
Mathematische Annalen
https://doi.org/10.1007/s00208-021-02148-z Mathematische Annalen

A Thurston boundary for infinite-dimensional Teichmüller
spaces

Francis Bonahon1 · Dragomir Šarić2,3
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Abstract
For a compact surface X0, Thurston introduced a compactification of its Teichmüller
space T(X0) by completing it with a boundary PML(X0) consisting of projective
measured geodesic laminations. We introduce a similar bordification for the Teich-
müller space T(X0) of a noncompact Riemann surface X0, using the technical tool of
geodesic currents. The lack of compactness requires the introduction of certain uni-
formity conditions which were unnecessary for compact surfaces. A technical step,
providing a convergence result for earthquake paths in T(X0), may be of independent
interest.

The Teichmüller space of a Riemann surface X0 is the space of quasiconformal
deformations of the complex structure of X0. When X0 is compact of genus at least
2, Thurston famously introduced a compactification of T(X0) by adding a boundary
at infinity consisting of projective measured foliations [13,14,34] or, equivalently,
projective measured geodesic laminations [5,32]. In this paper, we introduce a similar
construction of a boundary for the Teichmüller space of a noncompact surface X0.
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In addition to the fact that Teichmüller spaces of noncompact Riemann surfaces are
fundamental objects in complex analysis, our motivation here is to put in evidence the
hidden features that underlie Thurston’s construction, by tying it more closely to the
quasiconformal geometry of X0 and less to the purely topological considerations that
suffice for compact surfaces.

Like Thurston, we restrict attention to Riemann surfaces X0 that are conformally
hyperbolic, in the sense that the conformal structure of X0 can be realized by a complete
hyperbolic metric. This is equivalent to the property that the universal cover ˜X0 is
biholomorphically equivalent to the unit disk D ⊂ C. This condition only excludes
the cases where X0 is an elliptic surface, diffeomorphic to the torus, or is the Riemann
sphere minus 0, 1 or 2 points. A case of particular interest is that of the disk D, in
which case the Teichmüller space T(D) is Bers’s Universal Teichmüller Space [3].

Thurston’s original length spectrum approach [13,34] is not available here, and we
follow the strategy introduced in [5] by embedding the Teichmüller space T(X0) in the
space C(X0) of geodesic currents. These are defined as those measures on the space
G(˜X0) of Poincaré geodesics of the universal cover ˜X0 which are invariant under
the action of the fundamental group π1(X0). When X0 is compact, these are purely
topological objects, which were introduced in [4] as a completion of the set of free
homotopy classes of closed curves on the surface; in fact, geodesic currents can be
described [6] solely in terms of the algebraic structure of π1(X0). The definition of
geodesic currents was motivated by Thurston’s definition of measured foliations and
measured geodesic laminations, introduced as a way to complete the set of isotopy
classes of simple closed curves on the surface [13,14,32,33]. The topological nature
of geodesic currents and measured geodesic laminations becomes much weaker for
noncompact surfaces, and this requires the consideration of uniformity conditions
which were taken for granted in the compact case.

More precisely, if X0 is a conformally hyperbolic Riemann surface and if its uni-
versal cover ˜X0 is endowed with the Poincaré metric, the space G(˜X0) of complete
geodesics of ˜X0 comes with a preferred measure, the Liouville measure L

˜X0
. If we

have a quasiconformal deformation of the complex structure of X0, represented by a
quasiconformal diffeomorphism f : X0 → X from X0 to another Riemann surface X ,
we can then use f to pull back the Liouvillemeasure L

˜X ofG(˜X) to aπ1(X0)-invariant
measure on G(˜X0), namely to a geodesic current in X0.

This enables us to define what we call the Liouville embedding

L : T(X0) → C(X0)

of the Teichmüller space, which associates the Liouville current L f to each element
[ f ] ∈ T(X0) represented by a quasiconformal diffeomorphism f : X0 → X .

There is nothing new so far. But a challenge arises when the surface X0 is noncom-
pact: Find a “good” topology on the space C(X0) of geodesic currents for which the
Liouville embedding L is really a topological embedding, namely restricts to a home-
omorphism T(X0) → L

(

T(X0)
)

. The natural topology on T(X0) is the Teichmüller
topology, defined by the Teichmüller metric; see Sect. 1. As a space of measures,
C(X0) is traditionally endowed with the weak* topology (see Sect. 2). However, this
topology fails to take into account the many symmetries of the universal cover ˜X0
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coming from the group H(˜X0) ∼= PSL2(R) of all biholomorphic diffeomorphisms of
˜X0.

This leads us to restrict attention to bounded geodesic currents, which satisfy a
certain boundedness property with respect to the action of H(˜X0), and to introduce
the uniform weak* topology on the space Cbd(X0) of bounded geodesic currents. See
Sect. 2 for precise definitions.When the surface X0 is compact, every geodesic current
is bounded and the uniform weak* topology coincides with the usual weak* topology
onC(X0) = Cbd(X0) (Proposition 5). See [23,25–27] for earlier (and slightly different)
incarnations of the uniform weak* topology.

Theorem 1 The Liouville embedding L : T(X0) → C(X0) is valued in the space
Cbd(X0) of bounded geodesic currents, and restricts to a homeomorphism T(X0) →
L

(

T(X0)
) ⊂ Cbd(X0) when Cbd(X0) is endowed with the uniform weak* topology. In

addition, the image L
(

T(X0)
)

is closed in Cbd(X0), and the embedding L : T(X0) →
Cbd(X0) is proper.

This theorem is proved as Theorem 8. Recall that a map is proper if the preimage
of a bounded subset is bounded, which makes sense here because the topologies of
T(X0) and Cbd(X0) are defined by families of seminorms.

See Remark 9 for an explanation of why Theorem 1 would fail if Cbd(X0)was only
endowed with the usual weak* topology, as opposed to the uniform weak* topology.

Following Thurston’s original approach, we now consider the raysR+α ⊂ Cbd(X0)

that are asymptotic to the image L
(

T(X0)
)

, namely the set of those bounded geodesic
currents α ∈ Cbd(X0) for which there exists a sequence

{[ fn]}n∈N of points of
the Teichmüller space and a sequence of positive numbers {tn}n∈N such that α =
limn→∞ tnL

([ fn]) and limn→∞ tn = 0. The union of these rays is the asymptotic
cone of the Liouville embedding L.

Theorem 2 The asymptotic cone of the Liouville embedding L : T(X0) → Cbd(X0)

coincides with the subset MLbd(X0) of bounded measured geodesic laminations in
X0, namely with the set of bounded geodesic currents α ∈ Cbd(X0) such that no two
geodesics of the support of α in G(˜X0) cross each other in ˜X0.

It is not too hard to see that every element of the asymptotic cone of L is a bounded
measuredgeodesic lamination. It ismore difficult to show that everyboundedmeasured
geodesic lamination belongs to this cone. For this, we use Thurston’s construction
of earthquakes [21,33]. A bounded measured geodesic lamination α ∈ MLbd(X0)

defines an earthquake map Eα : T(X0) → T(X0) [10,28,33]. See Remark 29 for
comments about the close relationship, when the surface X0 is noncompact, between
the boundedness condition for measured geodesic laminations and the quasiconformal
geometry of points of the Teichmüller space T(X0).

The following property proves that every bounded measured geodesic lamination
belongs to the asymptotic cone of the Liouville embedding. It is also of independent
interest as, when the surface X0 is noncompact, the estimates of [21] or [13, Exp. 8]
cannot be used here.
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Theorem 3 Let α ∈ MLbd(X0) be a bounded measured geodesic lamination in the
Riemann surface X0. Then, for every [ f ] ∈ T(X0),

lim
t→∞

1

t
L

(

Etα[ f ]) = α

for the uniform weak* topology on the space Cbd(X0) of bounded geodesic currents.

The space of rays in the asymptotic cone is the space PMLbd(X0) of projective
bounded measured geodesic laminations. Theorem 2 enables us to add its elements
as boundary points to the Teichmüller space. By analogy with the case of compact
surfaces, we call the space T(X0) ∪ PMLbd(X0) the Thurston bordification of the
Teichmüller space T(X0). Note that this bordification is not compact when X0 is
noncompact, as T(X0) is not even locally compact in this case. See [18–20,24] for
related results.

The article concludes with a result, Proposition 38, which shows that our con-
struction is natural under quasiconformal diffeomorphisms. More precisely, the
homeomorphism T(X1) → T(X2) induced by a quasiconformal diffeomorphism
X1 → X2 uniquely extends to a homeomorphism T(X1) ∪ PMLbd(X1) → T(X2) ∪
PMLbd(X2) between the respective bordifications of the Teichmüller spaces T(X1)

and T(X2). In particular, the quasiconformal mapping class group MCGqc(X0) acts
on T(X0) ∪ PMLbd(X0).

This article started as a preprint [30] by the second author alone. The first author,
who had been informally involved in the introduction of the uniform weak* topology,
later joined to help with the exposition. However, the major technical steps were
already fully in [30]. See also [31] for a different approach, in a much more restricted
context.

The authors thank the referee for a careful reading of the manuscript.

1 The Teichmüller space of a Riemann surface

Let X0 be a Riemann surface which is conformally hyperbolic. This means that its
universal cover ˜X0 is biholomorphically equivalent to the disk

D = {z ∈ C; |z| < 1}.

Equivalently, X0 is not the Riemann sphereC∪{∞}, the planeC, the punctured plane
C − {0}, or a torus.

In the disk D, the hyperbolic metric 2|dz|/(1 − |z|2) is invariant under the group
H(D) of biholomorphic diffeomorphisms of D. It consequently descends to a hyper-
bolicmetric on X0 which does not dependon the biholomorphic identification ˜X0 ∼= D.
This is the Poincaré metric of the conformally hyperbolic Riemann surface X0.

All Riemann surfaces in this article will be implicitly assumed to be conformally
hyperbolic. We are particularly interested in the case where X0 is non-compact, and a
fundamental example will be that of the unit disk X0 = D.
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Recall that a quasiconformal diffeomorphism f : X1 → X2 between two Riemann
surfaces is an orientation-preserving diffeomorphism such that

K ( f ) = sup
z∈X1

∣

∣

∣

∂ f
∂z (z)

∣

∣

∣ +
∣

∣

∣

∂ f
∂ z̄ (z)

∣

∣

∣

∣

∣

∣

∂ f
∂z (z)

∣

∣

∣ −
∣

∣

∣

∂ f
∂ z̄ (z)

∣

∣

∣

is finite. Note that the denominator is always positive by the orientation-preserving
hypothesis. The number K ( f ) is the quasiconformal dilatation of f .

The Teichmüller spaceT(X0) of the Riemann surface X0 is the space of equivalence
classes of all quasiconformal diffeomorphisms f : X0 → X from X0 to another
Riemann surface X . Two such quasiconformalmaps f1 : X0 → X1 and f2 : X0 → X2
are equivalent if there exists a biholomorphic map g : X1 → X2 such that f −1

2 ◦g ◦ f1
is isotopic to the identity by a bounded isotopy, namely by an isotopy that moves points
of X0 by a bounded amount for the Poincaré metric of X0. See [11] for equivalent
formulations of this equivalence relation. We denote by [ f ] ∈ T(X0) the equivalence
class of the quasiconformal map f : X0 → X .

In the fundamental case where X0 is the unit disk D, the Teichmüller space T(D)

is also known as the universal Teichmüller space [3,15].
The Teichmüller space T(X0) is endowed with the Teichmüller distance defined by

dT
([ f1], [ f2]

) = 1
2 log infg

K (g)

where the infimum is taken over all quasiconformal maps g : X1 → X2 such that
f −1
2 ◦ g ◦ f1 is bounded isotopic to the identity of X0 as above, namely isotopic to the

identity by an isotopy moving points by a uniformly bounded amount for the Poincaré
metric of X0. Again, see [11] for equivalent formulations.

2 Bounded geodesic currents and the uniformweak* topology

2.1 Geodesic currents

We consider a conformally hyperbolic Riemann surface X0 of hyperbolic type, with
universal cover ˜X0.

Recall that the groupH(D)of biholomorphic diffeomorphismsof the diskD consists
of all linear fractional maps of the form

z 	→ αz + β

β̄z + ᾱ

where α, β ∈ C are such that |α|2 − |β|2 = 1. In particular, these biholomorphic
diffeomorphisms of the open disk D extend to homeomorphisms of the closed disk
D ∪ ∂D.
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This enables us to introduce a compactification of the universal cover ˜X0 by its
circle at infinity ∂∞˜X0, intrinsically defined by the property that every biholomorphic
diffeomorphism ˜X0 → D extends to a homeomorphism ˜X0 ∪ ∂∞˜X0 → D ∪ ∂D.

Each complete hyperbolic geodesic of the diskD is determined by its two endpoints
in ∂D. This identifies the space G(D) of (complete, oriented) geodesics of D to ∂D×
∂D − �, where � = {

(x, x); x ∈ ∂D
}

is the diagonal of ∂D × ∂D.
More generally, let G(˜X0) denote the space of oriented complete geodesics of ˜X0

for its Poincaré metric. Using a biholomorphic identification ˜X0 ∼= D, such a geodesic
is determined by its endpoints in the circle at infinity ∂∞˜X0, and this gives a natural
identification

G(˜X0) = ∂∞˜X0 × ∂∞˜X0 − �

where � = {

(x, x); x ∈ ∂∞˜X0
}

is the diagonal of ∂∞˜X0 × ∂∞˜X0. In particular,
G(˜X0) is homeomorphic to an open annulus.

The fundamental group π1(X0) acts biholomorphically on the universal cover ˜X0,
and this action therefore respects the Poincarémetric of ˜X0. As a consequence,π1(X0)

also acts on G(˜X0).
A geodesic current in the Riemann surface X0 is a Radon measure α on G(˜X0) that

is invariant under the action of π1(X0). The Radon property means that the integral
α(K ) = ∫

K 1 dα is finite and non-negative for every compact subset K ⊂ G(˜X0).
Most of the geodesic currents considered in this article will be balanced (or unori-

ented to use a more topological terminology), in the sense that they are invariant under
the involution of G(˜X0) that reverses the orientation of every geodesic.

2.2 Bounded geodesic currents and the uniformweak* topology

As a space of Radon measures on G(˜X0), it would be natural to endow the space
C(X0) of geodesic currents with the classical weak* topology (also called the vague
topology), defined by the family of semi-norms

|α|ξ =
∣

∣

∣

∫

G(˜X0)

ξ dα

∣

∣

∣

for α ∈ C(X0), as ξ ranges over all continuous function ξ : G(˜X0) → Rwith compact
support.

However, this topology does not quite fit our purposes, because it does not take
into account the many symmetries of ˜X0 provided by the isometric action of the group
H(˜X0) of biholomorphic diffeomorphisms of ˜X0. It is much better to consider the
semi-norms

‖α‖ξ = sup
ϕ∈H(˜X0)

∣

∣

∣

∫

G(˜X0)

ξ ◦ ϕ dα

∣

∣

∣
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as ξ ranges over all continuous function ξ : G(˜X0) → R with compact support. (We
are here using the same letter to denote the biholomorphic map ϕ : ˜X0 → ˜X0, which
respects the Poincaré metric of ˜X0, and its induced homeomorphism ϕ : G(˜X0) →
G(˜X0) on the space G(˜X0) of geodesics of ˜X0.) We will restrict the geodesic currents
considered accordingly.

A bounded geodesic current is a geodesic current α ∈ C(X0) for which all norms
‖α‖ξ are finite. More precisely, a bounded geodesic current on the Riemann surface
X0 is a Radon measure α on the space G(˜X0) = ∂∞˜X0 × ∂∞˜X0 − � of geodesics of
˜X0 such that:

(1) for every continuous function ξ : G(˜X0) → Rwith compact support, the integrals
∣

∣

∣

∫

G(˜X0)
ξ◦ϕ dα

∣

∣

∣ are bounded independently of the biholomorphic diffeomorphism

ϕ ∈ H(˜X0);
(2) α is invariant under the action of the fundamental group π1(X0) on G(˜X0).

We let Cbd(X0) denote the set of bounded geodesic currents in the Riemann surface
X0. The topology defined by the seminorms ‖α‖ξ is the uniform weak* topology of
Cbd(X0).

In particular, a sequence {αn}n∈N of bounded geodesic currents αn ∈ Cbd(X0)

converges to α for the uniform weak* topology if and only if

sup
ϕ∈H(˜X0)

∣

∣

∣

∫

G(˜X0)

ξ ◦ ϕ dαn −
∫

G(˜X0)

ξ ◦ ϕ dα

∣

∣

∣ → 0 as n → ∞

for every continuous function ξ : G(˜X0) → R with compact support.

2.3 The weak* and uniformweak* topologies

We collect in this section a few basic properties of the weak* and uniform weak*
topologies.

The following easy lemma will enable us to make some of our arguments a little
more intuitive, by interpreting continuity properties in terms of sequences.

Lemma 4 The weak* and uniform weak* topology of Cbd(X0) are metrizable.

This property is of course classical for the weak* topology, and we just need to
make sure that the argument extends to the uniform weak* topology.

Proof Write G(˜X0) as an increasing union G(˜X0) = ⋃∞
n=1 Kn of compact subsets

Kn , with Kn ⊂ Kn+1. Then, for every n, choose a countable family Fn of continuous
functions ξ : G(˜X0) → R with support contained in Kn , such that the set Fn is dense
in the space of all continuous functions with support in Kn for the metric

d(ξ, ξ ′) = max
g∈G(˜X0)

|ξ(g) − ξ ′(g)|.
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For each n, also choose a nonnegative continuous function ξ (n) : G(˜X0) → [0,∞[
with compact support such that ξ (n)(g) � 1 for every g ∈ Kn . Finally, set

F =
∞
⋃

n=1

Fn ∪ {ξ (n)}.

Wewant to show that, as ξ ranges over all elements of the countable setF, the topology
defined by the corresponding family of semi-norms ‖ ‖ξ coincides with the uniform
weak* topology (defined by considering all continuous functions ξ : G(˜X0) → R

with compact support).
The uniform weak* topology is defined by the basis consisting of all “balls”

Bξ1,ξ2,...,ξk (α; r) = {

β ∈ Cbd(X0); ‖α − β‖ξi < r for all i = 1, 2, . . . , k
}

where α ∈ Cbd(X0), the functions ξi : G(˜X0) → Rwith i = 1, 2,…, k are continuous
with compact support, and r > 0.

For such a ball Bξ (α; r) associated to a single function ξ , the support of ξ is
contained in one of the compact subsets Kn . For an ε > 0 to be specified later, there
is by definition of Fn a function ξ ′ ∈ Fn such that d(ξ, ξ ′) < ε. As a consequence,
remembering that ξ (n) is nonnegative and at least 1 on Kn , we have that |ξ(g)−ξ ′(g)| �
εξ (n)(g) for every g ∈ G(˜X0), and therefore

∣

∣

∣

∣

∫

G(˜X0)

ξ ◦ ϕ dα −
∫

G(˜X0)

ξ ′ ◦ ϕ dα

∣

∣

∣

∣

� ε

∫

G(˜X0)

ξ (n) ◦ ϕ dα

and
∣

∣

∣

∣

∫

G(˜X0)

ξ ◦ ϕ dβ −
∫

G(˜X0)

ξ ′ ◦ ϕ dβ

∣

∣

∣

∣

� ε

∫

G(˜X0)

ξ (n) ◦ ϕ dβ

for every β ∈ Cbd(X0) and every ϕ ∈ H(˜X0). This implies that

‖α − β‖ξ � ‖α − β‖ξ ′ + ε‖α‖ξ (n) + ε‖β‖ξ (n) .

If we choose ε > 0 small enough that ε‖α‖ξ (n) < r
3 , this enables us to find two

functions ξ ′ and ξ (n) ∈ F such that

Bξ ′(α; r
3 ) ∩ Bξ (n) (α; r

3ε ) ⊂ Bξ (α; r).

By taking multiple intersections, it follows that for every ball

Bξ1,ξ2,...,ξk (α; r) = Bξ1(α; r) ∩ Bξ2(α; r) ∩ · · · ∩ Bξk (α; r)

there exists ξ ′
1, ξ

′
2, …, ξ ′

k′ ∈ F and r ′ > 0 such that

Bξ ′
1,ξ

′
2,...,ξ

′
k′ (α; r ′) ⊂ Bξ1,ξ2,...,ξk (α; r).
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This shows that the basis consisting of the Bξ ′
1,ξ

′
2,...,ξ

′
k′ (α; r ′) with all ξ ′ ∈ F defines

the same topology as the similar basis where all functions with compact support are
considered. In other words, the uniform weak* topology Cbd(X0) is also the topology
defined by the family of seminorms ‖ ‖ξ with ξ ∈ F.

Since F is countable, it follows that this topology is metrizable. More precisely,
if we list the elements of F as {ξi ; i = 1, 2, . . . }, the uniform weak* topology is the
metric topology associated to the metric δ defined by

δ(α, β) =
∞
∑

i=1

2−i min{1, ‖α − β‖ξi }.

The proof that the weak* topology is metrizable is almost identical (and classical).

Proposition 5 If the Riemann surface X0 is compact, the space Cbd(X0) of bounded
geodesic currents coincide with the space C(X0) of all geodesic currents, and the
uniform weak* topology coincides with the weak* topology on Cbd(X0).

The two topologies do differ when X0 is noncompact. For instance, if gn ∈ G(D)

is a sequence of geodesics of D that eventually leaves any compact subset of G(D),
the Dirac measures δgn ∈ Cbd(D) based at gn provide a sequence of bounded geodesic
currents in Cbd(D) that converges to 0 for the weak* topology but has no limit for the
uniformweak* topology. Also, the sum

∑∞
n=1 nδgn is a well-defined geodesic current,

which is unbounded.

Proof of Proposition 5 Wefirst show that every geodesic currentα ∈ C(X0) is bounded.
Wewant to prove that, for every continuous function ξ : G(˜X0) → Rwith compact

support, the semi-norm

‖α‖ξ = sup
ϕ∈H(˜X0)

∣

∣

∣

∣

∫

G(˜X0)

ξ ◦ ϕ dα

∣

∣

∣

∣

(1)

is finite. Because X0 is compact, there exists a compact subset K ⊂ ˜X0 whose image
under the action of π1(X0) covers all of ˜X0, in the sense that ˜X0 = ⋃

γ∈π1(X0)
γ (K ).

Pick a base point x0 ∈ K . Then, for every biholomorphic diffeomorphism ϕ ∈ H(˜X0),
there exists at least one γ ∈ π1(X0) such that ϕ ◦ γ (x0) ∈ K . Note that ϕ ◦ γ is also
biholomorphic, and that

∫

G(˜X0)

ξ ◦ ϕ ◦ γ dα =
∫

G(˜X0)

ξ ◦ ϕ dα

by invariance of themeasureα under the action ofπ1(X0). Therefore, in the supremum
of (1), we can restrict attention to those ϕ ∈ H(˜X0) such that ϕ(x0) ∈ K . Such ϕ form
a compact subset of H(˜X0) ∼= PSL2(R), and the supremum is therefore finite. This
proves that ‖α‖ξ < ∞.
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As a conclusion, every geodesic currentα ∈ C(X0) is bounded, and thereforeC(X0)

coincides with Cbd(X0).
We now prove that the weak* and uniform weak* topologies coincide on C(X0) =

Cbd(X0). By Lemma 4, these topologies are metrizable. Therefore we only need to
show that, when X0 is compact, a sequence {αn}n∈N converges to α for the uniform
weak* topology if and only if it converges to α for the weak* topology.

Convergence for the uniform weak* topology clearly implies convergence for the
weak* topology. So we can focus on the converse statement.

Suppose that αn ∈ Cbd(X0) converges to α for the weak* topology. We want to
show that, for every continuous function ξ : G(˜X0) → R with compact support,

‖αn − α‖ξ = sup
ϕ∈H(˜X0)

∣

∣

∣

∣

∫

G(˜X0)

ξ ◦ ϕ dαn −
∫

G(˜X0)

ξ ◦ ϕ dα

∣

∣

∣

∣

(2)

tends to 0 as n tends to ∞.
As before, the compactness of X0 enables us to restrict attention to thoseϕ ∈ H(˜X0)

such that ϕ(x0) ∈ K , which form a compact subset of H(˜X0) (remember that H(˜X0)

is also the set of isometries of the Poincaré metric of ˜X0). In particular, the supremum
of (2) is attained at some ϕn ∈ H(˜X0), with ϕn(x0) ∈ K and

‖αn − α‖ξ =
∣

∣

∣

∣

∫

G(˜X0)

ξ ◦ ϕn dαn −
∫

G(˜X0)

ξ ◦ ϕn dα

∣

∣

∣

∣

.

In addition, again by compactness of the set of those ϕ ∈ H(˜X0) with ϕ(x0) ∈ K ,
we can extract a subsequence {ϕnk }k∈N that converges to someϕ∞ ∈ H(˜X0) uniformly
on compact subsets of ˜X0. In particular,

‖αnk − α‖ξ =
∣

∣

∣

∣

∫

G(˜X0)

ξ ◦ ϕnk dαnk −
∫

G(˜X0)

ξ ◦ ϕnk dα

∣

∣

∣

∣

�
∣

∣

∣

∣

∫

G(˜X0)

ξ ◦ ϕ∞ dαnk −
∫

G(˜X0)

ξ ◦ ϕ∞ dα

∣

∣

∣

∣

+
∫

G(˜X0)

|ξ ◦ ϕnk − ξ ◦ ϕ∞| dαnk +
∫

G(˜X0)

|ξ ◦ ϕnk − ξ ◦ ϕ∞| dα

(3)

It is now time to use the fact that α = limn→∞ αn for the weak* topology, which
implies that

lim
k→∞

∣

∣

∣

∣

∫

G(˜X0)

ξ ◦ ϕ∞ dαnk −
∫

G(˜X0)

ξ ◦ ϕ∞ dα

∣

∣

∣

∣

= 0. (4)

Also, pick a nonnegative continuous function ξ∞ : G(˜X0) → R with compact
support, such that ξ∞ � 1 on a neighborhood of the support of ξ ◦ ϕ∞. Given ε > 0,

|ξ ◦ ϕnk − ξ ◦ ϕ∞| � εξ∞
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for k large enough, since ϕnk → ϕ∞ as k → ∞ uniformly on compact subsets of ˜X0
(and therefore uniformly on compact subsets of G(˜X0), if we use the same letter to
denote the action of ϕnk on ˜X0 and on G(˜X0)). It follows that

∫

G(˜X0)

|ξ ◦ ϕnk − ξ ◦ ϕ∞| dαnk � ε

∫

G(˜X0)

ξ∞ dαnk .

Since
∫

G(˜X0)
ξ∞ dαnk → ∫

G(˜X0)
ξ∞ dα∞ as k → ∞ by weak* convergence, we

conclude that

lim
k→∞

∫

G(˜X0)

|ξ ◦ ϕnk − ξ ◦ ϕ∞| dαnk = 0. (5)

Similarly,

lim
k→∞

∫

G(˜X0)

|ξ ◦ ϕnk − ξ ◦ ϕ∞| dα = 0. (6)

The combination of the Eqs. (3–6) proves that

lim
k→∞ ‖αnk − α‖ξ = 0.

Therefore, we were able to extract from the sequence {αn}n∈N a subsequence
{αnk }k∈N that converges to α for the uniform weak* topology. If we apply the same
process to all subsequences of the original sequence {αn}n∈N, we conclude that this
sequence {αn}n∈N converges to α for the uniform weak* topology.

This completes the proof of Proposition 5.
Because we will frequently use it, we state as a lemma a well-known property of

the weak* topology.

Lemma 6 Suppose that the sequence {αn}n∈N of geodesic currents αn ∈ C(X0) con-
verges to α ∈ C(X0) for the weak* topology. Then, for every every measurable subset
A ⊂ G(˜X0) whose topological boundary δA has α-mass α(δA) equal to 0,

lim
n→∞ αn(A) = α(A).

Proof See for instance [7, chap. IV, §5, no 12] or [8] for this classical property of
weak* convergence, which holds in a much more general setting.

The example of Dirac measures shows that the hypothesis that α(δA) = 0 is really
necessary in Lemma 6.
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3 The Liouville embedding

3.1 The Liouville geodesic current

Wesaw that the groupH(D) of biholomorphic diffeomorphisms ofD acts by isometries
for the Poincaré metric, and therefore acts on the space G(D) of complete geodesics
ofD. A computation shows that it respects the Liouville measure LD on G(D) defined
by the property that, if we parametrize the unit circle ∂D ⊂ C by t 	→ eit ,

LD(A) =
∫

A

dt ds

|eit − eis |2

for any Borel subset A ⊂ G(D) = ∂D× ∂D− �. See for instance Lemma 10 below,
and the well-known invariance of crossratios under linear fractional maps.

More generally, if ˜X is a Riemann surface biholomorphically equivalent to D by a
biholomorphic diffeomorphism ˜f : ˜X → D, the induced homeomorphism ∂∞˜X →
∂D provides a homeomorphism from the spaceG(˜X) = ∂∞˜X ×∂∞˜X −� of geodesics
of ˜X to G(D) = ∂D × ∂D − �, which we also denote by ˜f . We can then pull back
the Liouville measure LD to a measure L

˜X on G(˜X). The invariance of LD under
the group H(D) of biholomorphic diffeomorphisms of D shows that this measure is
independent of the choice of the biholomorphic diffeomorphism ˜f : ˜X → D. The
measure L

˜X is the Liouville measure of the Riemann surface ˜X ∼= D.
Consider an element [ f ] ∈ T(X0) of the Teichmüller space of the Riemann surface

X0, represented by a quasiconformal diffeomorphism f : X0 → X . Lift f to a quasi-
conformal diffeomorphism ˜f : ˜X0 → ˜X between the universal covers. A fundamental
property is that this quasiconformal diffeomorphism admits a continuous extension
˜f : ˜X0 ∪ ∂∞˜X0 → ˜X ∪ ∂∞˜X (see the Beurling–Ahlfors Theorem 14 below). The
restriction of this extension to the circles at infinity induces a homeomorphism from
G(˜X0) = ∂∞˜X0 × ∂∞˜X0 − � to G(˜X) = ∂∞˜X × ∂∞˜X − �. We can then pull back
the Liouville measure L

˜X by ˜f to define a measure L f on G(˜X0). More precisely,
L f (A) = L

˜X

(

˜f (A)
)

for every measurable subset A ⊂ G(˜X0), while

∫

G(˜X0)

ξ d L f =
∫

G(˜X)

ξ ◦ ˜f −1 d L
˜X

for every continuous function ξ : G(˜X0) → R with compact support.
The action of the fundamental group π1(X) on ˜X is biholomorphic, and therefore

respects the Liouville measure L
˜X on G(˜X). Since two lifts ˜f : ˜X0 → ˜X of f differ

only by the action of an element ofπ1(X), it follows that themeasure L f is independent
of the choice of this lift. Also, because ˜f conjugates the action of π1(X) on ˜X to the
action of π1(X0) on ˜X0, the measure L f is invariant under the action of π1(X0) on
G(˜X0). In other words, L f is a geodesic current in X0.

Lemma 7 The Liouville geodesic current L f is bounded, and therefore belongs to
Cbd(X0).

Wepostpone theproof ofLemma7 toSect. 3.3,where itwill be proved asLemma16.

123



A Thurston boundary for infinite-dimensional Teichmüller spaces

If two quasiconformal diffeomorphisms f1 : X0 → X1 and f2 : X0 → X2 rep-
resent the same element [ f1] = [ f2] in the Teichmüller space T(X0), there exists a
biholomorphic diffeomorphism g : X1 → X2 such that f −1

2 ◦g◦ f1 is bounded isotopic
to the identity in X0. We can therefore choose lifts ˜f1 : ˜X0 → ˜X1, ˜f2 : ˜X0 → ˜X2,
g̃ : ˜X1 → ˜X2 of these diffeomorphisms so that ˜f −1

2 ◦ g̃ ◦ ˜f1 is bounded isotopic to the
identity in ˜X0. A bounded isotopy fixes the boundary at infinity ∂∞˜X0; indeed, assum-
ing ˜X0 = D without loss of generality, the euclidean distance by which a bounded
isotopy moves a point x ∈ D tends to 0 as x approaches the boundary circle ∂D. This
implies that the restrictions of ˜f2 and g̃ ◦ ˜f1 to maps ∂∞˜X0 → ∂∞˜X2 coincide. As the
biholomorphic diffeomorphism g̃ sends the Liouville measure L

˜X1
to L

˜X2
, it follows

that the measures L f1 and L f2 coincide on G(˜X0).
As a consequence, the Liouville geodesic current L f ∈ Cbd(X0) depends only on

the element [ f ] of the Teichmüller space T(X0) represented by the quasiconformal
diffeomorphism f : X0 → X .

The map

L : T(X0) → Cbd(X0)

defined by the property that L
([ f ]) = L f is the Liouville embedding.

Theorem 8 Let X0 be a conformally hyperbolic Riemann surface, let the Teichmüller
space T(X0) be equipped with the Teichmüller distance dT, and let the space Cbd(X0)

of bounded geodesic currents be endowed with the uniform weak* topology defined
in Sect. 2. Then, the Liouville embedding L : T(X0) → Cbd(X0) is a homeomorphism
onto its image, it is a proper map, and its image L

(

T(X0)
)

is closed in Cbd(X0).

Remark 9 The above statement would be false if Cbd(X0) was only endowed with the
usual weak* topology. Indeed, consider a sequence {gn}n∈N of geodesics of the diskD
that leaves every compact subset of G(D). For any [ f0] ∈ T(D), let [ fn] = E1

gn
[ f0] be

obtained from [ f0] by performing an elementary earthquake along gn (see Sect. 5.2).
Then, for every compact subset K ⊂ G(D), the measure L

([ fn]) coincides with
L

([ f0]
)

on K for n sufficiently large. It follows that the sequence
{

L
([ fn])}n∈N

converges to L
([ f0]

)

for the weak* topology as n tends to infinity. However, the
Teichmüller distance dT

([ f0], [ fn]) > 0 is constant and [ fn] consequently does not
converge to [ f0] for the Teichmüller metric on T(X0). This shows that the inverse map
L−1 : L(

T(X0)
) → T(X0) is not continuous when its domain is only endowed with

the weak* topology, so that the uniform weak* topology is really needed.

The proof of Theorem 8 will take a while. It will be proved in several steps, as
Propositions 19, 21, 24 and 25 below. We first introduce a few technical tools to
connect the quasiconformal geometry of Riemann surfaces to measures on spaces of
geodesics.
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3.2 Boxes of geodesics

Let ˜X be a simply connected conformally hyperbolic Riemann surface, and let ∂∞˜X
be its circle at infinity. Typically, ˜X will be the universal cover of a conformally
hyperbolic Riemann surface X .

The orientation of ˜X specifies a boundary (counterclockwise) orientation for ∂∞˜X .
In particular, two points a, b ∈ ∂∞˜X delimit a unique interval [a, b] ⊂ ∂∞˜X ,
consisting of those points x such that a, x , b occur in this order for the coun-
terclockwise orientation of ∂∞˜X . Note that [b, a] is different from [a, b], and that
[a, b] ∪ [b, a] = ∂∞˜X .

Four distinct points a, b, c, d ∈ ∂∞˜X , occurring counterclockwise in this order,
determine two disjoint intervals [a, b], [c, d] ⊂ ∂∞˜X and a subset Q = [a, b]×[c, d]
of the space of geodesics G(˜X) = ∂∞˜X × ∂∞˜X − �. We will refer to such a subset
Q as a box of geodesics of ˜X , or as a box in G(˜X).

For the disk D and its Liouville geodesic current LD ∈ Cbd(D), a simple inte-
gral computation expresses the Liouville mass of a box of geodesics in terms of the
crossratio of the four points of ∂D determining this box.

Lemma 10 For a box of geodesics Q = [a, b]×[c, d] ⊂ G(D) with a, b, c, d ∈ ∂D ⊂
C,

LD

([a, b] × [c, d]) =
∫∫

Q

ds dt

|eis − eit |2 = log
(a − c)(b − d)

(a − d)(b − c)
.

Lemma 11 Let Q and Q′ ⊂ G(˜X) be two boxes of geodesics in ˜X. There exists a
biholomorphic diffeomorphism ˜X → ˜X sending Q to Q′ if and only if they have the
same Liouville mass L

˜X (Q) = L
˜X (Q′).

Proof Using a biholomorphic diffeomorphism ˜X → D, we can assumewithout loss of
generality that ˜X = D. Then, the biholomorphic diffeomorphisms of D are the linear
fractional maps z 	→ αz+β

β̄z+ᾱ
where α, β ∈ C are such that |α|2 − |β|2 = 1. Elementary

algebra shows that, given two boxes Q = [a, b] × [c, d] and Q′ = [a′, b′] × [c′, d ′]
in G(D), there exists such a linear fractional map sending Q to Q′ if and only if the
crossratios (a−c)(b−d)

(a−d)(b−c) and
(a′−c′)(b′−d ′)
(a′−d ′)(b′−c′) are equal. By Lemma 10, this is equivalent to

the property that the Liouville masses LD(Q) and LD(Q′) are equal.

For a box of geodesics Q = [a, b] × [c, d] ⊂ G(˜X), its orthogonal box is the box
Q⊥ = [b, c] × [d, a].

Note that the definition is not quite as symmetric as one would hope, as Q⊥⊥ is
different from Q. In fact, Q⊥⊥ = [c, d] × [a, b] consists of all geodesics obtained
by reversing the orientation of the geodesics of Q. In particular, Q⊥⊥ has the same
α-mass as Q for any balanced geodesic current, and the distinction between Q and
Q⊥⊥ will consequently have little impact in this article since most geodesic currents
considered here will be balanced (as defined at the end of Sect. 2.1).
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Lemma 12 Let L
˜X be the Liouville measure of a simply connected conformally hyper-

bolic Riemann surface ˜X. For every box of geodesics Q ⊂ G(˜X),

e−L
˜X (Q) + e−L

˜X (Q⊥) = 1.

Proof Using a biholomorphic diffeomorphism ˜X → D, we can assumewithout loss of
generality that ˜X = X = D. Then, for a box Q = [a, b] × [c, d] ⊂ G(D), Lemma 10
gives

e−LD(Q) + e−LD(Q⊥) = (a − d)(b − c)

(a − c)(b − d)
+ (b − a)(c − d)

(b − d)(c − a)

= (a − d)(b − c) − (b − a)(c − d)

(a − c)(b − d)
= 1.

3.3 Quasiconformal and quasisymmetric homeomorphisms

Consider a quasiconformal diffeomorphism f : X1 → X2 between conformally
hyperbolic Riemann surfaces, and lift it to amap ˜f : ˜X1 → ˜X2 between their universal
cover. We already mentioned the Beurling–Ahlfors Theorem, which says that ˜f has
a continuous extension ˜f : ˜X1 ∪ ∂∞˜X1 → ˜X2 ∪ ∂∞˜X2 to the closed disks obtained
by adding their circles at infinity to ˜X1 and ˜X2. The Beurling–Ahlfors Theorem addi-
tionally relates the quasiconformal properties of ˜f : ˜X1 → ˜X2 to another regularity
property for the boundary extension ˜f : ∂∞˜X1 → ∂∞˜X2, as we now explain.

A box Q ⊂ G(˜X1) is symmetric if its Liouville mass L
˜X1

(Q) is equal to log 2. This
property is better explained if we translate it to the disk by a biholomorphic diffeomor-
phism ˜X0 → D. Indeed, Lemma 11 shows that a box Q ⊂ G(D) is symmetric if and
only if it is the image ϕ

([1, i] × [−1,−i]) under a biholomorphic map ϕ ∈ H(D) of
the “standard” box [1, i]×[−1,−i] delimited by the points 1, i,−1,−i ∈ ∂D. Another
characterization is provided by the combination of Lemmas 11 and 12 , which shows
that a box Q is symmetric if and only if there is a biholomorphic diffeomorphism of
˜X1 sending Q to the orthogonal box Q⊥.

A homeomorphism ˜f : ∂∞˜X1 → ∂∞˜X2 is quasisymmetric if the supremum

M( ˜f ) = sup
Q symmetric

L
˜X

(

˜f (Q)
)

log 2
,

as Q ranges over all symmetric boxes Q ⊂ G(˜X1), is finite. By definition, M(h) is
the quasisymmetric constant of h.

Note that M( ˜f ) = 1 when ˜f comes from a biholomorphic diffeomorphism ˜X1 →
˜X2, and that in general M( ˜f ) � 1 by Lemma 12.

Remark 13 The quasisymmetry property is sometimes stated in a different way, by
restricting attention to homeomorphisms f : R → R and by requiring that the supre-
mum

H( f ) = sup{ | f (x+t)− f (x)|
| f (x)− f (x−t)| ; x, t ∈ R}
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be finite; to clarify the terminology, let us say that a homeomorphism f : R → R

satisfying this property is weakly quasi-symmetric (compare [35]). If we identify R∪
{∞} to S1 = ∂D by stereographic projection, a simple algebraic manipulation shows
that log(1+ H( f )) � M( f ). As a consequence, if the extensionR∪{∞} → R∪{∞}
of f : R → R is quasisymmetric, then f is weakly quasisymmetric. A consequence
of the proof [2] of the Beurling–Ahlfors Theorem 14 stated below is that the converse
holds, namely that the extensionR∪{∞} → R∪{∞} of a homeomorphism f : R →
R is quasisymmetric if and only if f is weakly quasisymmetric. Indeed, that proof
only uses the weak quasisymmetry property, whereas the boundary extension of a
quasiconformal diffeomorphism is quasisymmetric.

The following fundamental result connects quasiconformal diffeomorphisms
between Riemann surfaces and quasisymmetric homeomorphisms between their cir-
cles at infinity.

Theorem 14 (Beurling–Ahlfors) Let ˜X1 and ˜X2 be two simply connected conformally
hyperbolic Riemann surfaces. Every quasiconformal diffeomorphism ˜f : ˜X1 → ˜X2
admits a unique extension to a homeomorphism ˜X1 ∪ ∂∞˜X1 → ˜X2 ∪ ∂∞˜X2, whose
restriction ˜f : ∂∞˜X1 → ∂∞˜X2 to the circles at infinity is quasisymmetric. In addi-
tion, the quasisymmetric constant M( ˜f ) of ˜f : ∂∞˜X1 → ∂∞˜X2 tends to 1 as the
quasiconformal dilatation K ( ˜f ) of ˜f : ˜X1 → ˜X2 tends to 1.

Conversely, every quasisymmetric homeomorphism ˜f : ∂∞˜X1 → ∂∞˜X2 admits a
continuous extension ˜X1 ∪ ∂∞˜X1 → ˜X2 ∪ ∂∞˜X2, whose restriction ˜f : ˜X1 → ˜X2
is a quasiconformal diffeomorphism. In addition, the extension can be chosen so that
the quasiconformal dilatation K ( ˜f ) of ˜f : ˜X1 → ˜X2 is bounded by a constant K ′( ˜f )

depending only on the quasisymmetric constant M( ˜f ) of ˜f : ∂∞˜X1 → ∂∞˜X2, and
tending to 1 as M( ˜f ) tends to 1.

Proof See [2], [22, §II.6] or [17, §16], for instance.

Although the definition of a quasisymmetric homeomorphism ˜f : ∂∞˜X1 → ∂∞˜X2
involves only symmetric boxes, the quasisymmetry property actually controls the
Liouville mass L

˜X2

(

˜f (Q)
)

for all boxes Q ⊂ G(˜X1).

Proposition 15 If a homeomorphism ˜f : ∂∞˜X1 → ∂∞˜X2 is quasisymmetric, there
exists a homeomorphism ω : [0,∞[→ [0,∞[ depending only on the quasisymmetric
constant M( ˜f ) such that

L
˜X2

(

˜f (Q)
)

� ω
(

L
˜X1

(

Q)
)

for every box Q ⊂ G(˜X1).
In addition, the homeomorphism ω can be chosen so that it converges to the identity,

uniformly on compact subsets of the open interval ]0,∞[, as the quasisymmetric
constant M( ˜f ) tends to 1.

Proof Although there exists direct proofs of the first half of the statement (see for
instance [35]), it is easier to use the full force of the Beurling–Ahlfors Theorem 14.
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In addition to its Liouville mass L
˜X1

(Q), a box Q = [a, b] × [c, d] in G(˜X1)

has a more complex analytic invariant, its conformal modulus μ
˜X1

(Q). This is
defined as the number μ = μ

˜X1
(Q) for which there exists a homeomorphism

˜X1 ∪ ∂∞˜X1 → [0, μ] × [0, 1] that is conformal on ˜X and sends the corners a,
b, c, d ∈ ∂∞˜X of Q to the corners (0, 0), (μ, 0), (μ, 1), (0, 1) of the rectangle
[0, μ] × [0, 1] ⊂ R

2, respectively. These two invariants are classically related by an
increasing homeomorphism η : ]0,∞[ → ]0,∞[ such that μ

˜X1
(Q) = η

(

L
˜X1

(Q)
)

;
indeed, these two quantities depend continuously on the corners a, b, c, d of Q, they
both increase as Q gets larger, they tend to 0 as Q gets arbitrarily small, and they tend
to +∞ as Q gets arbitrarily large.

Let ˜f : ˜X1 → ˜X2 be the quasiconformal extension of ˜f : ∂∞˜X1 → ∂∞˜X2 provided
by Theorem 14. In particular, this quasiconformal extension can be chosen so that its
quasiconformal dilatation K ( ˜f ) is bounded by a constant K ′( ˜f ) depending only on the
quasisymmetric constant M( ˜f ), and tending to 1 as M( ˜f ) tends to 1. A fundamental
consequence of quasiconformality is that

μ
˜X2

(

˜f (Q)
)

� K ( ˜f ) μ
˜X1

(Q);

see for instance [1,22]. Proposition 15 then holds for the homeomorphism ω defined
by ω(t) = η−1

(

K ′( ˜f )η(t)
)

.

An immediate consequence of Proposition 15 is that, if ˜f : ∂∞˜X1 → ∂∞˜X2 is
quasisymmetric, so is its inverse ˜f −1 : ∂∞˜X2 → ∂∞˜X1.

We now have the tools to prove Lemma 7, a task which we had temporarily post-
poned. We rephrase this statement in the following way.

Lemma 16 Let ˜f : ˜X1 → ˜X2 be a quasiconformal diffeomorphism between two sim-
ply connected conformally hyperbolic Riemann surfaces. Then, for every continuous
function ξ : G(˜X1) → R with compact support, the supremum

sup
ϕ∈H(˜X1)

∣

∣

∣

∫

G(˜X1)

ξ ◦ ϕ d L
˜f

∣

∣

∣

is finite, where the supremum is taken over all biholomorphic diffeomorphisms
ϕ : ˜X1 → ˜X1 and where L

˜f is the pull back under ˜f of the Liouville measure L
˜X2

of
˜X2.

Proof Cover the support of ξ by finitely many boxes Q1, Q2, …, Qk ⊂ G(˜X1). Then,
for every ϕ ∈ H(˜X1)

∣

∣

∣

∫

G(˜X1)

ξ ◦ ϕ d L
˜f

∣

∣

∣ �
(

max
g∈G(˜X1)

|ξ(g)|
)

k
∑

i=1

L
˜f

(

ϕ−1(Qi )
)

�
(

max
g∈G(˜X1)

|ξ(g)|
)

k
∑

i=1

L
˜X2

(

˜f ◦ ϕ−1(Qi )
)

.
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Since ˜f : ∂∞˜X1 → ∂∞˜X2 is quasisymmetric, Proposition 15 provides a function ω

such that, for each box Qi ⊂ G(˜X1),

L
˜X2

(

˜f ◦ ϕ−1(Qi )
)

� ω
(

L
˜X1

(ϕ−1Qi )
) = ω

(

L
˜X1

(Qi )
)

.

This gives the uniform bound requested.

Theorem 14 provides a correspondence between quasiconformal diffeomorphisms
between simply connected Riemann surfaces and quasisymmetric homeomorphisms
between their boundaries at infinity. We will need a slight improvement of this corre-
spondence for maps between Riemann surfaces that are not simply connected.

Lift a quasiconformal map f : X1 → X2 to a quasiconformal diffeomorphism
˜f : ˜X1 → ˜X2 between universal covers, and consider the quasisymmetric extension
˜f : ∂∞˜X1 → ∂∞˜X2 provided by the first part of Theorem 14. The quasisymmetry
property is invariant under composition with biholomorphic maps of ˜X2 (as these
respect the Liouville measure L

˜X2
). It follows that the quasisymmetric constant M( ˜f )

is independent of the choice of the lift ˜f : ˜X1 → ˜X2. We will refer to M( ˜f ) as the
quasisymmetric constant M( f ) of the quasiconformal map f : X1 → X2.

The first part of Theorem 14 indicates that this quasisymmetric constant M( f ) is
close to 1 when the quasiconformal dilatation K ( f ) is close to 1. We will need the
following converse statement,which improves the second part of Theorem14by ensur-
ing that the quasiconformal extension ˜f : ˜X1 → ˜X2 comes from a quasiconformal
diffeomorphism f : X1 → X2.

Theorem 17 Let f : X1 → X2 be a quasiconformal diffeomorphism between con-
formally hyperbolic Riemann surfaces, and let M( f ) be its quasisymmetric constant.
Then, there is another quasiconformal diffeomorphism f ′ : X1 → X2 that is bounded
isotopic to f and whose quasiconformal dilatation K ( f ′) is bounded by a constant
depending only on the quasisymmetric constant M( f ) = M( f ′). In addition, f ′ can
be chosen so that its quasiconformal dilatation K ( f ′) tends to 1 as the quasisymmetric
constant M( f ) tends to 1.

Proof As usual, lift f to ˜f : ˜X1 → ˜X2, and consider the quasisymmetric exten-
sion ˜f : ∂∞˜X1 → ∂∞˜X2. A fundamental construction of Douady–Earle [9] provides
another continuous extension ˜f ′ : ˜X1 ∪ ∂∞˜X1 → ˜X2 ∪ ∂∞˜X2 of ˜f : ∂∞˜X1 → ∂∞˜X2
such that ˜f ′ : ˜X1 → ˜X2 is quasiconformal, which has the additional property that it is
equivariant with respect to the action of the biholomorphic diffeomorphisms of ˜X1 and
˜X2. Namely, for every biholomorphic diffeomorphism ϕ1 ∈ H(˜X1) and ϕ2 ∈ H(˜X2),
the Douady–Earle quasiconformal extension of ϕ1 ◦ ˜f ◦ ϕ2 : ∂∞˜X1 → ∂∞˜X2 is
ϕ1 ◦ ˜f ′ ◦ϕ2 : ˜X1 → ˜X2. In addition, we still have the property that the quasiconformal
constant K ( ˜f ′) of the Douady–Earle extension tends to 1 as the quasisymmetric con-
stant M( ˜f ) tends to 1 (although the bound is not as good as for the Beurling–Ahlfors
Theorem).

Applying the equivariance property to the (biholomorphic) actions of the funda-
mental group π1(X1) = π1(X2) on ˜X1 and ˜X2, it follows that ˜f ′ : ˜X1 → ˜X2 descends
to a quasiconformal map f ′ : X1 → X2. By construction, K ( f ′) = K ( ˜f ′) tends to 1
as M( f ) = M( ˜f ) tends to 1.
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By construction, the quasisymmetric extensions ˜f , ˜f ′ : ∂∞˜X1 → ∂∞˜X2 of the
quasiconformal maps ˜f , ˜f ′ : ˜X0 → ˜X coincide. A result of Earle–McMullen [11]
then shows that f and f ′ are bounded isotopic.

3.4 The Liouville embedding L : T(X0) → Cbd(X0) is injective

We are now ready to begin proving Theorem 8. We begin with the easier part.

Proposition 18 The Liouville embedding L : T(X0) → Cbd(X0) is injective.

Proof Suppose that L
([ f1]

) = L
([ f2]

)

for [ f1], [ f2] ∈ T(X0) represented by qua-
siconformal diffeomorphisms f1 : X0 → X1, f2 : X0 → X2. Lift f1, f2 to maps
˜f1 : ˜X0 → ˜X1, ˜f2 : ˜X0 → ˜X2 between universal covers, and consider the qua-
sisymmetric extensions ˜f1 : ∂∞˜X0 → ∂∞˜X1, ˜f2 : ∂∞˜X0 → ∂∞˜X2 provided by
Theorem 14.

Since L
([ f1]

) = L
([ f2]

)

, the homeomorphism ˜f2 ◦ ˜f −1
1 : ∂∞˜X1 → ∂∞˜X2 sends

the Liouville measure L
˜X1

to L
˜X2
. It follows that the quasisymmetric constant M( ˜f2 ◦

˜f −1
1 ) = M( f2◦ f −1

1 ) is equal to 1. By Theorem 17, it follows that f2◦ f −1
1 is bounded

isotopic to maps g : X1 → X2 whose quasiconformal dilatation K (g) is arbitrarily
close to 1. This proves that the Teichmüller distance dT

([ f1], [ f2]
)

is equal to 0, so
that [ f1] = [ f2] in T(X0) as required.

3.5 The Liouville embedding L : T(X0) → Cbd(X0) is continuous

We now prove a more substantial step in the proof of Theorem 8.

Proposition 19 The Liouville embedding L : T(X0) → Cbd(X0) is continuous, for the
Teichmüller topology on T(X0) and the uniform weak* topology on Cbd(X0).

Proof The Teichmüller space is endowedwith the topology defined by the Teichmüller
metric dT, and the uniform weak* topology on Cbd(X0) is metrizable by Lemma 4.
It therefore suffices to show that, for every sequence

{[ fn]}n∈N converging to [ f∞]
in T(X0), the sequence of Liouville geodesic currents L

([ fn]) = L fn converges to
L

([ f∞]) = L f∞ in Cbd(X0) for the uniform weak* topology. By definition of the
uniform weak* topology, this means that

sup
ϕ∈H(˜X0)

∣

∣

∣

∫

G(˜X0)

ξ ◦ ϕ d L fn −
∫

G(˜X0)

ξ ◦ ϕ d L f∞

∣

∣

∣ → 0 as n → ∞

for every continuous function ξ : G(˜X0) → R with compact support.
As a first step, we begin by proving a similar statement for boxes of geodesics in ˜X0.

Lemma 20 For every box Q ⊂ G(˜X0),

sup
ϕ∈H(˜X0)

∣

∣

∣L fn (ϕ(Q)) − L f∞(ϕ(Q))

∣

∣

∣ → 0 as n → ∞.
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Proof By definition of the Teichmüller topology, the classes [ fn], [ f∞] ∈ T(X0) can
be represented by quasiconformal maps fn : X0 → Xn and f∞ : X0 → X∞ such that
the quasiconformal constant K ( fn ◦ f −1∞ ) tends to 1 as n tends to ∞.

Lift fn and f∞ to quasiconformal maps ˜fn : ˜X0 → ˜Xn and ˜f∞ : ˜X0 → ˜X∞,
respectively, and consider their quasisymmetric extensions ˜fn : ∂∞˜X0 → ∂∞˜Xn and
˜f∞ : ∂∞˜X0 → ∂∞˜X∞ to the circles at infinity.
A first observation is that, as ϕ ∈ H(˜X0) ranges over all biholomorphic diffeomor-

phisms of ˜X0, the Liouville mass L
˜X0

(

ϕ(Q)
)

is constant by invariance of the Liouville
measure L

˜X0
under the action of H(˜X0). Applying Proposition 15 to the quasisym-

metric maps ˜f∞ and ˜f −1∞ then shows that L
˜X∞

(

˜f∞(ϕ(Q))
)

stays in a compact subset
of the interval ]0,∞[, independent of ϕ ∈ H(˜X0).

Since the quasiconformal dilatation K ( ˜fn ◦ ˜f −1∞ ) = K ( fn ◦ f −1∞ ) tends to 1, it
follows from Theorem 14 that the quasisymmetric constant M( ˜fn ◦ ˜f −1∞ ) of ˜fn ◦
˜f −1∞ : ∂∞˜X∞ → ∂∞˜Xn tends to 1 as n → ∞. By Proposition 15 and using the
property that L

˜X∞
(

˜f∞(ϕ(Q))
)

is bounded away from 0 and ∞, it follows that

lim sup
n→∞

L fn (ϕ(Q))

L f∞(ϕ(Q))
= lim sup

n→∞

L
˜Xn

(

˜fn ◦ ˜f −1∞
(

˜f∞(ϕ(Q))
)

)

L
˜X∞

(

˜f∞(ϕ(Q))
) � 1,

and this uniformly in ϕ ∈ H(˜X0).
Similarly, since K ( fn) � K ( fn ◦ f −1∞ )K ( f∞), the maps fn : X0 → Xn

are uniformly quasiconformal and, as above, the Liouville masses L fn

(

ϕ(Q)
) =

L
˜Xn

(

˜fn(ϕ(Q))
)

stay bounded away from 0 and ∞. Replacing ˜fn ◦ ˜f −1∞ by ˜f∞ ◦ ˜f −1
n

in the argument above gives that

lim sup
n→∞

L f∞(ϕ(Q))

L fn (ϕ(Q))
= lim sup

n→∞

L
˜X∞

(

˜f∞ ◦ ˜f −1
n

(

˜fn(ϕ(Q))
)

)

L
˜Xn

(

˜fn(ϕ(Q))
) � 1,

uniformly in ϕ ∈ H(˜X0).
Therefore,

lim
n→∞

L fn (ϕ(Q))

L f∞(ϕ(Q))
= 1

uniformly in ϕ ∈ H(˜X0). Since L f∞(ϕ(Q)) is uniformly bounded away from 0 and
∞, it follows that L fn (ϕ(Q)) tends to L f∞(ϕ(Q)) as n → ∞, and this uniformly in
ϕ ∈ H(˜X0). This proves Lemma 20.

We now return to the proof of Proposition 19. Consider a continuous test function
ξ : G(˜X0) → R with compact support.

We begin by covering the support of ξ by finitely many boxes Q1, Q2, …, Qm ⊂
G(˜X0).

For a number ε0 > 0 to be specified later, we then cover the support of ξ by finitely
many boxes Q′

1, Q′
2, …, Q′

m′ ⊂ G(˜X0), contained in the union of the boxes Qi and
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small enough that

∣

∣max
x∈Q′

i

ξ(x) − min
x∈Q′

i

ξ(x)
∣

∣ < ε0. (7)

After subdividing these boxes Q′
i = [ai , bi ] × [ci , di ], we can arrange that the boxes

Q′
i have disjoint interiors. We then approximate ξ by the step function

σ =
m′
∑

i=1

ξ(x∗
i )χQ′

i

where x∗
i is an arbitrary point of Q′

i and where χQ′
i
: G(˜X0) → R is the characteristic

function of Q′
i . By construction, |ξ − σ | � ε0 except possibly on the boundary of the

boxes Q′
i .

Then, for every ϕ ∈ H(˜X0),

∣

∣

∣

∫

G(˜X0)

(ξ ◦ ϕ − σ ◦ ϕ) d(L fn − L f∞)

∣

∣

∣

� ε0

m′
∑

i=1

(

L fn

(

ϕ−1(Q′
i )

) + L f∞
(

ϕ−1(Q′
i )

)

)

� ε0

m
∑

j=1

(

L fn

(

ϕ−1(Q j )
) + L f∞

(

ϕ−1(Q j )
)

)

(8)

using the properties that the boundary of a box has Liouville measure 0 and that
⋃m′

i=1 Q′
i is contained in

⋃m
j=1 Q j .

Similarly, once we have chosen the boxes Q′
i to approximate ξ by a step function,

Lemma 20 shows that

∣

∣

∣

∫

G(D)

(σ ◦ ϕ) d(L fn −L f∞)

∣

∣

∣

=
∣

∣

∣

m′
∑

i=1

ξ
(

ϕ(x∗
i )

)

(

L fn

(

ϕ−1(Q′
i )

) − L f∞
(

ϕ−1(Q′
i )

)

)∣

∣

∣

→ 0 as n → ∞,

(9)

and this uniformly in ϕ ∈ H(˜X0).
Suppose that we are given ε > 0, and that we have chosen the boxes Q j to cover

the support of ξ . Once this choice is made, Lemma 20 then shows that the term

m
∑

j=1

(

L fn

(

ϕ−1(Q j )
) + L f∞

(

ϕ−1(Q j )
)

)
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occurring on the last line of Eq. (8) is uniformly bounded. We can therefore pick a
number ε0 > 0 so that the contribution of (8) is less than ε/2. After choosing the
boxes Q′

i so that (7) holds for this ε0, the contribution of (9) will be less than ε/2 for
n sufficiently large. Combining (8) and (9), we conclude that

∣

∣

∣

∫

G(˜X0)

ξ ◦ ϕ d(L f∞ − L f∞)

∣

∣

∣ < ε

for n sufficiently large, and this uniformly in ϕ ∈ H(˜X0). This proves the continuity
property of Proposition 19.

3.6 The inverse map L−1 : L(T(X0)
) → T(X0) is continuous

Proposition 21 The inverse L−1 : L(

T(X0)
) → T(X0) of the Liouville embedding

L : T(X0) → Cbd(X0) is continuous, for the Teichmüller topology on T(X0) and for
the uniform weak* topology on Cbd(X0).

Proof Consider an element [ f∞] and a sequence {[ fn]}n∈N of elements of the Teich-
müller space T(X0) such that the Liouville currents L fn ∈ Cbd(X0) converge to L f∞
for the uniform weak* topology. We want to show that [ fn] converges to [ f∞] for the
Teichmüller topology of T(X0).

As usual, represent the class [ fn] ∈ T(X0) by quasiconformal maps fn : X0 → Xn ,
and consider their quasiconformal lifts ˜fn : ˜X0 → ˜Xn and quasisymmetric extensions
˜fn : ∂∞˜X0 → ∂∞˜Xn .

Lemma 22 The quasisymmetric constants M( fn) of the quasisymmetric maps
˜fn : ∂∞˜X0 → ∂∞˜Xn are uniformly bounded.

Proof We want to show that, as Q ⊂ G(˜X0) ranges over all symmetric boxes in ˜X0,
the Liouville masses L fn (Q) are uniformly bounded, independently of n and Q. For
this, choose a symmetric box Q0 ⊂ G(˜X0), and a test function ξ : G(˜X0) → R with
compact support such that ξ � 1 over the box Q0.

By definition of the uniform weak* topology,

∫

G(˜X0)

ξ ◦ ϕ d L fn →
∫

G(˜X0)

ξ ◦ ϕ d L f∞ as n → ∞

uniformly over all biholomorphic maps ϕ ∈ H(˜X0). The limit is uniformly bounded
by Lemma 16. It follows that the integrals

∫

G(˜X0)
ξ ◦ϕ d L fn are bounded by a constant

C independent of n and ϕ ∈ H(˜X0).
Every symmetric box Q ⊂ G(˜X0) is of the form ϕ−1(Q0) for some ϕ ∈ H(˜X0).

Then, since ξ � 1 over Q0,

L
˜Xn

(

˜fn(Q)
) = L fn (Q) = L fn (ϕ

−1(Q0)) �
∫

G(˜X0)

ξ ◦ ϕ d L fn � C

so that the quasisymmetric constant M( fn) = M( ˜fn) are bounded by C/ log 2.
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Lemma 23 The quasisymmetric constant M( fn ◦ f −1∞ ) converges to 1 as n tends to
∞.

Proof We will use a proof by contradiction. If the property does not hold, there exists
an ε0 > 0 and a subsequence

{[ fnk ]
}

k∈N such that M( fnk ◦ f −1∞ ) > 1 + ε0 for
every k. (Recall that the quasisymmetric constant is always greater than or equal
to 1). By definition of the quasisymmetric constant, this means that there exists a
symmetric box Q′

nk
in ˜X∞ such that L

˜Xnk

(

˜fnk ◦ ˜f −1∞ (Q′
nk

)
)

> (1 + ε0) log 2. We

then have a box Qnk = ˜f −1∞ (Q′
nk

) ⊂ G(˜X0) such that L f∞(Qnk ) = log 2 and
L fnk

(Qnk ) > (1 + ε0) log 2.

Fix three points a0, b0, c0 ∈ ∂∞˜X0, counterclockwise in this order. Then, there
exists a biholomorphic map ϕnk ∈ H(˜X0) such that the box ϕnk (Qnk ) is of the form
[a0, b0] × [c0, dnk ] for some point dnk in the open interval ]c0, a0[ ⊂ ∂∞˜X0.

Since ˜f∞ : ˜X0 → ˜X∞ is quasisymmetric and L f∞(Qnk ) = log 2, Proposition 15
shows that the Liouville mass L

˜X0
(ϕnk (Qnk )) = L

˜X0
(Qnk ) is bounded between two

positive constants. It then follows from Lemma 10 that the point dnk stays within a
compact subset of the interval ]c0, a0[. Refining the subsequence if necessary, we can
therefore assume that dnk converge to some point d∞ ∈ ]c0, a0[ as k tends to ∞. In
other words, the box ϕnk (Qnk ) converge to the box Q∞ = [a0, b0] × [c0, d∞] as k
tends to ∞.

For an ε > 0 to be specified later, choose intervals
]

a′
0, a′′

0

[

,
]

b′′
0 , b′

0

[

,
]

c′
0, c′′

0

[

and
]

d ′′∞, d ′∞
[ ⊂ ∂∞˜X0 respectively containing the points a0, b0, c0, d∞, and small enough

that the following property holds. The box Q∞ is contained in Q′∞ = [a′
0, b′

0] ×
[c′

0, d ′∞] and contains Q′′∞ = [a′′
0 , b′′

0 ]×[c′′
0 , d ′′∞]. By Lemma 22, the maps ˜fn : ˜X0 →

˜Xn are uniformly quasisymmetric. Therefore, noting that the closure of Q′∞ − Q′′∞ is
the union of the four boxes [a′

0, b′
0]×[c′

0, c′′
0 ], [a′

0, b′
0]×[d ′′∞, d ′∞], [a′

0, a′′
0 ]×[c′

0, d ′∞]
and [b′′

0 , b′
0] × [c′

0, d ′∞], we can use Proposition 15 to choose the intervals
]

a′
0, a′′

0

[

,
]

b′′
0 , b′

0

[

,
]

c′
0, c′′

0

[

and
]

d ′′∞, d ′∞
[

small enough that

L fn

(

ϕ(Q′∞ − Q′′∞)
)

< ε

and L f∞
(

ϕ(Q′∞ − Q′′∞)
)

< ε
(10)

for every n and every ϕ ∈ H(˜X0).
By construction, Q∞ is contained in the interior of Q′∞, and contains Q′′∞ in its

interior. Let ξ : G(˜X0) → [0, 1] be a continuous test function that is identically 1
on the box Q′′∞ and 0 outside of Q′∞. For k large enough, the box ϕnk (Qnk ) is very
close to Q∞ and therefore Q′′∞ ⊂ ϕnk (Qnk ) ⊂ Q′∞. As a consequence, χ

ϕ−1
nk (Q′′∞)

�
ξ ◦ ϕnk � χ

ϕ−1
nk (Q′∞)

and χ
ϕ−1

nk (Q′′∞)
� χQnk

� χ
ϕ−1

nk (Q′∞)
if χA : G(˜X0) → {0, 1}

denotes the characteristic function of the subset A ⊂ G(˜X0). It follows that for k
sufficiently large

∣

∣

∣

∫

G(˜X0)

ξ ◦ ϕnk d L fnk
− L fnk

(Qnk )

∣

∣

∣ � L fnk

(

ϕ−1
nk

(Q′∞ − Q′′∞)
)

< ε
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by (10), and

∫

G(˜X0)

ξ ◦ ϕnk d L fnk
> L fnk

(Qnk ) − ε

> log 2 + ε0 log 2 − ε

(11)

since the boxes Qnk were chosen so that L fn (Qnk ) > (1 + ε0) log 2.
Similarly,

∣

∣

∣

∫

G(˜X0)

ξ ◦ ϕnk d L f∞ − L f∞(Qnk )

∣

∣

∣ � L f∞
(

ϕ−1
nk

(Q′∞ − Q′′∞)
)

< ε

and
∫

G(˜X0)

ξ ◦ ϕnk d L f∞ < L f∞(Qnk ) + ε

< log 2 + ε

(12)

since L f∞(Qnk ) = log 2.
But, if we had chosen ε > 0 small enough that 2ε < ε0 log 2, the inequalities (11)

and (12) are incompatible with the fact that

∫

G(˜X0)

ξ ◦ ϕnk d L fnk
→

∫

G(˜X0)

ξ ◦ ϕnk d L f∞ as k → ∞

by uniform weak* convergence of L fnk
to L f∞ . This contradiction proves Lemma 23.

By the property of Lemma 23, Theorem 17 then shows that [ fn] ∈ T(X0) converges
to [ f∞] for the Teichmüller metric. This completes the proof of Proposition 21.

3.7 The image L
(
T(X0)

)
of the Liouville embedding is closed

Proposition 24 The image L
(

T(X0)
)

of the Liouville embedding L : T(X0) →
Cbd(X0) is closed in the space Cbd(X0) of bounded geodesic currents.

Proof As before, the metrizability property of Lemma 4 enables us to argue in terms
of sequences. Let [ fn] ∈ T(X0) be a sequence in the Teichmüller space such that
the associated Liouville geodesic currents L

([ fn]) = L fn converge to some geodesic
current α∞ ∈ Cbd(X0). We want to show that α∞ is also in the image L

(

T(X0)
)

.
As usual, lift the quasiconformal diffeomorphisms fn : X0 → Xn to maps

˜fn : ˜X0 → ˜Xn between universal covers, and consider the quasisymmetric exten-
sion ˜fn : ∂∞˜X0 → ∂∞˜Xn . Because the Liouville geodesic currents L fn converge to
α∞ for the uniform weak* topology and because the limit α∞ is bounded, the argu-
ment that we already used in the proof of Lemma 22 shows that the quasisymmetric
constants M( ˜fn) are uniformly bounded.
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Fix three points a0, b0, c0 in this order in the circle at infinity ∂∞˜X0. Then, there
is a unique biholomorphic map g̃n : ˜Xn → D sending ˜fn(a0) to 1, ˜fn(b0) to i and
˜fn(c0) to −1. The maps g̃n ◦ ˜fn : ∂∞˜X0 → ∂D are uniformly quasisymmetric, and
send the three points a0, b0, c0 to the fixed points 1, i, −1. It easily follows that these
maps g̃n ◦ ˜fn are equicontinuous, so that we can extract a subsequence g̃nk ◦ ˜fnk

that converges to a homeomorphism ˜f∞ : ∂∞˜X0 → ∂D for the topology of uniform
convergence (see for instance [22, §II.5] or [17, §16]).

By uniform quasisymmetry of the ˜fn , the limit ˜f∞ is quasisymmetric. Also, if
ϕ : ˜X0 → ˜X0 is the biholomorphic diffeomorphism of ˜X0 defined by an element
ϕ ∈ π1(X0) of the fundamental group, ˜f∞ ◦ ϕ ◦ ˜f −1∞ = limk→∞ ˜fnk ◦ ϕ ◦ ˜f −1

nk
is a

linear fractional map that is the restriction to ∂D of a biholomorphic diffeomorphism
of D. As ϕ ranges over all elements of π1(X0), these ˜f∞ ◦ ϕ ◦ ˜f −1∞ define a discrete
biholomorphic action of π1(X0) on D, and we can consider the Riemann surface
X∞ = D/π1(X0).

The Douady–Earle Extension Theorem [9] (see also our proof of Theorem 17)
then provides a quasiconformal extension ˜f∞ : ˜X0 → D of f∞ : ∂∞˜X0 → ∂D that
commutes with the actions of π1(X0) on ˜X0 and D, and therefore descends to a
quasiconformal map f∞ : X0 → X∞ = D/π1(X0).

The uniform convergence of g̃nk ◦ ˜fnk to ˜f∞ as k → ∞ does not imply that
[ fnk ] ∈ T(X0) necessarily converges to [ f∞] for the Teichmüller topology. However,
it is enough to guarantee that the pullback L f∞ of the Liouville measure LD by ˜f∞
is the weak* limit of the pullback of LD by g̃nk ◦ ˜fnk , which also is the pullback L fnk

of L
˜Xnk

by ˜fnk . Therefore α∞ ∈ Cbd(X0), which was defined as the uniform weak*

limit of the Liouville geodesic currents L fn , is equal to L f∞ = L
([ f∞]). In particular,

α∞ is in the image of L, as requested.

3.8 The Liouville embedding is proper

Proposition 25 The Liouville embedding L : T(X0) → Cbd(X0) is proper.

Proof Recall that a map is proper if the preimage of a bounded set is bounded. We
therefore need to prove the following property: Let B be a subset of T(X0) such that

sup
[ f ]∈B

sup
ϕ∈H(˜X0)

∣

∣

∣

∫

G(˜X0)

ξ ◦ ϕ d L f

∣

∣

∣ � C(ξ)

for every continuous function ξ : G(˜X0) → R with compact support and for some
constantC(ξ) depending on ξ ; then B is bounded for the Teichmüller metric of T(X0).

For such a subset B, choose a symmetric box Q0 ⊂ G(˜X0) and a non-negative
function ξ : G(˜X0) → R with compact support such that ξ � 1 over the box Q0.
Then, as in the proof of Lemma 22, L f (Q) � C(ξ) for every symmetric box Q and
every [ f ] ∈ B, and the quasisymmetric constants M( f ) are uniformly bounded over
B. By Theorem 17, this proves that B is bounded by the Teichmüller metric.
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The combination of Propositions 19, 21, 24 and 25 proves Theorem 8, namely that
the Liouville embedding L : T(X0) → Cbd(X0) is proper and induces a homeomor-
phism between T(X0) and a closed subset of Cbd(X0).

We are going to need a slightly stronger version of this result.

3.9 The projectivization of the Liouville embedding

The group R
+ of positive real numbers acts by multiplication on the space Cbd(X0)

of bounded geodesic currents. Let PCbd(X0) = (

Cbd(X0) − {0})/R+ be the quotient
of Cbd(X0) − {0} under this action. We endow the space PCbd(X0) with the quotient
of the uniform weak* topology of Cbd(X0).

The elements ofPCbd(X0) are projective bounded geodesic currents in theRiemann
surface X0.

Composing the Liouville embedding L : T(X0) → Cbd(X0) with the projection
Cbd(X0) → PCbd(X0) gives a continuous map PL : T(X0) → PCbd(X0), which we
call the projective Liouville embedding. The following result shows that this projective
Liouville embedding is really an embedding.

Theorem 26 The map PL : T(X0) → PCbd(X0) induces a homeomorphism between
the Teichmüller spaceT(X0) and a subset of the spacePCbd(X0) of projective bounded
geodesic currents.

Proof ThemapPL : T(X0) → PCbd(X0) is injective. Indeed, ifPL
([ f1]

) = PL
([ f2]

)

in PCbd(X0), the Liouville current L
([ f2]

) = L f2 is equal to tL
([ f1]

) = t L f1 in
Cbd(X0) for some number t > 0. The property of Lemma 12, that

e−L f (Q) + e−L f (Q⊥) = 1

for every [ f ] ∈ T(X0) and every box Q ⊂ G(˜X0)with orthogonal box Q⊥, then shows
that necessarily t = 1. The injectivity of PL : T(X0) → PCbd(X0) then follows from
the injectivity of the Liouville embedding L : T(X0) → Cbd(X0) (Proposition 18).

The projective Liouville embedding PL was defined as the composition of two
continuous maps, and is consequently continuous. Therefore, we only have to show
that its inverse PL−1 : PL(

T(X0)
) → T(X0) is continuous.

For this, consider a sequence of points [ fn] ∈ T(X0) such that limn→∞ PL
([ fn]

) =
PL

([ f∞]) inPCbd(X0) for some [ f∞] ∈ T(X0).Wewant to show that limn→∞[ fn] =
[ f∞] in T(X0).

By definition of the quotient topology, the property that limn→∞ PL
([ fn]) =

PL
([ f∞]) means that there exists a sequence rn ∈ R

+ such that 1
rn
L

([ fn]) = 1
rn

L fn

converges toL
([ f∞]) = L f∞ in Cbd(X0), for the uniform weak* topology. In particu-

lar, 1
rn

L fn converges to L f∞ for the (non uniform) weak* topology and, by Lemma 6,

it follows that 1
rn

L fn (Q) converges to L f∞(Q) for every box Q ⊂ G(˜X0). Another
application of Lemma 12 then shows that necessarily limn→∞ rn = 1.

As a consequence, limn→∞ L
([ fn]

) = L
([ f∞]) in Cbd(X0). Since the inverse

map L−1 : L(

T(X0)
) → T(X0) is continuous by Proposition 21, if follows that

limn→∞[ fn] = [ f∞] in T(X0) as required.
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4 A boundary for the Teichmüller space

4.1 Measured geodesic laminations

A measured geodesic lamination in the Riemann surface X0 is a geodesic current
α ∈ C(X0) such that:

(1) α is balanced, in the sense that it is invariant under the involution τ : G(˜X0) →
G(˜X0) that reverses the orientation of each geodesic g ∈ G(˜X0);

(2) any two distinct geodesics g, g′ of the support Supp(α) ⊂ G(˜X0) are disjoint in
˜X0, unless g′ = τ(g);

By equivariance of α, its support is invariant under the action of π1(X0) and there-
fore descends to a geodesic lamination λα in X0, namely to a family of disjoint simple
complete geodesics (for the Poincaré metric of X0) whose union forms a closed subset
of X0. Recall that a geodesic is complete if it cannot be extended to a longer geodesic,
and that it is simple if it does not transversely intersect itself.

Beware that, in contrast to the classical case where X0 is compact, the union of the
geodesics of the geodesic lamination λα can have nonempty interior in X0, and that
this subset can have several decompositions as a union of pairwise disjoint complete
geodesics.

Ameasured geodesic lamination is bounded if it is bounded as a geodesic current, as
defined in Sect. 2. LetMLbd(X0) ⊂ Cbd(X0) denote the space of bounded measured
geodesic laminations in the Riemann surface X0.

4.2 The Thurston boundary of T(X0)

As in Sect. 3.9, consider the projective Liouville embeddingPL : T(X0) → PCbd(X0)

from the Teichmüller space T(X0) to the space PCbd(X0) of projective bounded
geodesic currents. We saw in Theorem 26 that PL induces a homeomorphism from
T(X0) to its image PL

(

T(X0)
) ⊂ PCbd(X0).

By analogy with the case where X0 is compact, we define the Thurston boundary
of T(X0) as the boundary of this embedding, namely as the set of points of PCbd(X0)

that are in the closure of PL
(

T(X0)
)

but are not contained in PL
(

T(X0)
)

.
Our next goal is to describe this closure. Note that the spaceMLbd(X0) of bounded

measured geodesic laminations is invariant under the action of R+ on Cbd(X0). It
therefore makes sense to consider its imagePMLbd(X0) = (

MLbd(X0)−{0})/R+ in
PCbd(X0). By definition, the points of PMLbd(X0) are projective bounded measured
geodesic laminations in X0.

Proposition 27 The Thurston boundary of the Teichmüller space T(X0) is contained
in the space PMLbd(X0) of projective bounded measured geodesic laminations.

Proof Let α ∈ Cbd(X0) be a bounded geodesic current whose image 〈α〉 ∈ PCbd(X0)

is in the Thurston boundary. In particular, 〈α〉 is in the closure of PL
(

T(X0)
)

, and
there exists a sequence [ fn] ∈ T(X0) and numbers tn > 0 such that

α = lim
n→∞

1

tn
L

([ fn]
) = lim

n→∞
1

tn
L fn .

123



F. Bonahon, D. Šarić

We claim that tn → ∞ as n → ∞. Indeed, we would otherwise find a subsequence
tnk converging to some t∞ � 0 as k → ∞. Then, t∞α = limk→∞ L fnk

would belong

to L
(

T(X0)
)

since this image is closed by Theorem 8. Note that t∞ cannot be equal
to 0, as otherwise L

(

T(X0)
)

would contain the trivial geodesic current 0 ∈ Cbd(X0)

while Liouville currents clearly are never trivial. But it cannot be different from 0
either, as this would otherwise contradict the fact that 〈α〉 is not allowed to belong to
PL

(

T(X0)
)

, by definition of the Thurston boundary.
Now suppose, in search of a contradiction, that α is not a measured geodesic lam-

ination. This means that the support of α contains two geodesics g, g′ ∈ G(˜X0)

that cross each other in ˜X0. We can then find a box Q ⊂ G(˜X0) containing g in
its interior such that the orthogonal box Q⊥ contains g′ in its interior (possibly after
reversing the orientation of g′). In particular, α(Q) > 0 and α(Q⊥) > 0. In addition,
by countable additivity of α, we can choose the points of ∂∞˜X0 delimiting Q so that
α(∂ Q) = α(∂ Q⊥) = 0. Then, by weak* convergence (see Lemma 6),

α(Q) = lim
n→∞

1

tn
L fn (Q) and α(Q⊥) = lim

n→∞
1

tn
L fn (Q⊥),

so that

lim
n→∞ L fn (Q) = lim

n→∞ L fn (Q⊥) = ∞

since we established that tn → ∞ as n → ∞. But this contradicts Lemma 12, and
the fact that e−L fn (Q) + e−L fn (Q⊥) = 1.

Therefore, the support of α is a geodesic lamination, and 〈α〉 belongs to the space
PMLbd(X0) of projective bounded measured geodesic laminations.

We prove the converse of Proposition 27 as Corollary 31 in the next section. The
combination of these two statements will show:

Theorem 28 The Thurston boundary of the Teichmüller space T(X0) is exactly equal
to the space PMLbd(X0) of projective bounded measured geodesic laminations.

5 Earthquakes

We will use earthquakes as a tool to show that every projective bounded measured
geodesic lamination is contained in the Thurston boundary ofT(X0). The key technical
step is Theorem 30 below, which is of independent interest.

5.1 Earthquakes

Let λ be a geodesic lamination in the Riemann surface X0, namely a family of disjoint
simple complete geodesics in X0 whose union is closed in X0. Let˜λ ⊂ G(˜X0) consist
of those geodesicswhich project to one of the geodesics ofλ. In particular,˜λ is invariant
under the involution τ : G(˜X0) → G(˜X0) that acts by reversing the orientation of each
geodesic. A simple argument also shows that˜λ is closed in G(˜X0).
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If [ f ], [ f ′] ∈ T(X0) are two points of the Teichmüller space of X0, we say that
[ f ′] is obtained from [ f ] by a left earthquake along λ if

L f (Q) � L f ′(Q)

for every box of geodesics Q = [a, b] × [c, d] ⊂ G(˜X0) such that {a, c} ∈ ∂∞˜S are
the endpoints of one of the geodesics of˜λ.

Thurston [33] shows how to quantify the increase in Liouville masses by a measure
on the closed subset˜λ ⊂ G(˜X0), namely by a measure α on G(˜X0) whose support is
contained in˜λ. In addition, α is invariant under the action of the fundamental group
π1(X0), and consequently is a measured geodesic lamination. A subtler consequence
of the fact that f is quasiconformal is that α is bounded; see [12,16,28,29,33].

Thurston also introduced an inverse construction [10,33] which, given a point
[ f ] ∈ T(X0) and a bounded measured geodesic lamination α ∈ MLbd(X0), pro-
duces another element [ f ′] ∈ T(X0) that is obtained from [ f ] by a left earthquake
along the support λα of α, with amplitude determined by the measure α. We then write
that [ f ′] = Eα[ f ].

Finally, Thurston shows [33] that for any two [ f ], [ f ′] ∈ T(X0) there exists a
unique α ∈ MLbd(X0) such that [ f ′] = Eα[ f ]. See also [21].
Remark 29 We should emphasize the close relationship between the boundedness
property for measured geodesic laminations and the quasiconformal geometry under-
lying the Teichmüller space. Thurston’s construction [33] makes sense in the broader
context of diffeomorphisms f : X0 → X whose lift to universal covers continuously
extends to a homeomorphism ∂∞˜X0 → ∂∞˜X . These are not necessarily quasiconfor-
mal, so that they do not necessarily define an element [ f ] ∈ T(X0), but the equivalence
relation defining the Teichmüller space makes sense in this more general context.
Thurston shows that any two such f : X0 → X and f ′ : X0 → X ′ are related by
an earthquake, namely that [ f ′] = Eα[ f ] for some measured geodesic lamination
α which is not necessarily bounded. However, when X0 is noncompact, there is no
easy characterization of which measured geodesic laminations α ∈ ML(X0) occur in
this way. The results mentioned above show that, when f is quasiconformal, Eα[ f ]
is well-defined and realized by a quasiconformal diffeomorphism f ′ precisely when
α is bounded.

This distinction is of course irrelevantwhen X0 is compact, as every diffeomorphism
f : X0 → X is then quasiconformal, and every measured geodesic lamination is
bounded by Proposition 5.

For a bounded measured geodesic lamination α ∈ MLbd(X0) and a number t > 0,
let tα be the bounded measured geodesic lamination obtained by multiplying the
measure α by t . The following theorem investigates the behavior of Etα[ f ] ∈ T(X0)

under the Liouville embedding L : T(X0) → Cbd(X0).

Theorem 30 Let α ∈ MLbd(X0) be a bounded measured geodesic lamination in the
Riemann surface X0. Then, for every [ f ] ∈ T(X0),

lim
t→∞

1

t
L

(

Etα[ f ]) = α
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for the uniform weak* topology on the space Cbd(X0) of geodesic currents.

The proof of Theorem 30 will occupy the rest of this section. However, it has the
following immediate corollary, which completes the proof of Theorem 28.

Corollary 31 The space PMLbd(X0) of projective bounded measured geodesic lami-
nations is contained in the Thurston boundary of the Teichmüller space T(X0).

Proof Theorem30 shows that every projective boundedmeasured geodesic lamination
〈α〉 ∈ PMLbd(X0) is in the closure of the image of the projective Liouville embedding
PL : T(X0) → PCbd(X0). A Liouville geodesic current has full support in G(˜X0),
and a measured geodesic lamination cannot have full support. It follows that 〈α〉 ∈
PMLbd(X0) does not belong to the imagePL

(

T(X0)
)

, and therefore is in the Thurston
boundary of T(X0) by definition of this boundary.

5.2 Elementary earthquakes

The construction of the earthquake deformations Eα[ f ] is based on the following
special case.

Let ˜X0 be a simply connected conformally hyperbolic Riemann surface. (We are
using a tilde in the notation to remind the reader that the surface is simply connected,
and therefore equal to its universal cover.) In particular, ˜X0 is biholomorphically
equivalent to the disk D.

For a geodesic g ∈ G(˜X0) and a number t ∈ R, the elementary earthquake of
amplitude t along g is the homeomorphism Et

g : T(˜X0) → T(˜X0) defined as follows.
Let [ f ] ∈ T(˜X0) be a point in the Teichmüller space of ˜X0, represented by a quasi-

conformal diffeomorphism f : ˜X0 → ˜X1. If g1 is the geodesic of ˜X1 that is the image
of g under the map f : G(˜X0) → G(˜X1) induced by f , and let ϕt : ˜X1 → ˜X1 be
the hyperbolic isometry that preserves g1 and acts by translation of t ∈ R along g1
for the orientation of g1. Then Et

g[ f ] ∈ T(˜X0) is represented by any quasiconformal
extension of the quasisymmetric homeomorphism Et

g f : ∂∞˜X0 → ∂∞˜X1 that coin-
cides with f on the component of ∂∞˜X0 − ∂g that sits to the left of g, and with ϕt ◦ f
on the other component of ∂∞˜X0 − ∂g. Equivalently, Et

g[ f ] is represented by the

quasisymmetric homeomorphism ϕ−1
t ◦ Et

g f : ∂∞˜X0 → ∂∞˜X1 that coincides with

ϕ−1
t ◦ f on the component of ∂∞˜X0 − ∂g that sits to the left of g, and with f on the

other component of ∂∞˜X0 − ∂g.
From the fact that ϕt is an isometry of ˜X1, it easily follows that reversing the

orientation of the geodesic g does not change Et
g[ f ] ∈ T(˜X0).

General earthquakes Eα : T(˜X0) → T(˜X0) are constructed from elementary earth-
quakes as follows.

First consider the case where δ ∈ MLbd(˜X0) is a Dirac measure with finite support
{g1, g2, . . . , gk, ḡ1, ḡ2, . . . , ḡk} ⊂ G(˜X0), where ḡi = τ(gi ) is obtained by reversing
the orientation of the geodesic gi ∈ G(˜X0). Then, Eδ is defined as

Eδ = Ed1
g1 ◦ Ed2

g2 ◦ · · · ◦ Edk
gk
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Fig. 1 The arrows indicate the
direction in which the endpoints
of g can be moved in order to
increase L Et

g [ f ](Q) when t > 0

(b)(a)

a b

cd

a b

cd

x

x

y

yg g

where di = δ
({gi }

) = δ
({ḡi }

)

. Note that the elementary earthquakes Edi
gi : T(˜X0) →

T(˜X0) commute because the geodesics gi are disjoint.
In the general case, we approximate the measured geodesic lamination α ∈

MLbd(˜X0) by Dirac measures δ as above, and define

Eα[ f ] = lim
δ→α

Eδ[ f ]

for every [ f ] ∈ T(˜X0), where the limit is taken as the Dirac measure δ tends to α for
the weak* topology. The boundedness of α is used to show that the limit really exists.
See [10,28,33] for details.

When ˜X0 is the universal cover of a conformally hyperbolic Riemann surface X0
and when α ∈ MLbd(X0) ⊂ MLbd(˜X0), the above construction is equivariant with
respect to the action of π1(X0) on T(˜X0), and the earthquake Eα : T(˜X0) → T(˜X0)

therefore descends to a continuous map Eα : T(X0) → T(X0).

5.3 Two lemmas on elementary earthquakes

We will make frequent use of the following two lemmas.

Lemma 32 Let Q = [a, b]×[c, d] be a box of geodesics in G(˜X0), and let g ∈ G(˜X0)

be a geodesic with endpoints x, y ∈ ∂∞˜X0 − {a, b, c, d}. Consider the image Et
g[ f ]

of [ f ] ∈ T(˜X0) under the elementary earthquake of amplitude t > 0 along g.

(0) If x and y are in the same component of ∂∞˜X0 − {a, b, c, d}, then L Et
g[ f ](Q) =

L [ f ](Q) is independent of x and y.
(a) It x ∈ ]a, b[ and y ∈ ]c, d[ as in Fig. 1a, L Et

g[ f ](Q) is a decreasing function of

x and y for the boundary orientation of ∂∞˜X0.
(b) It x ∈ ]b, c[ and y ∈ ]d, a[ as in Fig. 1b, L Et

g[ f ](Q) is an increasing function of
x and y.

The statement is expressed in a more pictorial way by Fig. 1.

Proof of Lemma 32(0) If x and y are in the same component of ∂∞˜X0−{a, b, c, d}, let
[ f ] be represented by a quasisymmetric homeomorphism f : ∂∞˜X0 → ∂∞˜X1. Then,
by definition of the elementary earthquake, Et

g[ f ] is represented by a quasisymmetric
homeomorphism Et

g f that coincides with f at the points a, b, c, d. If follows that
Et

g f (Q) = f (Q) in G(˜X1), so that L Et
g[ f ](Q) = L [ f ](Q).
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Proof of Lemma 32(a) In this second case (a),we can represent [ f ]by a quasiconformal
diffeomorphism f : ˜X0 → H valued in the upper half-space

H = {z ∈ C; Im(z) > 0}.

In addition, we can arrange that f (y) = ∞, and set α = f (a), β = f (b), γ = f (c),
δ = f (d) and ξ = f (x). Note that δ < α < ξ < β < γ in R.

Then, by Lemma 10,

L [ f ](Q) = LH

([α, β] × [γ, δ]) = log
(α − γ )(β − δ)

(α − δ)(β − γ )
.

Also, the hyperbolic isometry ofH that acts by translation of t along the geodesic ξ∞
is the map z 	→ et z + ξ − etξ . Therefore

d

dξ
L Et

g[ f ](Q) = d

dξ
log

(α − etγ − ξ + etξ)(etβ + ξ − etξ − δ)

(α − δ)(etβ − etγ )

= −1 + et

α − etγ − ξ + etξ
+ 1 − et

etβ + ξ − etξ − δ

= 1 − et

(ξ − α) + et (γ − ξ)
+ 1 − et

et (β − ξ) + (ξ − δ)
< 0

where the inequality comes from the fact that δ < α < ξ < β < γ and t > 0.
It follows that L Et

g[ f ](Q) is a decreasing function of ξ = f (x) ∈ R, and therefore

of the endpoint x ∈ ∂∞˜X0 of the geodesic g.
By symmetry, L Et

g[ f ](Q) is also a decreasing function of the endpoint y.

Proof of Lemma 32(b) Consider the orthogonal box Q⊥ of Q. Case (a) shows that
L Et

g[ f ](Q⊥) is a decreasing function of the endpoints x and y. The relation between

L Et
g[ f ](Q) and L Et

g[ f ](Q⊥) provided by Lemma 12 then shows that L Et
g[ f ](Q) is an

increasing function of x and y.

Lemma 33 Let Et
ac : T(˜X0) → T(˜X0) be the elementary earthquake associated to the

diagonal geodesic ac of the box Q = [a, b] × [c, d]. Then, for every [ f ] ∈ T(˜X0)

and every t > 0,

t + log
(

eL[ f ](Q) − 1
)

< L Et
ac[ f ](Q) < t + L [ f ](Q).

Proof Represent the class [ f ] ∈ T(˜X0) by a quasiconformal map f : ˜X0 → H such
that f (a) = 0, f (b) = β, f (c) = ∞ and f (d) = −1. Then, as in the proof of
Lemma 32(a) (with α = ξ = 0, γ = η = ∞ and δ = −1),

L Et
ac[ f ](Q) = log(etβ + 1).

In particular, the case t = 0 gives that β = eL[ f ](Q) − 1.
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Then, because t > 0,

L Et
ac[ f ](Q) = t + log(β + e−t ) < t + log(β + 1) = t + L [ f ](Q)

while

L Et
ac[ f ](Q) = t + log(β + e−t ) > t + log(β) = t + log

(

eL[ f ](Q) − 1
)

.

5.4 Simple convergence on boxes

This section is devoted to proving Lemma 35, which is a key technical step in the
proof of Theorem 30. As a warm-up, we begin with a simpler statement.

It will be convenient to say that, for a geodesic current α ∈ Cbd(˜X0), the box
Q = [a, b] × [c, d] is α-generic if the subset of G(˜X0) consisting of those geodesics
with one endpoint in {a, b, c, d} has α-mass 0. Using the countable additivity of
α, there can be at most countably many x ∈ ∂∞˜X0 such that the set of geodesics
passing through x has positive α-mass. As a consequence, every box can be arbitrarily
approximated by an α-generic box.

Lemma 34 Let α ∈ MLbd(X0) be a bounded measured geodesic lamination. Then,
for every α-generic box Q ⊂ G(˜X0),

lim
t→+∞

1

t
L

(

Etα[ f ])(Q) = α(Q).

Proof As usual, let the box Q be described as Q = [a, b] × [c, d] with a, b, c,
d ∈ ∂∞˜X0.

We will split the proof into several steps.
Step 1. lim inf t→+∞ 1

t L
(

Etα[ f ])(Q) � α(Q).
We only need to consider the case where α(Q) > 0.
Then, because of the hypothesis that Q is α-generic, there is a strictly smaller box

Q′ = [a, b′] × [c, d ′] such that a < b′ < b, c < d ′ < d and α(Q′) is arbitrarily close
to α(Q). Since α(Q′) is close to α(Q) > 0 it is different from 0, and Q′ meets the
support of α. Among the (disjoint) geodesics of the support of α that are contained in
Q′, let a′′d ′′ be the one that is closest to the interval [d ′, a] ⊂ ∂∞˜X0, and let b′′c′′ be
the one closest to [b′, c], in such a way that a � a′′ � b′′ � b′ and c � c′′ � d ′′ � d ′.
See Fig. 2.

We now consider the box Q′′ = [a′′, b] × [c′′, d]. Our construction is specially
designed that the geodesics g of the support of α are of four distinct types with respect
to Q′′ = [a′′, b] × [c′′, d]:
(1) g has both endpoints in the closure of the same component of ∂∞˜X0 −

{a′′, b, c′′, d};
(2) g has one endpoint in [a′′, b] and one endpoint in [b, c′′];
(3) g has one endpoint in [c′′, d] and one endpoint in [d, a];
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Fig. 2 Step 1 of the proof of
Lemma 34

a b

cd

a b
b

cd d

(4) g has one endpoint in [a′′, b] and another endpoint in [c′′, d].
Indeed, the presence of the geodesics a′′d ′′ and b′′c′′ in the support of α excludes all
other cases.

We can therefore decompose α as a sum of measured geodesic laminations

α = αo + αb + αd + αQ′′

where

• the support of αb consists of geodesics of type (2), which encircle the point b;
• the support of αd consists of geodesics of type (3), which encircle the point d;
• the support of αQ′′ consists of geodesics of type (4), which are contained in the
box Q′′ (after a possible orientation reversal);

• the support of αo consists of geodesics of type (1) (where o stands for “other”).

This decomposes the earthquake Etα : T(˜X0) → T(˜X0) as a composition

Etα = Etαo ◦ Etαd ◦ Etαb ◦ EtαQ′′ .

For notational convenience, set [ f1] = EtαQ′′ [ f ], [ f2] = Etαb [ f1], [ f3] = Etαd [ f2]
and [ f4] = Etαo [ f3] = Etα[ f ].

We begin by estimating L
([ f1]

)

(Q′′) = L
(

EtαQ′′ [ f ])(Q′′).
If we approximate the measured lamination αQ′′ by a Dirac measure supported on

a finite set {g1, g2, . . . , gk, ḡ1, ḡ2, . . . , ḡk} of disjoint geodesics in the support of αQ′′

and assigning mass ai > 0 to the atom gi , then by construction Etα′′
Q is approximated

by the product of elementary earthquakes

Eta1
g1 ◦ Eta1

g2 ◦ · · · ◦ Etan
gn

.

By definition of a′′ and c′′, the geodesics of the support of αQ′′ actually have one
endpoint in [a′′, b′′] ⊂ [a′′, b′] and one endpoint in [c′′, d ′′] ⊂ [c′′, d ′]. Lemma 32(a)
shows that, for each such geodesic g,

L
(

Eu
g [ f ′])(Q) � L

(

Eu
b′d ′ [ f ′])(Q)
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for every [ f ′] ∈ T(˜X0) and every u > 0. It follows that

L
(

Eta1
g1 Eta1

g2 . . . Etan
gn

[ f ])(Q′′) � L
(

Et(a1+a2+···+an)

b′d ′ [ f ])(Q′′)

and, passing to the limit as we improve the approximation of αQ′′ by Dirac measures,
that

L
([ f1]

)

(Q′′) = L
(

EtαQ′′ [ f ])(Q′′) � L
(

Etα(Q′′)
b′d ′ [ f ])(Q′′)

for every t > 0.
The box Q′′ = [a′′, b]×[c′′, d] contains the box Q′′′ = [b′, b]×[d ′, d]. Lemma 33

then shows that

L
([ f1]

)

(Q′′) � L
(

Etα(Q′′)
b′d ′ [ f ])(Q′′) � L

(

Etα(Q′′)
b′d ′ [ f ])(Q′′′)

� tα(Q′′) + log
(

eL[ f ](Q′′′) − 1
)

.
(13)

After this estimate for L
([ f1]

)

(Q′′), we now consider [ f2] = Etαb [ f1]. By con-
struction, the Liouville current L

([ f2]
) = L

(

Etαb [ f1]
)

is the pullback of L
([ f1]

)

by a homeomorphism of G(˜X0) that sends Q′′ = [a′′, b] × [c′′, d] to a larger box
Q′′

1 = [a′′, b1] × [c′′, d] with b � b1 < c′′. Therefore,

L
([ f2]

)

(Q′′) = L
(

Etαb [ f1]
)

(Q′′) = L
([ f1]

)

(Q′′
1) � L

([ f1]
)

(Q′′) (14)

since Q′′
1 contains Q′′.

Similarly,

L
([ f3]

)

(Q′′) = L
(

Etαd [ f2]
)

(Q′′) � L
([ f2]

)

(Q′′). (15)

Finally, L
([ f4]

) = L
(

Etαo [ f3]
)

is the pullback of L
([ f3]

)

by a homeomorphism
of G(˜X0) that sends Q′′ to itself. Therefore

L
([ f4]

)

(Q′′) = L
([ f3]

)

(Q′′). (16)

Combining Eqs. (13–16), we conclude that

L
(

Etα[ f ])(Q) � L
(

Etα[ f ])(Q′′) = L
([ f4]

)

(Q′′) � tα(Q′′) + log
(

eL[ f ](Q′′′) − 1
)

. (17)

We now use the key property that b′ < b and d ′ < d, so that the box Q′′′ =
[b′, b] × [d ′, d] has nonempty interior and L [ f ](Q′′′) > 0. It consequently follows
from (17) that

lim inf
t→+∞

1

t
L

(

Etα[ f ])(Q) � α(Q′′).
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By definition of the box Q′′, its mass α(Q′′) for the measured lamination α is equal
to α(Q′). Also, because Q is α-generic, the box Q′ = [a, b′] × [c, d ′] can be chosen
so that α(Q′) is arbitrarily close to α(Q). It follows that

lim inf
t→+∞

1

t
L

(

Etα[ f ])(Q) � α(Q),

which completes the proof of this Step 1.
Step 2. If α(Q) > 0, then lim supt→+∞ 1

t L
(

Etα[ f ])(Q) � α(Q).
The property that α(Q) > 0 prevents any geodesic of the support of α from having

one endpoint in [b, c] and one endpoint in [d, a]. As in Step 1, we can therefore break
down α as a sum of measured laminations

α = αQ + αa + αb + αc + αd + αo

where

• each geodesic of the support of αQ has one endpoint in [a, b] and one endpoint in
[c, d], and therefore belongs to Q = [a, b] × [c, d] after a possible orientation-
reversal;

• each geodesic of the support of αa has one endpoint in [d, a] and one endpoint in
[a, b], and therefore encircles a;

• each geodesic of the support of αb has one endpoint in [a, b] and one endpoint in
[b, c], and therefore encircles b;

• each geodesic of the support of αc has one endpoint in [b, c] and one endpoint in
[c, d], and therefore encircles c;

• each geodesic of the support of αd has one endpoint in [c, d] and one endpoint in
[d, a], and therefore encircles d;

• each geodesic of the support of αo has its two endpoints in the closure of the same
component of ∂∞˜X0 − {a, b, c, d}.
Then,

Etα[ f ] = Etαo ◦ Etαa ◦ Etαc ◦ EtαQ ◦ Etαb ◦ Etαd [ f ].

In order to estimate L
(

Etα[ f ])(Q), set [ f1] = Etαd [ f ], [ f2] = Etαb [ f1], [ f3] =
EtαQ [ f2], [ f4] = Etαc [ f3], [ f5] = Etαa [ f4] and [ f6] = Etαo [ f5] = Etα[ f ].

We will proceed backwards in our estimates, beginning with the simpler cases.
By construction of earthquakes, L

(

Etα[ f ]) = L
([ f6]

) = L
(

Etαo [ f5]
)

is the pull-
back of L

([ f5]
)

by a quasi-symmetric homeomorphism of ∂∞˜X0 which sends the box
Q to itself. Therefore,

L
(

Etα[ f ])(Q) = L
([ f6]

)

(Q) = L
([ f5]

)

(Q). (18)

Again by construction of earthquakes, L
([ f5]

) = L
(

Etαa [ f4]
)

is the pullback of
L

([ f4]
)

by a homeomorphism of ∂∞˜X0 which fixes the points b, c, d, andwhichmoves
the point a in the positive direction of ∂∞˜X0. As a consequence, this homeomorphism
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Fig. 3 Step 2 of the proof of
Lemma 34

a b

cd

a

c

sends the box Q = [a, b] × [c, d] to a smaller box Q1 = [a1, b] × [c, d] ⊂ Q with
a1 ∈ [a, b], and

L
([ f5]

)

(Q) = L
([ f4]

)

(Q1) � L
([ f4]

)

(Q). (19)

The same argument applied to L
([ f4]

) = L
(

Etαc [ f3]
)

shows that

L
([ f4]

)

(Q) = L
([ f3]

)

(Q2) � L
([ f3]

)

(Q) (20)

for some box Q2 = [a, b] × [c2, d] ⊂ Q.
We now use Lemmas 32 and 33 to estimate L

([ f3]
)

(Q) = L
(

EtαQ [ f2]
)

(Q).
If we approximate the measured lamination αQ by a Dirac measure based at a finite

set {g1, g2, . . . , gk, ḡ1, ḡ2, . . . , ḡk} of disjoint geodesics in Q and assigning mass
ai > 0 to the atom gi , then by construction EtαQ is approximated by the product of
elementary earthquakes

Eta1
g1 ◦ Eta1

g2 ◦ · · · ◦ Etan
gn

.

If ac denotes the diagonal of the box Q, going from a to c ∈ ∂∞˜X0, Lemma 32(a)
shows that

L
(

Etai
gi

[ f ′])(Q) � L
(

Etai
ac [ f ′])(Q)

for every [ f ′] ∈ T(˜X0). The combination of Lemmas 32 and 33 then shows that

L
(

Eta1
g1 Eta1

g2 . . . Etan
gn

[ f2]
)

(Q) � L
(

Et(a1+a2+···+an)
ac [ f2]

)

(Q)

� L
([ f2]

)

(Q) + t(a1 + a2 + · · · + an).

Passing to the limit as we use better and better approximations of αQ by Dirac
measures, we conclude that

L
([ f3]

)

(Q) = L
(

EtαQ [ f2]
)

(Q) � L
([ f2]

)

(Q) + tα(Q). (21)

Estimating L
([ f2]

)

(Q) = L
(

Etαb [ f1]
)

(Q) will require more care. In particular,
we need to split the geodesics of the support of αb into those that have one endpoint
near c and those that do not.
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Pick a point c′ in the open interval ]b, c[ such that α
([a, b] × {c′}) = 0, which can

always be done by countable additivity of α. We will later choose c′ close enough to
c to ensure that α

([a, b] × [c′, c]) is small. See Fig. 3.
Letα′

b be the restriction of α to the box [a, b]×[c′, c], and letα′′
b be the restriction of

α to [a, b]×[b, c′]. In particular,αb = α′
b+α′′

b by the property thatα
([a, b]×{c′}) = 0.

As in our analysis of Etαa [ f4] and Etαc [ f3], the Liouville current L
(

Etα′′
b [ f1]

)

is
the pullback of L

([ f1]
)

under a homeomorphism of ∂∞˜X0 which fixes a, c, d and
moves b to a point of the interval [b, c′]. Therefore

L
(

Etα′′
b [ f1]

)

(Q) � L
([ f1]

)

(Q′′
c′)

where Q′′
c′ = [a, c′] × [c, d].

Then, as in our analysis of EtαQ [ f2], the combination of Lemmas 32 and 33 gives
that

L
([ f2]

)

(Q) = L
(

Etαb [ f1]
)

(Q) = L
(

Etα′
b Etα′′

b [ f1]
)

(Q)

� L
(

E
tα(Q′

c′ )
ac Etα′′

b [ f1]
)

(Q)

� L
(

Etα′′
b [ f1]

)

(Q) + tα(Q′
c′)

� L
([ f1]

)

(Q′′
c′) + tα(Q′

c′)

(22)

where Q′
c′ = [a, b] × [c′, c] and Q′′

c′ = [a, c′] × [c, d].
Similarly, to estimateL

([ f1]
)

(Q′′
c′) = L

(

Etαd [ f ])(Q′′
c′), pick a point a′ in the open

interval ]d, a[ such that α
({a′} × [c, d]) = 0, and split αd as αd = α′

d + α′′
d , where

α′
d and α′′

d are the respective restrictions of αd to [a′, a] × [c, d] and [d, a′] × [c, d].
See Fig. 3.

Then, using the combination of Lemmas 32 and 33 as in our analysis of [ f2] =
Etαb [ f1],

L
([ f1]

)

(Q′′
c′) = L

(

Etαd [ f ])(Q′′
c′) = L

(

Etα′
d Etα′′

d [ f ])(Q′′
c′)

� L
(

Etα′′
d [ f ])(Q′′

c′) + tα(Q′
a′)

� L
([ f ])(Q′′

a′c′) + tα(Q′
a′)

(23)

where Q′
a′ = [a′, a] × [c, d] and Q′′

a′c′ = [a, c′] × [c, a′].
Now, if we combine the estimates of (18–23), we get that

L
(

Etα[ f ])(Q) � L
([ f ])(Q′′

a′c′) + tα(Q′
a′) + tα(Q′

c′) + tα(Q) (24)

for the boxes Q′′
a′c′ = [a, c′]×[c, a′], Q′

a′ = [a′, a]×[c, d] and Q′
c′ = [a, b]×[c′, c].

Passing to the limit as t tends to ∞, this gives

lim sup
t→+∞

1

t
L

(

Etα[ f ])(Q) � α(Q′
a′) + α(Q′

c′) + α(Q).
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This property holds for any choice of points a′ ∈ ]d, a[ and c′ ∈ ]b, c[ (with
α
([a, b] × {c′}) = 0 and α

({a′} × [c, d]) = 0). Letting a′ tend to a and c′ tend
to c, so that α(Q′

a′) and α(Q′
c′) respectively converge to α

({a} × [c, d]) = 0 and
α
([a, b] × {c}) = 0 by our hypothesis that Q is α-generic, we conclude that

lim sup
t→+∞

1

t
L

(

Etα[ f ])(Q) � α(Q).

This concludes the proof of Step 2.
In particular, the combinationofSteps 1 and2 shows that limt→+∞ 1

t L
(

Etα[ f ])(Q) =
α(Q) when α(Q) > 0.

We will rely on these first two steps to settle the remaining cases. Recall that Q⊥
denotes the orthogonal box of Q, as defined in Sect. 3.2.
Step 3. If α(Q) = 0 and α(Q⊥) > 0, then limt→+∞ L

(

Etα[ f ])(Q) = 0.

We rely on Lemma 12, which shows that

e−L(Etα[ f ])(Q) + e−L(Etα[ f ])(Q⊥) = 1. (25)

Because the box Q is α-generic, so is the orthogonal box Q⊥. We can therefore apply
Step 1 to Q⊥, which gives

lim inf
t→+∞

1

t
L

(

Etα[ f ])(Q⊥) � α(Q⊥) > 0

and in particular implies that L(Etα[ f ])(Q⊥) → +∞ as t → +∞.
We conclude that, as t → +∞, e−L(Etα[ f ])(Q⊥) → 0 so that e−L(Etα[ f ])(Q) → 1

by (25), and therefore L(Etα[ f ])(Q) → 0.
Step 4. If α(Q) = 0 and α(Q⊥) = 0, then limt→+∞ 1

t L
(

Etα[ f ])(Q) = 0.
In the proof of Step 2, the only time we used the hypothesis that α(Q) > 0 was to

guarantee that the support of α contained no geodesic of the interior of the orthogonal
box Q⊥.

In the current setup of Step 4, the hypothesis that α(Q⊥) = 0 implies that the
support of α is disjoint from the interior of Q⊥. We can therefore apply the arguments
of Step 2 and conclude that

lim sup
t→+∞

1

t
L

(

Etα[ f ])(Q) � α(Q) = 0

as required.
This concludes the proof of Lemma 34, by Steps 1 and 2 when α(Q) > 0, and by

Steps 3 and 4 when α(Q) = 0.

Wewill need a more uniform version of Lemma 34. The lemma belowwill allow us
to enhance a weak* convergence to a uniform weak* convergence. Recall that the box
Q = [a, b] × [c, d] is α-generic if the subset of G(˜X0) consisting of those geodesics
with one endpoint in {a, b, c, d} has α-mass 0.
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Lemma 35 Let {αn}n be a sequence of bounded measured geodesic laminations con-
verging, as n → ∞, to a measure α on G(˜X0) for the weak* topology. Then, for every
sequence {tn} converging to +∞ in R and for every α-generic box Q ⊂ G(˜X0) ,

lim
n→∞

1

tn
L

(

Etnαn [ f ])(Q) = α(Q).

Note that the αn are only required to converge to α for the weak* topology, not
for the uniform weak* topology. As a consequence, α is clearly a measured geodesic
lamination but is not necessarily bounded.

Proof This follows from a careful inspection of the proof of Lemma 34. We repeat the
steps of that proof.
Step 1. lim infn→∞ 1

tn
L

(

Etnαn [ f ])(Q) � α(Q).
As in the proof of Lemma 34, assume α(Q) > 0 without loss of generality, and

choose a smaller box Q′ = [a, b′] × [c, d ′] ⊂ Q with a < b′ < b and c < d ′ < d,
and with α(Q′) > 0 close to α(Q). By countable additivity of α we can arrange that
Q′ is α-generic and in particular that α(∂ Q′) = 0.

For n large enough, αn(Q′) > 0 by Lemma 6 and our hypothesis that α(∂ Q′) = 0,
and the support ofαn thereforemeets Q′. Among the geodesics of the support ofαn that
are contained in Q′, let a′′

n d ′′
n be the one that is closest to the interval [d ′, a] ⊂ ∂∞˜X0,

and let b′′
nc′′

n be the one closest to [b′, c], in such a way that a � a′′
n � b′′

n � b′ and
c � c′′

n � d ′′
n � d ′. Set Q′′

n = [a′′
n , b] × [c′′

n , d].
The arguments used in Step 1 of the proof of Lemma 34 then show that, as in (16),

L
(

Etnαn [ f ])(Q) � L
(

Etnαn [ f ])(Q′′
n) � tnαn(Q′′

n) + log
(

eL[ f ](Q′′′) − 1
)

.

for the box Q′′′ = [b′, b] × [d ′, d].
By definition of the box Q′′

n , its mass αn(Q′′
n) for the measured lamination αn is

equal to αn(Q′). Since we arranged that α(∂ Q′) = 0, Lemma 6 then shows that
αn(Q′′

n) = αn(Q′) converges to α(Q′) as n tends to infinity. Therefore,

lim inf
n→∞

1

tn
L

(

Etnαn [ f ])(Q) � α(Q′).

As Q′ can be chosen so that α(Q′) is arbitrarily close to α(Q), we conclude that

lim inf
n→∞

1

tn
L

(

Etnαn [ f ])(Q) � α(Q)

as required.
Step 2. If α(Q) > 0, then lim supn→∞ 1

tn
L

(

Etnαn [ f ])(Q) � α(Q).
As in Step 2 of the proof of Lemma 34, pick a point c′ ∈ ]b, c[ close to c, and a

point a′ ∈ ]d, a[ close to a, such that α
([a, b] × {c′}) = 0 and α

({a′} × [c, d]) = 0.
Then, the same argument as in that Step 2 shows that, for every n,

L
(

Etnαn [ f ])(Q) � L
([ f ])(Q′′

a′c′) + tnαn(Q′
a′) + tnαn(Q′

c′) + tnαn(Q) (26)
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for the boxes Q′′
a′c′ = [a, c′]×[c, a′], Q′

a′ = [a′, a]×[c, d] and Q′
c′ = [a, b]×[c′, c].

By choice of the points a′ and c′, α(∂ Q′
a′) = α(∂ Q′

c′) = 0. We can therefore apply
Lemma 6 when passing to the limit, and conclude that

lim sup
n→∞

1

tn
L

(

Etnαn [ f ])(Q) � α(Q′
a′) + α(Q′

c′) + α(Q).

Choosing a′ and c′ so that α(Q′
a′) and α(Q′

c′) are arbitrarily small, we conclude
that

lim sup
n→∞

1

tn
L

(

Etnαn [ f ])(Q) � α(Q).

Step 3. If α(Q) = 0 and α(Q⊥) > 0, then limn→∞ L
(

Etnαn [ f ])(Q) = 0.
The argument is identical to that used for Step 3 of the proof of Lemma 34.

Step 4. If α(Q) = 0 and α(Q⊥) = 0, then limn→∞ 1
tn
L

(

Etnαn [ f ])(Q) = 0.
In the proof of Lemma 34, we used the fact that the support of α is disjoint from

the interior of Q⊥ to reduce this step to Step 2. However, although α(Q⊥) = 0, it is
here quite possible that αn(Q⊥) > 0 and that the support of αn meets the interior of
Q⊥.

Let us decompose each αn as a sum αn = α
Q⊥
n + α′

n of two measured geodesic

laminations α
Q⊥
n and α′

n such that:

• every geodesic of the support of α
Q⊥
n is contained in the orthogonal box Q⊥, after

a possible orientation-reversal;
• the support of α′

n is disjoint from the interior of Q⊥.

As in Step 2 of the proof of Lemma 34, pick a point c′ ∈ ]b, c[ close to c, and a
point a′ ∈ ]d, a[ close to a, such that α

([a, b] × {c′}) = 0 and α
({a′} × [c, d]) = 0.

Because the support of α′
n is disjoint from the interior of Q⊥, we can then apply to α′

n
this Step 2 of the proof of Lemma 34 and show that, for every n,

L
(

Etnα′
n [ f ])(Q) � L

([ f ])(Q′′
a′c′) + tnα

′
n(Q′

a′) + tnα
′
n(Q′

c′) + tnα′
n(Q) (27)

for the boxes Q′′
a′c′ = [a, c′]×[c, a′], Q′

a′ = [a′, a]×[c, d] and Q′
c′ = [a, b]×[c′, c].

Compare Eq. (24).
Then, by Lemmas 32(b) and 33,

L
(

Etnαn [ f ])(Q) = L
(

Etnα
Q⊥
n Etnα′

n [ f ])(Q)

� L
(

Etnα
Q⊥
n (Q⊥)

ac Etnα′
n [ f ])(Q)

� L
(

Etnα′
n [ f ])(Q) + tnα

Q⊥
n (Q⊥)

(28)

Combining (27) and (28), we conclude that

123



F. Bonahon, D. Šarić

L
(

Etnαn [ f ])(Q) � L
([ f ])(Q′′

a′c′) + tnα′
n(Q′

a′) + tnα′
n(Q′

c′) + tnα′
n(Q) + tnα

Q⊥
n (Q⊥)

� L
([ f ])(Q′′

a′c′) + tnαn(Q′
a′) + tnαn(Q′

c′) + tnαn(Q) + tnαn(Q⊥).
(29)

Because the boxes Q, Q⊥, Q′
a′ , Q′

c′ areα-generic, αn(Q′
a′) → α(Q′

a′),αn(Q′
c′) →

α(Q′
c′), αn(Q) → α(Q) = 0 and αn(Q⊥) → α(Q⊥) = 0 as n → ∞. It follows that

lim sup
n→∞

1

tn
L

(

Etnαn [ f ])(Q) � α(Q′
a′) + α(Q′

c′).

We can make α(Q′
a′) arbitrarily close to α

({a}× [c, d]) = 0 and α(Q′
c′) arbitrarily

close to α
([a, b] × {c}) = 0 by choosing a′ sufficiently close to a and c′ sufficiently

close to c. This proves that

lim
n→∞

1

tn
L

(

Etnαn [ f ])(Q) = 0.

The combination of Steps 1, 2, 3 and 4 completes the proof of Lemma 35.

5.5 Uniformweak* convergence of earthquake paths

We are now ready to prove Theorem 30, which we restate here as:

Theorem 36 Let α ∈ MLbd(X0) be a bounded measured geodesic lamination and let
[ f ] ∈ T(X0) be a point of the Teichmüller space of X0. Consider the left earthquake
Etα : T(X0) → T(X0) for t ∈ R, and the Liouville embedding L : T(X0) → Cbd(X0)

from T(X0) to the space Cbd(X0) of bounded geodesic currents. Then,

lim
t→±∞

1

|t |L
(

Etα[ f ]) = α

for the uniform weak* topology of Cbd(X0).

Proof By symmetry between left and right earthquakes, we can restrict attention to
the limit as t → +∞.

It is easier to use a proof by contradiction. Suppose the property false. Then, because
the uniform weak* topology is metrizable (Lemma 4), there exists a sequence of real
numbers tn such that tn → +∞ as n → ∞ but such that 1

tn
L

(

Etnα[ f ]) = 1
tn

L Etnα[ f ]
does not converge toα for the uniformweak* topology. Passing to a subsequence if nec-
essary, thismeans that there exists a lower bound ε > 0, a test function ξ : G(˜X0) → R

with compact support and a sequence of biholomorphic diffeomorphisms ϕn ∈ H(˜X0)

such that
∣

∣

∣

∣

1

tn

∫

G(˜X0)

ξ ◦ ϕn d L Etnα[ f ] −
∫

G(˜X0)

ξ ◦ ϕn dα

∣

∣

∣

∣

> ε (30)

for every n.
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Let αn be the push forward of the measure α under the homeomorphism G(˜X0) →
G(˜X0) induced by ϕn . Then αn is clearly a measured geodesic lamination, and is
bounded by definition of this property. Also, by definition of the push forward,

∫

G(˜X0)

ξ ◦ ϕn dα =
∫

G(˜X0)

ξ dαn .

Lift the quasiconformal diffeomorphism f : X0 → X representing [ f ] ∈ T(X0)

to ˜f : ˜X0 → ˜X . Then, in the Teichmüller space T(˜X0) of the universal cover,
diagram chasing in the construction of elementary earthquakes shows that Et

g[ ˜f ◦
ϕn] = Et

ϕn(g)[ ˜f ] for every geodesic g ∈ G(˜X0) and every t ∈ R. It follows that

Etnα[ ˜f ◦ ϕn] = Etnαn [ ˜f ]. As a consequence, the Liouville current L Etnαn [ f ] =
L Etnαn [ ˜f ] is the push forward of L Etnα[ f ] = L Etnα[ ˜f ] under the homeomorphism

ϕn : G(˜X0) → G(˜X0) induced by ϕn ∈ H(˜X0). In particular,

∫

G(˜X0)

ξ ◦ ϕn d L Etnα[ f ] =
∫

G(˜X0)

ξ d L Etnαn [ f ]

and we can rewrite (30) as

∣

∣

∣

∣

1

tn

∫

G(˜X0)

ξ d L Etnαn f −
∫

G(˜X0)

ξ dαn

∣

∣

∣

∣

> ε. (31)

For every continuous function ξ ′ : G(˜X0) → R with compact support, the associ-
ated weak* seminorms

|αn|ξ ′ =
∣

∣

∣

∫

G(˜X0)

ξ ′ dαn

∣

∣

∣ =
∣

∣

∣

∫

G(˜X0)

ξ ′ ◦ ϕn dα

∣

∣

∣

are uniformly bounded because the measured geodesic lamination α ∈ MLbd(X0)

is bounded. By weak* compactness (see for instance [7, chap. III, §1, no9]) we can
therefore assume, after passing to a subsequence, that αn converges to some measured
geodesic lamination β for the weak* topology (but not necessarily for the uniform
weak* topology).

Lemma 35 then states that for every β-generic box Q

lim
n→∞

1

tn
L Etnαn f (Q) = lim

n→∞
1

tn
L

(

Etnαn [ f ])(Q) = β(Q).

But this will contradict (31) if we approximate the test function ξ by a β-generic step
function, namely by a linear combination of the characteristic functions of a finite
family of β-generic boxes.

Therefore, our original assumption cannot hold, and 1
|t |L

(

Etα[ f ]) converges to α

for the uniform weak* topology as t → +∞.
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6 Naturality under quasiconformal diffeomorphisms

We conclude with a remark that our constructions are natural with respect to quasi-
conformal diffeomorphisms.

Let f : X1 → X2 be a quasiconformal diffeomorphism between two confor-
mally hyperbolic Riemann surfaces. If we lift f to a quasiconformal diffeomorphism
˜f : ˜X1 → ˜X2 between universal covers, the quasisymmetric extension ˜f : ∂∞˜X1 →
∂∞˜X2 induces a homeomorphism ˜f : G(˜X1) → G(˜X2) and therefore a bijection
F : C(X1) → C(X2) between the corresponding spaces of geodesic currents.

Lemma 37 The above bijection restricts to a homeomorphism F : Cbd(X1) →
Cbd(X2), when the spaces Cbd(X1) and Cbd(X2) of bounded geodesic currents are
endowed with the uniform weak* topology.

Proof The main issue to deal with is that the definition of bounded geodesic currents
in X1 and of the uniform weak* topology of Cbd(X1) involves the space H(˜X1) of
biholomorphic diffeomorphisms of the universal cover ˜X1, whereas the corresponding
notions in X2 involve H(˜X2). Our proof will use an ad hoc correspondence between
H(˜X1) and H(˜X2).

Arbitrarily pick three distinct points x1, y1, z1 ∈ ∂∞˜X1, counterclockwise in this
order, in the circle at infinity of ˜X1 and three distinct points x2, y2, z2 ∈ ∂∞˜X2,
also in counterclockwise order. Then, for every biholomorphic map ϕ ∈ H(˜X2), there
exists a unique ρ(ϕ) ∈ H(˜X1) sending the three points ˜f −1 ◦ϕ−1(x2), ˜f −1 ◦ϕ−1(y2),
˜f −1◦ϕ−1(z2) to x1, y1, z1, respectively. This provides a bijectionρ : H(X2) → H(X1)

characterized by the property that for every ϕ ∈ H(˜X2) the map ϕ ◦ ˜f ◦ρ(ϕ)−1 sends
our base points x1, y1, z1 ∈ ∂∞˜X1 to the base points x2, y2, z2 ∈ ∂∞˜X2, respectively.

We temporarily postpone the proof that F sends Cbd(X1) to Cbd(X2), as the argu-
mentwill be a simpler version of our proof that the restriction F : Cbd(X1) → Cbd(X2)

is continuous.
To prove that F : Cbd(X1) → Cbd(X2) is continuous, consider a sequence of

bounded geodesic currents αn ∈ Cbd(X1) converging to α∞ as n → ∞, for the uni-
form weak* topology. We want to show that F(αn) converges to F(α∞) in Cbd(X2),
namely that

‖F(αn) − F(α∞)‖ξ = sup
ϕ∈H(˜X2)

∣

∣

∣

∫

G(˜X2)
ξ ◦ ϕ d F(αn) −

∫

G(˜X2)
ξ ◦ ϕ d F(α∞)

∣

∣

∣ → 0 as n → ∞

(32)

for every continuous function ξ : G(˜X2) → R with compact support. It is easier to
use a proof by contradiction.

Suppose that (32) does not hold, in search for a contradiction. Then, passing to a
subsequence if necessary, there exists δ > 0 and a sequence of biholomorphic maps
ϕn ∈ H(˜X2) such that

∣

∣

∣

∫

G(˜X2)

ξ ◦ ϕn d F(αn) −
∫

G(˜X2)

ξ ◦ ϕn d F(α∞)

∣

∣

∣ > δ (33)
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for every n. Then, by definition of the measure F(αn),

∫

G(˜X2)

ξ ◦ ϕn d F(αn) =
∫

G(˜X1)

ξ ◦ ϕn ◦ ˜f dαn

=
∫

G(˜X1)

ξ ◦ (

ϕn ◦ ˜f ◦ ρ(ϕn)−1) ◦ ρ(ϕn) dαn

(34)

for the bijection ρ : H(˜X1) → H(˜X2) defined above. Similarly,

∫

G(˜X2)

ξ ◦ ϕn d F(α∞) =
∫

G(˜X1)

ξ ◦ (

ϕn ◦ ˜f ◦ ρ(ϕn)−1) ◦ ρ(ϕn) dα∞ (35)

The functions ˜fn = ϕn ◦ ˜f ◦ ρ(ϕn)−1 : ∂∞˜X1 → ∂∞˜X2 are uniformly quasisym-
metric since M( ˜fn) = M( ˜f ), and by construction send x1, y1, z1 ∈ ∂∞˜X1 to x2,
y2, z2 ∈ ∂∞˜X2, respectively. By a classical equicontinuity property (see [22, §II.5]),
they consequently form a relatively compact family in the space of quasisymmetric
homeomorphisms ∂∞˜X1 → ∂∞˜X2, for the topology of uniform convergence. Passing
to a subsequence if necessary, we can therefore assume that the ˜fn : ∂∞˜X1 → ∂∞˜X2
uniformly converge to some homeomorphism ˜f∞. Then, as n → ∞, the induced
homeomorphisms ˜fn : G(˜X1) → G(˜X2) converge to ˜f∞ : G(˜X1) → G(˜X2) uni-
formly on compact subsets of G(˜X1).

By Eqs. (34) and (35)

∣

∣

∣

∫

G(˜X2)

ξ ◦ ϕn d F(αn) −
∫

G(˜X2)

ξ ◦ ϕn d F(α∞)

∣

∣

∣

=
∣

∣

∣

∫

G(˜X1)

ξ ◦ ˜fn ◦ ρ(ϕn) dαn −
∫

G(˜X1)

ξ ◦ ˜fn ◦ ρ(ϕn) dα∞
∣

∣

∣

�
∣

∣

∣

∫

G(˜X1)

ξ ◦ ˜fn ◦ ρ(ϕn) dαn −
∫

G(˜X1)

ξ ◦ ˜f∞ ◦ ρ(ϕn) dαn

∣

∣

∣

+
∣

∣

∣

∫

G(˜X1)

ξ ◦ ˜f∞ ◦ ρ(ϕn) dαn −
∫

G(˜X1)

ξ ◦ ˜f∞ ◦ ρ(ϕn) dα∞
∣

∣

∣

+
∣

∣

∣

∫

G(˜X1)

ξ ◦ ˜f∞ ◦ ρ(ϕn) dα∞ −
∫

G(˜X1)

ξ ◦ ˜fn ◦ ρ(ϕn) dα∞
∣

∣

∣.

(36)

Choose a nonnegative continuous function η : G(˜X2) → R with compact support
that is constantly 1 on a neighborhood of the support of ξ . For an arbitrary ε > 0, the
fact that ˜fn converges to ˜f∞ uniformly on compact subsets implies that

|ξ ◦ ˜fn − ξ ◦ ˜f∞| � εη ◦ ˜f∞
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for n large enough, so that

∣

∣

∣

∫

G(˜X1)

ξ ◦ ˜fn ◦ ρ(ϕn) dαn −
∫

G(˜X1)

ξ ◦ ˜f∞ ◦ ρ(ϕn) dαn

∣

∣

∣

� ε

∫

G(˜X1)

η ◦ ˜f∞ ◦ ρ(ϕn) dαn

� ε sup
ϕ∈H(˜X1)

∫

G(˜X1)

η ◦ ˜f∞ ◦ ϕ dαn

� ε‖αn‖η◦ ˜f∞

(37)

for n large enough, where ‖ ‖η◦ ˜f∞ is the (uniform weak*) seminorm on Cbd(X1)

defined by the function η ◦ ˜f∞ : G(˜X1) → R. Similarly

∣

∣

∣

∫

G(˜X1)

ξ ◦ ˜f∞ ◦ ρ(ϕn) dα∞ −
∫

G(˜X1)

ξ ◦ ˜fn ◦ ρ(ϕn) dα∞
∣

∣

∣ � ε‖α∞‖η◦ ˜f∞ (38)

for n large enough. Finally,

∣

∣

∣

∫

G(˜X1)

ξ ◦ ˜f∞ ◦ ρ(ϕn) dαn −
∫

G(˜X1)

ξ ◦ ˜f∞ ◦ ρ(ϕn) dα∞
∣

∣

∣ � ‖αn − α∞‖ξ◦ ˜f∞ .(39)

Combining the inequalities of (36–39) we conclude that, for every ε > 0,

∣

∣

∣

∫

G(˜X2)

ξ ◦ ϕn d F(αn) −
∫

G(˜X2)

ξ ◦ ϕn d F(α∞)

∣

∣

∣ � ε‖αn‖η◦ ˜f∞ + ε‖α∞‖η◦ ˜f∞

+‖αn − α∞‖ξ◦ ˜f∞ . (40)

for n large enough.
However, ‖αn‖η◦ ˜f∞ → ‖α∞‖η◦ ˜f∞ and ‖αn − α∞‖ξ◦ ˜f∞ → 0 as n → ∞ since

αn → α∞ in Cbd(X1), so that (40) contradicts (33) for ε small enough.
This contradictionproves (32), and shows that the function F : Cbd(X1) → Cbd(X2)

is continuous.
A symmetric argument shows that the inverse F−1 : Cbd(X2) → Cbd(X1) is con-

tinuous, so that F : Cbd(X1) → Cbd(X2) is a homeomorphism.
We had postponed the proof that our original function F : C(X1) → C(X2) sends

bounded geodesic current to bounded geodesic current. This is a simpler version of
the above continuity proof. For a bounded geodesic current α ∈ Cbd(X2), suppose in
search of a contradiction that the geodesic current F(α) ∈ C(X2) is not bounded. As
in (32) and (33), this means that there exists a continuous function ξ : G(˜X2) → R

with compact support and a sequence of biholomorphic maps ϕn ∈ H(˜X2) such that

∣

∣

∣

∫

G(˜X2)

ξ ◦ ϕn d F(α)

∣

∣

∣ → ∞ as n → ∞. (41)
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Passing to a subsequence if necessary, we can again arrange that the functions
˜fn = ϕn ◦ ˜f ◦ ρ(ϕn)−1 : G(˜X1) → G(˜X2) converge to some homeomorphism ˜f∞,
uniformly on compact subsets of G(˜X1). Then, given ε > 0 and a continuous function
η : G(˜X2) → R with compact support that is constantly 1 on a neighborhood of the
support of ξ ,

∣

∣

∣

∫

G(˜X2)

ξ ◦ ϕn d F(α)

∣

∣

∣ =
∣

∣

∣

∫

G(˜X2)

ξ ◦ ˜fn ◦ ρ(ϕn) dα

∣

∣

∣

�
∣

∣

∣

∫

G(˜X2)

ξ ◦ ˜fn ◦ ρ(ϕn) dα −
∫

G(˜X2)

ξ ◦ ˜f∞ ◦ ρ(ϕn) dα

∣

∣

∣

+
∣

∣

∣

∫

G(˜X2)

ξ ◦ ˜f∞ ◦ ρ(ϕn) dα

∣

∣

∣

� ε‖α‖η◦ ˜f∞ + ‖αn‖ξ◦ ˜f∞

(42)

for n large enough, as in (36–40). But this clearly contradicts (41), and therefore
concludes our proof that the geodesic current F(α) is bounded.

As a consequence, the bijection F : C(X1) → C(X2) restricts to a map
F : Cbd(X1) → Cbd(X2), which we already proved is a homeomorphism for the
uniform weak* topologies.

Thequasiconformal diffeomorphism f : X1 → X2 also induces amap FT : T(X1) →
T(X2) between Teichmüller spaces, by the property that FT

([g]) = [g◦ f −1] ∈ T(X2)

for every [g] ∈ T(X1) represented by a quasiconformal diffeomorphism g : X1 → X .
It is immediate from definitions that FT is an isometry for the Teichmüller metrics of
T(X1) and T(X2).

It is also immediate from definitions that this construction is well-behaved with
respect to the Liouville embeddings L1 : T(X1) → Cbd(X1) and L2 : T(X2) →
Cbd(X2). More precisely, the diagram

Cbd(X1)
F

Cbd(X2)

T(X1)
FT

L1

T(X2)

L2

is commutative.
The following property is then an automatic consequence of the continuity of

F : Cbd(X1) → Cbd(X2).

Proposition 38 Let f : X1 → X2 be a quasiconformal diffeomorphism between two
conformally hyperbolic Riemann surfaces. Then the isometry FT : T(X1) → T(X2)

induced by f continuously extends to the Thurston bordificationsT(X1)∪PMLbd(X1)

and T(X2) ∪ PMLbd(X2) of Sect. 4.2.
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In particular, we can consider the case where X1 = X2. The quasiconformal map-
ping class group of a conformally hyperbolic Riemann surface X0 is the group

MCGqc(X0) = {quasiconformal diffeomorphisms f : X0 → X0}/ ∼,

where the equivalence relation ∼ identifies f1, f2 : X0 → X0 when they are isotopic
by an isotopy that moves points by a uniformly bounded amount, for the Poincaré
metric. We refer to the results of [11] for several equivalent ways of expressing this
relation.

A quasiconformal diffeomorphism g : X0 → X is a quasi-isometry for the Poincaré
metrics of X0 and X . It follows that, if the quasiconformal diffeomorphisms f1,
f2 : X0 → X0 are isotopic by an isotopy that moves points by a uniformly bounded
amount, so are g◦ f −1

1 and g◦ f −1
2 : X0 → X0. As a consequence, if f1, f2 : X0 → X0

represent the same element of MCGqc(X0), the maps F1, F2 : T(X0) → T(X0)

respectively induced by f1 and f2 coincide. This defines an isometric action of the
quasiconformal mapping class group MCGqc(X0) on the Teichmüller space T(X0).

Proposition 38 immediately implies the following result.

Corollary 39 The action of the quasiconformal mapping class group MCGqc(X0)

on the Teichmüller space T(X0) continuously extends to the Thurston bordification
T(X0) ∪ PMLbd(X0) of Sect. 4.2.
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