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Abstract—With the increase in scale and architectural com-
plexity of supercomputers, the management of failures has
become integral to successfully executing a long-running high-
performance computing application. In many instances, failures
have a localized scope, usually impacting a subset of the resources
being used, yet widely used failure recovery strategies (like
checkpoint/restart) fail to take advantage and rely on global,
synchronous recovery actions. Even with local rollback recovery,
in which only the fault impacted processes are restarted from
a checkpoint, the consistency of further progress in the exe-
cution is achieved through the replay of communication from
a message log. This theoretically sound approach encounters
some practical limitations: the presence of collective operations
forces a synchronous recovery that prevents survivor processes
from continuing their execution, removing any possibility for
overlapping further computation with the recovery; and the
amount of resources required at recovering peers can be un-
tenable. In this work, we solved both problems by implementing
an asynchronous, receiver-driven replay of point-to-point and
collective communications, and by exploiting remote-memory
access capabilities to access the message logs. This new protocol
is evaluated in an implementation of local rollback over the User
Level Failure Mitigation fault tolerant Message Passing Interface
(MPI). It reduces the recovery times of the failed processes by
an average of 59%, while the time spent in the recovery by
the survivor processes is reduced by 95% when compared to an
equivalent global rollback protocol, thus living to the promise of
a truly localized impact of recovery actions.

Index Terms—fault tolerance, MPI, User Level Fault Mitiga-
tion, ULFM, message logging, checkpoint/restart

I. INTRODUCTION

The rapid growth of computational science has led to a
growing demand for faster and more capable hardware in high-
performance computing (HPC) systems. These new systems
are growing ever larger and more complex—using thousands
of nodes with heterogeneous hardware configurations—and
therefore have an increased opportunity for hardware faults,
higher failure frequency, and lower mean time to failure
(MTTF). Di Martino et al. [1] studied the US National Center
for Supercomputing Applications’ (NCSA’s) “Blue Waters”
supercomputer for 261 days and found that 1.53% of applica-
tions running on the machine failed because of system-related
issues. Looking ahead, future exascale systems will employ
several million compute cores, many more than Blue Waters,
and will accordingly be hit by errors and faults more frequently
due to their scale and complexity. Therefore, long-running
applications will need to rely on fault tolerance techniques
to not only ensure the timely completion of their execution in
these systems but to also minimize the running costs.

Even though the Message Passing Interface (MPI) standard
remains the most popular parallel programming model in
HPC systems, it lacks any fault tolerance support. By default,
the entire MPI application is aborted upon a single process
failure. Besides, even when set to return errors, the state of
MPI will be undefined upon failure, and, thus, there are no
guarantees that an MPI program can successfully continue its
execution. For this reason, traditional fault-tolerant solutions
for MPI applications rely on stop-and-restart checkpointing,
where, upon a fault—and disregarding their statuses—all
MPI processes are aborted and then restarted from the last
checkpoint. Its implicit simplicity makes this approach widely
adopted. However, it is not the most efficient, as it implies
aborting and re-spawning the entire application plus recovering
all processes—including the ones not affected by the failure—
from a previous point of the execution to repeat a computation
that has, at least partially, already been done. At large scale,
with failures impacting a small subset of the resources being
used, it introduces large overheads that can be avoided.

The User Level Failure Mitigation (ULFM) interface [2],
under discussion in the MPI forum, proposes the inclu-
sion of resilient capabilities in the MPI standard. ULFM
includes new semantics for process failure detection, com-
municator revocation, and reconfiguration—that is, a mini-
mum set needed to repair the communication capabilities.
In a previous work, we combined the ComPiler for Portable
Checkpointing (CPPC) [3]—an application-level, open-source,
checkpointing tool for MPI applications—and ULFM to im-
plement a local rollback protocol for single program, multiple
data (SPMD) applications [4]. Using this solution, only the
failed processes are recovered from the last checkpoint, while
consistency and further progress of the computation is enabled
using ULFM and a message logging protocol. This solution
introduces notable performance benefits with respect to a
global rollback; however, we have identified limitations.

The current strategy for the replay of communications,
notably collective operations, results in a synchronous recov-
ery that prevents survivor processes from continuing their
execution, thereby removing any possibility of overlapping
the cost of recovery with computation. Although this overlap
is tightly conditioned to the communication pattern of the
application (i.e., the execution of a survivor process can
only continue until the next communication that involves a
recovering peer), recent trends aim at improving the strong-
scaling capability of HPC applications by refactoring them in



terms of asynchronous execution [5]–[7] In addition to this,
even in tightly coupled communication patterns, when a large
number of point-to-point communications need to be replayed,
we have identified that the efficiency of local recovery can be
impacted by the large amount of resources that are required
to carry out the re-execution of the communication at the
recovering processes.

To solve both issues, in this work we implement an asyn-
chronous, receiver-driven local recovery. First, we modify the
replay of collective operations by replacing them with point-
to-point communications to heavily reduce the number of
processes that need to participate in the replay. We focused
on MPI_Allreduce, which, as reported by different pro-
filing studies [8], is by far the most commonly used MPI
collective operation, both in terms of the number of times
the reduction function is called and the total amount of
time spent in it. We also discuss how this strategy can be
applied to other collective operations. Secondly, we implement
a receiver-driven replay of communications exploiting the
remote-memory access (RMA) operations provided by MPI.
This RMA-based replay enables the recovering processes to
fetch the message content from the memory of their passive
peers, which remain free to continue their own computation.
In addition, recovering processes obtain the messages at a
pace that is commensurate with the speed of their progress.
The combination of both techniques disengages the survivor
processes from the replay of communications, while it prevents
the performance penalties introduced by traditional message
logging replay, in which message bursts can cause resource
exhaustion and expensive out-of-order message management.
To the best of our knowledge, no other message logging
protocol implements a completely receiver-driven replay for
point-to-point or collective communications.

The rest of this paper is structured as follows. Section II
provides an overview of local rollback recovery protocols.
Section III describes the optimization for the replay of collec-
tives operations, while the receiver-driven replay is presented
in Section IV. The experimental evaluation is reported in
Section V, and Section VI concludes this paper.

II. MESSAGE LOGGING BACKGROUND

Message logging has been an active research topic in
the recent decades [9]–[16]. This technique relaxes the syn-
chronization constraint in coordinated checkpoint/restart, and
enables rolling back only the processes affected by a failure.
Message logging describes the execution of a process as a
sequence of process states and events. An event corresponds
with a computational step or a communication step of a
process that, given a preceding state, leads the process to
a new state. As the system is basically asynchronous, there
is no direct time relationship between events occurring on
different processes; however, events are partially ordered by
the Lamport “happened before” relationship [17].

a) Event Logging: Events can be deterministic or non-
deterministic, depending if —from a given state—the event
always result in an identical outcome state. Processes are

considered “piecewise deterministic:” few non-deterministic
events occur, separated by large sections of deterministic com-
putation. This is a reasonable assumption in HPC workloads
where the main source of non-deterministic events is the rela-
tive order of message receptions. After a failure, a replacement
process can be driven to reach the same state as the original
execution by repeating the all events in the same order as
the initial execution. Deterministic events will be naturally
replayed as the process executes the application code. How-
ever, the same outcome must be forced for non-deterministic
events, and thus, they must be logged during the original
execution. Different techniques (pessimistic, optimistic, and
causal) provide different levels of synchronicity and reliability
for the logging of events [9], which can help reduce the
incurred latency overhead. Nonetheless, the dominating costs
in message logging techniques are related to the time to log the
message payload (i.e., the bytes transferred over the network)
and the associated memory requirements.

b) Payload Logging Techniques: In addition, to replaying
non-deterministic events, recovering processes need to replay
any message reception that impacted their state in the original
execution (deterministic or not). Therefore, message logging
protocols have two fundamental parts: (1) the aforementioned
logging of non-deterministic events and (2) the logging of
the payload of the messages that permits replaying past
messages without restarting sender processes. Receiver-based
approaches [15] perform a local copy of the message contents
at the receiver. The main disadvantage is that the messages
need to be committed to stable storage or to a remote
repository to make them available after the process fails,
which can be costly [16]. On the other hand, in sender-based
strategies [10]–[14], the logging is performed on the sender
process. The logging consists in a local copy that can be made
in parallel with the network transfer, and kept in local memory;
if the process fails, the log is lost, but it will be regenerated
during the recovery. As a drawback, during the recovery,
failed processes need to request the messages from survivor
processes. Hybrid solutions have also been studied [18] that
mix receiver- and sender-based logging. In this work we focus
on enabling an asynchronous replay of the sender-based log.

An orthogonal strategy to reduce the log volume consists
in forming groups of processes that coordinate their check-
points [11]–[13]. In this method, processes within a group
spare the expense of logging of message payload for any
communication within the group. As a consequence, when a
process fails, the entire group has to roll back. While effective
at reducing the total log volume, these strategies still rely on
a traditional sender-based approach for inter-group messages.

c) Logging Collective Communications: In traditional
message logging, collective communications are logged by
logging the internal Point-to-point messages that compose
them. Recent advances consider the semantic aspects of the
collective operation to optimize the log volume. In [14] the
authors log only a subset of the point-to-point messages
sufficient to reconstruct the outcome when needed, while
in [19], the result (i.e., the receive buffers) is logged rather than



(a) Original replay: re-sending point-to-point and re-executing collec-
tive operations.

(b) Asynchronous receiver-driven replay.

Fig. 1: Local rollback protocol

the internal intermediate messages. Similarly, our approach
does not log the full contingent of Point-to-point messages
in collective operations, but in contrast, the main goal of our
novel collective logging strategy is to permit a passive replay
from the perspective of survivor processes.

In previous works [4], we designed an hybrid local recovery
protocol that seats partially within the MPI implementation
and at the user level. On one hand, Point-to-point com-
munications and non-deterministic events are logged by the
Open MPI VProtocol [10] component at the MPI library level.
On the other hand, the CPPC tool instruments the code to
log collective communication at the application level. This
has the effect of decoupling the logging protocol from the
particular collective implementation and avoids the logging of
the individual point-to-point messages. During the recovery,
ULFM is used to restore communication capabilities before
the survivor processes resend the necessary point-to-point
communications to the recovering ones using a traditional
sender-based approach, while collective communications are
re-executed as originally (i.e., by reposting collective calls
involving all processes in the communicator). Figure 1a il-
lustrates the operation of the protocol after a failure.

d) Identified Issues and Goals: Although message log-
ging strives to localize the recovery of failures, we can see
that existing techniques do not completely achieve that goal.
Despite the fact that only failed processes restart from a check-
point, surviving processes (i.e., processes not directly affected
by the failure) play an integral, active part in helping the
recovery progress, and are in essence busy serving messages
and replaying synchronizing communication for the entire
period. Thus, in this work, we explore how introducing an
asynchronous, receiver-driven, local recovery helps minimize
the involvement of survivor processes. To this end, by chang-
ing the way we log and replay the collective payload, we relax
the synchronization constraint imposed by most collective
communications by converting their collective behavior into
a simpler, more peer-wise behavior, and thus we avoid the
re-execution of collective communications by all processes.
In addition, we have identified (and will characterize in the
experiments) that rendering the recovery asynchronous can
cause burst of network activity when survivor processes send
the message log to restarting processes—at the extreme, the
entire communication volume since the previous checkpoint.
To alleviate this problem, we propose exploiting the MPI
RMA capabilities driven by restarting processes themselves.
As illustrated in Figure 1b, recovering processes fetch message
content directly from their peer memory, while processes not
affected by the failure are freed from any replay commitments,
and can—potentially—continue their execution if the commu-
nication pattern if the application allows it.

III. REDUCING THE SYNCHRONICITY IN THE REPLAY OF
COLLECTIVE OPERATIONS

Re-executing the collective operations during the replay
provides a straightforward and always-correct strategy for
the deployment of the message logging protocol. However,
owing to the synchronizing behavior of most MPI collective
communications, this strategy—in most cases—is not the most
appropriate. First of all, it introduces the unnecessary commu-
nication of data that is going to be discarded by all surviving
processes (i.e., processes that did not need the old data). For
example, re-executing a MPI_Allreduce operation implies
transmitting data to all peers in the communicator, but this data
is going to be discarded by all survivor processes. Secondly,
this strategy forces a synchronous recovery: all survivor pro-
cesses in the communicator are blocked in the replay—even if
they do not need to resend any other messages to recovering
peers—and all the processes need to replay all collectives in
the original order. Replacing the re-execution of collective
operations by one or a set of point-to-point communications
could simultaneously achieve two goals: (1) avoid sending
unnecessary messages and (2) reduce the synchronicity of the
recovery. In many cases, optimizing the replay of a collective
operation requires changing the way it is logged. All in all,
changes in the logging/replay are performed at the CPPC or
Vprotocol level, and thus, are oblivious to the application code.

In this work, we apply this strategy for the optimized replay
of the MPI_Allreduce operation to demonstrate the bene-



fits that can be introduced during the recovery. In the failure-
free execution of a MPI_Allreduce, the result data is
received by all peers in the communicator. By using a receiver-
based logging for this operation, all survivor peers will have
the resulting data in their log, and any of them can provide it
to a recovering process using point-to-point communications.
This approach compares favorably with logging individual
point-to-point messages, both in terms of log volume and
potential for introducing performance overhead. However, it
remains similar to the synchronous replay of collective op-
eration (with sender-based logging) both in terms of logged
data volume and performance cost, since the vector that is
logged at the receiver is strictly the same size as the one logged
at the sender. This method is however significantly different
during the recovery. After a failure, before starting the replay,
all processes agree about a root responsible for resending the
result data to the recovering processes. As collective operations
involve all processes in the communicator, this agreement is
performed once for each one of the communicators used by the
application, thereby guaranteeing a valid root for the replay in
all of cases. In this work, the agreement designates the lowest
survivor rank in the communicator as a root process. However,
the root agreement could also be performed by taking into
account the processes that failed, choosing a survivor in the
same or nearby node for the replay, or even having several
root processes in charge of the replay for a subset of nearby
failed processes in order to distribute the communication load.

This strategy is not restricted to the MPI_Allreduce
collective and can easily be generalized to all collective
operations in MPI [8]. In the case of MPI_Bcast, no changes
need to be applied during the logging operation. The root
process can send the data exclusively to the recovering peers—
whether a survivor process’s log contains the data or whether it
has failed and the data is regenerated as it progresses through
the execution. Similarly, all-to-all collectives can be replaced
by point-to-point communications for the recovering processes
without modifying how they are logged, as in the sender-based
logging, each peer saves its own contribution. Even though all
processes still need to participate in the replay, the unnecessary
transmission of data to survivor peers is avoided.

For MPI_Barrier, the synchronizations must be main-
tained between recovering processes; however, survivor pro-
cesses do not need to be involved, since by definition they
have already participated in the barrier. Therefore, an op-
timized replay can be implemented by running the barrier
on a smaller communicator that includes only the subset of
recovering processes. This strategy would involve creating
new derived communicators containing only the recovering
peers at the beginning of the replay process, and this will not
impact the logging overhead. Note that MPI operations like
MPI_Comm_create_group permit creating small piece-
meal communicators without involving all processes.

The case of the MPI_Reduce operation is more complex,
as the result is only received by the root process, and that peer
is the only one that would need it in case it is hit by a failure.
Thus, performing an optimized replay in this case requires

the result data to be logged on a stable remote server, or to
multiple peers, which adds logging overhead. All in all, the
replay of the reduction operation can be partially optimized by
avoiding the replay when the root is not one of the recovering
processes and, otherwise, re-executing it.

IV. ENABLING A RECEIVER-DRIVEN REPLAY

After applying the aforementioned optimization, the replay
procedure now consists of a subset of survivor processes
explicitly resending a subset of the logged communications
as point-to-point messages. The subset of replaying survivor
processes includes those that have sent messages to a process
that has failed, as well as those survivors designated as a root
for serving collective communication results. Most certainly,
survivor processes can resend messages at a faster pace than a
recovering peer can consume them. Indeed, the latter does not
only replay communication, but also repeats the computation
to recover its state, hence, it posts message receptions at a
much slower rate.

A survivor process is thus facing multiple axis of tradeof
when deciding at what rate the emission of message log
should proceed. At an extreme, the survivor processes could
be allowed to replace all collective operations with a series
of non-blocking point-to-point communications and replay the
message log as fast as possible, injecting the entire volume
immediately. That approach, which represents the state of the
practice, can lead to multiple issues. First, issuing such a large
number of non-blocking can exhaust software and hardware
resources alike. For example, both the available pool of MPI
requests and congestion credits at the network interface level
are limited. Conversely, the recovering process will receive
a massive amount of concurrent, unexpected messages from
multiple peers, causing a resource exhaustion and congestion
issue at the receiver. Last, despite the communication being
pending, if survivor processes resume computation immedi-
ately and stop monitoring the completion of these posted
communication, they may stop progressing. The MPI standard
does not mandate that point-to-point communication shall
progress if no call to MPI routines are made, hence after an
initial burst, communication may actually stop and delay the
progression of the recovery. At the other extreme, this scenario
can certainly be avoided by implementing a synchronizing
protocol to slow down the replay by the survivor processes,
thereby forcing them to wait for acknowledgments from re-
covering processes before resending more messages. However,
this defeats the goal of achieving an asynchronous recovery, as
it keeps survivor processes involved in these synchronization,
thereby eliminating the opportunity to overlap the recovery
with further computation.

The alternative solution we propose is to exploit the RMA
capabilities provided by MPI to enable the recovery process
to control when (and at what pace) it obtains the necessary
logged messages by directly accessing the message log in
the passive survivors’ memory. The one-sided features pro-
vided by MPI [20] enable the creation of RMA windows
in a given communicator, to which memory regions can be



subsequently attached. These memory regions are exposed
to the rest of the processes in the communicator (i.e., re-
mote peers can both read from and write to them). RMA
communication calls (e.g., MPI_Get) must be issued within
an access epoch. Access epochs are started and completed
using synchronization calls; In this work, we use the passive
target RMA MPI_Win_lock(MPI_LOCK_SHARED,...)
and MPI_Win_unlock to start and complete an access
epoch from recovering processes, and MPI_Win_flush to
complete RMA operations.

a) Exposing Message Logs: First, we restrict the number
of processes participating in the RMA window by creating
a communicator that includes only the recovering processes
and surviving processes with logs containing messages to be
replayed. Restricting the number of processes participating in
the window can reduce the cost of some RMA operations,
especially at larger scales, where—potentially—a very small
subset of the application processes need to be involved in
the recovery. On this dynamic window, the survivor processes
attach (using MPI_WIN_ATTACH) the memory segments that
contain their log to make it accessible to the recovering peers.
To fetch the messages from a remote peer, the recovering
processes need to know the exact address in the remote
memory where the data is stored. Therefore, survivor processes
notify the recovering ones of the base address in the log for the
relevant communication channels (i.e., for each pair recovering
the destination process and communicator). Note that after this
stage, survivor processes have no further participation and are
free to continue executing the remainder of the application, as
they only appear as passive targets in RMA operations.

b) RMA Replay of Communications: The first key aspect
of the replay corresponds to how the recovering peers access
the remote survivors’ logs. We employ sender-based message
logging, and thus the messages to be replayed are avail-
able from the survivors’ logs. However, for implementation
reasons, messages to the same destination process over the
same communicator are not necessarily stored contiguously
in the log. Instead, messages are saved in their post or-
der from the sender perspective (i.e., the order of calls to
MPI_Send/Isend), regardless of the destination process
or communicator. This strategy enables the allocation of a
memory chunk in which messages are logged as they are being
sent, and additional memory only needs to be allocated when
the previous segment is completely full. Alternatives, such
as trying to group messages by receiver processes and/or by
communicator, complicate the logging operation and increase
the logging overhead, thereby introducing problems such as
predicting the amount of data that will be sent to each peer and
fragmentation in the log. It is entirely possible to reorganize
the log content upon certain conditions (e.g., long intervals
between checkpoints, memory constraints, remote checkpoint),
but this is not part of the study presented here. All in all, the
most efficient way for recovering processes to iterate through
the sender’s log is by accessing only those messages sent to
them in the past. Thus, minimizing the number of remote
accesses that are performed to obtain the non-contiguous log

becomes an important issue. To enable the iteration over all—
and only—those messages, we include additional information
alongside the message log. The sender-based log structure
metadata contains the information that enables the replay
(e.g., for a point-to-point communication: size of the data,
communicator ID, destination process, and tag). We extend it
to also include the offset in the log of the next message in the
same communication channel (same peer and communicator).
The cost of maintaining this information during the failure-free
operation is negligible compared to the cost of the logging, but
it enables the recovering peers to be completely independent
and to locally compute the remote addresses of the messages
it needs to replay—all without sequentially iterating over each
message in the remote log.

As the recovering processes progress in the execution, they
internally translate the receptions or collective operations into
MPI_Get operations. Note that, in a naive implementation,
two MPI_Get operations are necessary for each message: one
to fetch the metadata and another one to get the actual contents
of the message using the appropriate buffer size indicated in
the metadata. These two operations cannot be overlapped as
the first get operation must complete for the recovering process
to obtain the displacement of the payload in the sender’s log as
well as the size of the payload. Once this information is locally
available, the second get obtains the content of the message
in the reception buffer. In addition, for each get operation a
new access epoch has to be completed in order to ensure the
visibility of the data in the reception buffers. However, RMA
operations are more efficient when accessing contiguous data
(one MPI_Get operation gets a large chunk of data) or in
aggregated modes (performing N remote operations within
the same access epoch). We implement two optimizations
to get closer to such a contiguous access pattern. First,
we delegate part of the metadata assembly to the survivor
processes involved in the recovery. They copy the metadata
of the messages to be replayed for each recovering peer
in a continuous buffer. This enables the recovering process
to get the metadata of Nmt messages using only one get
operation, which can be overlap with other operations such
as attaching the actual memory segment containing the log.
Using this optimization, we move from performing N get
operations each one in a different access epoch (as each
operation needs to be completed to calculate the address of
the metadata of next message), to a single get operation on
a contiguous memory region in a single access epoch (at
the expense of N local memory copies at the survivor). It
should also be noted that as each survivor process compute the
aggregated metadata independently, the aggregations happen
in parallel and we remove the sequential behavior imposed
when executing the aggregation operation on the recovering
processes. Second, we prefetch the messages payload (i.e. the
message contents) of Npf messages. Upon the first reception
in a communication channel, the next Npf messages are also
fetched in the same access epoch and kept in a local buffer
in packed form. The next receptions in the communication
channel will consume the messages in the local buffer until it is



TABLE I: Original run times of the testbed applications in
minutes.

256P/216P 512P 1024P/1000P

Himeno 8.88 4.46 2.40

Mocfe 3.03 1.56 0.86

Tealeaf 4.57 2.37 1.88

Lulesh 9.06 3.26 1.58

Stencil 1.47 0.99 0.52
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Fig. 2: Absolute overheads (in seconds) and checkpoint file
sizes in the absence of failures.

empty. Both strategies reduce the cost of the RMA operations
while they maintain the memory consumption at the recovering
process under a configurable threshold.

V. EXPERIMENTAL EVALUATION

The experimental evaluation was performed at the NERSC
Cray XC40 Cori supercomputer. The nodes in the machine
are composed of two Intel Haswell E5-2698 v3 processors
running at 2.30 GHz, with 16 cores per processor (32 cores
per node), and 128 GB of RAM. The nodes are connected
using a Cray Aries with Dragonfly topology (5.625 TB/s
global bandwidth (Phase I), 45.0 TB/s global peak bidirec-
tional bandwidth (Phase II)). The experiments spawned 32
MPI process per node (one per core). For our testing, we
used CPPC version 0.8.1, working with HDF5 version 1.8.11
and GCC version 7.3.0. The Open MPI version used corre-
sponds with ULFM 2.0 and was modified for the integration
of VProtocol and CPPC. The Portable Hardware Locality
(hwloc) [21] package was used for binding the processes to the
cores. Applications were compiled with optimization level O3.
Checkpoint files are dumped to the local disk of the nodes.
We report the average times of 10 executions.

We used an application testbed comprised of five domain
science MPI applications with different checkpoint file sizes
and communication patterns. We ran the Himeno bench-
mark [22], a Poisson equation solver, fixing NN to 12,000
with a grid size of 1024 × 1024 × 512. MOCFE-Bone [23],
which simulates the main procedure in a 3-D method of
characteristics (MOC) code, using 4 energy groups, 8 angles,
a mesh of 16 × 243 doing strong scaling in space, and

a trajectory spacing of 0.01cm2. TeaLeaf [24] is a mini-
app, originally part of the Mantevo project, that solves a
linear heat conduction equation on a spatially decomposed
regular grid using a five-point stencil with implicit solvers.
We ran it with x_cells and y_cells set to 4,096 at 200
time steps. Lulesh [25], [26] represents a typical hydrocode;
it approximates the hydrodynamics equations discretely by
partitioning the spatial problem domain into a collection of
volumetric elements defined by a mesh. It was run with fixing
the number of cycles to 500 and the number of elements
to 110 592 000, by setting the length of cube mesh along
side (-s parameter) to 80, 60, and 48 as the application scale
out. Finally, the Stencil benchmark from the Parallel Research
Kernels [27] applies a data-parallel stencil operation to a two-
dimensional array. It was run with radius 10, gridsize 320,
and 650k iterations. This benchmark is used to exemplify
the behavior in communications patterns containing a large
number of point-to-point communications but no collective
operations. The original execution times of the applications, in
minutes, are reported in Table I. Experiments were executed
doing strong scaling (i.e., maintaining the global problem size
constant as the application scales out). The block size used
to get the metadata (Nmt) was set to 512 and the number of
message prefetched (Npf ) in blocks of 32.

In all experiments, the checkpointing frequency is fixed so
that two checkpoint files are generated during the execution of
the applications—the first is generated at 40% of the execution
progress and the second is generated at 80%.

Figure 2 shows: (1) the overhead when logging to enable
the original replay protocol with point-to-point resending
and collective re-execution (denoted as base-LR) and (2) the
RMA version described in this work (denoted as RMA-LR).
The overhead and checkpoint file sizes show no significant
differences between the two approaches. The modifications
introduced by the RMA-LR present little impact on the over-
head, and the overhead remains low. In the case of Tealeaf, the
fault-tolerant execution is slightly faster than the original run,
conceivably because of changes in the optimization applied by
the compiler in the CPPC-instrumented code.

A. Characterization of the Communication Pattern

We use mpiP [28] to analyze the MPI usage of the original
applications.Figure 3a reports the percentage of the application
runtime that is spent in MPI using a box plot to represent the
variability across processes, and Figure 3b breaks it down into
the operations that consume the most time. Mocfe, Tealeaf, and
Stencil are the applications that spent the largest percentages
of their execution in the communication library, specially
when scaling out. Lulesh and Stencil are the applications with
the largest variability across different processes. Regarding
the break down of MPI time, Allreduce collective operations
account for most of the time for Tealeaf and Mocfe, while
completion calls of point-to-point communications dominate
the MPI time for the rest of applications.

We also analyze the data being logged for each application
and characterize the applications in terms of their log volume



0%

20%

40%

60%

80%

100%

25
6

51
2
10

24 25
6

51
2
10

24 25
6

51
2
10

24 21
6

51
2
10

00 25
6

51
2
10

24

P
e
rc

e
n
ta

g
e
 o

f 
ru

n
ti
m

e
 i
n
 M

P
I

Himeno Mocfe Tealeaf Lulesh Stencil

(a) Percentage of the application’s runtime spent in MPI and
variability across processes.

0%

20%

40%

60%

80%

100%

25
6

51
2
10

24 25
6

51
2
10

24 25
6

51
2
10

24 21
6

51
2
10

00 25
6

51
2
10

24

P
e
rc

e
n
ta

g
e
 o

f 
M

P
I 
ti
m

e

Allreduce

Reduce

Wait[all]

[I]recv/[I]send

Others

Himeno Mocfe Tealeaf Lulesh Stencil

(b) MPI time broken down by most consuming communication calls.

Fig. 3: Benchmarks profiling information reported by mpiP.

TABLE II: Benchmark characterization: MPI calls and log
behavior per iteration.

AGGREGATED AVERAGE LOG
BEHAVIOR PER ITERATION

MPI CALLS POINT-TO-POINT COLLECTIVE
COMMUNICATIONS

MAIN LOOP # P
R

O
C

S

#I
T

E
R

S

# SIZE # SIZE

H
IM

E
N

O Irecv,
Isend,
Wait,

AllReduce

256 12K 1.3K 98.6MB 256 7.0KB
512 12K 2.6K 165.2MB 512 14.0KB

1024 12K 5.4K 201.5MB 1.0K 28.0KB

M
O

C
F

E

Irecv,
Isend,
Waitall,
Allreduce,
Reduce

256 120 2068.5K 1.4GB 51.5K 11.2MB
512 120 4343.8K 1.8GB 102.9K 22.5MB

1024 120 8894.5K 2.8GB 205.8K 45.0MB

T
E

A
L

E
A

F Irecv,
Isend,
Waitall,
AllReduce

256 200 864.8K 3.4GB 460.5K 14.1MB
512 200 1757.1K 5.3GB 920.4K 28.1MB

1024 200 3578.1K 7.3GB 1844.1K 56.3MB

L
U

L
E

S
H

Irecv,
Isend,
Wait,

Waitall,
AllReduce

216 500 6.9K 489.6MB 216 6.7KB
512 500 17.9K 693.5MB 511 16.0KB

1000 500 36.8K 902.1MB 998 31.2KB

S
T

E
N

C
IL Irecv,

Isend,
Wait,

256 650K 960 1.48MB 0 0
512 650K 2K 2.27MB 0 0

1024 650K 4K 3.07MB 0 0

in Table II. We report the MPI routines that are called
in the main loop of the application (where the checkpoint
call is located). For each experiment, the table also shows
the number of processes running the experiment, the total
number of iterations run by the application, and the aggregated
average log behavior per iteration. The aggregated average log
behavior per iteration is computed as the sum of the logs from
all processes (i.e., the total log generated by the application
in one iteration) of the point-to-point and collective logs in
terms of number of calls and size of the data that is logged.
Note that, even though Mocfe runs MPI_Reduce operations
in the main loop of the application—with the reported prob-
lem configuration—it does so in a communicator containing

only one process; thus, those communications are neither
logged nor replayed, as they will be naturally regenerated if
that process fails. Therefore, in all test-bed applications, the
logged communications correspond with point-to-point and
MPI_Allreduce operations, and none of them generate
non-deterministic events during their whole execution. Ad-
ditionally, Figure 4 reports the aggregated log parameters—
the addition of the values from all processes—when check-
pointing, that is, the maximum size during the execution, as
the logs are cleared after checkpointing. For all applications,
point-to-point communications account for most of the log.
Even in those cases in which most of the MPI time is spent
in collective communications, the amount of data transmitted
is very low, and the bulk of communications—both in terms
of number of calls and transmitted data—correspond to point-
to-point communications. Himeno has the largest maximum
point-to-point log size, ranging from 462 GB to 945 GB when
scaling out, followed by Stencil (from 375 GB to 781 GB),
Tealeaf (from 273 GB to 583 GB), while for Mocfe and
Lulesh, it remains under 176 GB. Regarding the collective log
size, Mocfe (2 GB maximum) and Tealeaf (4 GB maximum)
have the largest ones. On the other hand, Himeno’s collective
log size remains under 131 MB, and it is particularly low for
Lulesh (6 MB maximum).

B. Recovery after a Failure

In this section, we evaluate the performance of the recovery
when introducing a failure by killing the last rank in the
application when 75% of the computation is completed. We
compared three recovery procedures: global rollback, local
rollback using the original replay of communications, and local
rollback using the RMA replay with optimized collectives. In
all of them, the ULFM capabilities are used to detect the
failure and restore the communication capabilities. Due to
practical constraints with allocating supplementary processes
at runtime in production systems, a set of oversubscribed
spare replacement processes are spawned at the beginning of
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Fig. 4: Log parameters when checkpointing: maximum log
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and number of entries during the execution.
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(b) Communications replayed during the recovery.

Fig. 5: Analysis of the log size and the replayed communica-
tions during the recovery.

the execution and remain inactive (nanosleep) until they need
to replace a failed rank. The recovering process restores the
application data from the checkpoint file, and the replay of
communications takes place. When using base-LR replay, the

necessary point-to-point communications are re-sent by the
survivor peers, and collective operations are re-executed. On
the other hand, using the RMA strategy, the recovering peer
directly obtains the message’s contents from the remote sur-
vivors’ logs as it advances in the execution. In all experiments,
failures are introduced at the same point of the execution
of the last rank, and, therefore, the logs of the survivors
processes and the communications that need to be replayed
present almost no differences between the two local rollback
protocols. Figure 5a shows the total size of the log at each one
of the survivor processes that have point-to-point messages
that need to be replayed to the failed peer, indicating with
different colors if the survivor process is in the local node
or in a remote node with respect to the recovering process.
In the RMA protocol, the point-to-point logs account for the
majority of the memory that is attached and exposed in the
one-sided windows. Figure 5b reports the communications that
are actually replayed (those routed to a failed process) in each
experiment, representing the amount of data and the number of
operations for point-to-point and collective communications.
In all applications, the bulk of the replayed data corresponds
with point-to-point communications, from a small number of
neighboring processes to the recovering peer. For Tealeaf and
Stencil, around 65% of the point-to-point logs exposed in the
window are actually being replayed, while 23% are replayed
for Himeno and Mocfe, and 1.45% are replayed for Lulesh.
On the other hand, the amount of replayed data related to
collective operations is always less than 3.2 MB.

Figure 6a reports the time spent in the recovery (in seconds)
for the replacement and the survivor processes. For three
testbed strategies, the recovery times include the time spent
once the communication capabilities had been restored and
until the state prior to the failure had been reached. Figure 6b
reports the percentage reduction in the recovery times that
the local rollback strategies achieve with respect to the global
rollback. In the case of applications replaying collectives
communications (all but Stencil), the base-LR replay reduces
the recovery times of both failed and survivor processes, on
average, by 53% compared to global rollback. The RMA-LR
protocol maintains the same performance benefits in the recov-
ering processes, while the survivor recovery times are reduced
to a minimum (less than 3 seconds), which means a reduction
of 95% compared to a global rollback. The case of the Stencil
benchmark presents a different scenario when using the base-
LR protocol: the absence of collective communications in this
application allows survivor processes to replay their communi-
cations unhindered by the progress of the recovering processes.
This results in the survivor processes posting all possible
sends for the recovering processes and then continuing their
execution. All of these early sends translate on the receiver side
in unexpected messages, leading to catastrophically slower
recovery. The recovering processes are overwhelmed by the
sheer amount of communications being replayed, and their
recovery times are heavily increased, being between 4× and
11× the cost of a global rollback. The main difference between
this benchmark and the other applications is the number
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(b) Percentage reduction in the recovery times for the survivor and
failed processes when using a local rollback (with point-to-point or
RMA replay) with respect to the global rollback recovery times.

Fig. 6: Recovery times using the different protocols.
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Fig. 7: Unexpected messages generated during the recovery.

of point-to-point communications that are replayed without
the need for a synchronizing collective and the number of
unexpected messages that are introduced. Using the SPC
counters capability [29] included in Open MPI, we measured
the impact of the unexpected messages generated during the
recovery for each of the resilience strategies. Figure 7 reports
the different events related to unexpected messages, including
the total number of unexpected messages that are generated
and the maximum number of messages in the queue at a given
time during the recovery. The unexpected messages generated
during the global rollback recovery serve as a baseline and
correspond with the unexpected messages that were originally
generated in that part of the execution. For all the applications,
the base-LR protocol worsens all of the events related to the
unexpected messages, as all replayed point-to-point messages
are unexpected at the recovering process. However, the re-
execution of collective operations keeps the maximum num-
ber of unexpected messages in the queue at the same time
and keeps their matching time low. Re-executing collective

operations introduces synchronization points that slow down
the replay carried out by survivor processes, thereby provid-
ing the recovering peers a chance to catch up. In the case
of Stencil, the replay without pace performed by survivors
heavily increases the number of unexpected messages. Note,
however, that the mere presence of collective operations does
not guarantee that the number of unexpected messages will
be kept low. Communication patterns where large numbers of
point-to-point communications need to be replayed between
two consecutive collective operations will present performance
penalties similar to those of the Stencil benchmark.

All in all, the RMA-LR protocol solves the problems
introduced as a side effect by the base-LR with unexpected
messages, and the recovery times of the failed processes
are reduced by 59% across all applications, while the time
spent by survivor processes in the recovery procedure is
reduced to a minimum (less than 3 seconds), which means a
reduction of 95% compared to a global rollback. The overall
failure overhead presents the same reduction trend than the



recovery times of the failed processes. In less tightly coupled
communication patterns, like those present in asynchronous
algorithms, the RMA protocol will not only eliminate the
problems introduced by unexpected messages, but also benefit
from overlapping the recovery of the failed processes with
further computation in the execution of the survivor processes.

VI. CONCLUDING REMARKS

We extended our previous work on a local rollback pro-
tocol [4] by exploiting MPI one-sided communications and
implementing optimizations to cope with the replay process
limitations. With the RMA approach, the recovering peers
obtain the message contents at the exact point of the execution
when they need it—thereby limiting the amount of resources
necessary for the recovery—while the prefetching of metadata
and aggregation of messages amortize the setup cost of the
RMA operations. A first optimization relaxes the synchronicity
imposed by the complete replay of collective operations that
prevents survivor processes from continuing their execution,
increasing the opportunity to overlap the progress of the re-
covering processes with further computation on survivor peers.
We also modify the way collective operations are logged,
with MPI_Allreduce in particular, to enable their replay
as point-to-point communications—a strategy that reduces the
amount of data transmitted and limits the participation in the
recovery to the strictly necessary set of survivor processes.
A second optimization streamlines the uncontrolled replay of
point-to-point communications (or collective communication
replayed as point-to-point) improving the efficiency of the
local recovery and drastically decreasing the amount of re-
sources required at the recovering processes. The resulting
asynchronous, receiver-driven replay of communications re-
duces the recovery times of the failed processes by 59% on
average compared to a global rollback, while the participation
of survivor processes is minimal (reduced by 95%).
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