be easily corrected using a heuristic technique. The similar298

performance achieved by both models show that the Transformer’s attention299

mechanism and the LSTM’s gating mechanism are able to adequately regu-300

late the flow of information for ocean currents data processing.301

302

To better understand the predicting capabilities of the Transformer and303

of the LSTM, we show on Figure 8 the speed and direction as a function of304

time as well as the speed Fourier transform for station CAB1401 at a depth305

of 35 ft. Station CAB1401 is located at the harbor entrance of Portland,306

Maine. We chose this station to illustrate the performance of the models307

because station CAB1401 has speed NRMSE at a depth of 35 ft equal to308

the global averaged NRMSE for both models as shown in Table 1 and is309

therefore representative of the models accuracy. Speed Predictions for station310

CAB1401 match well with experimental measurements as shown on Figure311

8a. The timing of the slack before flood, slack before ebb, maximum flood312

and ebb currents are well predicted as well as well as the alternating high313

and low tides but maximum flood and ebb currents speed shows some slight314

discrepancies. Direction predictions, shown on Figure 8b, match well with315

measurements and confirm that the timing of the currents variation is well316

captured. We observe that the regularization of the models, i.e. dropout317

for the Transformer, dropout and early stopping for the LSTM, prevents318

them from overfitting as they do not capture the spikes in the measured319

data that are probably due to data acquisition errors. We observe on the320

Fourier transform of the currents speed on Figure 8c that ocean currents321

at station CAB1401 are driven by long-period constituents around 0◦/hour,322

semidiurnal constituents at 30◦/hour as well as constituents generated by323

nonlinear mechanisms in shallow water at 60◦/hour. The models are able324

to capture all the harmonic constituents up to 120◦/hour which corresponds325

to the angular speed range covered by the 37 tidal harmonic constituents326

typically used in harmonic analysis [28].327
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(b) Ocean currents direction.
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(c) Spectral analysis of ocean currents speed.

Figure 8: Comparison of Transformer and LSTM predictions with experimental measure-
ments at Portland Harbor Entrance (CAB1401) from June 12 to July 12, 2014. Depth:
35ft. Only the last two weeks of the comparisons are shown on figures (a) and (b) to
facilitate reading.

3.2. Comparison with Harmonic Method on measurements from active sta-328

tions329

Harmonic method is one of the most popular approaches to modelling330

time series data, particularly to those whose visualization exposes some pe-331
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Table 2: Comparison of Speed Prediction Normalized Root Mean Squared Error (NRMSE)
in knots for the Long Short-Term Memory model (LSTM), Transformer model and Har-
monic Method (HM) in Active Stations.

Station ID
Depth Speed NRMSE

(ft) LSTM TF HM

cb0701 13.9 0.18 0.18 0.2
hb0401 15.7 0.14 0.12 0.12
jx0302 29.5 0.1 0.09 0.33
jx0701 15 0.09 0.10 0.12

riodic pattern. It is, along with ARIMA models, classified as of the classic332

methods as opposed to the modern ones using neural network, yet it is still333

widely used today. The essence of harmonic method is to find harmonic334

components that can be obtained by applying the Fourier transform to the335

selected data windows and filtering out the harmonic components with small336

weights. If the harmonic components are identified beforehand, the method337

is focused on determining their weights using, for instance, least square fit,338

and adjusting for the variations due to the non-harmonic factors. In mod-339

elling ocean currents, NOAA took the second approach. It is obvious that340

the harmonic patterns of ocean currents could be identified with specific fre-341

quencies since they are governed by the sun and the moon. NOAA applied342

different procedures, the choice of which is based on the available data vol-343

ume, in order to determine the harmonic weights. The final models were344

subsequently adjusted for variations such as de-tiding the time series data.345

346

It is essential to note that each time series data requires a model that347

is a set of harmonic constants with their amplitudes. Thus, the number of348

models is corresponding to the number of stations in the ocean current mod-349

eling problem, which results in a huge workload. In specific, NOAA used350

the historic stations data to build the separate models for the correspond-351

ing sites. Depending on the amount of collected data in the stations, the352

models were built independently using different procedures. The predictions353

using these models are called harmonic predictions as they are based directly354

on the harmonic models, and these station are called reference station. Be-355

side the harmonic prediction, the subordinate predictions are made for the356

subordinate stations close to the reference station but without the collected357
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Figure 9: Comparison of Transformer and LSTM ocean currents speed predictions with
experimental measurements and predictions obtained with Harmonic Method at various
locations across the United States. Only one week of comparisons is shown to facilitate
reading.

data. We are interested in the harmonic predictions as we want to compare358

our models performance to the harmonic model performance. Table 2 sum-359
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Figure 9: Comparison of Transformer and LSTM ocean currents speed predictions with
experimental measurements and predictions obtained with Harmonic Method at various
locations across the United States. Only one week of comparisons is shown to facilitate
reading.

marizes the speed NRMSEs by LSTM, Transfomer, and harmonic methods,360

followed by Figure 9 visualizing their performances on speed prediction. The361

number of tests on active stations are limited since, although there are a362

total of 61 active stations as of this study’s time, few ones have sufficient363

continuous data for testing purpose.364

365

Table 2 shows that our models LSTM and Transformer outperform the366

harmonic model in 3 out of 4 active stations. Due to the limitation of active367

data, this may not be a fair comparison but it shows some interesting points368

regarding the prediction capacities of these models. As can be seen in Figure369

9, all the models do a good job in catching the periodic time points when370

the flood and ebb currents occur. The harmonic method, however, fails to371

match the peak values in the stations jx0302 and jx0701 due to its inflexibil-372

ity. That is, the harmonic method can identify well the current patterns but373

it is not adapting to the changes of current amplitudes due to its fixed har-374

monic constituents. The neural network-based methods, on the other hand,375

take into account the most recent information combined with the memorized376

patterns to produce the predictions that incorporate the details of long and377

short time. Thus, the proposed methods are more adapting to the change of378

currents over time.379

380

It is interesting to notice that the neural network-based models perform381
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better than the harmonic one in cb0701 and worse in hb0401 while the former382

station looks less patterned than the latter, i.e. more noisy. The authors383

do not have solid explanation for this. Our conjecture is that the proposed384

models are more capable of capturing minor details in time series. The reason385

for that is, when training the network-based models, we do not deliberately386

select patterns beforehand, the training procedure converges the network387

weights to embrace all major and minor patterns except the randomness. In388

the harmonic method, on the other hand, people do determine the harmonic389

periods before identifying it constituents so the number of patterns is limited.390

4. Conclusions391

We developed deep auto-regressive networks to predict ocean currents392

speed and direction at various locations across the United States. A LSTM393

Recurrent Neural Network and a Transformer, using attention mechanisms,394

have been modified and trained with the Historic Stations dataset from395

NOAA. Both models are able to predict ocean currents for one month at396

any site in the territorial sea of the United States using one month of mea-397

sured data as input. They have similar performance and their accuracy is398

equivalent to the well known harmonic method. The LSTM is likely to be399

a better choice for future deployments because it is easier to train and more400

widely spread among the scientific and engineering community. These mod-401

els provide a significant improvement compared to harmonic method where402

harmonic constituents need to be analyzed and computed for each site before403

predictions can be carried out. Notably, these models allow the real-time in-404

situ prediction of ocean currents for AUVs navigation. AUVs are expected405

to be widely deployed in the near future for seafloor mapping. Both models406

could, for instance, be used to support the seafloor mapping of the United407

States Exclusive Economic Zone (EEZ) and of the Alaskan coastline. The408

extension of the models to other regions in the world remain to be evaluated.409

Both models have been trained to learn the principal ocean currents varia-410

tions and should therefore be able to provide, to some extent, predictions at411

any location in the world. Re-training of the models on a dataset representa-412

tive of the regional ocean currents distribution should however be considered413

to fully exploit the predictive power of the neural networks.414
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