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Abstract: Data buried in textual bridge inspection reports offer great promise for enhanced data-driven bridge deterioration prediction.
However, learning from these reports is challenging because they typically use multiple concept names to refer to the same entity and
typically describe multiple instances of the same type of deficiency. Such multiple names and instances increase the dimensionality and
the sparsity of the feature space, which would cause overfitting to a particular feature, undermine the generalizability of the machine learning
models, and compromise the performance of the data-driven prediction. To address this challenge, this paper proposes a new hybrid data
fusion method. It combines an unsupervised named entity normalization method and an entropy-based numerical data fusion method to fuse
concept names and numerical data, respectively. The proposed normalization method uses an n-gram model to generate candidate canonical
identifier names and utilizes corpus statistics and lexical patterns to fuse the multiple concept names into a candidate name that balances
abstraction and detailedness. The proposed fusion method uses data discretization and information entropy to fuse the multiple deficiency
measures (of the instances) into a single representation. The hybrid fusion method was validated in fusing data extracted from textual bridge
inspection reports for supporting the prediction of future bridge condition ratings. Learning from the fused data, compared to learning from
the unfused data, improved the accuracies of predicting the ratings of decks, superstructures, and substructures by 8.0%, 8.5%, and 7.9%,
respectively. DOI: 10.1061/(ASCE)CP.1943-5487.0000921. © 2020 American Society of Civil Engineers.
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Introduction

Textual bridge inspection reports offer great promise for enhanced
data-driven bridge deterioration prediction (FHWA 2013, 2014; Liu
and El-Gohary 2016, 2017b; Li and Harris 2019). They include a
large amount of detailed data about the element-level deterioration
conditions of bridges (e.g., deficiency types and quantities, and
maintenance action and material types)—much richer than other
sources of data that are typically used for deterioration prediction
[e.g., National Bridge Inventory (NBI) data (FHWA 1995), which
describe bridge conditions mainly by condition ratings]. However,
although many prediction methods/models have been developed
in current practice (e.g., AASHTO 2018; FHWA 2020) and in the
existing literature (e.g., Huang 2010; Chang et al. 2018; Lu et al.
2019), they can only learn from structured data such as NBI data,
traffic data, and weather data. But, due to the challenges in analyz-
ing textual data, existing methods/models are not able to also ex-
ploit the wealth of the condition data buried in the reports for
improved performance of bridge deterioration prediction.

In addressing these challenges, information extraction methods
(e.g., Liu and El-Gohary 2016, 2017b) have been developed for
extracting information about bridge conditions from the reports into

a structured data format. However, directly learning from the ex-
tracted data is still a great challenge because different inspection
reports typically use multiple concept names to refer to the same
entity and typically describe multiple instances of the same type of
deficiency. For example, even in the same report (WSDOT 2013),
multiple concept names (e.g., “deep edge spall” and “deep top edge
spall”) are used to refer to the same deficiency entity (e.g., “spall”)
and this entity has two instances at different locations on the same
bridge element entity (e.g., “bridge rail”), which is referred to in the
report also using multiple names (e.g., “bridge rail” and “north con-
crete bridge rail”): “At SW corner, behind the thrie beam, bridge
rail has an 18 00 × 6 00 × 3 00 deep edge spall” and “The north concrete
bridge rail at the east end has a 3 00 × 6 00 × 3 00 deep top edge spall.”
Similarly, in the same report (NYSDOT 2015), multiple concept
names (e.g., “deep spalled areas” and “deep spall”) are used to refer
to the same deficiency entity (e.g., “spall”), which has two instan-
ces at different locations on the same bridge element entity
(e.g., “cap beam underside”): “The underside of cap beam exhibits
up to 4 0 × 3 0 × 4 00 deep spalled areas : : : ” and “The underside of
the cap beam between columns C1 and C2 exhibits 3 0 × 20 00 × 3 00
deep spall : : : ” Such multiple names and instances are common in
textual bridge inspection reports. They increase the dimensionality
and the sparsity of the feature space, which would cause overfitting
to a particular feature, undermine the generalizability of the ma-
chine learning models, and compromise the performance of the
data-driven prediction.

There is, thus, a need to fuse data extracted from bridge inspec-
tion reports into a unified representation for supporting enhanced
data-driven bridge deterioration prediction. Such fusion requires
two tasks. First, concept names that refer to the same entity, but
vary in terms of surface forms and abstraction levels, need to be
fused into canonical identifier names. This is different from concept
mapping (e.g., Zhang and El-Gohary 2016; Le and Jeong 2017),
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which focuses on classifying the types of relationships between
concept names and mapping equivalent names together. Rather, this
is a concept naming problem—representing the concept names us-
ing canonical identifier names that balance abstraction and de-
tailedness, so that they are not too frequent or too rare (in a
collection of reports) to the extent of causing the loss of distinctive
feature patterns or undermining the generalizability. Fusing concept
names was thus defined, in this research, as a named entity normali-
zation task: the multiple concept names that are used in a single
report to refer to the same entity are normalized into a canonical
identifier with balanced abstraction and detailedness, and the iden-
tifiers from different reports are subsequently fused if they are
the same. Second, the numerical measures of the multiple instan-
ces, which are of the same type of deficiency but are at different
locations on a bridge element, need to be fused into a single rep-
resentation. Unlike data in multisensor data fusion applications
(e.g., Jiang et al. 2016; Zhang et al. 2017), which are mainly char-
acterized as being conflicting, imprecise, and/or multimodal
(Khaleghi et al. 2013), each of the deficiency measures is partially
describing the overall condition of the deficiency, and these data
are, thus, complementary. Thus, in this research, fusing deficiency
measures was defined as a numerical data fusion task: the measures
of the deficiency instances from one report are fused into a single
representation that is representative of all the original measures.

To address these needs, the authors propose a new hybrid data
fusion method. The proposed hybrid method combines an unsuper-
vised named entity normalization method and an entropy-based
numerical data fusion method to fuse concept names and numerical
data, respectively. The proposed normalization method uses an
n-gram model to generate candidate canonical identifier names
from the original concept names and uses a concept ranking func-
tion and a selection rule, which consider both corpus statistics and
lexical patterns of the names, to select an identifier that balances
abstraction and detailedness. The proposed fusion method uses data
discretization to define candidate representations for the multiple
deficiency measures and leverages information entropy to quantify
the representativeness of the candidates for selecting the candidate
that is the most representative of the original measures.

Background

Named Entity Normalization

Named entity normalization transforms named entities (i.e., concept
names) that refer to the same entity into a canonical identifier name
(Liu et al. 2012). Existing normalization methods are dictionary-
based or machine learning–based and mainly focus on dealing with
the surface-form variations in concept names.

Dictionary-Based Named Entity Normalization
Dictionary-based methods rely on established lexicons in domain-
specific dictionaries or domain-general knowledge bases (especially
Wikipedia) to fuse concept names. The lexicons are used as a
look-up source of identifier names. To find an identifier from the
lexicons, corpus-based [e.g., pointwise mutual information (Church
and Hanks 1990)] or knowledge-based [e.g., Jiang-Conrath similar-
ity (Jiang and Conrath 1997)] concept similarity assessment meth-
ods are used to assess the similarity between a concept name and
an identifier. In existing research efforts, domain-specific diction-
aries have been utilized for fusing species and organism names
(e.g., Pafilis et al. 2013), disease names (e.g., Wei et al. 2016),
and biomedical names (e.g., Lee et al. 2016). Wikipedia has been
used for supporting named entity normalization–related applica-
tions, such as text annotation (e.g., Mihalcea and Csomai 2007),

knowledge base construction (e.g., Alhelbawy and Gaizauskas
2014), and question answering (e.g., Wang et al. 2017).

Machine Learning–Based Named Entity Normalization
Machine learning–based methods use machine learning algorithms
to learn how to fuse concept names. A number of supervised
algorithms have been used for developing normalization models,
including support vector machines (e.g., Magdy et al. 2007),
generalized perceptron (e.g., Wagner and Foster 2015), random
forests (e.g., Jin 2015), conditional random fields (e.g., Akhtar
et al. 2015), feedforward neural networks (e.g., Leeman-Munk
et al. 2015), long short-term memory recurrent neural networks
(e.g., Han et al. 2019), and Siamese recurrent neural networks
(e.g., Fakhraei and Ambite 2018). Some of these models directly
predict identifier concept names (e.g., Leeman-Munk et al. 2015),
and some predict the edit operations (e.g., insert, replace, and
delete) needed to convert concept names into their identifiers
(e.g., Han et al. 2019). In either case, human-annotated data are
required. Because of the challenges in annotating data, several un-
supervised normalization methods have been developed (e.g., Yang
and Eisenstein 2013; Liu and El-Gohary 2018; Tahmasebi et al.
2019). Although unsupervised methods do not require annotated
data, they need a set of target identifiers as input in order to com-
pute the similarities between concept names and identifiers (which
makes them resemble dictionary-based methods).

Numerical Data Fusion

Numerical data fusion transforms numerical data (e.g., numerical
deficiency measures)—either from a single source or different
sources and/or at different time points—into a unified representa-
tion (Boström et al. 2007). Existing methods mainly use descriptive
statistics or fusion theories to conduct data fusion.

Descriptive Statistics
Descriptive statistics quantitatively describe the features of a set of
data (Mann 1995). The commonly used descriptive statistics in data
fusion include the measures of data central tendency and the mea-
sures of data variation. Central tendency measures include arith-
metic mean, Bonferroni mean, geometric mean, harmonic mean,
Heronian mean, power mean, median, and mode. Variation mea-
sures include coefficient of variation, mean absolution deviation,
range, standard deviation, and variance. For a detailed description
of these measures, the readers are referred to Mendenhall and
Sincich (2016). Although descriptive statistics are simple, they
have been used in some data fusion applications and achieved
certain levels of success. For example, using a set of descriptive
statistics, Wimmer et al. (2008) fused audio and video features for
emotion recognition, Zhang (2015) fused water-depth data and
bathymetry data for creating benthic habitat maps, and Varga et al.
(2018) fused pixel-level normalized difference vegetation indexes
across time for land-cover analysis.

Data Fusion Theory
Several data fusion theories have been developed, including
Dempster-Shafer theory (Shafer 1976), fuzzy set theory (Zadeh
1965), possibility theory (Zadeh 1978), and rough set theory
(Pawlak 2012). Dempster-Shafer theory assigns a belief mass to
a fused value (which could be a single number, interval, or set)
based on the strength of the evidence supporting this value. In
the presence of evidence from multiple sources, it uses a joint belief
mass function to fuse the belief masses, where the function consid-
ers both the agreement and conflict levels of the evidence. It selects
the fused value that has the largest belief mass to represent data
from multiple sources. Fuzzy set theory is a theoretical reasoning
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scheme that uses partial set memberships of data to allow for
imprecise, rather than crisp, reasoning (Khaleghi et al. 2013).
The memberships of imprecise data to a fused value are quantified
using a membership function (e.g., piecewise linear functions and
Gaussian distribution function) and are then fused using an aggre-
gation function (e.g., averaging, conjunctive, and disjunctive func-
tions). The fused value that has the largest aggregated membership
degree is used to represent imprecise data from multiple sources.
Possibility theory, as an extension of fuzzy set theory, was devel-
oped to further deal with incomplete data using possibility and ne-
cessity measures, which quantify the plausibility and the certainty
of a fused value given incomplete data, respectively (Destercke
et al. 2008). Rough set theory could be applied to data fusion using
lower and upper approximations to find a fused value that has the
highest approximation accuracy for representing data from multiple
sources. Despite being theoretically applicable, this theory has
rarely been used in data fusion (Khaleghi et al. 2013).

State of the Art and Knowledge Gaps

A number of research efforts have been undertaken in the areas of
named entity normalization and numerical data fusion. Despite the
importance of these efforts, two primary knowledge gaps exist in
each of the areas.

In the area of named entity normalization, there is a lack of
methods that do not require human involvement in the normaliza-
tion process. Most of the existing methods rely heavily on human-
developed dictionaries or training data to normalize concept names
(see the “Named Entity Normalization” section). However, despite
the fact that several guidelines define the standard vocabularies
used for structured bridge data (e.g., FHWA 1995; AASHTO
2010), there are no such guidelines for inspectors/writers—who
have very different writing styles and specificity levels—to follow
when choosing the concept names to use in the textual bridge inspec-
tion reports. As a result, the concept names used in the reports vary,
to a high degree, in terms of surface forms and abstraction levels. It is
challenging to develop normalization dictionaries/data that can rep-
resentatively and comprehensively capture such high-degree varia-
tions. Second, there is a lack of normalization methods that are
able to normalize concept names with both types of variations, such
as those in bridge inspection reports. Most of the existing methods
mainly focus on dealing with surface-form variations, which are
caused by different naming conventions, e.g., acronyms and morpho-
logical variations. Yet they are limited in normalizing concept names
that also vary in terms of abstraction levels (e.g., “north concrete
bridge rail,” a subconcept of “bridge railing”). Balancing the abstrac-
tion and detailedness of identifier names is critical to the machine
learning–based bridge deterioration prediction model. As the fea-
tures of the model, abstract identifiers (e.g., using “bridge” as the
identifier of the aforementioned names) are too frequent in a collec-
tion of reports and, thus, lead to the loss of distinctive feature pat-
terns. On the other hand, detailed identifiers (e.g., using “north
concrete bridge rail”) are too rare in the collection and, thus, increase
the dimensionality and the sparsity of the feature space, which would
cause overfitting to a particular feature and therefore undermine the
generalizability of the model.

In the area of numerical data fusion, there is a lack of methods
that define the interval-based representation of fused data in an ob-
jective way. Interval-based representations are usually used in ma-
jor data fusion frameworks to characterize the uncertainty in the
data (Sentz and Ferson 2002; Torra 2010). However, most of the
existing methods (e.g., Zhang et al. 2017; Tian et al. 2018; He et al.
2018; Wu et al. 2018; Liu and El-Gohary 2019; Song et al. 2019)

define the representation (i.e., defining the number of intervals
and the size of each interval) in a subjective way. For example,
based on subjective human judgment, Zhang et al. (2017) defined
the representation of fused building settlement data as four equal-
size intervals. Subjective judgments are limited in defining the
optimal number of intervals and the optimal size of each interval,
because there is a tradeoff between the two. A large number of in-
tervals is preferred to capture more distinctive data instances for
avoiding underfitting, and, at the same time, a large interval size
is preferred to retain more data instances within an interval for
avoiding overfitting. But as the number increases, the size de-
creases. Such a tradeoff is very difficult to balance using subjective
judgments of humans. Second, there is a lack of fusion methods
that focus on fusing complementary data, such as the numerical
deficiency measures in inspection reports, each of which partially
describes the overall condition of a deficiency. The majority of
existing fusion methods (e.g., Zheng and Deng 2018; Xiao 2019;
He et al. 2018; Mohammadi et al. 2019) focus on fusing data that
are imprecise, conflicting, and/or multimodal (Khaleghi et al. 2013)
using fuzzy set theory, Dempster-Shafer theory, and/or matrix fac-
torization (Sentz and Ferson 2002; Lahat et al. 2015). When fusing
complementary data, they would result in an interval-based repre-
sentation that can only represent a subset of the data, which are less
imprecise or conflicting but cannot fully capture the whole condition
that all the data collectively describe. Thus, despite being successful
in their intended applications, existing data fusion methods are lim-
ited in fusing complementary data.

Proposed Hybrid Data Fusion Method

A hybrid data fusion method is proposed. At the cornerstone of the
method are two proposed submethods for fusing concept names
and numerical data, respectively: an unsupervised named entity
normalization method and an entropy-based numerical data fusion
method. As depicted in Fig. 1, the input of the proposed hybrid
method is data records that are extracted from different bridge
inspection reports and are linked if they come from the same
report and refer to the same entity. A data record is a structured

Structured data records

Textual bridge inspection reports Information extraction

Information about bridge conditions and 
maintenance actions in a structured format

Entropy-based numerical data fusion method

Named entity normalization
Partially-fused records with

canonical identifier concept names

Unsupervised named entity normalization method

For each set of linked data records that refer to the same entity and 
come from the same report

A fully-fused record with canonical 
identifier concept names and fused 

numerical deficiency measures
Numerical data fusion

Fuse canonical identifier concept 
names that are the same

All the fully-fused records
from the reports

Textual bridge inspection data in a unified representation

Fig. 1. Overview of proposed hybrid data fusion method.
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representation of bridge condition and maintenance action informa-
tion extracted from an inspection report. For example, <bridge
element = “bridge rail,” deficiency = “deep edge spall,” deficiency
length = “18,” deficiency length unit = “ft”> is the (partial) data re-
cord of the information extracted from the following sentence: “At
SW corner, behind the thrie beam, bridge rail has an 18 00 × 6 00 × 3 00
deep edge spall” (WSDOT 2013). The method includes two main
steps for fusing these records. First, for a set of linked records,
the concept names are fused into identifier names with balanced ab-
straction and detailedness using the proposed normalization method,
resulting in a set of partially fused records. The identifier names from
all the partially fused records are fused if they are the same, and the
fused names are used as features in the unified representation of the
reports. Second, for a set of partially fused records, the numerical
deficiency measures are fused into a single interval-based represen-
tation using the proposed fusion method, resulting in a fully fused
record. The fused data from all the fully fused records are used as
values of their corresponding features/names and inspection reports
in the unified representation.

Unsupervised Named Entity Normalization

A new unsupervised named entity normalization method is pro-
posed. It fuses concept names that refer to the same entity, but vary
in terms of both surface forms and abstraction levels, into a canoni-
cal identifier concept name that balances abstraction and detailed-
ness. In bridge inspection reports, concept names are used to refer
to entities about bridge elements, deficiencies, deficiency causes,
maintenance actions, and maintenance materials. For example,
in the reports by WSDOT (2013) and NYSDOT (2015), the follow-
ing concept names are used to refer to the deficiency entity “spall”:
“deep edge spall,” “deep top edge spall,” “deep spalled areas,” and
“deep spall.” The proposed method, as depicted in Fig. 2, includes
three primary components: identifier concept name generation,
ranking, and selection.

Identifier Concept Name Generation
Identifier concept name generation aims to generate all candidate
identifier concept names—in their canonical forms and at different
abstraction levels—that a set of original concept names could have.
It includes two steps: morphological analysis and n-gram genera-
tion. Morphological analysis aims to analyze how a term is formed
based on morphological derivation and inflection and to map the
term into a canonical form. It was used to account for the surface-
form variations. For example, for “bridge railing” and “bridge rail,”
morphological analysis removed the suffix “railing” and mapped
the first name to its canonical form “bridge rail,” resulting in a nor-
malized surface form of the two. N-gram generation aims to gen-
erate candidate identifier names that are at different abstraction
levels, so that an identifier name with balanced abstraction and de-
tailedness can be subsequently selected. It was used to capture the
abstraction-detailedness variations. Two types of candidate names
are generated from the original names (in canonical forms) using
an n-gram language model: regular and skip n-grams. Regular
n-grams are the concept names (e.g., unigram, bigram, and trigram
concept names) that have constituent terms following the same
consecutive sequence as they appear in an original concept name.
Skip n-grams are similar to regular n-grams, but their terms are not
consecutive in the original name. For example, “asphalt deck” and
“asphalt wearing” are the regular and skip bigrams of the concept
name “asphalt deck wearing surface,” respectively.

Identifier Concept Name Ranking
Identifier concept name ranking aims to rank the generated candi-
date identifier concept names. The ranking is conducted separately

at each abstraction level. For example, bigram names (both regular
and skip) are ranked separately—not together with other types of
names (e.g., unigram and trigram names)—to avoid the mixing of
concept name distributions, which would negatively affect the
ranking. A new concept ranking function is proposed to rank
the identifiers. As shown in Eq. (1), the proposed function consid-
ers the corpus-statistic score (CSS), term-position score (TPS), and
term-sequence score (TSS) of a candidate identifier concept name
(CICN) to calculate its ranking score:

Ranking scoreðCICNÞ ¼ CSSðCICNÞ × TPSðCICNÞ
× TSSðCICNÞ ð1Þ

The CSS is used to rank the candidate names based on how fre-
quent or rare they are in a collection of bridge inspection reports. To
calculate the scores, two alternative corpus-statistic measures—
term frequency (TF) and inverse document frequency (IDF)—were
selected. TF captures the frequency rate of a concept name in all the
sets of candidate names, where each set contains the names that
refer to the same entity and come from a single report in the col-
lection. It prefers the concept names that are frequent. IDF captures
the frequency rate of a concept name across all the sets, i.e., how
many sets in the collection contain a specific name. It prefers the
concept names that are less frequent across the sets and are thus rare.
Two variations of the measures—TF-IDF and Okapi BM25—were
also selected because, theoretically, they can balance both types of
preferences. The performances of these four measures were tested
(see the “Method Verification” section).

The TPS and TSS are used to rank the candidate names based on
how meaningful they are, because it is desirable for names that are

Multiple concept names
(referring to the same entity and from the

same report)

Unigrams Bigrams N-grams……

Unigram Bigram …… N-gram

Identifier concept name generation
Regular and skip n-grams in canonical

forms

Identifier concept name ranking
Top-ranking unigram, bigram, etc.

Identifier concept name selection
Selected canonical identifier concept name

Canonical identifier concept name with
balanced abstraction and detailedness

If a detailed gram/concept name is selected (e.g., bigram is selected 
over unigram), continue to the next pairwise selection (e.g., bigram 
and trigram); otherwise stop.

Fig. 2. Proposed unsupervised named entity normalization method.
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meaningful to be ranked high. They are calculated based on the
lexical patterns (i.e., lexical position and sequence) of terms in their
original concept names. The TSSs are calculated based on the fol-
lowing lexical-position hypothesis: the contribution of a term’s
meaning to the entire meaning of a concept name decreases from
right to left; the term on the rightmost side of a concept name con-
tributes the most to the meaning of the name (Zhang and El-Gohary
2016). Thus, a candidate name that is mostly composed of terms
from the right-hand side of an original name has a higher score than
the name that is mostly composed of terms from the left-hand side.
The TPS is calculated using Eq. (2), where CICN is a candidate
identifier concept name, OCN is an original concept name in a
set of original names OCNs, N is the number of names in the
set, T is a term of CICN, M is the number of terms in CICN,
IndexOCNðTÞ is the index of T in OCN, and jOCNj is the length
of an original concept name:

Term-position scoreðCICNÞ

¼ 1.0þ 1

N

X
fOCN∈OCNsg

1

M

X
fT∈CICNg

IndexOCNðTÞ
jOCNj ð2Þ

The TSSs are calculated based on the following lexical-
sequence hypothesis: a candidate name with terms following the
same consecutive sequence as they appear in its original name
has a higher score. This hypothesis was made because using skip
n-grams, although provides more candidate names with various
term combinations, generates some names with terms that do
not follow the same consecutive sequence and are, thus, generally
less meaningful. For example, the terms of the skip bigram “asphalt
wearing” do not follow the same consecutive sequence as they
appear in the original concept name “asphalt deck wearing surface”
and are, thus, less meaningful. The TSS is calculated using Eq. (3),
where If1;0g ¼ 1.0 if a candidate name has terms following the
same consecutive sequence as they appear in an original name;
otherwise, If1;0g ¼ 0. The other notations follow those defined
in Eq. (2):

Term-sequence scoreðCICNÞ ¼ 1.0þ 1

N

X
fOCN∈OCNsg

If1;0g ð3Þ

Identifier Concept Name Selection
Identifier concept name selection aims to select a final canonical
identifier concept name from the top-ranking candidate names
(one top-ranking name for each abstraction level). The selection
is conducted hierarchically (i.e., in top-down fashion), so as to se-
lect an identifier with balanced abstraction and detailedness. For
example, for a pair of top-ranking names in the adjacent abstraction
levels (e.g., unigram and bigram names), if the detailed name fails
to meet any of the if statements in a proposed selection rule, then
the abstract name is selected as the final identifier; otherwise, the
selection continues to the next pair (e.g., bigram and trigram
names), until the abstract name in the pair is selected or no detailed
name is available.

The proposed concept selection rule, which considers both the
corpus statistics and the lexical patterns of the concept names, in-
cludes three cascading if statements:
• “If the ranking score of the detailed concept name added by an

adjustment factor alpha is greater than the ranking score of the
abstract concept name.” The adjustment factor alpha is used to
balance the abstraction and detailedness of the identifier concept
names. A large value of alpha favors detailed names, and a small
value favors abstract names.

• “If the word-association score of a detailed concept name is
greater than a threshold value beta.” The word-association score
measures the degree to which two terms are related using corpus
statistics (e.g., co-occurrence rates of the terms in a collection of
inspection reports). The word-association score is used to make
sure that the detailed concept names are lexical atoms (seman-
tically coherent phrases, e.g., “map crack”) rather than random
combinations of terms. The normalized Google distance
(Cilibrasi and Vitanyi 2007) was selected to calculate the word-
association scores, because it is less negatively affected by
extremely frequent terms, which cause lexical atoms to have
low scores as random combinations. The threshold value beta
is used to further balance the abstraction and detailedness. A large
value of beta makes it more stringent for detailed names to be
selected as identifiers and, thus, favors abstract names. A small
value makes it easier for detailed names to be selected and, thus,
favors such names.

• “If the part-of-speech (POS) pattern of the detailed concept
name shows a noun-phrase pattern.” The POS patterns (i.e., lexi-
cal class patterns of terms) are used to filter out candidate names
that are not noun phrases, because a noun phrase is the most
frequently occurring phrase type and is commonly used for
naming concepts. Two noun-phrase patterns were selected and
used: “nounþ noun” and “adjectiveþ noun,” where “noun”
could be a noun or a noun phrase.
As noted, two hyperparameters, alpha and beta, are used in the

rule to balance the abstraction and detailedness of the identifier
concept names. To find the optimized values for them, a total of
10,000 value combinations (with the values of alpha and beta rang-
ing from 0 to 1 with a step size of 0.01, respectively) were tested.
The combination with alpha ¼ 0.38 and beta ¼ 0.81 was empiri-
cally selected based on the testing results and was used for the
experiments conducted in this research.

Entropy-Based Numerical Data Fusion

A new entropy-based numerical data fusion method is proposed.
It fuses multiple numerical data that are complementary in de-
scribing the overall condition of a target into a single interval-based
representation. In bridge inspection reports, multiple numerical
data are the numerical measures of multiple instances, which are
of the same type of deficiency but are at different locations on a
bridge element. For example, in the report by WSDOT (2013),
“5.5 meters“ and “0.9 meters“ (originally, “18 ft” and “3 ft” in the
report) are the numerical measures of two “spall” instances that are
at two different locations on the same “bridge rail.” The proposed
method includes four primary components: interval determination,
degree tuple quantification, degree tuple fusion, and interval-based
data representation. Fig. 3 shows the high-level algorithm for the
proposed method.

Interval Determination
Interval determination aims to determine the number of intervals
and the size of each interval for representing the fused data. Inter-
vals are selected and used to represent the fused data in order to
account for the uncertainty in the data and to avoid the exaggerated
impact of minor fluctuations in continuous data on machine learn-
ing models. The proportional k-interval discretization method
(Yang and Webb 2001) is used to define the intervals. This method
was selected because it can use data to balance the tradeoff relation-
ship between the number of intervals and the sizes of the intervals.
A large number is preferred to capture more distinctive data instan-
ces for avoiding underfitting; at the same time, a large size is pre-
ferred to retain more data instances within an interval for avoiding
overfitting. However, as the number increases, the size decreases.
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To balance this, the discretization method gives equal weight to
them. The number of intervals is defined as

ffiffiffiffi
K

p
, and the size of

each interval is defined based on the minimum and maximum
of the

ffiffiffiffi
K

p
unique data instances in the interval, where K is the

number of unique data instances in a data set (e.g., unique defi-
ciency measures of the same type of deficiency in a collection
of inspection reports).

Degree Tuple Quantification
Degree tuple quantification aims to quantify the values contained in
a degree tuple: membership, nonmembership, and indeterminacy
degree values. Membership and nonmembership degrees are the
extent of a data instance belonging and not belonging to an interval,
respectively. Indeterminacy degree is the extent of hesitancy in
claiming that the data instance belongs or does not belong to the
interval. The normal cloud model (Li et al. 2009) is used to quantify
these values because it can capture the uncertainty in the member-
ship and nonmembership to allow for the modeling of the indeter-
minacy. The normal cloud model, which is based on the Gauss
membership function and normal distribution, is a generalized nor-
mal distribution for quantifying the membership degree of a data
instance belonging to an interval as a value between 0 and 1 (Li
et al. 2009). The model assumes that the standard deviation of
the Gauss membership function is not a fixed number but a random
number following a normal distribution. Because of the random-
ness in drawing the standard deviation, for an interval, the Gauss
function maps a data instance to many membership degree values

(i.e., one-to-many mapping). Based on this mapping property, the
authors propose to quantify the degree tuple using Eq. (4), where x
is a data instance, I is an interval, uIðxÞ is a membership degree
value mapped from the Gauss function, and MDV, NDV, and IDV
are the membership, nonmembership, and indeterminacy degree
values of x to I, respectively:

2
64
MDVIðxÞ
NDVIðxÞ
IDVIðxÞ

3
75 ¼

2
64
minðfuIðxÞgÞ
1 −maxðfuIðxÞgÞ
maxðfuIðxÞgÞ −minðfuIðxÞgÞ

3
75 ð4Þ

Degree Tuple Fusion
Degree tuple fusion aims to fuse the quantified degree tuples of an
interval into a single tuple. An information entropy–based fusion
function is proposed to conduct the fusion. Information entropy is
the average rate at which a stochastic process generates information
(Shannon 1948); intuitively, it measures the amount of information
in a random variable, where information entropy equal to zero in-
dicates that the variable always generates the same information
(Mehri and Darooneh 2011). Considering an interval as a variable
that generates data instances, the information entropy of the interval
is zero if it always generates the same particular instance (i.e., the
membership degree value of this instance to the interval is 1) and
cannot generate other instances (i.e., the membership degree values
are 0). Conversely, the information entropy is greater than zero if
the interval generates all instances (i.e., the membership degree val-
ues of these instances to the interval are between 0 and 1). In the
first case, the interval can only represent the particular instance and
is, thus, less representative of all the complementary data instances
that collectively describe a target (e.g., the overall condition of a
deficiency). As a result, its fused membership degree value should
be downweighted and its nonmembership and indeterminacy de-
gree values upweighted. In the second case, the interval can re-
present all the instances and is, thus, more representative. As a
result, its fused membership degree value should be upweighted
and the other two values downweighted. Based on the preceding
analysis, the proposed information entropy–based function fuses
the degree tuples of an interval as per Eq. (5), where WI is the
weight of the interval calculated using Eq. (6), i.e., the information
entropy of the interval divided by the sum of information entropies
of all the generated intervals. In Eqs. (5) and (6), FMDV, FNDV,
and FIDV are the fused membership, nonmembership, and inde-
terminacy degree values of interval I, respectively; N is the number
of instances in the set of numerical data X; and M is the total num-
ber of intervals generated from the data discretization. The other
notations follow those defined in Eq. (4):

2
64
FMDVIðXÞ
FNDVIðXÞ
FIDVIðXÞ

3
75 ¼

2
66666666664

WI

N

X
fx∈Xg

MDVIðxÞ

1 −WI

N

X
fx∈Xg

NDVIðxÞ

1 −WI

N

X
fx∈Xg

IDVIðxÞ

3
77777777775

ð5Þ

WI ¼
P

N
i¼1 MDVIðxiÞ × log2MDVIðxiÞP

M
j¼1

P
N
i¼1 MDVIjðxiÞ × log2MDVIjðxiÞ

ð6Þ

Interval-Based Data Representation
Interval-based data representation aims to select an interval from
all the possible intervals (defined in the “Interval Determination”
section) for representing the multiple numerical data instances.

Algorithm: Entropy-based numerical data fusion algorithm
1:     Input     All the unique numerical data instances in a dataset

// e.g., all the length measures of deck cracks in a set of bridge inspection reports
2:     Execute     Interval determination

// i.e., determine the number of intervals and the size of each interval using the 
proportional k-interval data discretization method

3:     Output      A set of intervals: 
// and the size of interval , where is the square root of the number    

of the unique numerical data instances (Line 1)
4:     Input         A set of numerical data instances to be fused

// e.g., all the length measures of deck cracks in a single report
5: Execute     Degree tuple quantification, as per Eq. (4)

// i.e., quantify the membership, non-membership, and 
indeterminacy degree values of a data instance to interval 

6: Output Degree tuple matrix (DTM)

7:                                          

// where is a degree tuple containing the membership, non-
membership, and indeterminacy degree values of data instance 

to interval , the degree values are calculating using Eq. (4), 
is the number data instances, and is the number of intervals

8: Execute      Degree tuple fusion, as per Eq. (5)
// i.e., fuse the quantified degree tuples of an interval into a single 

tuple using Eq. (5)
9:                      Output       Fused degree tuple vector (FDTV)

10:                                        

// where is a single degree tuple containing the fused 
membership, non-membership, and indeterminacy degree values 
of interval , and the fused values are calculated using Eq. (5)

11: Execute     Interval-based data representation

12: For each fused degree tuple 
13: Computed     the Euclidean distance between fused degree tuple and 

the ideal degree tuple [1, 0, 0]
// the tuple has a fused membership degree value 1 and 

the other two degree values 0, which means that the
ideal interval corresponding to the ideal tuple can fully 
represent all the complementary data instances

14: Output     The interval corresponding to the tuple with the smallest distance
15:    Output Unified representation for the set of numerical data instances (Line 4):

the count of data instances, the single representative interval of the data

Fig. 3. High-level algorithm for proposed entropy-based numerical
data fusion method.
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The selection is conducted based on the Euclidean distance be-
tween the fused degree tuple and the ideal degree tuple [1, 0, 0].
In the ideal degree tuple, the fused membership degree value is 1
and the other two degree values are 0. This means that the ideal
interval corresponding to the ideal tuple can fully represent all the
complementary data instances. Thus, an interval is selected if its
fused degree tuple is the closest to the ideal tuple. As a result of
the numerical data fusion, the multiple numerical data instances are
represented in a unified way as follows: the count of the data in-
stances, the single representative interval of the instances.

Method Verification

The verification aimed to evaluate the correctness of the proposed
hybrid data fusion method. It included two steps: data set prepa-
ration and verification experiments. Two types of experiments were
conducted to verify the two methods, respectively: named entity
normalization experiments and numerical data fusion experiments.

Data Set Preparation

A data set, which includes 10 bridge inspection reports, was cre-
ated. Information on these reports is summarized in Table 1. The
information extraction methods of Liu and El-Gohary (2016,
2017b) were used to extract information about bridge conditions
and maintenance actions from these reports and to represent the ex-
tracted information in a structured format. The data linking method
of Liu and El-Gohary (2017a) was used to link the extracted data
records that come from the same report and refer to the same entity.
The linked records formed the data set for the normalization and
fusion experiments.

Verification Experiments

Named Entity Normalization Experiments
The experiments aimed to implement the proposed normalization
method to evaluate its accuracy by comparing the method-
generated identifier concept names to the gold-standard identifiers.
The method was implemented in a Python program (Python 2010).
The natural language toolkit Porter stemmer and the “ngrams”
function (Bird et al. 2009) were used for the morphological analysis
and the n-gram generation, respectively. The Stanford POS tagger
(Toutanova et al. 2003) was used to analyze the POS patterns of
the concept names. The gold standard was prepared by human
annotators—the first author and two other researchers with exper-
tise in civil engineering, natural language processing, and machine
learning. Full interannotator agreement was achieved after discus-
sion. Accuracy, which is the ratio of the number of correct identifier

concept names to the total number of identifier concept names, was
calculated using Eq. (7):

Accuracy ¼ Number of correct identifier concept names
Total number of identifier concept names

ð7Þ

Numerical Data Fusion Experiments
The experiments aimed to implement the proposed fusion method
to evaluate its stability in Monte Carlo simulations. Two factors
could affect the stability of the method: the uncertainty in the data
and the randomness in drawing the standard deviation of the Gauss
function. Thus, two types of simulations were conducted: (1) sim-
ulations with data sampled from normal distributions, where each
sampled data instance has an uncertainty level (i.e., the standard
deviation of the normal distribution) ranging from 0.5 to 10 with
a step size of 0.5, and (2) simulations with the times of randomly
drawing the standard deviation ranging from 100 to 2,000 with a
step size of 100. The number of iterations for each simulation run
was set to 10,000. The method and simulations were implemented
in a Python program (Python 2010). Information entropy was used
to evaluate the stability of the method. It is equal to zero if, in a
simulation run, the method can stably fuse the same set of multiple
data instances and represent them using the same interval; other-
wise, it increases. As a verification metric, it was calculated using
Eq. (8), where M is the number of intervals, Ni is the times of the
ith interval being selected to represent the same set of data instan-
ces, N is the number of iterations in a simulation run, and N ¼
10,000 in this research:

Information entropy ¼ −XM
i¼1

Ni

N
× log2

Ni

N
ð8Þ

Experimental Results and Discussion

Performance of Proposed Named Entity Normalization
Method
Table 2 summarizes the performance results for the proposed nor-
malization method. The results show that the method performed
well: it achieved an average accuracy of 94.4%. Two important
observations were also made based on the results.

First, the ranking function with the CSS, TPS, and TSS was
effective. It achieved the highest accuracies of 85.4%, 89.3%,
100.0%, and 100.0% for bridge element, deficiency, maintenance
action, and maintenance material names, respectively. But for de-
ficiency cause names, the function with the CSS and TSS achieved
the highest accuracy of 97.4%, which is 1.3% higher than that
achieved using the function with all three. This is likely because
the right-hand-side terms are not always the meaning-bearing terms
in some deficiency cause names. For example, in the following
names, the right-hand-side terms are less meaningful than those
on the left-hand side: “debris buildup,” “sand buildup,” and “poor
weld quality.” The function without the TPS, thus, achieved a
higher accuracy for deficiency cause names. Second, using POS
patterns for selecting identifier concept names was effective. For
example, using POS patterns achieved the highest accuracies of
85.4%, 97.4%, 100.0%, and 100.0% for the bridge element, defi-
ciency cause, maintenance action, and maintenance material names,
respectively. But for deficiency names, without using POS patterns
achieved the highest accuracy of 89.3%, compared to 85.2%
achieved using the “adjectiveþnoun” and “nounþ noun” patterns.
This could be attributed to the fact that some deficiency names are
not noun phrases (e.g., “pulled out” and “laterally misaligned”),

Table 1. Information on selected bridge inspection reports

Report No. Region Year Number of records Reference

1 Midwest 2006 409 MnDOT (2006)
2 Midwest 2015 152 MnDOT (2015)
3 Northeast 2008 97 CTDOT (2008)
4 Northeast 2013 451 CTDOT (2013)
5 Southeast 2008 163 LaDOTD (2008)
6 Southeast 2016 93 VDOT (2016)
7 Southwest 2007 88 NMDOT (2007)
8 Southwest 2008 32 NMDOT (2008)
9 West 2011 125 MDOT (2011)
10 West 2009 133 WSDOT (2009)
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and restricting identifiers to noun phrases led to a decrease in
accuracy.

Performance of Proposed Numerical Data Fusion Method
Fig. 4 shows examples of the simulation results for fusing the
deficiency length measures of patching on a girder: {304.8,
609.6, 609.6, 609.6, 609.6, 914.4, 1219.2}, where the unit is
millimeter (originally, {12, 24, 24, 24, 24, 36, 48} in the report,
where the unit is inch). The patterns of the simulation results for
fusing the numerical data in the data set (as per Table 1) follow
the same patterns as those shown in Fig. 4. Overall, the results
show that the proposed fusion method was stable.

Two important observations were made based on the results.
First, the fusion method was stable up to an uncertainty level of
2.0. As the uncertainty level increased from 2.0, the information
entropy showed an increasing trend [Fig. 4(b)]. The increase in
the information entropy indicates that the fusion method became
unstable and started to represent the same set of deficiency mea-
sures using different intervals in a single simulation run [see the
distributions of the intervals in Fig. 4(a)]. The uncertainties in the
data negatively affect the quantification and the fusion of the de-
gree values. Due to the uncertainties, these values changed in
each fusion iteration of a simulation run, which made the fusion
results of the same set of data vary. Second, the method was sta-
ble in the presence of the randomness of the standard deviation of
the Gauss membership function. As shown in Fig. 4(d), increas-
ing the randomness of the standard deviation (i.e., increasing the
times of randomly drawing it) did not cause change in the infor-
mation entropy. This indicates that the fusion method was stable
and was able to represent the same set of numerical deficiency
measures using the same interval in the simulations [see the dis-
tributions of the interval in Fig. 4(c)]. The standard deviation is
bounded by a normal distribution in the cloud model (Li et al.
2009). Despite being random, the standard deviation is always
within the bound, which made it not affect the stability of the
fusion method.

Method Validation

The validation aimed to evaluate the performance of the proposed
hybrid data fusion method in supporting its intended use—fusing
data extracted from bridge inspection reports for supporting en-
hanced bridge deterioration prediction. It included two steps: data
set preparation and validation experiments.

Data Set Preparation

The NBI data and the textual bridge inspection reports of 1,300
bridges, which are located in the state of Washington, were col-
lected. The NBI data were collected from the Federal Highway
Administration (FHWA 2019). The bridge inspection reports were
collected from the Washington State Department of Transportation.
Like the data set preparation for method verification, information
extraction and data linking were conducted to process the reports.
The linked records were then fused, as per Fig. 1, thereby forming a
unified representation of the data extracted from the reports. Using
the collected data, seven data sets were created. Table 3 summarizes
the details of these data sets. In each data set, the data were split into
a training data set and a testing data set. The training data set con-
tains the 2013 data and the 2015 condition ratings of the decks,
superstructures, and substructures of the bridges. The testing data
set contains the 2015 data and the 2017 ratings. The 2015 ratings
were used as the target classes for training the prediction models,
and the 2017 ratings were used as the gold standard for testing the
performance of the models.

Validation Experiments

The validation experiments aimed to develop machine learning mod-
els for predicting the future condition ratings of decks, superstruc-
tures, and substructures. The decision tree algorithm was selected
from among other existing learning algorithms, such as Naïve Bayes
(Maron 1961), support vector machines (Cortes and Vapnik 1995),

Table 2. Performance results for proposed named entity normalization method

Ranking functiona POS pattern

Accuracy for each concept name type

ET (%) DY (%) DC (%) MA (%) MM (%)

CSS — 69.4 86.3 93.7 99.1 100.0
Adj:þ noun 64.6 54.9 61.7 99.1 79.3
Nounþ noun 73.3 80.5 89.9 99.1 100.0

Adj:þ noun and nounþ noun 69.9 83.2 93.7 99.1 88.9

CSS × TPS — 71.3 86.4 93.7 99.1 100.0
Adj:þ noun 64.7 54.9 61.7 99.1 79.3
Nounþ noun 75.1 80.6 89.9 99.1 100.0

Adj:þ noun and nounþ noun 71.8 83.2 93.7 99.1 88.9

CSS × TSS — 77.3 88.3 95.7 100.0 100.0
Adj:þ noun 74.3 55.7 63.8 100.0 79.3
Nounþ noun 82.6 81.1 93.5 100.0 100.0

Adj:þ noun and nounþ noun 78.8 84.5 97.4 100.0 88.9

CSS × TPS × TSS — 81.7 89.3 94.4 100.0 100.0
Adj:þ noun 75.2 55.8 63.8 100.0 79.3
Nounþ noun 85.4 81.8 92.3 100.0 100.0

Adj:þ noun and nounþ noun 82.4 85.2 96.1 100.0 88.9

Note: POS = part-of-speech; Adj. = adjective; ET = bridge element; DY = deficiency; DC = deficiency cause; MA = maintenance action; and
MM = maintenance material. The em dash (—) indicates that no POS pattern was used. The bold font indicates the highest accuracy for each concept
name type.
aFour corpus-statistic measures for calculating CSS were tested: term frequency (TF), inverse document frequency (IDF), TF-IDF, and Okapi BM25. The
performance results achieved using TF were reported because TF outperformed the others. The other measures use or partially use IDF, which frequently gave
high scores to extremely rare concept names that should not be selected as identifiers.
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and neural networks and deep learning (e.g., LeCun et al. 2015), to
develop the models. This is because a tree-based algorithm can di-
rectly handle both categorical and numerical features without the
need for one-hot encoding (Gupta et al. 2017). One-hot encoding
transforms categorical features into numerical features using dummy
variables. Such variables increase the dimensionality and the sparsity
of the feature space, which negatively affects the performance of ma-
chine learning models (Guo and Berkhahn 2016) and would nega-
tively affect validation. Seven main types of prediction models were
developed, with each type trained and tested using the data in one of
the data sets, as per Table 3. Average accuracy was selected as the
validation metric because it can capture both systematic error and
random error (ISO 1994), which is important to validate if learning
from the fused data can reduce both types of errors in order to im-
prove the accuracy. Average accuracy is the average of the ratio of
the number of correctly predicted condition ratings to the total num-
ber of ratings per condition rating category. It was calculated using
Eq. (9), where N is the number of condition rating categories, CRs
are condition ratings, and CRC is a condition rating category; and,
for the ith condition rating category, TP (true positive) is the number
of condition ratings correctly predicted as this category, FP (false
positive) is the number condition ratings incorrectly predicted as this
category, and FN (false negative) is the number of condition ratings
that should have been but were not predicted as this category:

Average accuracy

¼ 1

N

XN
i¼1

TPi

TPi þ FPi þ FNi

¼ 1

N

XN
i¼1

Number of CRs correctly predicted as ith CRC
Total number of CRs in ith CRC

ð9Þ

Experimental Results and Discussion

The performance results for predicting the future condition ratings of
decks, superstructures, and substructures are presented in Fig. 5.
Overall, the results show that the proposed hybrid data fusion
method was effective in fusing the data extracted from bridge inspec-
tion reports for supporting enhanced bridge deterioration prediction.
Three important observations were also made based on the results.

First, learning from textual bridge inspection reports, in addition
to NBI data, was able to improve the prediction performance.
Learning from both NBI data and the report data fused by the
proposed method, compared to learning from NBI data alone,
improved the prediction accuracies for decks, superstructures, and
substructures by 8.3%, 9.5%, and 8.3%, respectively. NBI data,
which mainly describe condition ratings and as-built characteristics
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Deficiency length measures of a patching on a girder: {12, 24, 24, 24, 24, 36, 48}, where the unit is inch.
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Fig. 4. Examples of Monte Carlo simulation results for fusing multiple deficiency measures: (a) percentage of intervals in each simulation
run against uncertainty level; (b) information entropy of each simulation run against uncertainty level; (c) percentage of intervals in each simulation
run against times of drawing standard deviation; and (d) information entropy of each simulation run against times of drawing standard
deviation.
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of bridges, are certainly important, but they do not include descrip-
tions about the element-level deterioration conditions of bridges,
such as those in bridge inspection reports. Such descriptions are
much more detailed and dynamic in capturing the deterioration
conditions of bridges in each inspection year and are, therefore,
more informative in capturing the patterns of how the condition
ratings evolve over time. Hence, they helped improve the perfor-
mance of predicting future ratings.

Second, data fusion is very important for learning from the data
extracted from bridge inspection reports to improve prediction per-
formance. Learning from the unfused report data was only able to
marginally improve the prediction accuracies by 0.3%, 1.0%, and
0.4%, respectively. But learning from the report data fused by the
proposed method improved these accuracies, highly, by 8.7% on
average. The multiple concept names and numerical data in inspec-
tion reports negatively affected the generalizability of the machine
learning models, which limited the performance of learning from
bridge inspection reports in improving the prediction performance.

Third, the proposed entropy-based data fusion method was ef-
fective in fusing the numerical data in the reports for improving the
prediction performance. Learning from the data fused by taking the
maximum (i.e., using the measure corresponding to the worse
deterioration case), the mean/total, or the variation was only able
to improve the prediction accuracy by 2.7% on average. Learning
from the data fused by the combinations of the means and the var-
iations, even, decreased the accuracy by around 3.0%, due to the
doubled size of the feature dimensionality caused by the combina-
tions. The proposed method improved the accuracy by 8.7% on
average, which is significantly higher than the improvement rates
achieved using the other methods. This is largely attributed to the
fact that the proposed method uses data discretization to define the

interval-based representation of the fused data and utilizes informa-
tion entropy to fuse data into a single representative interval. Thus,
the proposed method takes balancing the overfitting and underfit-
ting of the machine learning prediction model and the complemen-
tarity of the data into account, resulting in an improved prediction
performance.

Limitations

Three main limitations of this research are acknowledged. First, the
unsupervised named entity normalization method uses the normal-
ized Google distance to assess the associations of words for select-
ing identifier concept names. Half of the normalization errors were
caused by the incorrectly assessed associations, where the total er-
ror rate of the method is 5.6%. This distance was developed mainly
to assess the associations of words in general-domain texts. In fu-
ture research, the authors plan to develop a word-association mea-
sure that can better adapt to domain-specific text and test its impact
on named entity normalization. Second, the entropy-based data fu-
sion method focuses on fusing data from a single type of source
(e.g., deficiency measures from the text). It requires modifications
and/or extensions when used for fusing multimodal data (e.g., de-
ficiency measures from text, images, and sensors). Also in future
research, the authors plan to develop a multilevel context-based fu-
sion method that can capture the context of data (e.g., the types of
sensing devices and their reliabilities) for supporting multimodal
data fusion. Third, the bridge deterioration prediction models were
developed using the decision tree algorithm. Although this algo-
rithm is suitable for the purpose of validating the hybrid data fusion
method, it is limited in dealing with highly dimensional and imbal-
anced data such as bridge data and is thus limited in learning from

Table 3. Summary of created data sets

Data set Dataa Purposeb

1 NBI data Used to develop baseline prediction models to evaluate whether further learning
from the data extracted from bridge inspection reports would be able to improve
the performance of bridge deterioration prediction

2 NBI dataþ unfused report data Used to develop baseline prediction models to evaluate whether the fusion of the
data extracted from the reports is needed in order to improve the performance of
bridge deterioration prediction

3 NBI dataþ fused report data (fused by the proposed
hybrid data fusion method)

Used to develop prediction models to evaluate the performance of the proposed
hybrid data fusion method in fusing the data extracted from the reports for
supporting enhanced bridge deterioration prediction

4 NBI dataþ fused report data (where deficiency measures
were fused by taking the maximum of the measures,
i.e., using the worst deterioration case)

Used to develop baseline prediction models to evaluate whether the deficiency
measures fused by the proposed method could better support the prediction
compared to the measures fused by taking the maximum

5 NBI dataþ fused report data (where deficiency measures
were fused using one of the central tendency measures,
including arithmetic mean, Bonferroni mean, geometric
mean, harmonic mean, Heroin mean, power mean,
median, and mode)

Used to develop baseline prediction models to evaluate whether the deficiency
measures fused by the proposed method could better support the prediction
compared to the measures fused using the mean (or the total, i.e., the multiple
measures were represented by two values: number of measure instances and mean
of measures)

6 NBI dataþ fused report data (where deficiency measures
were fused using one of the variation measures, including
range, mean absolute difference, coefficient of variation,
standard deviation, and variance)

Used to develop baseline prediction models to evaluate whether the deficiency
measures fused by the proposed method could better support the prediction
compared to the measures fused using the variation

7 NBI dataþ fused report data (where same set of
deficiency measures were fused using one of the central
tendency measures and using one of the variation
measures, i.e., the same set was represented twice)

Used to develop baseline prediction models to evaluate whether the deficiency
measures fused by the proposed method could better support the prediction
compared to the measures fused using the combinations of the central tendency
and the variation measures (e.g., the measures were represented using three values:
number of measure instances, arithmetic mean of measures, and variance of
measures)

Note: NBI = National Bridge Inventory.
aThe concept names in the textual bridge inspection reports in Data sets 4–7 were fused by the proposed unsupervised named entity normalization method.
bBridge deterioration prediction means the predictions of future condition ratings of decks, superstructures, and substructures.
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the data to better predict the deterioration. Other learning algo-
rithms such as support vector machines and neural networks,
although are effective in capturing the non-linearity and complex
patterns in data, also suffer from these limitations when used as-is
(Gao et al. 2017; Kaur et al. 2019). Thus, in their future work, the
authors plan to study how to integrate dimensionality reduction,
data sampling, and machine learning algorithms to address these
limitations in order to more effectively learn from the data for en-
hanced data-driven bridge deterioration prediction.

Contributions to Body of Knowledge

This research contributes to the body of knowledge in three primary
ways. First, it offers a new unsupervised named entity normalization
method for fusing concept names without human involvement. The
method captures both surface-form and abstraction-detailedness

variations in concept names to fuse them into canonical identifier
concept names with balanced abstraction and detailedness. It thus
extends the state of the art in named entity normalization, where
most of the existing methods rely heavily on human-developed
dictionaries/data and can only capture surface-form variations to fuse
concept names into their canonical forms. Second, this research of-
fers a new entropy-based data fusion method. The method uses data
discretization to define the interval-based representation of the fused
data and leverages information entropy to fuse data that are comple-
mentary into a single representation. It thus adds to the state of the art
in numerical data fusion, where most of the existing methods focus
on fusing data that are conflicting or imprecise. Third, this research
allows for better learning from the data extracted from textual bridge
inspecting reports for enhanced deterioration prediction. Inspection
report data are highly complex because they include multiple concept
names and numerical measures to describe the same entity. Directly
learning from the extracted data, without fusion, is limited in improv-
ing the performance of deterioration prediction, and learning from
improperly fused data could even compromise the performance. This
research—by proposing a hybrid data fusion method—allows for
fusing data extracted from textual reports for enhanced deterioration
prediction performance. It thus offers new knowledge on how to
effectively use data that have varying levels of detailedness and have
complementary characteristics in data analytics for supporting data-
driven applications. The gained knowledge would be critical to
fusing and learning from multisource heterogeneous bridge data—
not only textual data from inspection reports but also structured
bridge inventory data and unstructured bridge condition data from
images and sensors.

Conclusions and Future Work

In this paper, the authors proposed a new hybrid data fusion method
for fusing data extracted from textual bridge inspection reports for
supporting enhanced bridge deterioration prediction. At the corner-
stone of the proposed method are two submethods, an unsupervised
named entity normalization method and an entropy-based numerical
data fusion method, for fusing concept names and numerical data,
respectively. A set of experiments were conducted to evaluate the
performance of the proposed method. Two important conclusions
were drawn from the experimental results. First, learning from the
report data, in addition to NBI data, was able to improve the predic-
tion performance. Compared to learning from NBI data alone, fur-
ther learning from the report data fused by the proposed method
improved the accuracies for predicting the future condition ratings
of decks, superstructures, and substructures by 8.3%, 9.5%, and
8.3%, respectively. Second, the proposed data fusion method was
effective in fusing data extracted from the reports for supporting
enhanced deterioration prediction. Compared to learning from the
unfused report data, learning from the report data fused by the pro-
posed method improved the prediction accuracies by 8.0%, 8.5%,
and 7.9%, respectively. The experimental results show the promise
of the proposed method, where researchers and practitioners in the
civil infrastructure domain could use heterogeneous data from multi-
ple sources (especially textual data) in a fused way, rather than using
data of a single type or from a single source in isolation, for enhanced
data-driven predictive analytics and decision-making.

In future research, the authors plan to focus their research ef-
forts on two main directions. First, the authors will develop new
machine learning algorithms that are able to effectively deal with
highly dimensional and imbalanced data such as bridge data. Dif-
ferent embedding methods for reducing data dimensionality and
sampling methods for balancing data distributions will be studied.
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Fig. 5. Performance results for predicting future condition ratings of
(a) decks; (b) superstructures; and (c) substructures.
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Their performances in supporting the analysis of fused textual
bridge inspection data will be tested. Using the developed algo-
rithms, further learning from fused data—compared to only learn-
ing from NBI data—is expected to show an even more significant
improvement in the deterioration prediction performance. Second,
the authors will use the developed algorithms to learn from multi-
source heterogeneous bridge data, in order to allow for the predic-
tions of the types and quantities of deficiencies that a bridge
element could develop in the future, not only the condition ratings
of bridges. Such bridge data would include NBI and National
Bridge Element (NBE) data, textual bridge inspection data, data
about bridge deficiencies and conditions from images and sen-
sors, traffic data, and weather data. These efforts would create
new knowledge on how to use heterogeneous bridge data from
multiple sources in an analyzed and integrative manner to better
understand and predict bridge deterioration for enhanced data-
driven maintenance decision-making.

Data Availability Statement

Some or all data, models, or code generated or used during the
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or code used during the study were provided by a third party (the
bridge inspection reports from the Washington State Department of
Transportation). Direct requests for these materials may be made to
the provider as indicated in the acknowledgments. Some or all data,
models, or code generated or used during the study are available
from the corresponding author by request (the Python code devel-
oped for the implementation and the experimental testing of the
proposed hybrid data fusion method).
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