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Abstract—In video-based point cloud compression (V-PCC), a
dynamic point cloud is projected onto geometry and attribute
videos patch by patch for compression. In addition to the geom-
etry and attribute videos, an occupancy map video is compressed
into a V-PCC bitstream to indicate whether a two-dimensional
(2D) point in the projected geometry video corresponds to any
point in three-dimensional (3D) space. The occupancy map video
is usually downsampled before compression to obtain a tradeoff
between the bitrate and the reconstructed point cloud quality.
Due to the accuracy loss in the downsampling process, some
noisy points are generated, which leads to severe objective and
subjective quality degradation of the reconstructed point cloud.
To improve the quality of the reconstructed point cloud, we
propose using a convolutional neural network (CNN) to improve
the accuracy of the occupancy map video. We mainly make
the following contributions. First, we improve the accuracy
of the occupancy map video by formulating the problem as
a binary segmentation problem since the pixel values of the
occupancy map video are either 0 or 1. Second, in addition
to the downsampled occupancy map video, we introduce a
reconstructed geometry video as the other input of the CNN
to provide more useful information in order to indicate the
occupancy map video. To the best of our knowledge, this is the
first learning-based work to improve the performance of V-PCC.
Compared to state-of-the-art schemes, our proposed CNN-based
approach achieves much more accurate occupancy map videos
and significant bitrate savings.

Index Terms—Convolutional Neural Network, High Efficiency
Video Coding, Occupancy Map, Segmentation, Video-based Point
Cloud Compression.

I. INTRODUCTION

Three-dimensional (3D) industry- and consumer-level scan-
ning equipment, such as RGBD cameras [1], [2] and light
detection and ranging (LIDAR) [2], [3], are becoming more
common and less expensive than ever before. These sensing
devices are capable of scanning and producing a massive
amount of 3D data. Due to their ability to represent 3D data in
a more immersive and realistic pattern, 3D visual representa-
tion approaches such as polygon meshes, light fields, and point
clouds are becoming increasingly popular. Among these 3D
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volumetric digital representation formats, point clouds achieve
a good tradeoff among ease of acquisition, realistic rendering,
and facilitating data manipulation and processing. Therefore,
point clouds are being adopted more frequently.

Point clouds lay a solid foundation for unprecedented vi-
sual technologies, including immersive virtual reality (VR),
augmented reality (AR), and mixed reality (MR) [4]. These
advanced technologies are useful in many applications [5],
[6], including historic site [7] and art museum exploration, im-
mersive real-time remote telecommunications [8], interactive
games [9], and mobile navigation [10] [11]. However, point
clouds are typically represented by an extremely large amount
of data. Consequently, it is impossible to cache, stream, and
render these large amounts of raw point cloud data. This
barrier has created the necessity for efficient point cloud
compression (PCC).

Recently, the Moving Pictures Experts Group (MPEG)
initiated a standardization activity [12] on PCC. The diversity
of point clouds in terms of density has led to the development
of two technologies: video-based point cloud compression (V-
PCC) [12] and geometry-based point cloud compression (G-
PCC) [12]. In this paper, we mainly focus on some improve-
ments based on V-PCC. In V-PCC, a point cloud is initially
segmented into 3D patches. Then, these 3D patches are
projected onto two-dimensional (2D) planes and packed into
geometry and attribute videos. Afterwards, the empty space
in the geometry and attribute videos is padded to keep the
spatial continuity to improve the video compression efficiency.
Finally, the geometry and attribute videos are compressed with
high-efficiency video coding (HEVC) [13].

Due to the padding process and the loss caused by com-
pression, it is difficult to determine whether one pixel in
the reconstructed geometry video corresponds to a valid 3D
point. To address this problem, in addition to the geometry
and attribute videos, an occupancy map video is compressed
into the V-PCC bitstream. The pixels in the occupancy map
video are used to indicate whether the pixels in the geometry
and attribute videos correspond to any points in 3D space.
Ideally, the occupancy map video should be coded with the
same resolution as the geometry and attribute videos (full-
resolution), but this incurs a high bitrate cost. To save bitrates,
the V-PCC encoder downscales the full-resolution occupancy
map video to a half-resolution or quarter-resolution video
before compression. The V-PCC decoder then upscales this
downscaled occupancy map video back to the full resolution
for reconstructing the 3D point cloud. Some noisy pixels are
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thus introduced in the boundary areas of the upsampled full-
resolution occupancy map video. These 2D noisy pixels are
reconstructed into 3D noisy points, which leads to serious
quality degradation of the reconstructed point cloud.

Through V-PCC standardization, a variety of occupancy
map refinement methods [14]–[22] have been proposed to
improve the occupancy map accuracy. Among them, the
methods in [21] and [22] have been adopted in the V-PCC
encoder, although they are disabled by default. In [21], a patch
border filter (PBF) was proposed to manipulate occupancy
map and geometry videos to reduce the distance between the
contours of patches. However, this method may still introduce
some error pixels on the contours. In [22], an occupancy
refinement (OR) method is proposed to iteratively refine the
occupancy flags of blocks with fewer pixels to avoid introduc-
ing noisy ones in the occupancy map. However, this method
can still insert some noisy pixels. These deficiencies all lead to
degradations in the quality of 3D point cloud reconstructions.
Therefore, these two methods have not been adopted as part
of the V-PCC common test condition (CTC) [23], and there is
still considerable space to develop a better method to improve
the accuracy of occupancy map videos.

In this paper, we propose an occupancy-geometry-based
convolutional neural network (OGCNN) to improve the ac-
curacy of occupancy map videos in order to improve the
quality of reconstructed 3D point clouds. To the best of our
knowledge, this work is the first CNN-based solution for
improving the efficiency of V-PCC. This work mainly makes
the following technical contributions.

• We formulate the problem of occupancy map accuracy
improvement as a binary segmentation problem. The
binary cross entropy loss is adopted as the loss function
to train the CNN.

• A reconstructed geometry video is introduced as the other
input of the proposed CNN in addition to an occupancy
map video. The geometry contains useful information that
can help improve the accuracy of the occupancy map
video.

• The proposed algorithm is implemented in the V-PCC
reference software. Extensive experiments have been
conducted to compare the algorithm in this paper with
state-of-the-art (SOTA) algorithms to demonstrate the
effectiveness of the proposed scheme.

We organize the remainder of this paper as follows. We
review the related works on point cloud compression in Sec-
tion II, followed by our motivation and observations on occu-
pancy map video enhancement in Section III. We introduce the
proposed CNN-based occupancy map accuracy improvement
method in Section IV. In Section V, we comprehensively
report and analyze the experimental results. A summary of
this paper is presented in Section VI.

II. RELATED WORK

This section briefly reviews the prior works on dynamic
point cloud compression and accuracy improvements based
on occupancy map videos in V-PCC.

A. Dynamic point cloud compression

There are roughly two types of compression methods, 3D-
based approaches and 2D-based approaches, for dynamic point
cloud compression. As indicated by its name, a 3D-based
approach directly performs 3D motion estimation and motion
compensation in 3D space. Kammerl et al. [24] proposed a
lossy compression method for dynamic point cloud streaming
that uses the colocated octree node of the reference frame to
predict that of the current frame. This method, however, can
only be applied to frames with small motions. Thanou et al.
[25] formulated 3D motion estimation as a feature-matching
problem between successive graphs after representing the
time-varying geometry of these point cloud frames with a set
of graphs. Nonetheless, the motion vectors of some objects in
point cloud frames are not accurately estimated. Queiroz et
al. [26] developed a simple coder that breaks the voxelized
point cloud at each frame into blocks of voxels. The 3D
translational motion estimation was performed block by block
to find the corresponding block of the reference frame. In
addition, Mekuria et al. [27] further introduced the iterative
closest point (ICP) instead of a translational motion model
to better characterize the motions in neighboring frames.
These schemes can attenuate the deficiencies of 3D motion
estimation and motion compensation to some extent. Never-
theless, without flexible block partitioning and more efficient
motion estimation algorithms, the compression performance
of dynamic point clouds is still incomparable with that of 2D-
based methods.

The 2D-based methods that are dedicated to converting
a 3D dynamic point cloud to 2D videos for compression
through 2D video coding standards have been proven to be
efficient. Budagavi et al. [28] proposed compressing projected
2D videos derived by sorting points in a 3D point cloud
with HEVC. However, this work cannot exploit the mature
interprediction, as the generated videos do not have high
spatial and temporal correlations. To alleviate this drawback,
He et al. [29] employed the cubic projection method to
convert a 3D dynamic point cloud to 2D videos. Although
this work promotes video coding performance, this algorithm
leads to the loss of many points due to occlusion. Lasserre
et al. [30] proposed combining an octree and a projection
to decrease the number of occluded points. Mammou et al.
[31] considered projecting a 3D dynamic point cloud onto
2D videos with a patch-based algorithm. Compared to other
proposals, the patch-based algorithm [32] shows better com-
pression efficiency. The MPEG immersive (MPEG-I) media
working group adopts a patch-based algotithm as the base
of the V-PCC standard. In addition, Li et al. [33] proposed
using occupancy-map-based rate-distortion optimization and
partitioning to improve the performance of V-PCC. Although
V-PCC has been proven to be efficient due to its astonishing
performance, the downsampled occupancy map video, which
intrinsically guides the reconstruction of the geometry and
texture information, leads to severe objective and subjective
quality degradation of the reconstructed point cloud.

Authorized licensed use limited to: University of Missouri-Kansas City. Downloaded on June 29,2021 at 02:09:14 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2021.3079698, IEEE
Transactions on Multimedia

JIA et al.: CONVOLUTIONAL NEURAL NETWORK-BASED OCCUPANCY MAP ACCURACY IMPROVEMENT FOR VIDEO-BASED POINT CLOUD COMPRESSION 3

O
cc

up
an

cy
M

ap
B

in
s

O
cc

up
an

cy
M

ap

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

1
0
0
0

1
1
1
1

0
0
0
1

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

1
0
0
0

1
0
0
0

1
1
1
1

0
0
0
1

0
0
0
1

0
0
0
0

0
0
0
0

0
0
0
0

1
1
1
1

1
1
1
1

1
1
1
1

0
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

0
1
0
0

1
1
0
0

0
0
0
0

1
1
1
1

0
0
0
1

0
0
0
1

0
0
0
1

0
0
0
0

Full resolution

0
0
0
0

0
0
1
1

0
0
1
1

1
1
1
1

Quarter resolution

Fig. 1. Occupancy map comparison of the full resolution and quarter
resolution with the same occupancy distribution. A grid represents a pixel
in the occupancy map video. The bold border square is denoted as a 4 × 4
block. The red pixels indicate the occupied pixels in the full-resolution
occupancy map video, while the blue pixels indicate the occupied pixels in
the reconstructed full-resolution occupancy map video.

B. Recent advances in occupancy map video improvement
Through the V-PCC standardization process, many occu-

pancy map refinement methods were proposed to improve
occupancy map accuracy. Vosoughi et al. [14] proposed a
scalable locally adaptive erosion filter that first classified the
current pixel of the full-resolution decoded occupancy map
into a set of intuitively well-defined classes. Then, different
erosion patterns were applied to various classes in the neigh-
borhood of the current pixel. Due to the coarse occupancy res-
olution, some noisy points are added to the reconstructed point
cloud. Oh et al. [15] proposed a combination of upsampling
and 2D filtering to remove the added points in the occupancy
map video. To smooth the jaggy patch boundaries and reduce
redundant points, Lee et al. [16] proposed an occupancy map
refinement method with corner-based boundary estimation.
This work primarily addressed the oblique lines. Cai et al.
[17] proposed an adaptive occupancy map upsampling method
for reconstructing a high-resolution occupancy map video.
However, there is no guarantee that it can be as close as
possible to the original full-resolution occupancy map video.
Najaf-Zadeh et al. [18] proposed signaling a ternary occupancy
map to the decoder if a boundary block in the occupancy map
is allowed to be trimmed. Wang et al. [20] proposed shifting
the position of the occupancy map bounding box during patch
generation. However, it can only partially reduce the number
of noisy points. These methods can partially solve the problem
of inaccurate occupancy map videos. However, none of them
are significant enough to be adopted by V-PCC.

There are some methods adopted by the V-PCC encoder

during the V-PCC standardization process. Andrivon et al. [21]
proposed a patch border filtering (PBF) method to manipulate
the occupancy map and geometry videos to reduce the distance
between contours of patches. However, this method can still
insert some noisy pixels on the contours. Guede et al. [22]
proposed a method to iteratively refine an occupancy map
video. This method is proposed to modify the occupancy
flags of the blocks with fewer pixels to avoid inserting error
flags in an occupancy map video. However, this method may
still introduce some noisy points while removing some real
points. As a result, they are disabled in the V-PCC encoder by
default and are not part of the V-PCC common test condition.
Therefore, there is still considerable space to devise a better
occupancy map video accuracy improvement method to boost
the dynamic point cloud compression efficiency.

III. MOTIVATION

In this section, we first give a clear definition of the
resolution of an occupancy map video. Then, the influences of
the occupancy map resolution on distortions and bitrates are
introduced in detail.

A. Occupancy map video resolution
Ideally, an occupancy map video should be coded at full

resolution to indicate exactly whether pixels in the geometry
and attribute videos correspond to any points. Nevertheless,
a full-resolution occupancy map would cost too many bits.
To save bit cost, the V-PCC downscales the full-resolution
occupancy map video by P times. Correspondingly, a P × P
block bp of the full-resolution occupancy map, consisting
of P 2 pixels, is downscaled to a single pixel sp in the
downsampled video. When P equals 2 and 4, the downscaled
video is called a half-resolution and quarter-resolution occu-
pancy map video, respectively. The V-PCC then upscales the
downsampled occupancy map video back to a full-resolution
video. Correspondingly, sp is upscaled to a P × P block
b
′

p. The reconstructed full-resolution occupancy map video is
finally used for reconstructing the geometry and attributes.

In the following, to further analyze the influence of the
occupancy map video on the reconstructed quality of the
geometry and attributes, we call the pixels indicating that there
are corresponding points in 3D space occupied pixels, while
we name the pixels indicating that there are no corresponding
points in 3D space unoccupied pixels. Suppose a P × P
block bp in the original full-resolution occupancy map video
includes Xo occupied pixels. If Xo is less than P 2, then bp
is partially occupied. Even though bp is partially occupied, V-
PCC marks its corresponding sp as occupied to avoid losing
points. The occupied pixel sp indicates that all P 2 pixels
in the reconstructed full-resolution occupancy map video are
occupied. The downsampling and upsampling processes would
increase P 2−Xo occupied pixels. Fig. 1 gives a typical exam-
ple to compare the full-resolution occupancy map video with
the quarter-resolution occupancy map video. The red pixels
indicate the occupied pixels in the full-resolution occupancy
map video, while the blue pixels indicate the occupied pixels
in the reconstructed full-resolution occupancy map video. In
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Fig. 2. Comparison of the occupancy maps, geometry, and attributes of the quarter-resolution and full-resolution videos. The reconstructions of the occupancy
maps, geometry, and attributes in the first and second rows are derived from the configurations of the quarter-resolution and full-resolution videos, respectively.
We can see from the enlarged areas that, compared to the full resolution, the edges of the body in the quarter-resolution occupancy map, geometry and attribute
videos show a more serious zigzag artifact.

TABLE I
V-PCC ANCHOR [34] PERFORMANCE COMPARISON OF THE

QUARTER-RESOLUTION, HALF-RESOLUTION, AND FULL-RESOLUTION
OCCUPANCY MAPS WITHIN THE FIRST 32 FRAMES

Class Sequence
Quarter vs. Full Quarter vs. Half

Geom.BD-GeomRate Geom.BD-GeomRate
D1 D2 D1 D2

A Loot −50.3% −45.5% −21.9% −14.9%
Redandblack −52.9% −43.3% −23.8% −11.8%
Soldier −52.1% −44.2% −23.8% −13.9%
Queen −61.1% −52.7% −25.4% −15.3%

B Longdress −50.1% −41.1% −23.2% −12.8%
Class A −54.1% −46.4% −23.7% −14.0%
Class B −50.1% −41.1% −23.2% −12.8%

Avg. All −53.3% −45.3% −23.6% −13.8%

an extreme case, in the original full-resolution occupancy map,
as shown in the top left subfigure of Fig. 1, only one pixel is
occupied in a 4× 4 block. However, in the quarter-resolution
occupancy map, as shown in the top right subfigure of Fig. 1,
all the pixels in the corresponding 4× 4 block are considered
occupied. In this way, 15 noisy pixels are generated in the
restored full-resolution occupancy map.

B. The impact of the occupancy map resolution on the quality
of the geometry and attributes

An increase in the number of noisy pixels in the full-
resolution occupancy map video can lead to noisy pixels in
the geometry and attribute videos. As illustrated in Fig. 2,
the reconstructions of the occupancy maps, geometry, and
attributes in the first and second rows are derived from the
configurations of the quarter resolution and full resolution,
respectively. We can see from the enlarged areas of the
occupancy map videos ((a) and (b)) that the edge of the body
shows a more severe block artifact in the quarter-resolution
case than in the full-resolution case. Compared with the

quarter resolution, the full resolution provides more accurate
representations of the occupancy map. Moreover, the impact of
the occupancy accuracy can be propagated into the geometry
and attributes. We can see from the enlarged areas of the
geometry ((c) and (d)) and attributes ((e) and (f)) that the block
distortions are more severe in the quarter-resolution case than
in the full-resolution case.

C. The impact of the occupancy map on the bitrates

As mentioned in Section III-A, an occupancy map with
higher resolution may lead to smaller distortions. However,
it also brings a much higher bitrate cost. According to our
observations, the bit cost of the full-resolution occupancy map
is approximately four times greater than that of the quarter-
resolution map. As shown in Table I, we compare the BD-rates
[35] of the point-to-point error (D1) and point-to-plane error
(D2) [36] among the quarter-resolution, half-resolution and
full-resolution occupancy maps in the V-PCC anchor version
11 [34]. Compared to the full-resolution occupancy map, the
quarter-resolution occupancy map achieves a −53.3% BD-
rate savings on D1 and a −45.3% BD-rate savings on D2.
Compared to the half-resolution occupancy map, the quarter-
resolution occupancy map achieves a −23.6% and −13.8%
BD-rate savings on D1 and D2, respectively. The main reason
for these results is that, compared to the half-resolution and
full-resolution occupancy map videos, the quarter-resolution
videos are downscaled two and four times, respectively; hence,
they cost much fewer bits.

IV. PROPOSED ALGORITHM

In this section, we introduce the proposed OGCNN scheme
in detail, including a detailed discussion on the design of the
OGCNN, loss function, dataset, and training process.
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Fig. 3. The proposed OGCNN framework includes two subnetworks: the Occupancy Network and the Geometry Network. The Occupancy Network uses the
quarter-resolution occupancy map video as input. It derives occupancy segmentation feature maps from the occupancy map. The Geometry Network uses the
reconstructed geometry video as input and derives geometry segmentation feature maps from the geometry. The occupancy map and geometry segmentation
features are then concatenated together and used as the input of the remaining convolutional layers.

A. Architecture of the proposed OGCNN
As shown in Table I, the quarter-resolution occupancy map

video leads to a better performance compared with the half-
resolution and full-resolution occupancy map videos. However,
we also know that the higher the occupancy map video resolu-
tion is, the better the quality of the reconstructed geometry and
attributes. Therefore, we use the quarter-resolution occupancy
map video as the base and try to design an algorithm to
improve its accuracy and to improve the reconstructed point
cloud geometry and attribute quality. As CNNs have been
demonstrated to be powerful in both low-level and high-level
vision tasks [37], we propose using a CNN to make the
accuracy of the quarter-resolution occupancy map as close
as possible to that of a higher-resolution target. The higher-
precision target can be the full-resolution or half-resolution
occupancy map.

When we design the proposed architecture, we mainly
consider the following two aspects to optimize its perfor-
mance. First, as the occupancy map is a particular type of
video that incorporates only binary values, we formulate the
problem of improving the occupancy map precision as a binary
segmentation problem. In other words, we try to devise a
segmentation CNN that can discriminate the occupied (value
1) and unoccupied (value 0) statuses per pixel in the inputted
occupancy map. Second, in addition to the quarter-precision
occupancy map video, geometry reconstruction is introduced
as the other input to provide the network with more useful
information. In the V-PCC encoder, as the geometry values of
the unoccupied pixels are padded from their neighbors [38],
they can better reflect the real occupancy distribution than the
binary occupancy map. For example, if the geometry value of
a specific position is not the same as that of its neighbors, it is

almost impossible for it to be an unoccupied pixel. However,
we cannot obtain this information from the quarter-resolution
occupancy map itself. Therefore, we consider the geometry
reconstruction to be an important supplement to the quarter-
resolution occupancy map.

Fig. 3 shows the overall architecture of the proposed
OGCNN scheme with both the quarter-resolution occupancy
map video and reconstructed geometry video as inputs. The
scheme consists of two subnetworks: the Occupancy Network
and the Geometry Network. The Occupancy Network uses the
quarter-resolution occupancy map video as input. It derives
occupancy segmentation feature maps from the occupancy
map. The Geometry Network uses the reconstructed geometry
video as input and derives geometry segmentation feature
maps from the geometry. The occupancy map and geometry
segmentation features are then concatenated together and used
as the input of the remaining convolutional layers.

In addition to the dual inputs, as shown in Fig. 3, we
develop different subnetworks for the quarter-resolution oc-
cupancy map video and the reconstructed geometry video.
As mentioned above, the characteristics of the occupancy
map and geometry reconstruction are different. The occupancy
map is binary, while the information in the geometry is
more sensitive. We design different subnetworks to optimize
the features derived from the occupancy map and geometry.
Detailed introductions of the two subnetworks are described
in Section IV-B and Section IV-C, respectively.

Algorithm 1 shows the algorithm flow of the proposed
OGCNN. We first extract the occupancy map and geometry
reconstructions from the bitstream. Then, both of them are
fed into the OGCNN to generate the occupancy map video
with a higher accuracy. The occupancy map video with a
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Algorithm 1 The flow of the OGCNN approach in V-PCC
Input: x is the Occupancy Network input, and the geometry

reconstruction z is the Geometry Network input.
Output: The enhanced occupancy map Fout(O(x), G(z)).

if Initialization succeeds then
Input the occupancy map x into the Occupancy Network;
Extract the geometry reconstruction z as the Geometry

Network input;
Compute the Occupancy Network segmentation features
O(x);

Compute the Geometry network segmentation features
G(z);

Concatenate the segmentation features of O(x) and G(z);
Obtain the enhanced occupancy map Fout(O(x), G(z));

end

TABLE II
OCCUPANCY NETWORK PARAMETERS OF THE CONV AND TRANSPOSED

CONV LAYERS

Layer Conv1 Conv2 Transposed Conv3 Conv4
Conv1

Kernel 3× 3 3× 3 2× 2 3× 3 3× 3
Size

Feature 4 8 4 4 4
Map

Number
Stride 1 1 2 1 1

Padding 1 1 0 1 1

higher accuracy is finally used in loop for reconstructing the
geometry, attributes, and point cloud.

B. Design of the Occupancy Network
The Occupancy Network uses the unsampled quarter-

resolution occupancy map video as the input. It adopts the clas-
sic autoencoder architecture [39] [40] with a skip connection
concatenating the encoder and decoder [41]. The Occupancy
Network contains a downsampling and upsampling pair to seg-
ment the occupancy map. In this way, the Occupancy Network
can collect the global information as much as possible.

The lower branch of Fig. 3 shows the detailed architecture of
our proposed Occupancy Network. We adopt the max pooling
plus convolutional layer and transposed convolutional layer
[42] to perform downsampling and upsampling, respectively.
At the encoder, downsampling reduces the occupancy map
redundancy and keeps the most distinctive features for seg-
mentation. At the decoder, upsampling increases the spatial
resolution of the features to the target resolution for accurate
segmentation. However, the downsampling-upsampling pro-
cess may lead to a loss of global information. To provide ac-
curate global information for segmentation, a skip connection,
which concatenates the features in the encoder and decoder,
is added to the network structure.

Table II shows the detailed configurations of the Occupancy
Network. For the convolutional layers, we set the kernel size
to 3× 3, the stride to 1, the padding size to 1, and the feature

map number to 4 or 8. For the transposed convolutional layers,
we set the kernel size to 2×2, the stride to 2, the padding size
to 0, and the feature map number to 4. We use the rectified
linear unit (ReLU) as the activation function.

C. Design of the Geometry Network
As analyzed in Section IV-A above, we consider the recon-

structed geometry video as the other input of the proposed
OGCNN to improve the precision of the occupancy map
video. Accordingly, we develop a specific Geometry Network
to derive distinctive features. In the Geometry Network, the
residual block [43] is employed to derive the geometry features
for segmentation. The residual block also has the benefit of
preventing the vanishing of the gradient.

The upper branch of Fig. 3 describes the detailed structure
of the proposed Geometry Network. The Geometry Network
includes a residual block and three convolutional layers.
Considering the complexity, we only use a total of five
convolutional layers to derive the geometry features. For each
convolutional layer, we set the kernel size to 3×3, the padding
size to 1, the stride to 1, and the feature map number to 4.

D. Loss function
To train our proposed segmentation network effectively,

we adopt the binary cross-entropy loss [44] to supervise the
training of the proposed OGCNN.

L(Θ) = 1
N

∑N
i=1(logΥ ((Oi, Gi)|Θ) ·Xi−

log(1−Υ ((Oi, Gi)|Θ)) · (1−Xi))
(1)

where Θ encapsulates the whole parameter set of the OGCNN,
including the weights and bias, and Υ (Yi|Θ) denotes the
OGCNN module. Xi denotes the labels of a half-resolution
or full-resolution occupancy map, where i indexes each label.
Oi and Gi are the corresponding dual inputs of the upsampled
quarter-resolution occupancy map and the reconstructed geom-
etry video, respectively. N is the number of samples. Under
the supervision of the binary cross-entropy loss, the output of
the occupancy map video is close to that of the target half-
resolution or full-resolution occupancy map video.

E. Dataset and training
Dataset. There are currently no widely used datasets to

train the proposed OGCNNN for improving V-PCC. The
only dataset we can have access to is the dynamic point
cloud dataset provided by 8i and defined in the V-PCC CTC
[23]. We divide the five dynamic point clouds from 8i into
training, validating, and testing datasets. More specifically, we
use the dynamic point cloud called Soldier for training and
validation. We use the other four dynamic point clouds, Loot,
Redandblack, Queen, and Longdress, for testing. With Soldier,
we first derive 300 frames of the quarter-resolution occupancy
map video and reconstructed geometry video, both of which
have spatial resolutions of 1280 × 1280, from the V-PCC
reference software. Among them, 224 and 76 frames are used
for training and validation, respectively. Then, we generate the
same number of full-resolution and half-resolution occupancy
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TABLE III
TRAINING PARAMETERS

Parameters Value
Batch size 16
Total Epochs 60
Base Learning Rate 1e−4

γ Adjusting Coefficient 0.1
Adjusting Epoch Intervals 50
Weight Decay 1e−4

Momentum 0.9

16

16

32

3264

64

Fig. 4. Occupancy map boundary blocks. A boundary block is an N × N
square that consists of both occupied and unoccupied pixels. The white grids
represent the occupied pixels, while the black grids represent the unoccupied
pixels. The red, blue, yellow squares indicate the 16 × 16, 32 × 32, and
64× 64 boundary blocks, respectively.

map videos as labels. Finally, we extract 64× 64 blocks from
the Luma component of the occupancy map videos and the
reconstructed geometry videos and use them for training the
proposed OGCNN. In total, there are 89, 600 pairs of 64× 64
inputs and labels for training and 30, 400 pairs for validation.

Training. Table III shows the detailed parameters of the
training process. The batch size and total number of epochs
are set as 16 and 60, respectively. For training, we set the
base learning rate to 1e−4. After 50 epochs, we decrease the
learning rate by multiplying by 0.1. We adopt the adaptive
moment estimation (Adam) [45] algorithm as the gradient
optimizer. The momentum and weight decay are set to 0.9
and 1e−4, respectively.

V. EXPERIMENTAL RESULTS

A. Experimental settings and metrics

To test the performance of the proposed OGCNN, we
implement the proposed OGCNN in version 11 of the V-
PCC reference software [34] to compare it with the V-PCC
version 11 anchor, PBF [21], and OR [22]. Two OGCNNs
are trained depending on whether we use the full-resolution
occupancy map video or the half-resolution occupancy map
video as the label. The OGCNN trained with the full-resolution

occupancy map video as the label is named the Full OGCNN.
The OGCNN trained with the half-resolution occupancy map
is called the Half OGCNN. We test the performance of the
proposed algorithms in both the all intra and random access
cases, as defined in the V-PCC CTC [23]. We test the five rate
points from a low bitrate r1 to a high bitrate r5, as defined
in the V-PCC CTC [23]. As the dynamic point cloud Soldier
is used in the training process, we use the other four dynamic
point clouds from 8i to show the performance of the proposed
OGCNN. To save some encoding time, we only test the first
32 frames of each point cloud, which are a good representation
of all frames.

To evaluate the geometry distortions, we use the point-to-
point error (D1) and point-to-plane error (D2) as the metrics
[23]. Both D1 and D2 are calculated in a symmetrical way with
both the original point cloud and reconstructed point cloud
as the anchors. The one with a larger distortion is used as
the final distortion. O and R denote the original point cloud
and its reconstruction. For each point r ∈ R, we identify its
corresponding point o ∈ O by searching the nearest neighbor
with a KD-tree in O. Then, D1 d

′

R,O from R to O is calculated
as follows:

d
′

R,O =
1

NR

∑

∀r∈R

||D(r, o)||22 (2)

where NR is the number of points in point cloud R. D(r, o)
is the error vector connecting r to o. D1 d

′

O,R from O to R
can be computed in a similar manner.

Similarly, d
′′

R,O denotes D2 from R to O, which is calcu-
lated as

d
′′

R,O =
1

NR

∑

∀r∈R

(D(r, o) · Vr)
2 (3)

where Vr is the normal vector on point r. D2 d
′′

O,R from O
to R can be computed in a similar manner.

The attribute distortion also employs the symmetric com-
putation method. The attribute distortion [23] dR,O from R to
O uses the mean square error (MSE)

dR,O =
1

NR

∑

∀r∈R

||y(o)− x(r)||22 (4)

where y(o) and x(r) are the attribute values of the original and
reconstruction point cloud points, respectively. The attribute
distortion dO,R from O to R can be computed in a similar
manner.

To better show the performance of the proposed OGCNN
in improving occupancy map accuracy, we provide a new
quality metric to measure the occupancy map accuracy. As the
occupancy map accuracy is meaningful only at the boundary
block between the patches and the empty space, we first give
a clear definition of the boundary block. As shown in Fig. 4,
a boundary block is an N × N square that consists of both
occupied and unoccupied pixels. In Fig. 4, the white grids
represent the occupied pixels, while the black grids represent
the unoccupied pixels. The red, blue, yellow squares indicate
the 16×16, 32×32, and 64×64 boundary blocks, respectively.
Then, our proposed occupancy accuracy αN is defined as

αN =

∑ξ
i=1 ΦN (i)

ΨN
, (5)

Authorized licensed use limited to: University of Missouri-Kansas City. Downloaded on June 29,2021 at 02:09:14 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2021.3079698, IEEE
Transactions on Multimedia

8 IEEE TRANSACTIONS ON MULTIMEDIA

TABLE IV
PERFORMANCE COMPARISON OF THE FULL-RESOLUTION OGCNN, HALF-RESOLUTION OGCNN AND QUARTER-RESOLUTION V-PCC [34] UNDER THE

ALL INTRA CASE

Class Sequence
Full OGCNN vs. V-PCC [34] Half OGCNN vs. V-PCC [34]

Geom.BD-TotalRate Attr.BD-TotalRate Geom.BD-TotalRate Attr.BD-TotalRate
D1 D2 Luma Cb Cr D1 D2 Luma Cb Cr

A
Loot 6.3% -16.9% 2.9% 1.2% 4.6% −0.2% -13.5% 0.8% 0.4% 2.4%
Redandblack 16.2% -20.4% 3.4% −0.2% 2.2% 4.1% -15.2% 1.1% −0.2% 0.5%
Queen 18.4% -26.1% 23.9% 24.3% 48.1% −1.5% -18.5% 5.0% 7.3% 14.4%

B Longdress 22.0% -18.5% 3.2% 0.9% 2.0% 7.7% -14.2% 0.9% 0.1% 0.6%
Class A 13.6% -21.1% 10.1% 8.4% 18.3% 0.8% -15.7% 2.3% 2.5% 5.8%
Class B 22.0% -18.5% 3.2% 0.9% 2.0% 7.7% -14.2% 0.9% 0.1% 0.6%

Avg. All 15.7% -20.5% 8.4% 6.5% 14.2% 2.5% -15.3% 1.9% 1.9% 4.5%

TABLE V
OCCUPANCY ACCURACY COMPARISON OF THE V-PCC ANCHOR AND OGCNNS ON BOUNDARY BLOCKS

N = 16 N = 32 N = 64
V-PCC Half Full V-PCC Half Full V-PCC Half Full
Anchor OGCNN OGCNN Anchor OGCNN OGCNN Anchor OGCNN OGCNN

Loot 89.27% 94.61% 96.24% 94.03% 97.00% 97.89% 96.08% 98.03% 98.61%
RedandBlack 88.27% 93.52% 95.38% 92.70% 95.96% 97.10% 94.59% 97.00% 97.84%
Queen 87.35% 92.26% 94.09% 91.86% 95.01% 96.16% 93.58% 96.06% 96.95%
Longdress 88.96% 93.69% 95.06% 93.42% 96.23% 97.00% 95.53% 97.43% 97.95%
Avg. All 88.47% 93.52% 95.19% 93.01% 96.05% 97.04% 94.94% 97.13% 97.84%

where N is the boundary block size and ξ is the total number
of boundary blocks. ΦN (i) indicates the number of correctly
identified pixels in the ith boundary block between the recon-
structed occupancy map video and the label. ΨN is the total
number of pixels in all ξ boundary blocks. As indicated by (5),
when we measure the occupancy map accuracy, we restrict the
statistical area to the boundary blocks to avoid counting large
amounts of successive occupied or unoccupied pixels, as they
are identical in the reconstructed and original occupancy map
videos. Therefore, our proposed occupancy accuracy measure
can better reflect the benefits of the proposed algorithms for
improving the occupancy map accuracy.

B. Performances of the proposed OGCNN algorithm under
the all intra case

Table IV shows the BD-rate comparison results of the
proposed OGCNN and the quarter-resolution V-PCC anchor
under the all intra case. We can see that the proposed half
and Full OGCNNs achieve an average of 15.3% and 20.5%
BD-rate savings when D2 is used as the quality metric.
The performance improvements are consistent for all tested
dynamic point clouds, as the proposed OGCNN achieves over
10% rate-distortion (R-D) performance improvements for all
dynamic point clouds. The peak difference reaches 18.5% and
26.1% for the dynamic point cloud Queen. The experimental
results demonstrate the effectiveness of the proposed OGCNN.

In addition, we can see from Table IV that both the half
and Full OGCNNs lead to some performance losses on the
geometry if measured by D1 and the attributes. As stated in
Section IV-A, the OGCNN aims to remove some noisy points.
Therefore, the numbers of points NR of the proposed half
and Full OGCNNs are less than that of the V-PCC anchor.
According to (2) and (4), the smaller the number of points NR

is, the larger D1 and the attribute distortion are since they are
the average of all points. That is why the proposed OGCNN
suffers some performance losses in terms of geometry if
measured by D1 or the attributes. In addition, as explained
by [36], D1 has the disadvantage of ignoring the fact that
point clouds represent surfaces of objects.

To better show the performance of the proposed OGCNNs
for improving occupancy map accuracy, we compare the
occupancy accuracies on the boundary blocks between the
OGCNNs and the V-PCC anchor in Table V. In Table V, N
represents the boundary block size. We test three configura-
tions with N set to 16, 32 and 64 for evaluation. We can
see that both the Full OGCNN and Half OGCNN perform
much better than the V-PCC anchor. For example, when N
equals 16, the Full OGCNN and the Half OGCNN improve
the occupancy map accuracy by 6.72% and 5.05% compared
with the V-PCC anchor, respectively. These results further
demonstrate that the proposed OGCNN can lead to a better
occupancy map video than the V-PCC anchor.

To measure the complexities of the proposed algorithm, we
use the same environment to test both the V-PCC anchor and
the proposed algorithm. More specifically, the CPU config-
uration is an Intel(R) Core i5-8400 CPU @ 2.80 GHz, and
the GPU configuration is a GTX 1080ti. In the all intra case,
both the full and Half OGCNNs lead to almost the same
encoding time compared with the V-PCC anchor. In addition,
the decoding time is increased by 2% on average. The time
complexities of the proposed algorithms are similar to that of
the the V-PCC anchor.
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(a) Loot (b) Redandblack

(c) Queen (d) Longdress

Fig. 5. Comparison of the numbers of points NR in the reconstructed 3D point clouds of the V-PCC [34], OR [22], PBF [21], Occupancy Network and
OGCNN. The Y axis is the bitrate, which gradually increases from low bitrate r1 to high bitrate r5. We can see that for all dynamic point clouds, the number
of points NR in our proposed Half OGCNN and Full OGCNN are less than those in the V-PCC anchor, SOTAs, and the Occupancy Network.

TABLE VI
PERFORMANCE COMPARISON OF THE HALF OGCNN AND V-PCC

ANCHOR [34] UNDER RANDOM ACCESS

Sequence
Geom.BD- Attr.BD-TotalRate
TotalRate

D1 D2 Luma Cb Cr
A.Loot −1.1% -12.0% 1.6% 0.5% 5.4%
A.Red&black 4.2% -14.1% 1.1% −0.1% 0.5%
A.Queen −0.6% -18.8% 7.0% 9.5% 17.6%
B.Longdress 9.2% -14.8% 1.2% 1.1% 1.6%
Class A 0.8% -15.0% 3.2% 3.3% 7.8%
Class B 9.2% -14.8% 1.2% 1.1% 1.6%
Avg. All 2.9% -14.9% 2.7% 2.7% 6.3%

C. Performance of the proposed OGCNN algorithm under the
random access case

In the random access case, as shown in Table VI, we can
see that compared to the V-PCC anchor, the proposed Half

OGCNN can achieve an average 14.9% R-D performance
improvement when D2 is used as the quality metric. The
peak difference between the OGCNN and the V-PCC anchor
reaches 18.8% on the dynamic point cloud Queen. This result
demonstrates that, in addition to the all intra case, the OGCNN
can bring significant benefits to the random access case. As
explained in Section V-B, compared to the anchor, the Half
OGCNN also suffers a few performance losses in terms of the
attributes.
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(a) Loot (b) Redandblack

(c) Queen (d) Longdress

Fig. 6. Geometry R-D curve comparison of the V-PCC [34], OR [22], PBF [21], Occupancy Network and OGCNN for the all intra case. We can see that
the D2 PSNRs of the proposed OGCNN at all five rate points are higher than those of the V-PCC anchor, SOTAs and Occupancy Network.

TABLE VII
PERFORMANCE COMPARISON OF THE HALF OGCNN, OR [22], AND PBF

[21] UNDER THE ALL INTRA CASE

Sequence
Half OGCNN vs. PBF [21] Half OGCNN vs. OR [22]

Geom.BD-TotalRate Geom.BD-TotalRate
D1 D2 D1 D2

A.Loot 0.9% -4.5% 1.2% -9.5%
A.Red&black 3.3% -9.5% 5.7% -8.9%
A.Queen 4.2% -10.5% 6.5% -11.3%
B.Longdress 4.6% -12.8% 7.4% -8.8%
Class A 2.8% -8.1% 4.5% -9.9%
Class B 4.6% -12.8% 7.4% -8.8%
Avg. All 3.3% -9.3% 5.2% -9.6%

D. Comparison of the OGCNN and SOTAs

Table VII shows the BD-rate comparison of the Half
OGCNN, PBF [21], and OR [22]. The Half OGCNN performs
better than the PBF and OR by an average of 9.3% and 9.6%

when D2 is used as the quality metric, respectively. These
performance results demonstrate that the proposed OGCNN
significantly outperforms the SOTAs. In addition, the time
complexities of the proposed algorithms are comparable to
that of the SOTAs.
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Fig. 7. 2D occupancy map comparison of the ground truth, V-PCC anchor [34] and proposed Full OGCNN. For Loot, (a), (b), (c) and (d) are the occupancy
map reconstructions of the Full OGCNN and the V-PCC anchor, the difference between the two, and the ground truth, respectively. (e) and (f) are the enlarged
areas of the gold and blue blocks in (c). For Longdress, the same order is followed. In (c) and (i), the green pixels denote the unoccupied pixels of the V-PCC
anchor correctly removed by the Full OGCNN. The red pixels denote the occupied pixels of the V-PCC anchor wrongly removed by the Full OGCNN. We
can see from (c) and (i) that the number of green pixels is much greater than the number of red pixels. (For a better visual comparison, please zoom in on
the subfigures.)
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Fig. 8. 3D visual comparison of the original point clouds, the point clouds reconstructed by the V-PCC anchor and the proposed Half OGCNN. The zoomed
figures are derived from the first frame of Loot, the first frame of RedandBlack, the first frame of Longdress, and the 300th frame of Longdress. From these
frames, we can clearly see from the red and green rectangles that there are many noisy points in the reconstructions of the V-PCC anchor. However, the
reconstructions of the Half OGCNN are much smoother and closer to the original point clouds.
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E. Ablation analysis of introducing the geometry

TABLE VIII
PERFORMANCE COMPARISON OF THE HALF OGCNN AND OCCUPANCY

NETWORK UNDER THE ALL INTRA CASE

Sequence
Geom.BD- Attr.BD-TotalRate
TotalRate

D1 D2 Luma Cb Cr
A.Loot 1.4% -4.1% 0.4% 0.5% 1.0%
A.Red&black 0.2% -2.8% 0.2% 0.3% 0.2%
A.Queen 1.8% -3.6% 0.8% 3.0% 5.8%
B.Longdress 2.0% -2.6% 0.5% 0.0% 0.2%
Class A 1.1% -3.5% 0.5% 1.2% 2.3%
Class B 2.0% -2.6% 0.5% 0.0% 0.2%
Avg. All 1.4% -3.3% 0.5% 0.9% 1.8%

To evaluate the effect of introducing the geometry as an
additional input, we compare the proposed Half OGCNN with
the Occupancy Network illustrated in Fig. 3. The Occupancy
Network uses only the quarter-resolution occupancy map video
as input. Note that to ensure fairness, the Half OGCNN and
the Occupancy Network use the same network configurations.
Table VIII shows the comparison of the Half OGCNN with and
without the Geometry Network. Compared to the Occupancy
Network, the Half OGCNN saves an average of 3.3% BD-rate
when D2 is used as the quality metric, while suffering a few
performance losses of attributes. These performance results
demonstrate that the geometry, as an additional input, can lead
to clear benefits.

F. Number of points
To further demonstrate that the proposed OGCNN can

reduce the number of noisy points, we count the numbers
of points NRs in the reconstructed 3D point clouds under
different algorithms in Fig. 5. The Y axis is the bitrate, which
gradually increases from low bitrate r1 to high bitrate r5.
We can see that for all dynamic point clouds, the number of
points NR of our proposed Half OGCNN and Full OGCNN
are less than those of the V-PCC anchor, SOTAs, and Oc-
cupancy Network. These statistics fully demonstrate that the
proposed OGCNN removes noisy points to improve the R-D
performance.

G. Rate-Distortion Curves
Fig. 6 shows some representative geometry R-D curves from

the all intra case. We can see that the D2 PSNRs of the
proposed OGCNN at all five rate points are higher than those
of the V-PCC anchor, SOTAs and Occupancy Network. These
experimental results demonstrate that the proposed OGCNN
is significantly superior to the V-PCC anchor, SOTAs, and
Occupancy Network.

H. Visual results of the 2D occupancy maps
Fig. 7 shows the 2D occupancy map video comparison of

the ground truth, V-PCC anchor, and proposed Full OGCNN.
The reconstructed occupancy map videos are derived from the
first frames of Loot and Longdress. For Loot, (a), (b), (c) and

(d) are the occupancy map reconstructions of the Full OGCNN
and the V-PCC anchor, the difference between the two, and
the ground truth, respectively. (e) and (f) are the enlarged areas
of the gold and blue blocks in (c). For Longdress, the same
order is followed. In (c) and (i), the green pixels denote the
unoccupied pixels of the V-PCC anchor correctly removed by
the Full OGCNN. The red pixels denote the occupied pixels of
the V-PCC anchor wrongly removed by the Full OGCNN. We
can see from (c) and (i) that the number of green pixels is much
greater than the number of red pixels. The 2D occupancy map
results demonstrate that the proposed OGCNN can remove
many noisy points and very few original points.

I. Visual results of the 3D point clouds
Fig. 8 shows a visual comparison of the original point

clouds and the point clouds reconstructed by the V-PCC
anchor and the proposed Half OGCNN. The zoomed figures
are derived from the first frame of Loot, the first frame of
RedandBlack, the first frame of Longdress, and the 300th
frame of Longdress. From these frames, we can clearly see
from the red and green rectangles that there are many noisy
points in the reconstructions of the V-PCC anchor. However,
the reconstructions of the Half OGCNN are much smoother
and closer to the original point clouds. The visual results
demonstrate that the proposed OGCNN can achieve a much
better subjective quality.

VI. CONCLUSION

In this paper, we first point out that the accuracy of the oc-
cupancy map video is important to the quality of reconstructed
point clouds under video-based point cloud compression (V-
PCC). Then, we propose an occupancy-geometry-based con-
volutional neural network (OGCNN) to improve the occu-
pancy map accuracy. We formulate the problem of improving
occupancy map accuracy as a binary segmentation problem.
In addition to the quarter-resolution occupancy map video,
we use the reconstructed geometry video as the other input.
The experimental results show that our proposed OGCNN ap-
proach presents clear accuracy improvements in the occupancy
map video and leads to significant BD-rate savings compared
to the state-of-the-art schemes. To the best of our knowledge,
this is the first CNN-based work on improving the performance
of V-PCC. We will consider more CNN-based algorithms to
improve the performance of V-PCC in the future.
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R. A. Cohen, M. Krivokuća, S. Lasserre, Z. Li et al., “Emerging mpeg
standards for point cloud compression,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 9, no. 1, pp. 133–148,
2018.

[13] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of
the high efficiency video coding (HEVC) standard,” IEEE Transactions
on circuits and systems for video technology, vol. 22, no. 12, pp. 1649–
1668, 2012.

[14] A. Vosoughi, S. Yea, and S. Liu, “New proposal on occupancy map re-
covery using scalable locally adaptive erosion filter,” Document ISO/IEC
JTC1/SC29/WG11 MPEG2019/ m46347, Marrakesh, Morocco, 2019.

[15] R. J. Youngho Oh and M. Budagavi, “Improved point cloud com-
pression through filtering of occupancy map,” Document ISO/IEC
JTC1/SC29/WG11 MPEG2019/ m46370, Marrakesh, Morocco, 2019.

[16] Y.-H. Lee, J.-L. Lin, Y.-C. Chang, C.-C. Ju, Y.-T. Tsai, C.-C. Lin, C.-L.
Lin, Y. Oh, R. Joshi, and M. Budagavi, “New proposal on occupancy
map refinement using corner-based boundary estimation,” Document
ISO/IEC JTC1/SC29/WG11 MPEG2019/ m46389, Marrakesh, Morocco,
2019.

[17] K. Cai, D. Zhang, V. Zakharcchenko, and J. Chen, “Adaptive occupancy
map up-sampling,” Document ISO/IEC JTC1/SC29/WG11 MPEG2019/
m46455, Marrakesh, Morocco, 2019.

[18] H. Najaf-Zadeh, M. Budagavi, R. Joshi, and Y. Oh, “Constrained
occupancy map trimming using a ternary occupancy map,” Document
ISO/IEC JTC1/SC29/WG11 MPEG2019/ m47593, Geneva, CH, 2019.

[19] L. Li, Z. Li, S. Liu, and H. Li, “Efficient projected frame padding for
video-based point cloud compression,” IEEE Transactions Multimedia,
2020.

[20] S.-P. Wang, Y.-T. Tsai, C.-C. Lin, C.-L. Lin, Y.-H. Lee, J.-L. Lin,
Y.-C. Chang, and C.-C. Ju, “Bounding box shifting for occupancy
map generation,” Document ISO/IEC JTC1/SC29/WG11 MPEG2019/
m47766, Geneva, CH, 2019.

[21] P. Andrivon, J. Ricard, C. Guede, O. Nakagami, D. Graziosi, and
A. Tabatabai, “Patch border filtering specification in V-PCC,” Document
ISO/IEC JTC1/SC29/WG11 m51501, Geneva, CH, Oct. 2019.

[22] C. Guede, J. Ricard, J. Llach, J.-C. Chevet, Y. Olivier, and D. Gendron,
“Improve point cloud compression through occupancy map refinement,”
Document ISO/IEC JTC1/SC29/WG11 MPEG2018/ m44779, Macao,
China, 2018.

[23] S. Schwarz, G. Martin-Cocher, D. Flynn, and M. Budagavi, “Com-
mon test conditions for point cloud compression,” Document ISO/IEC
JTC1/SC29/WG11 w17766, Ljubljana, Slovenia, 2018.

[24] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz, and
E. Steinbach, “Real-time compression of point cloud streams,” in 2012
IEEE International Conference on Robotics and Automation. IEEE,
2012, pp. 778–785.

[25] D. Thanou, P. A. Chou, and P. Frossard, “Graph-based compression
of dynamic 3d point cloud sequences,” IEEE Transactions on Image
Processing, vol. 25, no. 4, pp. 1765–1778, 2016.

[26] R. L. de Queiroz and P. A. Chou, “Motion-compensated compression
of dynamic voxelized point clouds,” IEEE Transactions on Image
Processing, vol. 26, no. 8, pp. 3886–3895, 2017.

[27] R. Mekuria, K. Blom, and P. Cesar, “Design, implementation, and
evaluation of a point cloud codec for tele-immersive video,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 27,
no. 4, pp. 828–842, 2016.

[28] M. Budagavi, E. Faramarzi, T. Ho, H. Najaf-Zadeh, and I. Sinharoy,
“Samsungs response to cfp for point cloud compression (category 2),”
Document ISO/IEC JTC1/SC29/WG11 m41808, Macau, China, 2017.

[29] L. He, W. Zhu, and Y. Xu, “Best-effort projection based attribute
compression for 3d point cloud,” in 2017 23rd Asia-Pacific Conference
on Communications (APCC). IEEE, 2017, pp. 1–6.

[30] S. Lasserre, J. Llach, C. Guede, and J. Ricard, “Technicolor’s re-
sponse to the cfpp for point cloud compression,” Document ISO/IEC
JTC1/SC29/WG11 m41822, Macau, China, 2017.

[31] K. Mammou, A. M. Tourapis, D. Singer, and Y. Su, “Video-based and
hierarchical approaches point cloud compression,” Document ISO/IEC
JTC1/SC29/WG11 m41649, Macau, China, 2017.

[32] M. Preda, “Report on pcc cfp answers,” Document ISO/IEC
JTC1/SC29/WG11 w17251, Macau, China, 2017.

[33] L. Li, Z. Li, S. Liu, and H. Li, “Occupancy-map-based rate distortion
optimization and partition for video-based point cloud compression,”
IEEE Transactions on Circuits and Systems for Video Technology, 2020.

[34] Point Cloud Compression Category 2 Reference Soft-
ware TMC2-11.0. [Online]. Available: http://mpegx.int-
evry.fr/software/MPEG/PCC/TM/mpeg-pcc-tmc2

[35] G. Bjontegaard, “Calculation of average PSNR differences between RD-
curves,” Document VCEG-M33, Austin, Texas, USA, April 2001.

[36] D. Tian, H. Ochimizu, C. Feng, R. Cohen, and A. Vetro, “Geometric
distortion metrics for point cloud compression,” in 2017 IEEE Inter-
national Conference on Image Processing (ICIP). IEEE, 2017, pp.
3460–3464.

[37] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis,
“Deep learning for computer vision: A brief review,” Computational
intelligence and neuroscience, vol. 2018, 2018.

[38] M. Committee, “V-PCC Codec Description,” Document ISO/IEC
JTC1/SC29/WG11 w19526, Virtual, Italy, Sep. 2020.

[39] X. Chen, D. P. Kingma, T. Salimans, Y. Duan, P. Dhariwal, J. Schulman,
I. Sutskever, and P. Abbeel, “Variational lossy autoencoder,” arXiv
preprint arXiv:1611.02731, 2016.

[40] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” science, vol. 313, no. 5786, pp. 504–507,
2006.

[41] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234–241.

[42] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvolu-
tional networks.” in Cvpr, vol. 10, 2010, p. 7.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[44] P.-T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A tutorial
on the cross-entropy method,” Annals of operations research, vol. 134,
no. 1, pp. 19–67, 2005.

[45] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

Authorized licensed use limited to: University of Missouri-Kansas City. Downloaded on June 29,2021 at 02:09:14 UTC from IEEE Xplore.  Restrictions apply. 


