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Abstract

For a compact surface X, Thurston introduced a compactification of its Teichmiiller
space T(Xp) by completing it with a boundary PML(X¢) consisting of projective
measured geodesic laminations. We introduce a similar bordification for the Teich-
miiller space T(X¢) of a noncompact Riemann surface X, using the technical tool of
geodesic currents. The lack of compactness requires the introduction of certain uni-
formity conditions which were unnecessary for compact surfaces. A technical step,
providing a convergence result for earthquake paths in T7(X¢), may be of independent
interest.

The Teichmiiller space of a Riemann surface X is the space of quasiconformal
deformations of the complex structure of Xo. When X is compact of genus at least
2, Thurston famously introduced a compactification of T(X() by adding a boundary
at infinity consisting of projective measured foliations [13,14,34] or, equivalently,
projective measured geodesic laminations [5,32]. In this paper, we introduce a similar
construction of a boundary for the Teichmiiller space of a noncompact surface Xj.
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In addition to the fact that Teichmiiller spaces of noncompact Riemann surfaces are
fundamental objects in complex analysis, our motivation here is to put in evidence the
hidden features that underlie Thurston’s construction, by tying it more closely to the
quasiconformal geometry of X and less to the purely topological considerations that
suffice for compact surfaces.

Like Thurston, we restrict attention to Riemann surfaces X that are conformally
hyperbolic, in the sense that the conformal structure of X can be realized by acomplete
hyperbolic metric. This is equivalent to the property that the universal cover Xy is
biholomorphically equivalent to the unit disk D C C. This condition only excludes
the cases where X is an elliptic surface, diffeomorphic to the torus, or is the Riemann
sphere minus 0, 1 or 2 points. A case of particular interest is that of the disk D, in
which case the Teichmiiller space T(ID) is Bers’s Universal Teichmiiller Space [3].

Thurston’s original length spectrum approach [13,34] is not available here, and we
follow the strategy introduced in [5] by embedding the Teichmiiller space T(Xg) in the
space C(Xo) of geodesic currents. These are defined as those measures on the space
G(Xo) of Poincaré geodesics of the universal cover Xo which are invariant under
the action of the fundamental group 71(Xo). When X is compact, these are purely
topological objects, which were introduced in [4] as a completion of the set of free
homotopy classes of closed curves on the surface; in fact, geodesic currents can be
described [6] solely in terms of the algebraic structure of 1(Xg). The definition of
geodesic currents was motivated by Thurston’s definition of measured foliations and
measured geodesic laminations, introduced as a way to complete the set of isotopy
classes of simple closed curves on the surface [13,14,32,33]. The topological nature
of geodesic currents and measured geodesic laminations becomes much weaker for
noncompact surfaces, and this requires the consideration of uniformity conditions
which were taken for granted in the compact case.

More precisely, if X is a conformally hyperbolic Riemann surface and if its uni-
versal cover Xo is endowed with the Poincaré metric, the space G(Xo) of complete
geodesics of Xo comes with a preferred measure, the Liouville measure L . If we
have a quasiconformal deformation of the complex structure of X, represented by a
quasiconformal diffeomorphism f: Xo — X from X to another Riemann surface X,
we can then use f to pull back the Liouville measure L 5 of G (X ) toam;(Xgp)-invariant
measure on G(X), namely to a geodesic current in Xg.

This enables us to define what we call the Liouville embedding

L: T(Xg) — C(Xp)

of the Teichmiiller space, which associates the Liouville current L  to each element
[f1 € T(Xo) represented by a quasiconformal diffeomorphism f: Xg — X.

There is nothing new so far. But a challenge arises when the surface X is noncom-
pact: Find a “good” topology on the space C(X() of geodesic currents for which the
Liouville embedding L is really a topological embedding, namely restricts to a home-
omorphism T(Xo) — L(‘J'(X 0)). The natural topology on T(X) is the Teichmiiller
topology, defined by the Teichmiiller metric; see Sect. 1. As a space of measures,
C(Xo) is traditionally endowed with the weak™* topology (see Sect. 2). However, this
topology fails to take into account the many symmetries of the universal cover X
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A Thurston boundary for infinite-dimensional Teichmiiller spaces

coming from the group H(X() = PSL,(R) of all biholomorphic diffeomorphisms of
Xo.

This leads us to restrict attention to bounded geodesic currents, which satisfy a
certain boundedness property with respect to the action of H()? 0), and to introduce
the uniform weak* topology on the space Cpq(X¢) of bounded geodesic currents. See
Sect. 2 for precise definitions. When the surface X is compact, every geodesic current
is bounded and the uniform weak* topology coincides with the usual weak* topology
on C(Xp) = Cpq(Xp) (Proposition 5). See [23,25-27] for earlier (and slightly different)
incarnations of the uniform weak* topology.

Theorem 1 The Liouville embedding L: T(Xo) — C(Xo) is valued in the space
Coa(X0) of bounded geodesic currents, and restricts to a homeomorphism T(X¢o) —
L(‘J'(Xo)) C Cpa(Xo) when Cpq(Xo) is endowed with the uniform weak* topology. In
addition, the image L(‘J'(Xo)) is closed in Cpq(Xo), and the embedding L: T(Xg) —
Cva(Xo) is proper.

This theorem is proved as Theorem 8. Recall that a map is proper if the preimage
of a bounded subset is bounded, which makes sense here because the topologies of
T(X0) and Cpq(Xg) are defined by families of seminorms.

See Remark 9 for an explanation of why Theorem 1 would fail if Cpq(Xo) was only
endowed with the usual weak™ topology, as opposed to the uniform weak* topology.

Following Thurston’s original approach, we now consider the rays R*a C Cpq(X0)
that are asymptotic to the image L(‘I(X 0)), namely the set of those bounded geodesic
currents @ € Cpa(Xo) for which there exists a sequence {[ Sl }neN of points of
the Teichmiiller space and a sequence of positive numbers {#,},en such that o =
lim;,— o tnL([fn]) and lim,,_, o f, = 0. The union of these rays is the asymptotic
cone of the Liouville embedding L.

Theorem 2 The asymptotic cone of the Liouville embedding L.: T(Xo) — Cpa(Xp)
coincides with the subset MLpq(Xo) of bounded measured geodesic laminations in
Xo, namely with the set of bounded geodestc currents o € de(Xo) such that no two
geodesics of the support of « in G(Xo) cross each other in Xo

It is not too hard to see that every element of the asymptotic cone of L is a bounded
measured geodesic lamination. Itis more difficult to show that every bounded measured
geodesic lamination belongs to this cone. For this, we use Thurston’s construction
of earthquakes [21,33]. A bounded measured geodesic lamination « € MLpq(Xo)
defines an earthquake map E*: T(Xo) — T(Xp) [10,28,33]. See Remark 29 for
comments about the close relationship, when the surface X is noncompact, between
the boundedness condition for measured geodesic laminations and the quasiconformal
geometry of points of the Teichmiiller space T(Xj).

The following property proves that every bounded measured geodesic lamination
belongs to the asymptotic cone of the Liouville embedding. It is also of independent
interest as, when the surface X is noncompact, the estimates of [21] or [13, Exp. §]
cannot be used here.
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Theorem 3 Let o € MLpq(Xo) be a bounded measured geodesic lamination in the
Riemann surface X. Then, for every [ f] € T(X)p),

.1 ta _
i LLE) =

for the uniform weak* topology on the space Cpq(X0) of bounded geodesic currents.

The space of rays in the asymptotic cone is the space PMLpq(Xo) of projective
bounded measured geodesic laminations. Theorem 2 enables us to add its elements
as boundary points to the Teichmiiller space. By analogy with the case of compact
surfaces, we call the space T(Xo) U PMLpq(Xo) the Thurston bordification of the
Teichmiiller space T(Xg). Note that this bordification is not compact when X is
noncompact, as J(Xg) is not even locally compact in this case. See [18-20,24] for
related results.

The article concludes with a result, Proposition 38, which shows that our con-
struction is natural under quasiconformal diffeomorphisms. More precisely, the
homeomorphism T(X;) — J(X3) induced by a quasiconformal diffeomorphism
X1 — X3 uniquely extends to a homeomorphism T(X) U PMLpg(X1) = T(X2) U
PMLpa(X2) between the respective bordifications of the Teichmiiller spaces T(X1)
and T(X>). In particular, the quasiconformal mapping class group MCGgc(Xo) acts
on T(Xg) U PMLpq(Xp).

This article started as a preprint [30] by the second author alone. The first author,
who had been informally involved in the introduction of the uniform weak* topology,
later joined to help with the exposition. However, the major technical steps were
already fully in [30]. See also [31] for a different approach, in a much more restricted
context.

The authors thank the referee for a careful reading of the manuscript.

1 The Teichmiiller space of a Riemann surface

Let Xo be a Riemann surface which is conformally hyperbolic. This means that its
universal cover X is biholomorphically equivalent to the disk

D={zeC;lz| <1}.

Equivalently, X is not the Riemann sphere C U {oo}, the plane C, the punctured plane
C — {0}, or a torus.

In the disk ID, the hyperbolic metric 2|dz|/(1 — |z|?) is invariant under the group
H(ID) of biholomorphic diffeomorphisms of D. It consequently descends to a hyper-
bolic metric on X which does not depend on the biholomorphic identification X 0 = D.
This is the Poincaré metric of the conformally hyperbolic Riemann surface Xy.

All Riemann surfaces in this article will be implicitly assumed to be conformally
hyperbolic. We are particularly interested in the case where X is non-compact, and a
fundamental example will be that of the unit disk Xo = D.
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A Thurston boundary for infinite-dimensional Teichmiiller spaces

Recall that a quasiconformal diffeomorphism f: X1 — X, between two Riemann
surfaces is an orientation-preserving diffeomorphism such that

L)

K(f) = sup
L)

z€X]

is finite. Note that the denominator is always positive by the orientation-preserving
hypothesis. The number K ( f) is the quasiconformal dilatation of f.

The Teichmiiller space T (X) of the Riemann surface X is the space of equivalence
classes of all quasiconformal diffeomorphisms f: X9 — X from Xo to another
Riemann surface X . Two such quasiconformal maps f1: Xo — Xjand f>: Xo — X»
are equivalent if there exists a biholomorphic map g: X| — X2 such that f{l ogo fi
is isotopic to the identity by a bounded isotopy, namely by an isotopy that moves points
of Xo by a bounded amount for the Poincaré metric of X¢. See [11] for equivalent
formulations of this equivalence relation. We denote by [ ] € T(Xo) the equivalence
class of the quasiconformal map f: Xo — X.

In the fundamental case where X is the unit disk D, the Teichmiiller space T (D)
is also known as the universal Teichmiiller space [3,15].

The Teichmiiller space T(X) is endowed with the Teichmiiller distance defined by

dr([f11, [f2]) = % log inf K (9)

where the infimum is taken over all quasiconformal maps g: X; — X5 such that
fz_l o g o f1 1s bounded isotopic to the identity of X as above, namely isotopic to the
identity by an isotopy moving points by a uniformly bounded amount for the Poincaré
metric of Xq. Again, see [11] for equivalent formulations.

2 Bounded geodesic currents and the uniform weak* topology

2.1 Geodesic currents

We consider a conformally hyperbolic Riemann surface X¢ of hyperbolic type, with
universal cover Xg.

Recall that the group H(ID) of biholomorphic diffeomorphisms of the disk D) consists
of all linear fractional maps of the form

az+ B
H = —_
Bz+a

where o, B € C are such that |a|?> — || = 1. In particular, these biholomorphic
diffeomorphisms of the open disk D extend to homeomorphisms of the closed disk
DU aD.
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This enables us to introduce a compactification of the universal cover Xo by its
circle at infinity doo X0, intrinsically defined by the property that every biholomorphic
diffeomorphism Xy — D extends to a homeomorphism Xg U 0o Xo — D U 9D.

Each complete hyperbolic geodesic of the disk D is determined by its two endpoints
in 0. This identifies the space G (D) of (complete, oriented) geodesics of D to 1D x
dD — A, where A = {(x, x); x € 9D} is the diagonal of 9D x 3.

More generally, let G()N( 0) denote the space of oriented complete geodesics of X 0
for its Poincaré metric. Using a biholomorphic identification Xy = I, such a geodesic
is determined by its endpoints in the circle at infinity oo X 0, and this gives a natural
identification

G(X0) = 000 X0 X 900 X0 — A

where A = {(x, X);x € 8oo§0} is the diagonal of 94 )?0 X oo )?0. In particular,
G(Xo) is homeomorphic to an open annulus.

The fundamental group 71 (X¢) acts biholomorphically on the universal cover Xo,
and this action therefore respects the Poincaré metric of X¢. As a consequence, 771 (Xo)
also acts on G (Xy).

A geodesic current in the Riemann surface X¢ is a Radon measure & on G ()? o) that
is invariant under the action of 71 (X(). The Radon property means that the integral
a(K) = | x 1 da is finite and non-negative for every compact subset K C G(Xo).

Most of the geodesic currents considered in this article will be balanced (or unori-
ented to use a more topological terminology), in the sense that they are invariant under
the involution of G()?O) that reverses the orientation of every geodesic.

2.2 Bounded geodesic currents and the uniform weak* topology

As a space of Radon measures on G()N(O), it would be natural to endow the space
C(Xp) of geodesic currents with the classical weak* topology (also called the vague
topology), defined by the family of semi-norms

we=|[ _ eaol
G(Xo)

fora € C(Xjp), as & ranges over all continuous function & : G(}? 0) — R with compact
support.

However, this topology does not quite fit our purposes, because it does not take
into account the many symmetries of Xo provided by the isometric action of the group
H(Xo) of biholomorphic diffeomorphisms of Xo It is much better to consider the
semi-norms

leelle = sup ‘/  topda
peH (%) /G(Xo)
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as & ranges over all continuous function & : G(}N( 0) — R with compact support. (We
are here using the same letter to denote the biholomorphic map ¢ : Xo — XO, which
respects the Poincaré metric of Xo, and its induced homeomorphism ¢ : G(Xo) —
G(X 0) on the space G(X 0) of geodesics of X 0.) We will restrict the geodesic currents
considered accordingly.

A bounded geodesic current is a geodesic current & € C(Xg) for which all norms
llallg are finite. More precisely, a bounded geodesic current on the Riemann surface
Xo is a Radon measure « on the space G(Xo) = aooxo X 8OOX0 — A of geodesics of
X o such that:

(1) forevery continuous function & : G (}? 0) — R with compact support, the integrals
‘ /, G(Xy) Eopda ‘ are bounded independently of the biholomorphic diffeomorphism

¢ € H(Xo); B
(2) « is invariant under the action of the fundamental group 7 (Xg) on G(Xy).

We let Cpq(X) denote the set of bounded geodesic currents in the Riemann surface
Xo. The topology defined by the seminorms || ||¢ is the uniform weak* topology of
Coa(X0).

In particular, a sequence {a,},en of bounded geodesic currents o, € Cpa(Xo)
converges to « for the uniform weak* topology if and only if

sup ‘/ B éo<pdo¢n—f _ topda|—0asn — oo
peH(Xo) Y G(Xo) G(Xo)

for every continuous function & : G(Xo) — R with compact support.

2.3 The weak* and uniform weak* topologies

We collect in this section a few basic properties of the weak* and uniform weak*
topologies.

The following easy lemma will enable us to make some of our arguments a little
more intuitive, by interpreting continuity properties in terms of sequences.

Lemma 4 The weak* and uniform weak* topology of Cpa(Xo) are metrizable.

This property is of course classical for the weak* topology, and we just need to
make sure that the argument extends to the uniform weak* topology.

Proof Write G()N(o) as an increasing union G(io) = Uf’,ozl K, of compact subsets
K,, with K, C K,41. Then, for every n, choose a countable family F,, of continuous
functions & : G()? 0) — R with support contained in K, such that the set &), is dense
in the space of all continuous functions with support in K,, for the metric

d, &)= max [&(g)—&'(g)l-

g€G(Xo)
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For each n, also choose a nonnegative continuous function g0 G()N(O) — [0, oo
with compact support such that £ (g) > 1 for every g € K,,. Finally, set

F=JFuig™)

n=1

We want to show that, as & ranges over all elements of the countable set &, the topology
defined by the corresponding family of semi-norms || ||¢ coincides with the uniform
weak™ topology (defined by considering all continuous functions & : G()?o) — R
with compact support).

The uniform weak™* topology is defined by the basis consisting of all “balls”

Bey ... (@5 1) = {B € Coa(X0); llo — Bllg, < rforalli =1,2,....k}

where @ € Cpq(Xg), the functions &; : G()N(O) — Rwithi = 1,2, ..., k are continuous
with compact support, and r > 0.

For such a ball Bg(or; r) associated to a single function &, the support of £ is
contained in one of the compact subsets K,,. For an ¢ > 0 to be specified later, there
is by definition of &, a function &’ € JF,, such that d(§, ") < &. As a consequence,
remembering that £ ) is nonnegative and at least 1 on K,,, we have that |£(g)—£'(g)| <
g™ (g) for every g € G()?o), and therefore

/N Sogoda—/ & ogpda
G(Xo) G(Xo)

<8/ B é(")og)da
G(Xo)

and

/~ Eowdﬁ—/ i é’owdﬁ’<8/ £ opap
G(Xo) G(Xo) G(Xo)

for every B € Cpq(Xp) and every ¢ € H(fo). This implies that
o — Blle < llo — Bllgr + ellallgon + €l Bllzon.

If we choose ¢ > 0 small enough that ||| g < % this enables us to find two
functions &’ and €™ e F such that

Ber(a; 3) N B (@; 35) C Be (s r).
By taking multiple intersections, it follows that for every ball
Be gy,.g (0 1) = Be (s r) N Be, (a; r) N -+ - N B, (s 1)
there exists &, &), ..., £, € Fand " > 0 such that

’Bgffz/!-"f;i/ (a; r’) C 'Bgl,gzw.,gk (a;r).
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This shows that the basis consisting of the BE{,SZ’,..., &, (a; r") with all &' € T defines
the same topology as the similar basis where all functions with compact support are
considered. In other words, the uniform weak* topology Cpq(Xp) is also the topology
defined by the family of seminorms || ||z with & € J.

Since JF is countable, it follows that this topology is metrizable. More precisely,
if we list the elements of F as {§;;i = 1,2, ...}, the uniform weak* topology is the
metric topology associated to the metric § defined by

S, B) =Y 27 min(l, la — Bllg;}.

i=1

The proof that the weak* topology is metrizable is almost identical (and classical).
|

Proposition 5 If the Riemann surface X is compact, the space Cpq(X0) of bounded
geodesic currents coincide with the space C(Xo) of all geodesic currents, and the
uniform weak* topology coincides with the weak™ topology on Cpq(X0).

The two topologies do differ when X is noncompact. For instance, if g, € G(D)
is a sequence of geodesics of I) that eventually leaves any compact subset of G (D),
the Dirac measures &5, € Cpq(ID) based at g, provide a sequence of bounded geodesic
currents in Cpq (D) that converges to 0 for the weak* topology but has no limit for the
uniform weak* topology. Also, the sum )~ | nd,, is a well-defined geodesic current,
which is unbounded.

Proof of Proposition 5 We first show that every geodesic currenter € C(Xp) is bounded.
We want to prove that, for every continuous function £ : G(X9) — R with compact
support, the semi-norm

leells = sup ey

peH(Xo)

/~ Eopda
G(Xo)

is finite. Because X is compact, there exists a compact subset K C Xo whose image
under the action of 71 (Xg) covers all of Xo, in the sense that Xo = Uyem(Xo) y(K).
Pick abase point xg € K. Then, for every biholomorphic diffeomorphism ¢ € H(Xo),
there exists at least one y € m1(X() such that ¢ o y(xg) € K. Note that ¢ o y is also
biholomorphic, and that

/~ gogooydazf _ &Eopda
G(Xo) G(Xo)

by invariance of the measure « under the action of 71 (X¢). Therefore, in the supremum
of (1), we can restrict attention to those ¢ € H()? 0) such that ¢(xg) € K. Such ¢ form
a compact subset of H(X() = PSL;(R), and the supremum is therefore finite. This
proves that |ja|l¢ < oo.
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As aconclusion, every geodesic current o € C(X) is bounded, and therefore C(X¢)
coincides with Cpq(X0p).

We now prove that the weak* and uniform weak* topologies coincide on C(X() =
Cpa(Xo). By Lemma 4, these topologies are metrizable. Therefore we only need to
show that, when X is compact, a sequence {o,},en converges to « for the uniform
weak™ topology if and only if it converges to « for the weak* topology.

Convergence for the uniform weak* topology clearly implies convergence for the
weak* topology. So we can focus on the converse statement.

Suppose that «;, € Cpq(Xo) converges to « for the weak* topology. We want to
show that, for every continuous function & : G(Xo) — R with compact support,

/~ §o<pdan—/~ Eogpda
G(Xo) G(Xo)

oy —alle = sup
peH(Xo)

@)

tends to 0 as n tends to oco.

As before, the compactness of X enables us to restrict attention to those ¢ € H(X 0)
such that ¢(xg) € K, which form a compact subset of H(X 0) (remember that H(X 0)
is also the set of isometries of the Poincaré metric of Xo). In particular, the supremum
of (2) is attained at some ¢, € H()?o), with ¢, (xo) € K and

||an—oe||s='/ i Sowndan—/  togudal.
G(Xo) G(Xo)

In addition, again by compactness of the set of those ¢ € H(fo) with ¢(xo) € K,
we can extract a subsequence {¢y, }ren that converges to some oo € H(X0) uniformly
on compact subsets of X¢. In particular,

/~ §°§0nkd05nk—/~ éo(Pnkda
G(Xo) G(Xo)

<U 5 50<poodank—/ _ §opoda
G(Xo) G(Xo)

+/ i |so¢nk—so<poo|dank+/ o gn — & 0 ool da
G(Xp) G(Xo)

llotn, — alle =

3

It is now time to use the fact that o = lim,,_, o, &, for the weak* topology, which
implies that

lim ’/ ~ “;‘ogooodotnk—/ _ Eogxdal =0. 4)
k—oo | JG(Xo) G(Xo)

Also, pick a nonnegative continuous function & : G(go) — R with compact
support, such that £, > 1 on a neighborhood of the support of £ o p,. Given & > 0,

& O @¥ny —& 00| < €60
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for k large enough, since ¢, — @oo as k — oo uniformly on compact subsets of Xo
(and therefore uniformly on | compact subsets of G(X 0), if we use the same letter to
denote the action of ¢,, on Xo and on G(Xo)) It follows that

/N |€O‘pnk_§°(poo|dank<8/ _ Esoday,.
G(Xo)

G(Xo)

Since fG(JN(o) Eoo doty, — fG(JN(o) Exdas as k — oo by weak* convergence, we
conclude that

lim _ & opn —&ocpxlday, =0. ©)
k— 00 G(Xo)
Similarly,
lim [ 180 pn —&ogelda =0, ©)
k=00 JG(Xp)

The combination of the Eqgs. (3—6) proves that
lim [ty — afle = 0.
k— 00

Therefore, we were able to extract from the sequence {o,},en a subsequence
{an, Jken that converges to « for the uniform weak* topology. If we apply the same
process to all subsequences of the original sequence {«;,},en, We conclude that this
sequence {a;, }neN converges to « for the uniform weak* topology.

This completes the proof of Proposition 5. i

Because we will frequently use it, we state as a lemma a well-known property of
the weak™ topology.

Lemma 6 Suppose that the sequence {a,},eN of geodesic currents o, € C(Xg) con-
verges to a € C(Xo) for the weak™ topology. Then, for every every measurable subset
A C G(Xo) whose topological boundary § A has a-mass a(§A) equal to 0,

lim o, (4) = a(A).

Proof See for instance [7, chap. IV, §5, n® 12] or [8] for this classical property of
weak* convergence, which holds in a much more general setting. O

The example of Dirac measures shows that the hypothesis that ¢ (6 A) = 0 is really
necessary in Lemma 6.
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3 The Liouville embedding
3.1 The Liouville geodesic current

We saw that the group H(ID) of biholomorphic diffeomorphisms of D acts by isometries
for the Poincaré metric, and therefore acts on the space G (D) of complete geodesics
of . A computation shows that it respects the Liouville measure Lp on G (D) defined
by the property that, if we parametrize the unit circle 9D C C by ¢ > e,

dtds
Lp(A) = e — e
for any Borel subset A C G(D) = 0D x dD — A. See for instance Lemma 10 below,
and the well-known invariance of crossratios under linear fractional maps.

More generally, if Xisa Riemann surface biholomorphically equivalent to D by a
biholomorphic diffeomorphism f X — D, the induced homeomorphism 8OOX —
oD prov1des ahomeomorphism from the space G(X ) = BOOX X BOOX A of geodesics
of X to G(D) = dD x 9D — A, which we also denote by f We can then pull back
the Liouville measure Lp to a measure L on G(X ). The invariance of Lp under
the group H(ID) of biholomorphic diffeomorphisms of D shows that this measure is
independent of the choice of the biholomorphic diffeomorphism f: X — D. The
measure L is the Liouville measure of the Riemann surface X = D.

Consider an element [ f] € T(Xg) of the Teichmiiller space of the Riemann surface
X, represented by a quasiconformal diffeomorphism f: Xo — X. Lift f to a quasi-
conformal diffeomorphism f : Xo — X between the universal covers. A fundamental
property is that this quasiconformal diffeomorphism admits a continuous extension
f Xo U BOOXQ — X U 00X (see the Beurling—Ahlfors Theorem 14 below). The
restriction of this extension to the circles at infinity induces a homeomorphism from
G(Xo) = BOOX() X BOOXO —Ato G(X) = BOOX X BOOX A. We can then pull back
the L10uv1lle measure L by f to define a measure Ly on G(Xo) More precisely,
Ly(A) = ( f (A)) for every measurable subset A C G(Xo) while

/~ ’g‘de:/ ~Eof_ldLy(
G(Xo) G(X)

for every continuous function & : G(Xo) — R with 1 compact support.

The action of the fundamental group 7; (X) on X is biholomorphic, and therefore
respects the Liouville measure L on G(X ). Since two lifts f: Xo — X of f differ
only by the action of an element of m1(X) ~1t follows that the measure L f is mdegendent
of the choice of this lift. Also, because f conjugates the action of 71(X) on X to the
actign of m1(Xp) on )~(0, the measure L 7 is invariant under the action of 71 (Xp) on
G(Xo). In other words, L ¢ is a geodesic current in Xo.

Lemma7 The Liouville geodesic current Ly is bounded, and therefore belongs to
Cba (Xo).

We postpone the proof of Lemma 7 to Sect. 3.3, where it will be proved as Lemma 16.
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If two quasiconformal diffeomorphisms f1: Xo — X; and f>: X9 — X» rep-
resent the same element [ 1] = [ f2] in the Teichmiiller space T(Xy), there exists a
biholomorphic diffeomorphism g: X1 — X3 such that f{l ogo f1 is bounded isotopic
to the 1dent1ty in Xo. We can therefore choose hfts f1 XO — X1, fo: Xo = Xo,
g: X 1 — X X, of these diffeomorphisms so that f2 ogo f1 is bounded isotopic to the
identity in Xo. A bounded i isotopy fixes the boundary at infinity doo Xo; indeed, assum-
ing Xo = D without loss of generality, the euclidean distance by which a bounded
isotopy moves a point x € I tends to 0 as x approaches the boundary circle dID. This
implies that the restrictions of f2 and go f1 to maps doo X 0 = 0o X, coincide. As the
biholomorphic diffeomorphism g sends the Liouville measure L , to Lg,, itfollows
that the measures L s, and L y, coincide on G(f 0)-

As a consequence, the Liouville geodesic current L s € Cpq(Xo) depends only on
the element [ f] of the Teichmiiller space T(X() represented by the quasiconformal
diffeomorphism f: Xo — X.

The map

L: T(Xo) = Cpa(Xo)

defined by the property that L([ f ]) = L is the Liouville embedding.

Theorem 8 Let X be a conformally hyperbolic Riemann surface, let the Teichmiiller
space T(X) be equipped with the Teichmiiller distance dt, and let the space Cpq(X0)
of bounded geodesic currents be endowed with the uniform weak* topology defined
in Sect. 2. Then, the Liouville embedding L.: T(Xo) — Cpa(X0) is a homeomorphism
onto its image, it is a proper map, and its image L(‘J'(Xo)) is closed in Cpq(Xop).

Remark 9 The above statement would be false if Cpq(X() was only endowed with the
usual weak™* topology. Indeed, consider a sequence {g, }, <N of geodesics of the disk D
that leaves every compact subset of G (D). For any [ fo] € T(D), let[f,] = gn L folbe
obtained from [ fo] by performing an elementary earthquake along g, (see Sect. 5.2).
Then, for every compact subset K C G (D), the measure L([ fn]) coincides with
L([fo]) on K for n sufficiently large. It follows that the sequence {L([fx])}, _x
converges to L([ fo]) for the weak* topology as n tends to infinity. However, the
Teichmiiller distance dT([ fol, [ f,,]) > 0 is constant and [ f;,] consequently does not
converge to [ fo] for the Teichmiiller metric on T(X¢). This shows that the inverse map
L' L(‘T(XO)) — T (Xp) is not continuous when its domain is only endowed with
the weak* topology, so that the uniform weak* topology is really needed.

The proof of Theorem 8 will take a while. It will be proved in several steps, as
Propositions 19, 21, 24 and 25 below. We first introduce a few technical tools to
connect the quasiconformal geometry of Riemann surfaces to measures on spaces of
geodesics.
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3.2 Boxes of geodesics

Let X be a simply connected conformally hyperbolic Riemann surface, and let o0 X
be its circle at infinity. Typically, X will be the universal cover of a conformally
hyperbolic Riemann surface X.

The orientation of X specifies a boundary (counterclockwise) orientation for BOOX
In particular, two points a, b € 8OOX delimit a unique interval [a, b] C BOOX
consisting of those points x such that a, x, b occur in this order for the coun-
terclockwise orientati~on of 30035 . Note that [b, a] is different from [a, b], and that
[a, b]U [b, a] = 000X

Four distinct points a, b, ¢, d € 800}? , occurring counterclockwise in this order,
determine two disjoint intervals [a, b], [c d] C 800)? and a subset Q = [a, b] x [c, d]
of the space of geodesics G(X ) = 000X X BOOX A. We will refer to such a subset
0 as a box of geodesics of X, or as a box in G(X ).

For the disk DD and its Liouville geodesic current Lp € Cpq(ID), a simple inte-
gral computation expresses the Liouville mass of a box of geodesics in terms of the
crossratio of the four points of 91D determining this box.

Lemma 10 For a box of geodesics Q = [a, b] x [c,d] C G(D) witha, b, c,d € 0D C
C,

ds dt (a—c)b—d)
LD([a, b] x [c, d]) = //Q b — el = log @ —db_o

Lemma 11 Ler Q and Q' C GL)N() be two boxes of geodesics in X. There exists a
biholomorphic diffeomorphism X — X sending Q to Q' if and only if they have the
same Liouville mass Ly (Q) = Lz (Q").

Proof Usinga biholomorphic diffeomorphism X — D, we can assume without loss of

generality that X = ID. Then, the biholomorphic diffeomorphisms of I are the linear

fractional maps z %Zi, where «, B € C are such that |a|? — |B]> = 1. Elementary

algebra shows that, given two boxes Q = [a, b] x [c¢,d] and Q' = [a’, b'] x [, d']
in G(ID), there exists such a linear fractional map sending Q to Q if and only if the

crossratios EZ:Z))((I;:’Q nd EZ _Z/,))((ll’?, d,; are equal. By Lemma 10, this is equivalent to
the property that the Liouville masses Lp(Q) and Lp(Q’) are equal. O

For a box of geodesics Q = [a, b] x [c,d] C G()?), its orthogonal box is the box
Q" =1[b.c] x[d.al.

Note that the definition is not quite as symmetric as one would hope, as Q1+ is
different from Q. In fact, QLL = [c, d] x [a, b] consists of all geodesics obtained
by reversing the orientation of the geodesics of Q. In particular, Q- has the same
a-mass as Q for any balanced geodesic current, and the distinction between Q and
Q- will consequently have little impact in this article since most geodesic currents
considered here will be balanced (as defined at the end of Sect. 2.1).
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Lemma 12 Let L be the Liouville measure of a simply connected conformally hyper-
bolic Riemann surface X. For every box of geodesics Q C G(X ),

e L@ 4 oL@ _ .

Proof Using a biholomorphic diffeomorphism X — D, we can assume without loss of
generality that X = X = D. Then, for abox Q = [a, b] x [c¢,d] C G(D), Lemma 10
gives

*L]ID(Q) n e,LD(QL) (a—d)(b—rc) (b—a)c—d)
(a—c)b—-d) ((b—d)(c—a)
_la=d)b—c)=(b—-a)c—4d)

N (a—co)b—d)

=1.

3.3 Quasiconformal and quasisymmetric homeomorphisms

Consider a quasiconformal diffeomorphism f: X; — X5 between conformally
hyperbolic Riemann surfaces, and lift it to a map f X| — X, between their universal
cover. We already mentioned the Beurling—Ahlfors Theorem, which says that f has
a continuous extension f X 1 U BOOX 1 — X2 U 8OOX 2 to the closed disks obtained
by adding their circles at infinity to X1 and X». The e Beurling—Ahlfors Theorem addi-
tionally relates the quasiconformal properties of f X (| — X> to another regularity
property for the boundary extension f 90 X1 = 000 X2, as We Now explain.

Abox Q C G(Xl) is symmetric if its Liouville mass Ly, (Q) isequal to log 2. This
property is better explained if we translate it to the disk by a biholomorphic diffeomor-
phism Xy — D. Indeed, Lemma 11 shows that a box Q C G (D) is symmetric if and
only if it is the image (p([l, i] x [—1, —i]) under a biholomorphic map ¢ € H(D) of
the “standard” box [1, i] x [—1, —i] delimited by the points 1,1, —1, —i € dD. Another
characterization is provided by the combination of Lemmas 11 and 12 , which shows
that a box Q is symmetric if and only if there is a biholomorphic diffeomorphism of
X 1 sending Q to the orthogonal box QL

A homeomorphism f B(X,X 1 = aoon is quasisymmetric if the supremum

M(f)= _ sup w
Q symmetric 0g 2
as Q ranges over all symmetric boxes Q C G()? 1), is finite. By definition, M (h) is
the quasisymmetric constant of h.
Note that M ( f ) = 1 when f comes from a biholomorphic diffeomorphism X, —
X, and that in general M ( f ) > 1 by Lemma 12.

Remark 13 The quasisymmetry property is sometimes stated in a different way, by
restricting attention to homeomorphisms f: R — R and by requiring that the supre-
mum

HOP) = sop el 1 <
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be finite; to clarify the terminology, let us say that a homeomorphism f: R — R
satisfying this property is weakly quasi-symmetric (compare [35]). If we identify R U
{00} to S! = 9D by stereographic projection, a simple algebraic manipulation shows
thatlog(14+ H (f)) < M(f). As aconsequence, if the extension RU {oo} — RU{oo}
of f: R — R is quasisymmetric, then f is weakly quasisymmetric. A consequence
of the proof [2] of the Beurling—Ahlfors Theorem 14 stated below is that the converse
holds, namely that the extension R U {oo} — R U {oco} of a homeomorphism f: R —
R is quasisymmetric if and only if f is weakly quasisymmetric. Indeed, that proof
only uses the weak quasisymmetry property, whereas the boundary extension of a
quasiconformal diffeomorphism is quasisymmetric.

The following fundamental result connects quasiconformal diffeomorphisms
between Riemann surfaces and quasisymmetric homeomorphisms between their cir-
cles at infinity.

Theorem 14 (Beurling—Ahlfors) Let X 1 and X be two simply connected conformally
hyperbolic Riemann surfaces. Every quasiconformal diffeomorphism f: X1 — X»
admits a unique extension to a homeomorphism %1 U 8oo§1 — )?2 U Boogg, whose
restriction f 800)? 1 — Boofz to the circles at infinity is quasisymmetric. In addi-
tion, the quasisymmetric constant M ( f ) of f 300 X1 — oo X2 tends to 1 as the
quasiconformal dilatation K ( f ) of f X\ — X tends 101

Conversely, every quasisymmetric homeomorphism f BOOX 1 — aoon admits a
continuous extension X 1 UdeoX] — X2 U Boon, whose restriction f X 1 = X2
is a quasiconformal diffeomorphism. In addition, the extension can be chosen so that
the quasiconformal dilatation K ( f ) of f X - X5 is bounded by a constant_ K'( f )
depending only on the quasisymmetric constant M ( f ) of f d0o X1 — 000 X2, and
tending to 1 as M(f) tends to 1.

Proof See [2], [22, §11.6] or [17, §16], for instance. O

Although the definition of a quasisymmetric homeomorphism f : aooﬁ 1 = O0so X 2
involves only symmetric boxes, the quasisymmetry property actually controls the
Liouville mass Lz, (f(Q)) for all boxes Q C G(Xl)

Proposition 15 If a homeomorphism f 000 X1 — 000 X2 is quasisymmetric, there
exists a homeomorphism w: [0, co[— [0, oo[ depending only on the quasisymmetric
constant M (f) such that

Ly, (@) < o(Ly, ()

for every box Q C G(}~(1).

In addition, the homeomorphism w can be chosen so that it converges to the identity,
uniformly on compact subsets of the open interval 10, oo, as the quasisymmetric
constant M (f) tends to 1.

Proof Although there exists direct proofs of the first half of the statement (see for
instance [35]), it is easier to use the full force of the Beurling—Ahlfors Theorem 14.
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In addition to its Liouville mass Lg (Q), a box Q = [a,b] X [c,d] in G(X))
has a more complex analytic invariant, its conformal modulus pg (Q). This is
defined as the number u = py (Q) for which there exists a homeomorphism
X I, 800 1 — [0, u] x [0, 1] that is conformal on X and sends the corners a,
b, c,d € BOOX of Q to the corners (0, 0), (u,0), (u, 1), (0, 1) of the rectangle
[0, u] x [0, 1] C R?, respectively. These two invariants are classically related by an
increasing homeomorphism 7: 10, co[ — 0, oo[ such that ug (Q) = 77(L}~(1 (Q));
indeed, these two quantities depend continuously on the corners a, b, c, d of Q, they
both increase as Q gets larger, they tend to 0 as Q gets arbitrarily small, and they tend
to +00 as Q gets arbitrarily large.

Let f X| — X, bethe quasiconformal extension of f 8OOX 1 — aoon provided
by Theorem 14. In particular, this quasiconformal extension can be chosen so that its
quasiconformal dilatation K (f) isbounded by a constant K'( f ) depending only on the
quasisymmetric constant M (f), and tending to 1 as M (f) tends to 1. A fundamental
consequence of quasiconformality is that

1z, (F(@) < K(J)ng, (0

see for instance [1,22]. Proposition 15 then holds for the homeomorphism « defined
by w(®) =0~ (K'(/Hn(®)). =

An immediate consequence of Proposition 15 is that, if f BOOX 1 — Boon is
quasisymmetric, So is its inverse f 1. BOOXZ — E)OOX 1-

We now have the tools to prove Lemma 7, a task which we had temporarily post-
poned. We rephrase this statement in the following way.

Lemma 16 Let f: X, —> Xobea quasiconformal diffeomorphism between two sim-
ply connected conformally hyperbolic Riemann surfaces. Then, for every continuous
function & : G(X1) — R with compact support, the supremum

sup ‘/ R f;‘ogode-
peH(X)) ' /G(X1)

is finite, where the supremum is taken over all biholomorphic diffeomorphisms
% X\ — X1 and where L > 7is the pull back under f of the Liouville measure L, of

Xz.

Proof Cover the support of § by finitely many boxes Q1, Q2, ..., Ok C G()? 1). Then,
for every ¢ € H(X1)

‘/G&l)g

=~

A < max |5(g>|)Z ¢~ (0))

8eG(X1)

k
<( max le@!1) Y Lm(Tov™ @)

geG(Xy)
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Since f: doo X1 — oo X2 is quasisymmetric, Proposition 15 provides a function &
such that, for each box Q; C G(X1),

Lg,(Foe™(00)) < o(Lg, (97" 0)) = o(Lg, (Q1).
This gives the uniform bound requested. O

Theorem 14 provides a correspondence between quasiconformal diffeomorphisms
between simply connected Riemann surfaces and quasisymmetric homeomorphisms
between their boundaries at infinity. We will need a slight improvement of this corre-
spondence for maps between Riemann surfaces that are not simply connected.

Lift a quasiconformal map f: X; — X to a quasiconformal diffeomorphism
f X - X between universal covers, and consider the quasisymmetric extension
f doo X1 — 00 X2 provided by the first part of Theorem 14. The quasisymmetry
property is invariant under composition with biholomorphic maps of X, (as these
respect the Liouville measure L, ). It follows that the quasisymmetric constant M (f)
is independent of the choice of the lift f: X 1 — X 2. We will refer to M (f) as the
quasisymmetric constant M (f) of the quasiconformal map f: X; — X».

The first part of Theorem 14 indicates that this quasisymmetric constant M (f) is
close to 1 when the quasiconformal dilatation K (f) is close to 1. We will need the
following converse statement, which improves the second part of Theorem 14 by ensur-
ing that the quasiconformal extension f : X; > X, comes from a quasiconformal
diffeomorphism f: X; — X».

Theorem 17 Let f: X| — X be a quasiconformal diffeomorphism between con-
formally hyperbolic Riemann surfaces, and let M (f) be its quasisymmetric constant.
Then, there is another quasiconformal diffeomorphism f': X| — X, that is bounded
isotopic to f and whose quasiconformal dilatation K (') is bounded by a constant
depending only on the quasisymmetric constant M (f) = M (f'). In addition, f’' can
be chosen so that its quasiconformal dilatation K ( f') tends to 1 as the quasisymmetric
constant M (f) tends to 1.

Proof As usual, lift f to f : X1 — X,, and consider the quasisymmetric exten-
sion f E)OOX 1= Boon A fundamental constructlon of Douady—Earle [9] prov1des
another contmuous extens1on f X1 U BOOXI — X2 U aoon of f BOOXI — 3ooX2
such that f X - X,is quasiconformal, which has the additional property that it is
equivariant with respect to the action of the biholomorphic diffeomorphisms of X, and
X 2. Namely, for every biholomorphic diffeomorphism ¢; € H()Nf 1) and ¢ € H(i 2),
the Douady—Earle quasiconformal extension of ¢; o f o @y: BOOJN( 1 = Boofz is
@10 f’ owy: Zf | = X,.In addition, we still have the property that the quasiconformal
constant K (f”) of the Douady—Earle extension tends to 1 as the quasisymmetric con-
stant M (f) tends to 1 (although the bound is not as good as for the Beurling—Ahlfors
Theorem).

Applying the equivariance property to the (biholomorphic) actions of the funda-
mental group 1 (X1) = m1(X32) on )?1 and )?2, it follows that f’: }N(I —>~'}?2 descends
to a quasiconformal map f’: X; — X». By construction, K (f) = K(f”) tends to 1
as M(f) = M(f)tendsto I.
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By construction, the quas1symmetrlc extensions f f BOOX I 800X2 of the
quasiconformal maps f f’ Xo — X coincide. A result of Earle-McMullen [11]
then shows that f and f’ are bounded isotopic. i

3.4 The Liouville embedding L: T(Xp) — Cpq(Xo) is injective

We are now ready to begin proving Theorem 8. We begin with the easier part.
Proposition 18 The Liouville embedding L: T(Xo) — Cupa(Xo) is injective.

Proof Suppose that L([f1]) = L([f2]) for [f1]. [f2] € T(Xo) represented by qua-
siconformal diffeomorphisms f1: Xo — Xy, f2: Xo — Xp. Lift fi, f2 to maps
fl Xo -~ X 1, f2 Xo - X2 between umversal covers, and conmder the qua-
sisymmetric extensions f1 800X0 — BOOX 1, fz BOOXO — BOOXQ provided by
Theorem 14.

Since L([ f11) = L([/2]), the homeomorphism fro fl_lz 900 X1 — 900X sends
the Liouville measure L, to Ly, . It follows that the quasisymmetric constant M (fi )
f?l) = M(fzoffl) isequal to 1. By Theorem 17, it follows that fzofl’] is bounded
isotopic to maps g: X1 — X» whose quasiconformal dilatation K (g) is arbitrarily
close to 1. This proves that the Teichmiiller distance dT([ il [ fz]) is equal to 0, so
that [ f1] = [f2] in T(Xo) as required. O

3.5 The Liouville embedding L: T(Xp) — Cpq(Xo) is continuous

We now prove a more substantial step in the proof of Theorem 8.

Proposition 19 The Liouville embedding L.: T(Xg) — Cpa(X0) is continuous, for the
Teichmiiller topology on T(X¢) and the uniform weak* topology on Cpq(Xo).

Proof The Teichmiiller space is endowed with the topology defined by the Teichmiiller
metric dt, and the uniform weak* topology on Cpg(Xp) is metrizable by Lemma 4.
It therefore suffices to show that, for every sequence {[ f"]}n N converging to [ foo]
in T(Xp), the sequence of Liouville geodesic currents L([ f,,]) = Ly, converges to
L([fol) = Ly, in Cha(Xp) for the uniform weak* topology. By definition of the
uniform weak* topology, this means that

sup ‘f 5 Eogode"—/ _ EO(defoo‘—>0asn—>oo
peH(X,)' Y G(Xo) G(Xo)

for every continuous function & : G(Xo) — R with compact support.
As afirst step, we begin by proving a similar statement for boxes of geodesics in Xj.

Lemma 20 For every box Q C G()N(o),

sup Ly, (9(Q)) — Ly ((Q))| = Oasn — oo.
peH(Xo)

@ Springer



F. Bonahon, D. Sari¢

Proof By definition of the Teichmiiller topology, the classes [ f,,1, [ fool € T(X0) can
be represented by quasiconformal maps fn Xo — Xpand fo: Xo — Xoo such that
the quasiconformal constant K ( f;, o foo ) tends to | lasn tends to o0o.

Lift f,, and f to quasiconformal maps f,, Xo — X and foo Xo - X 50>
respectively, and consider their quasisymmetric extensions fn BOOXO — 000X, and
foo: 800)?0 — Boof oo to the circles at infinity.

A first observation is that, as ¢ € H(? 0) ranges over all biholomorphic diffeomor-
phisms of X, the Liouville mass L, (¢(Q)) is constant by invariance of the Liouville
measure L under the action of H()N( 0). Applying Proposition 15 to the quasisym-
metric maps foo and fogl then shows that Ly (foo (go(Q))) stays in a compact subset
of the interval ]0, co[, independent of ¢ € H(io)

Since the quasiconformal dilatation K ( fn fool) = K(fno fe 1) tends to L, it
follows from Theorem 14 that the quasisymmetric constant M ( f,, fool) of fn
foo BOOX — BOOX tends to 1 as n — oo. By Proposition 15 and using the
property that Ly %o ( foo ((p(Q))) is bounded away from 0 and oo, it follows that

Loy (e f (Fee)
im sup ————— = lim sup - <
n—00 Lfoo(<P(Q)) n—00 Lioo (foo((P(Q)))

’

and this uniformly in ¢ € H(fo).
Similarly, since K(f,;) < K(f; o fogl)K(foo) the maps f,: Xo — X,
are umformly quasiconformal and, as above, the Liouville masses Lfn (go(Q))

Lg, ( Fa (¢(Q))) stay bounded away from 0 and co. Replacing fuo fOo by fao © f 1
in the argument above gives that

Ly (T o 7 (Fute(0))

lim sup M = lim sup ~ <1,
n—soo Lf,@(Q)  n—oo Ly, (fa(9(Q))
uniformly in ¢ € H()?o).
Therefore,
Ly (p(Q)

im —————— =
n—>00 Lg (9(Q))

uniformly in ¢ € H()N(O). Since L s (¢(Q)) is uniformly bounded away from 0 and
00, it fol}ows that L ¢, (¢(Q)) tends to L. (¢(Q)) as n — 00, and this uniformly in
¢ € H(Xp). This proves Lemma 20. O

We now return to the proof of Proposition 19. Consider a continuous test function
&: G(Xo) — R with compact support.

We begin by covering the support of & by finitely many boxes Q1, Q2, ..., Om C
G (Xo).-

For a number &y > 0 to be specified later, we then cover the support of § by finitely
many boxes Q, 05, ..., Q) , C G(Xp), contained in the union of the boxes Q; and
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small enough that

|max§(x) — min 5(x)| < &g. @)
xeQ) xeQ!

i i

After subdividing these boxes Q; = [a;, bi] X [ci, d;], we can arrange that the boxes
Q! have disjoint interiors. We then approximate & by the step function

0 =) £y,

i=1

where xl.* is an arbitrary point of Q; and where xo/: G ()? 0) — R is the characteristic
1

function of Q;. By construction, |§ — o| < &g except possibly on the boundary of the
boxes Q).
Then, for every ¢ € H(X)),

‘/ (togp—ocog)d(Ly, —Lfoo)‘
G(Xo)

< & (Lfn (w‘l(Qﬁ)) + Ly, (fﬂ_l(Q;))) )

3

I
_

M=

(Ll @D) +Li(e7'@)))

< &0

~.
I
=

using the properties that the boundary of a box has Liouville measure 0 and that
Ui ©Q; is contained in J7_; Q.

Similarly, once we have chosen the boxes Q' to approximate & by a step function,
Lemma 20 shows that

)/G(D)wocp)d(Lf,,—wa)\

=m§<p(xl*) Ly (97'(2)) — Ly (¢7'(Q] ?
Yseen) (Ll @) - (e @) ¥

i=1
— 0asn — oo,

and this uniformly in ¢ € H()?O).
Suppose that we are given ¢ > 0, and that we have chosen the boxes Q; to cover
the support of £. Once this choice is made, Lemma 20 then shows that the term

Z(Lfn ¢ Q) )"‘Lfoo(‘/fl(Qj)))

j=1
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occurring on the last line of Eq. (8) is uniformly bounded. We can therefore pick a
number g9 > 0 so that the contribution of (8) is less than &/2. After choosing the
boxes Q' so that (7) holds for this &g, the contribution of (9) will be less than & /2 for
n sufficiently large. Combining (8) and (9), we conclude that

’f kogd(Ln, — L) <e
G(%o)

for n sufficiently large, and this uniformly in ¢ € H()N( 0). This proves the continuity
property of Proposition 19. i

3.6 Theinversemap L™': L(T(Xo)) — T(Xo) is continuous

Proposition 21 The inverse L L(‘J'(Xo)) — T(Xo) of the Liouville embedding
L: T(Xo) — Cuva(Xo) is continuous, for the Teichmiiller topology on T(X¢) and for
the uniform weak* topology on Cpq(Xo).

Proof Consider an element [ f] and a sequence {[ Sl }neN of elements of the Teich-
miiller space T(X¢) such that the Liouville currents L 7, € Cpq(Xo) converge to L
for the uniform weak* topology. We want to show that [ f;,] converges to [ foo] for the
Teichmiiller topology of T(Xj).

Asusual, represent the class [ f,] € T(X() by quasiconformal maps f;,: Xo — X,
and consider their quasiconformal lifts fn : Xo — X, and quasisymmetric extensions
fn 3ooX() — 000X

Lemma22 The quasisymmetric constants M(f,) of the quasisymmetric maps
f 300 X0 — 000X are uniformly bounded.

Proof We want to show that, as Q C G(X 0) ranges over all symmetric boxes in X 0s
the Liouville masses L f, (Q) are uniformly bounded, independently of n and Q. For
this, choose a symmetric box Qg C G(Xo) and a test function & : G(Xo) — R with
compact support such that £ > 1 over the box Q.

By definition of the uniform weak* topology,

/~ EopdLy, — _ Eo@dLy asn— o0
G(Xo) G(Xo)
uniformly over all biholomorphic maps ¢ € H(Xo). The limit is uniformly bounded

by Lemma 16. It follows that the integrals |, G&y 509 dL s, are bounded by a constant

C independent of n and ¢ € H(? 0)- ~
Every symmetric box Q C G(Xjp) is of the form go_l(Qo) for some ¢ € H(Xjp).
Then, since & > 1 over Qy,

Lz (F(Q) = L1, (0) = Ly, (9™ (Q0)) </ fogdls <C
G(Xo)

so that the quasisymmetric constant M (f,,) = M ( f;,) are bounded by C/log2. O
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Lemma 23 The quasisymmetric constant M (f; o fogl) converges to 1 as n tends to
0.

Proof We will use a proof by contradiction. If the property does not hold, there exists
an &9 > 0 and a subsequence {[f, 1}, y such that M(f,, o f5h) > 1+ g for
every k. (Recall that the quasisymmetric constant is always greater than or equal
to 1). By definition of the quasisymmetric constant, this means that there exists a
symmetric box Q,, in X such that Lgnk (f,,k o fogl(Q;lk)) > (1 + gp)log2. We
then have a box Q,, = fogl(Q;,k) C G(fo) such that Ly (Qp,) = log2 and
Lfnk(an) > (1 + ¢&p) log2.

Fix three points ag, bg, co € 800)?% counterclockwise in this order. Then, there
exists a biholomorphic map ¢,, € H(Xo) such that the box ¢, (Qp,) is of the form
[ao, bol x [co, dp, ] for some point dy, in the open interval Jcg, apl C 300 Xo.

Since foo: %0 - X oo 18 quasisymmetric and L ¢ _(Q;,) = log2, Proposition 15
shows that the Liouville mass L %o @ni (Ony)) = L, (Qny) is bounded between two
positive constants. It then follows from Lemma 10 that the point d,, stays within a
compact subset of the interval ]Jco, ap[. Refining the subsequence if necessary, we can
therefore assume that d,,, converge to some point do, € ]co, apl as k tends to co. In
other words, the box ¢, (Q,,) converge to the box Qx = [ap, byl X [co, dxo] as k
tends to oo.

For an & > 0 to be specified later, choose intervals ]aé, ag [, ]bg . by [, ]c(’), o [ and
]dgo, déo[ C 0o X o respectively containing the points ag, bg, g, d, and small enough
that the following property holds. The box Qo is contained in Qf, = [y, byl x
[56, d/,] and contains Q7 = [a(, b(] X [c(, d},]. By Lemma 22, the maps f,: Xo —
X, are uniformly quasisymmetric. Therefore, noting that the closure of Q. — Q7 is
the union of the four boxes [a(, b1 x [, ¢ 1, [aj, byl x [dY,, di .1, [af, ag) x [cg, di]
and [by, by] x [¢(, d},], we can use Proposition 15 to choose the intervals ]a(’), ag [,
167, By[. Jegs e[ and ]dZ,. dl[ small enough that

Ly (p(Q0 — Q%) <e

10
and Ly (9(Qh — 0%)) <¢ (10)

for every n and every ¢ € H()Nfo).

By construction, Q is contained in the interior of Q. , and contains Q% in its
interior. Let &: G()?O) — [0, 1] be a continuous test function that is identically 1
on the box Q7 and 0 outside of Q. For k large enough, the box ¢,, (Q,,) is very
close to Qo and therefore Q% C ¢, (Qn,) C QL. As a consequence, Xgrl(010) <

50 S Xyplon) M Xylor) S X0 S Xyt 1 xas G(Xo) = {0, 1)

denotes the characteristic function of the subset A C G(%o). It follows that for k
sufficiently large

\/G@ EoondLy, =gy (0u)] < Ly (o) (@ = 000)) < ¢
0
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by (10), and

[ ommaLy, =L@
G(Xo)

(11)
> log2 +¢gplog2 —¢
since the boxes Q,, were chosen so that L, (Qy,) > (1 + &o) log 2.
Similarly,
)/ L §o@ndLyp, — Lp (Qn)| < Lyo(on, (% — 0%) <
G(Xo)
and
EopydLy, <Ly (Qn)+e
/G(ffo) ni L f I n (12)

<log2+e¢

since Ly, (Qp,) = log2.
But, if we had chosen ¢ > 0 small enough that 2e < gglog 2, the inequalities (11)
and (12) are incompatible with the fact that

/N Sogondefnk—> _ EopydLy, ask — o0
G(Xo) G(Xo)

by uniform weak* convergence of Lz, to L. This contradiction proves Lemma 23.
|

By the property of Lemma 23, Theorem 17 then shows that [ f,] € T(X¢) converges
to [ foo] for the Teichmiiller metric. This completes the proof of Proposition 21. O

3.7 Theimage L(7(Xo)) of the Liouville embedding is closed

Proposition 24 The image L(‘J'(Xo)) of the Liouville embedding L: T(Xy) —
Cpa(X0) is closed in the space Cynq(Xo) of bounded geodesic currents.

Proof As before, the metrizability property of Lemma 4 enables us to argue in terms
of sequences. Let [f,] € T(Xp) be a sequence in the Teichmiiller space such that
the associated Liouville geodesic currents L([ fn]) = L, converge to some geodesic
current aoe € Cpa(Xo). We want to show that a is also in the image L(T(Xo)).

As usual, lift the quasiconformal diffeomorphisms f,: Xo — X, to maps
f Xo - X, between universal covers, and consider the quasisymmetric exten-
sion f,, 8oo§0 — BooXn Because the Liouville geodesic currents L 7, converge to
O for the uniform weak* topology and because the limit oo, is bounded, the argu-
ment that we already used in the proof of Lemma 22 shows that the quasisymmetric
constants M ( f,,) are uniformly bounded.
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Fix three points ag, by, cg in this order in the circle at 1nﬁn1ty 000 X 0. Then, there
is a unique blholomorphlc map gn: X~ — DD sending f,, (ap) to 1, fn (bp) to i and
fn (co) to —1. The maps g, o fn 000 X9 — 0D are uniformly quasisymmetric, and
send the three points ag, b, co to the fixed points 1, i, —1. It easily follows that these
maps g, o f,, are equicontinuous, so that we can extract a subsequence g, o f,,k
that converges to a homeomorphism foO 300 X0 — 9D for the topology of uniform
convergence (see for instance [22, §II.5Lor [17, §16])&

By uniform quasisymmetry of the f,, the limit foo is quasisymmetric. Also, if
Q! Xo — Xo is the biholomorphic dlffeomorphlsm of XO defined by an element
¢ € m1(Xp) of the fundamental group, fOo opo foo = limg— oo fnk opo f lisa
linear fractional map that is the restriction to 91D of a biholomorphic dlffeomorphlsm
of . As ¢ ranges over all elements of 71 (Xg), these foo opo fogl define a discrete
biholomorphic action of m1(Xg) on D, and we can consider the Riemann surface

Xoo = D/m1(Xo).

The Douady—Earle Extension Theorem [9] (see also our proof of Theorem 17)
then provides a quasiconformal extension foO Xo — D of foo: BOOXO — 0D that
commutes with the actions of 1(X() on Xo and D, and therefore descends to a
quasiconformal map foo: Xo = Xoo = D/71(X0).

The uniform convergence of g,, o fy, t0 foo as k — oo does not imply that

[/fni] € T(Xo) necessarily converges to [ foo| for the Teichmiiller topology. However,
it is enough to guarantee that the pullback L s, of the Liouville measure Lp by fc,o
is the weak* limit of the pullback of Lp by g, o fnk, which also is the pullback L s,

of Ly %y by fnk. Therefore aso € Cpq(Xp), which was defined as the uniform weak*

limit of the Liouville geodesic currents L 7, ,isequalto L s, = L([ foo]). In particular,
Qo 18 in the image of L, as requested. O

3.8 The Liouville embedding is proper

Proposition 25 The Liouville embedding L.: T(Xo) — Cpq(Xo) is proper.

Proof Recall that a map is proper if the preimage of a bounded set is bounded. We
therefore need to prove the following property: Let B be a subset of T(X() such that

sup  sup ‘/  topdLs| < CE)
[f1€B peH(Ry) | G (Fo)

for every continuous function &: G(fo) — R with compact support and for some
constant C (&) depending on &; then B is bounded for the Teichmiiller metric of T(Xj).

For such a subset B, choose a symmetric box Qg C G()~(o) and a non-negative
function &: G(Xo) — R with compact support such that £ > 1 over the box Qg.
Then, as in the proof of Lemma 22, L s (Q) < C(§) for every symmetric box Q and
every [ f] € B, and the quasisymmetric constants M () are uniformly bounded over
B. By Theorem 17, this proves that B is bounded by the Teichmiiller metric. O
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The combination of Propositions 19, 21, 24 and 25 proves Theorem 8, namely that
the Liouville embedding L: T(Xo) — Cpq(Xp) is proper and induces a homeomor-
phism between T(X() and a closed subset of Cpq(Xp).

We are going to need a slightly stronger version of this result.

3.9 The projectivization of the Liouville embedding

The group R™ of positive real numbers acts by multiplication on the space Cpg(X0)
of bounded geodesic currents. Let PCpq(Xo) = (de(Xo) — {0}) /R be the quotient
of Cpq(Xo) — {0} under this action. We endow the space PCpq(X() with the quotient
of the uniform weak™* topology of Cpq(Xo).

The elements of PChq(X¢) are projective bounded geodesic currents in the Riemann
surface Xo.

Composing the Liouville embedding L: T(Xp) — Cpg(Xo) with the projection
Cpa(Xo) = PCpa(Xp) gives a continuous map PL: T(Xy) — PCpq(Xo), which we
call the projective Liouville embedding. The following result shows that this projective
Liouville embedding is really an embedding.

Theorem 26 The map PL: T(Xo) — PCpa(Xo) induces a homeomorphism between
the Teichmiiller space T (X () and a subset of the space PCpq(X0) of projective bounded
geodesic currents.

Proof The mapPL: T(X() — PCpa(Xp) isinjective. Indeed, ifPL([fl]) = PL([fz])
in PCpq(Xp), the Liouville current L([fz]) = Ly, is equal to tL([fl]) = tLy in
Cpa(Xp) for some number ¢ > 0. The property of Lemma 12, that

e Lr(Q) 4 e—Lp(@Y) _

forevery [ f] € T(Xo)andevery box Q C G()? 0) with orthogonal box QJ-, then shows
that necessarily = 1. The injectivity of PL: T(Xg) — PCpq(Xo) then follows from
the injectivity of the Liouville embedding L.: T7(X¢) — Cpa(Xo) (Proposition 18).

The projective Liouville embedding PL was defined as the composition of two
continuous maps, and is consequently continuous. Therefore, we only have to show
that its inverse PL™": PL(T(X¢)) — T(Xj) is continuous.

For this, consider a sequence of points [ f,] € T(Xp) such thatlim,,_, o PL([ fn]) =
PL([foo]) in PChq(Xo) for some [ foo] € T(X(). We want to show that lim,,— o[ f,,] =
[ fool in T(X0).

By definition of the quotient topology, the property that lim,_.o PL([f,]) =
PL([ foo]) means that there exists a sequence r,, € R+ such that %L([ fn]) = %L fn
converges to L([ foc]) = L £, in Cha(Xo), for the uniform weak* topology. In particu-
lar, %L 1, converges to Ly for the (non uniform) weak* topology and, by Lemma 6,

it follows that %L £,(Q) converges to Ly (Q) for every box O C G(%O). Another
application of Lemma 12 then shows that necessarily lim,,_, o, = 1.

As a consequence, lim,,_>ooL([f,,]) = L([foo]) in Cpq(Xp). Since the inverse
map L™!: L(T(X)) — T(Xo) is continuous by Proposition 21, if follows that

limy,— o[ fn] = [ fo] in T(Xp) as required. O
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4 A boundary for the Teichmiiller space
4.1 Measured geodesic laminations

A measured geodesic lamination in the Riemann surface X is a geodesic current
o € C(Xp) such that:

(1) « is balanced, in the sense that it is invariant under the involution 7 : G(Xo) —
G(X 0) that reverses the orientation of each geodesic g € G(X 0)

(2) any two distinct geodesics g, g’ of the support Supp(e) C G(XO) are disjoint in
Xo, unless g’ = 7(g);

By equivariance of «, its support is invariant under the action of 7 (X¢) and there-
fore descends to a geodesic lamination A, in X(, namely to a family of disjoint simple
complete geodesics (for the Poincaré metric of Xg) whose union forms a closed subset
of Xo. Recall that a geodesic is complete if it cannot be extended to a longer geodesic,
and that it is simple if it does not transversely intersect itself.

Beware that, in contrast to the classical case where X is compact, the union of the
geodesics of the geodesic lamination A, can have nonempty interior in X, and that
this subset can have several decompositions as a union of pairwise disjoint complete
geodesics.

A measured geodesic lamination is bounded if it is bounded as a geodesic current, as
defined in Sect. 2. Let MLpq(Xo) C Cpa(Xo) denote the space of bounded measured
geodesic laminations in the Riemann surface X.

4.2 The Thurston boundary of T (Xp)

Asin Sect. 3.9, consider the projective Liouville embedding PL: T(Xo) — PCpq(Xp)
from the Teichmiiller space T(Xg) to the space PCpq(Xo) of projective bounded
geodesic currents. We saw in Theorem 26 that PL induces a homeomorphism from
T(Xo) to its image PL(T(X0)) C PCha(Xo).

By analogy with the case where X is compact, we define the Thurston boundary
of T(Xp) as the boundary of this embedding, namely as the set of points of PCpq(X0)
that are in the closure of PL(T (X)) but are not contained in PL(T(X)).

Our next goal is to describe this closure. Note that the space MLpq(Xg) of bounded
measured geodesic laminations is invariant under the action of R™ on Cpq(Xo). It
therefore makes sense to consider its image PMLpq(Xo) = (MLbd (Xo)— {0}) /Rt in
PCpa(Xp). By definition, the points of PMLypq(Xo) are projective bounded measured
geodesic laminations in X.

Proposition 27 The Thurston boundary of the Teichmiiller space T(Xq) is contained
in the space PMLyq(Xo) of projective bounded measured geodesic laminations.

Proof Leta € Cpg(Xp) be a bounded geodesic current whose image () € PCpq(X0)
is in the Thurston boundary. In particular, (o) is in the closure of PL(‘I(XQ)), and
there exists a sequence [ f,] € T(Xp) and numbers #, > 0 such that

o = lim lL([fn ) = lim lL,«n

n—o00 n n—00 l‘
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We claim thatt, — oo asn — 00. Indeed, we would otherwise find a subsequence
Iy, converging to some to, > 0 as k — o0o. Then, tooor = limg_; 00 Lfnk would belong
to L(‘J'(X 0)) since this image is closed by Theorem 8. Note that 7o, cannot be equal
to 0, as otherwise L(T(Xo)) would contain the trivial geodesic current 0 € Cpg(Xo)
while Liouville currents clearly are never trivial. But it cannot be different from 0
either, as this would otherwise contradict the fact that («) is not allowed to belong to
PL (‘T(X 0)), by definition of the Thurston boundary.

Now suppose, in search of a contradiction, that « is not a measured geodesic lam-
ination. This means that the support of & contains two geodesics g, g € G(Xo)
that cross each other in Xo. We can then find a box QO C G(Xo) containing g in
its interior such that the orthogonal box Q= contains g’ in its interior (possibly after
reversing the orientation of g’). In particular, «(Q) > 0 and a(QJ-) > 0. In addition,
by countable additivity of «, we can choose the points of 9 Xo delimiting Q so that
®(0Q) = a(dQ+) = 0. Then, by weak* convergence (see Lemma 6),

1 1
@(Q) = lim —Lp(Q)anda(QY) = lim —Ly (1),
n—00 tn n—00 tn
so that
lim Lz, (Q) = lim L, (Q1) =00
n— o0 n— o0

since we established that , — o0 as n — 0. But this contradicts Lemma 12, and
the fact that e L/ (@) 4 e=Lu (@) =1,

Therefore, the support of « is a geodesic lamination, and («) belongs to the space
PMLpa(Xo) of projective bounded measured geodesic laminations. O

We prove the converse of Proposition 27 as Corollary 31 in the next section. The
combination of these two statements will show:

Theorem 28 The Thurston boundary of the Teichmiiller space T(Xo) is exactly equal
to the space PMLpa(Xo) of projective bounded measured geodesic laminations. O

5 Earthquakes

We will use earthquakes as a tool to show that every projective bounded measured
geodesic lamination is contained in the Thurston boundary of 7(X¢). The key technical
step is Theorem 30 below, which is of independent interest.

5.1 Earthquakes

Let X be a geodesic lamination in the Riemann surface X, namely a family of disjoint
simple complete geodesics in Xg whose union is closed in Xj. Let % C G(Xp) consist
of those geodesics which project to one of the geodesics of A. In particular, isinvariant
under the involution 7: G(Xg) — G(Xy) that acts by reversing @e orientation of each
geodesic. A simple argument also shows that  is closed in G (Xo).
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If [f1, [f'] € T(Xo) are two points of the Teichmiiller space of X, we say that
[ '] is obtained from [ f] by a left earthquake along X if

Ly(Q) < Ly (Q)

for every box of geodesics Q = [a, b] X [c,d] C G()?o) such that {a, c} € 8005 are
the endpoints of one of the geodesics of P

Thurston [33] shows how to quantify the increase in Liouville masses by a measure
on the closed subset * C G(Xo), namely by a measure « on G(Xo) whose support is
contained in A. In addition, « is invariant under the action of the fundamental group
1(Xp), and consequently is a measured geodesic lamination. A subtler consequence
of the fact that f is quasiconformal is that « is bounded; see [12,16,28,29,33].

Thurston also introduced an inverse construction [10,33] which, given a point
[f] € T(Xp) and a bounded measured geodesic lamination &« € MLpg(Xp), pro-
duces another element [ f'] € T(X() that is obtained from [ f] by a left earthquake
along the support A, of o, with amplitude determined by the measure . We then write
that [f'] = E“[f].

Finally, Thurston shows [33] that for any two [f], [f'] € T(Xo) there exists a
unique o € MLpq(Xo) such that [ f'] = E*[f]. See also [21].

Remark29 We should emphasize the close relationship between the boundedness
property for measured geodesic laminations and the quasiconformal geometry under-
lying the Teichmiiller space. Thurston’s construction [33] makes sense in the broader
context of diffeomorphisms f: Xo — X whose lift to universal covers continuously
extends to a homeomorphism 9 X0 — 900X. These are not necessarily quasiconfor-
mal, so that they do not necessarily define an element [ f] € T(X(), but the equivalence
relation defining the Teichmiiller space makes sense in this more general context.
Thurston shows that any two such f: Xg — X and f': Xg — X’ are related by
an earthquake, namely that [ f'] = E“[f] for some measured geodesic lamination
a which is not necessarily bounded. However, when X is noncompact, there is no
easy characterization of which measured geodesic laminations « € ML (X() occur in
this way. The results mentioned above show that, when f is quasiconformal, E“[ f]
is well-defined and realized by a quasiconformal diffeomorphism f’ precisely when
« is bounded.

This distinction is of course irrelevant when X is compact, as every diffeomorphism
f: Xo — X is then quasiconformal, and every measured geodesic lamination is
bounded by Proposition 5.

For a bounded measured geodesic lamination o € M£Lyq(Xp) and a number ¢ > 0,
let to be the bounded measured geodesic lamination obtained by multiplying the
measure « by 7. The following theorem investigates the behavior of E’®[ f] € T(Xo)
under the Liouville embedding L: T(X¢) — Cpa(X0).

Theorem 30 Let o € MLypg(Xo) be a bounded measured geodesic lamination in the
Riemann surface X¢. Then, for every [ f] € T(Xo),

N
Jin LE) =
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for the uniform weak* topology on the space Cpq(X0) of geodesic currents.

The proof of Theorem 30 will occupy the rest of this section. However, it has the
following immediate corollary, which completes the proof of Theorem 28.

Corollary 31 The space PMLypqa(Xo) of projective bounded measured geodesic lami-
nations is contained in the Thurston boundary of the Teichmiiller space T(Xy).

Proof Theorem 30 shows that every projective bounded measured geodesic lamination
() € PMLpa(Xo) is in the closure of the image of the projective Liouville embedding
PL: T(Xp) — PCpha(Xp). A Liouville geodesic current has full support in G(Xp),
and a measured geodesic lamination cannot have full support. It follows that («) €
PMLpq(Xo) does not belong to the image PL (‘T(X 0)) , and therefore is in the Thurston
boundary of T(X¢) by definition of this boundary. O

5.2 Elementary earthquakes

The construction of the earthquake deformations E“[f] is based on the following
special case.

Let Xo be a simply connected conformally hyperbolic Riemann surface. (We are
using a tilde in the notation to remind the reader that the surface is simply connected,
and therefore equal to its universal cover.) In particular, X is biholomorphically
equivalent to the disk D.

For a geodesic g € G()Nfo) and a number ¢t € R, the elementary earthquake of
amplitude t along g is the homeomorphism E 2, : ‘J’()?o) — ‘J’(fo) defined as follows.

Let[f] € ‘I()? 0) be a point in the Teichmiiller space of X 0, represented by a quasi-
conformal diffeomorphism f': Xo - X (1.1If g is the geodesic of X, that is the image
of g under the map f: G(Xo) — G(Xl) induced by f, and let ¢;: X1 — X1 be
the hyperbolic isometry that preserves g; and acts by translation of € R along g
for the orientation of g;. Then E ;,[ fle T(Xo) is represented by any quasiconformal
extension of the quasisymmetric homeomorphism E ; f: 800)?0 — 800)? 1 that coin-

cides with f on the component of 0 X o — dg that sits to the left of g, and with ¢; o f
on the other component of 300)?0 — 0g. Equivalently, E ;,[ f1 is represented by the
quasisymmetric homeomorphism ¢, o E; f: SOO)N(O — 8oo§ 1 that coincides with
o o f on the component of 800)?0 — dg that sits to the left of g, and with f on the
other component of 9, ?o — 0g.

From the fact that ¢; is an isometry of X1, it casily follows that reversing the
orientation of the geodesic g does not change E é[ f1 € T(Xo).

General earthquakes E* : ‘T(}? 0) — 7()?0) are constructed from elementary earth-
quakes as follows.

First consider the case where § € MLbd (io) is a Dirac measure with finite support
{g1.82,.--,8K 81, 82,---, 8k} C G(Xo) where g; = t(g;) is obtained by reversing
the orientation of the geodesic g; € G(Xo) Then, E? is defined as

§ _ pdp dy .. dy
E _Eg1°Egzo OEgk
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Fig.1 The arrows indicate the

direction in which the endpoints

of g can be moved in order to

increase L ¢ [f] (Q)whent >0
8Lt

(b)

where d; = 5({g,~ }) = 5({§,~}). Note that the elementary earthquakes ng : ‘J’(}?O) —
T(Xo) commute because the geodesics g; are disjoint.

In the general case, we approximate the measured geodesic lamination o €
MLpa(Xo) by Dirac measures § as above, and define

E*[f] = lim E°[£]

forevery [f] € T (fo), where the limit is taken as the Dirac measure § tends to o for
the weak* topology. The boundedness of « is used to show that the limit really exists.
See [10,28,33] for details.

When Xy is the universal cover of a conformally hyperbolic Riemann surface X
and when o € MLpq(Xg) C Mﬁbd(Xo) the above construction is equivariant with
respect to the action of 71 (X() on ‘I(Xo) and the earthquake E%: T(Xo) — iT(Xo)
therefore descends to a continuous map E%: T(Xg) — T(Xop).

5.3 Two lemmas on elementary earthquakes

We will make frequent use of the following two lemmas.

Lemma32 Let Q = [a, bl x[c,d] bea ng of geodesics in G()N(O), andlet g € G(X())

be a geodesic with endpoints x, y € 00cX0o — {a, b, c, d}. Consider the image E;[f]

of [f] € ‘T(?o) under the elementary earthquake of amplitude t > 0 along g.

(0) If x and y are in the same component ofaoo)?o —{a, b, c,d}, then LEé[f](Q) =
L1(Q) is independent of x and y.

(@) Itx € la,b[and y € ]c,d] as in Fig. Ia, LEé[f](Q) is a decreasing function of
x and y for the boundary orientation of 00 X0

() Itx € 1b,cland y € 1d, al as in Fig. 1b, LE;[f](Q) is an increasing function of
x and y.

The statement is expressed in a more pictorial way by Fig. 1.

Proof of Lemma 32(0) If x and y are in the same component of Boog o—{a,b,c,d},let
[ /] be represented by a quasisymmetric homeomorphism f : 9 X 0 — 900X 1. Then,
by definition of the elementary earthquake, £ ;, [ f11is represented by a quasisymmetric
homeomorphism E ; f that coincides with f at the points a, b, c, d. If follows that

E' f(Q) = f(Q) in G(X)), so that L )(Q) = Lif1(Q). m
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Proof of Lemma 32(a)~In this second case (a), we can represent [ f ] by a quasiconformal
diffeomorphism f: Xo — H valued in the upper half-space

H = {z € C;Im(z) > 0}.

In addition, we can arrange that f(y) = oo, and seta = f(a), B = f(b),y = f(c),
6= f(d)yand& = f(x).Notethat <o <& < <y inR.
Then, by Lemma 10,

(@ —y)(B—9)

Lis(Q) = LH([a, Bl x [y, 5]) = log @—8)B—y)

Also, the hyperbolic isometry of H that acts by translation of ¢ along the geodesic & co
is the map z —> e’z + & — e’&. Therefore

(a—e'y —E+e&)(E'B+E—e's —0)

d d
— LE(Q) =~ log

& & @~ D) Eh —ey)
B -1+ 1—¢
Tacly Etek  GptE-oE
1—¢ 1—e

S E—wtdy 5 T E—9)

where the inequality comes from the factthat§ <o <& < 8 <y andt > 0.
It follows that L Eé[f](Q) is a decreasing function of £ = f(x) € R, and therefore

of the endpoint x € d Xo of the geodesic g.
By symmetry, L EL[ £1(Q) is also a decreasing function of the endpoint y. O

Proof of Lemma 32(b) Consider the orthogonal box Q1 of Q. Case (a) shows that
L ELLf] (0h)isa decreasing function of the endpoints x and y. The relation between

LEé[f](Q) and LEg[f](QJ-) provided by Lemma 12 then shows that LEé[f](Q) is an
increasing function of x and y. O

Lemma33 Let El’w : ‘I(?o) — ‘J’(io) be the elementary earthquake associated toihe
diagonal geodesic ac of the box Q = [a, b] x [c, d]. Then, for every [ f] € T(Xp)
and everyt > 0,

t+1log (e"@ —1) < L ()(Q) <t + Li)(Q).

Proof Represent the class [ f] € T(Xo) by a quasiconformal map f': Xo — H such
that f(a) = 0, f(b) = B, f(c) = oo and f(d) = —1. Then, as in the proof of
Lemma 32(a) (withae =& =0,y =np=occand § = —1),

Lgt 171(Q) =log(e' B+ 1).

ac

In particular, the case r = 0 gives that 8 = eL1/1(@) — 1,
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Then, because ¢t > 0,

LE[th[f](Q) =t + log(B +e_t) <t+log(B+1)=1t+ L[f](Q)

while

Lgr171(Q) =t +1log(B+e7") >t +log(B) =t +log ('@ —1).

5.4 Simple convergence on boxes

This section is devoted to proving Lemma 35, which is a key technical step in the
proof of Theorem 30. As a warm-up, we begin with a simpler statement.

It will be convenient to say that, for a geodesic current o € (?bd()N(o), the box
0 = [a, b] X [c, d] is a-generic if the subset of G()N(o) consisting of those geodesics
with one endpoint in {a, b, ¢, d} has o-mass 0. Iising the countable additivity of
o, there can be at most countably many x € 9., Xo such that the set of geodesics
passing through x has positive «-mass. As a consequence, every box can be arbitrarily
approximated by an «-generic box.

Lemma34 Let a € MLpq(Xp) b:z a bounded measured geodesic lamination. Then,
for every a-generic box Q C G(Xj),

: 1 fa
Jim S L(E“£1)(Q) = «(Q).
Proof As usual, let the box Q be described as Q = [a, b] x [c, d] with a, b, c,
de aooio.
We will split the proof into several steps.
STEP 1. liminf,, oo 1 L(E[£1)(Q) > (Q).

We only need to consider the case where «(Q) > O.

Then, because of the hypothesis that Q is a-generic, there is a strictly smaller box
Q' =1la,b'] x[c,d'lsuchthata < b’ < b,c <d < dand a(Q’) is arbitrarily close
to a(Q). Since a(Q’) is close to «(Q) > 0 it is different from 0, and Q' meets the
support of . Among the (disjoint) geodesics of the support of « that are contained in
Q’, let a”’d” be the one that is closest to the interval [d’, a] C 050X, and let b”c” be
the one closest to [4', c],in such a way thata < a” < b”" < b andc < " <d”" < d'.
See Fig. 2.

We now consider the box Q” = [a”, b] x [¢”, d]. Our construction is specially
designed that the geodesics g of the support of « are of four distinct types with respect
to Q" =1[a",b] x [”,d]:

(1) g has both endpoints in the closure of the same component of 900 X0 —
{a//’ b, C//, d:

(2) g has one endpoint in [a”, b] and one endpoint in [b, ¢”'];

(3) g has one endpoint in [¢”, d] and one endpoint in [d, a];
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Fig.2 Step | of the proof of
Lemma 34

(4) g has one endpoint in [¢”, b] and another endpoint in [¢”, d].

Indeed, the presence of the geodesics a”’d” and b”¢” in the support of & excludes all
other cases.
We can therefore decompose « as a sum of measured geodesic laminations

o =0, +top+og+agr

where

the support of o}, consists of geodesics of type (2), which encircle the point b;
the support of oy consists of geodesics of type (3), which encircle the point d;
the support of a g~ consists of geodesics of type (4), which are contained in the
box Q” (after a possible orientation reversal);

the support of «, consists of geodesics of type (1) (where o stands for “other”).

This decomposes the earthquake E'* : ‘J’()~(0) — T (io) as a composition
Etoz — Etoto o Etad o Etot;, ° ETO[Q”.

For notational convenience, set [ fi] = E'“2"[f], [f>] = E'®[fi], [f3] = E'*[ f»]
and [ fa] = E'*[f3] = E"[f].

We begin by estimating L([f1])(Q”) = L(E’“Q” [f])(Q”).

If we approximate the measured lamination cp~ by a Dirac measure supported on
a finite set {g1, g2, ..., &k, &1, 82, - - -, &} of disjoint geodesics in the support of o g~

and assigning mass @; > 0 to the atom g;, then by construction E'*¢ is approximated
by the product of elementary earthquakes

tay tay . ta,
E o © E @ © oE o
By definition of a” and ¢”, the geodesics of the support of «r actually have one

endpoint in [a”, "] C [a”, b'] and one endpoint in [¢”, d"] C [¢”, d']. Lemma 32(a)
shows that, for each such geodesic g,

L(EZL/'1)(Q) = L(Ey,[f1)(Q)
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forevery [f'] € ‘I()?O) and every u > 0. It follows that

L(EXES . EM[f1)(Q") = L(Ep4 =T [ £1)(Q")

and, passing to the limit as we improve the approximation of &g~ by Dirac measures,
that

L([A11)(Q") = L(E“2"[f1)(Q") > L(EX 1 £1)(Q")
for every t > 0.

The box Q" = [a”, b] x [¢”, d] contains the box Q"' = [b’, b] x [d’, d]. Lemma 33
then shows that

L(LA1)(Q") = L(EXCV1£1)(@") = L(EXC 1£1)(0") 03
>

ta(Q") +log (eh1 @™ 1),

After this estimate for L([fl])(Q”), we now consider [ ] = E'®[f]. By con-
struction, the Liouville current L([ fz]) = L(E"’”’[ fl]) is the pullback of L([ fl])
by a homeomorphism of G(Xo) that sends Q" = [da”,b] x [¢”,d] to a larger box
Q] =1[a",b1] x [¢",d] with b < by < ¢”. Therefore,

L([£1)(Q") = L(E"™[A11)(Q") = L(LAI)(Q]) = L(LA1)(Q") (14)

since Q' contains Q"
Similarly,

L([/1)(Q") = L(E"™[£1)(Q") = L([ 21)(Q"). 15)

Finally, L([ f4]) = L(E | f3]) is the pullback of L([ f3]) by a homeomorphism
of G(Xy) that sends Q" to itself. Therefore

L([f21)(Q") = L(LA1)(Q". (16)

Combining Egs. (13-16), we conclude that

L(E™[£1)(Q) > L(E®[f1)(Q") = L([f2])(Q") > 1a(Q") + log (¢M11©C™) —1). (17)

We now use the key property that ' < b and d’ < d, so that the box Q" =
[', b] x [d’, d] has nonempty interior and L7)(Q"") > 0. It consequently follows
from (17) that

o1
lim inf —L(Em[f])(Q) > a(0").

—400 t
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By definition of the box Q”, its mass «(Q") for the measured lamination « is equal
to a(Q’). Also, because Q is a-generic, the box Q' = [a, b'] x [c, d'] can be chosen
so that (Q’) is arbitrarily close to a(Q). It follows that

timinf T L(E"[1)(©) > e(Q),

which completes the proof of this Step 1.
STEP 2. If a(Q) > 0, then limsup,_, , o, %L(E’“[f])(Q) < a(Q).

The property that «(Q) > 0 prevents any geodesic of the support of & from having
one endpoint in [b, c] and one endpoint in [d, a]. As in Step 1, we can therefore break
down « as a sum of measured laminations

a=agtagtoptat+astoa

where

e cach geodesic of the support of o has one endpoint in [a, b] and one endpoint in
[c, d], and therefore belongs to Q = [a, b] X [c, d] after a possible orientation-
reversal;

e cach geodesic of the support of ¢, has one endpoint in [d, a] and one endpoint in
[a, b], and therefore encircles a;

e cach geodesic of the support of «;, has one endpoint in [a, b] and one endpoint in
[b, c], and therefore encircles b;

e cach geodesic of the support of o, has one endpoint in [b, c] and one endpoint in
[c, d], and therefore encircles c;

e cach geodesic of the support of «y has one endpoint in [c, d] and one endpoint in
[d, a], and therefore encircles d;

e cach geodesic of the support of «, has its two endpoints in the closure of the same
component of d»c Xo — {a, b, ¢, d}.

Then,
E™[f] = E'™ o E'® o E' o E'%0 o E™ o E'[ f].

In order to estimate L(E"[f1)(Q), set [ fi] = E"“[f], [f2] = E'*[f1], [f3] =
E"C[fo], [fal = E"[f3], [fs] = E'®[fa]l and [ fe] = E"*[f5] = E"*[f].

We will proceed backwards in our estimates, beginning with the simpler cases.

By construction of earthquakes, L(E’“[f]) = L([f(,]) = L(E’“"[f5]) is the pull-
back of L([ f5]) by a quasi-symmetric homeomorphism of 94, X o which sends the box
0 to itself. Therefore,

L(E™[f1)(Q) = L([f61)(Q) = L([ fs1)(Q). (18)

Again by construction of earthquakes, L([ f5]) = L(E 1o f4]) is the pullback of
L([ f4]) by ahomeomorphism of 9., Xo which fixes the points b, ¢, d, and which moves
the point a in the positive direction of d», X¢. As a consequence, this homeomorphism
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Fig.3 Step 2 of the proof of
Lemma 34

sends the box Q = [a, b] X [c, d] to a smaller box Q| = [ay, b] X [¢,d] C Q with
aj € [a, b], and

L([fs1)(Q) = L([f21)(Q1) < L(Lf11)(Q). 19)

The same argument applied to L([ f4]) = L(E*[ f3]) shows that

L([f41)(Q) = L([31)(Q2) < L(Lf3])(Q) (20)
for some box Q> = [a, b] X [c2,d] C O.
We now use Lemmas 32 and 33 to estimate L([ /3])(Q) = L(E"*2[ f21)(Q).
If we approximate the measured lamination g by a Dirac measure based at a finite
set {g1,82,.-., 8k, 81,82,--., 8k} of disjoint geodesics in Q and assigning mass

a; > 0 to the atom g;, then by construction E'*¢ is approximated by the product of
elementary earthquakes

tay tay . ... tay
Eg1 oEg2 o OEg,,'

If ac denotes the diagonal of the box Q, going from a to ¢ € 800)?0, Lemma 32(a)
shows that

L(EZ1f1)(Q) < L(EZLf'1)(Q)
forevery [f'] € ‘J'()~( 0). The combination of Lemmas 32 and 33 then shows that

L(E;“llI Egzll s E;(:n [f2])(Q) < L(E;(L,‘”Jr“2+"'+an)[fz])(Q)
< L([fZ])(Q) +t(ay +ay + -+ ay).

Passing to the limit as we use better and better approximations of oy by Dirac
measures, we conclude that

L([/3])(Q) = L(E"?[ £21)(Q) < L([/21)(Q) + ta(Q). (21
Estimating L([ /21)(Q) = L(E"[f1])(Q) will require more care. In particular,

we need to split the geodesics of the support of ¢}, into those that have one endpoint
near ¢ and those that do not.
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Pick a point ¢’ in the open interval 1b, ¢[ such that & ([a, b] x {c’ }) = 0, which can
always be done by countable additivity of «. We will later choose ¢’ close enough to
¢ to ensure that a([a, b] x [/, c]) is small. See Fig. 3.

Leta, » be the restriction of & to the box [a, b] x [¢’, c], and let a " be the restriction of
atoa, b]x[b, ¢']. Inparticular, o, = ozb+ab by the property thata([a b]x{c’ })

As in our analysis of E™[ f4] and E'*[ f3], the Liouville current L(E“"b [fl]) is
the pullback of L([ fi ]) under a homeomorphism of Boofo which fixes a, ¢, d and
moves b to a point of the interval [b, ¢']. Therefore

L(E™[£11)(Q) < L(LA1)(Q))

where Q7 = [a, ¢'] x [c, d].
Then, as in our analysis of E'2[ f,], the combination of Lemmas 32 and 33 gives
that

E™[f11)(Q) = L(E™ E"[ f11)(Q)

L(L/21)(Q) = L(
( 1 (Q!))
(
(

S L(Eqe < E"[Ai1)(Q) (22)
SL(E™ [f11)(Q) + ta(QL)
< L(LA)QL) +ta(0L)

where Q', = [a, b] x [¢’,c] and Q7 = [a, '] x [c,d].

Similarly, to estimate L([fl]) Q) = L(E""d [f])(QZ,), pick a point @’ in the open
interval ]d, a[ such that a({a/} X [c, d]) = 0, and split oy as g = 0‘,/1 + ag, where
o, and )7 are the respective restrictions of ay to [a’, a] x [c,d] and [d, a'] x [c, d].
See Fig. 3.

Then, using the combination of Lemmas 32 and 33 as in our analysis of [ f2] =
E™[ f1],

L([/11)(Q2) = L(E™[f1)(Q") = L(E™ E™[ f1)(Q/)
< L(E™[£1)(Q) + ta(Q)) (23)
< L(LF1)(Q%.) + ta(QL)

where Q/, = [d’, a] x [¢,d] and Q" , = [a, '] x [c,d'].
Now, if we combine the estimates of (18-23), we get that

L(E"[f1)(Q) < L(Lf1)(QL.) + ta(Q) + ta(QL) + ta(Q) (24)

forthe boxes Q, , = [a, '] x[c,a'], Q), = [@’, al x[c,d] and Q/, = [a, b] x[(’, c].

a =
Passing to the 11m1t as ¢ tends to oo, this glves

1
lim sup —~ L(E™[f1)(Q) < «(Q),) + a(QL) + a(Q).

t——+00
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This property holds for any choice of points a’ € ]d, a[ and ¢’ € 1b, c[ (with
a(la,b] x {¢'}) = 0 and a({a’} x [c,d]) = 0). Letting a’ tend to a and ¢’ tend
to ¢, so that oz(Q;,) and oz(Q’C,) respectively converge to a({a} X [c, d]) = 0 and
a([a, b] x {c}) = 0 by our hypothesis that Q is a-generic, we conclude that

1
lim sup p L(E™[f1)(Q) < «(Q).

t—>—+00

This concludes the proof of Step 2.

In particular, the combination of Steps 1 and 2 shows thatlim, _, | % L(E™[f1)(Q) =
o(Q) when x(Q) > 0.

We will rely on these first two steps to settle the remaining cases. Recall that Q-
denotes the orthogonal box of Q, as defined in Sect. 3.2.
STEP 3.If a(Q) = 0 and a(QF) > 0, then lim,_, , o L(E’“[f])(Q) =0.

We rely on Lemma 12, which shows that

e LECINQ) 4 o~LE“IFNQ) _ . (25)

Because the box Q is a-generic, so is the orthogonal box Q. We can therefore apply
Step 1 to Q-+, which gives

liminf TL(E“L/1)(@") > «(@") > 0

and in particular implies that L(E'®[ f])(Q1) — +oc ast — +oo.

We conclude that, as t — o0, e HE“LIDQY) _, 0 5o that e HELDQ 5 |
by (25), and therefore L(E™[f])(Q) — O.

STEP 4.If a(Q) = 0 and a(Q1) = 0, then lim,_, ;o YL(E'[£])(Q) = 0.

In the proof of Step 2, the only time we used the hypothesis that «(Q) > 0 was to
guarantee that the support of @ contained no geodesic of the interior of the orthogonal
box Q+.

In the current setup of Step 4, the hypothesis that «(Q1) = 0 implies that the
support of « is disjoint from the interior of Q. We can therefore apply the arguments
of Step 2 and conclude that

. 1 ta
lim sup —L(E"“[f1)(Q) < a(Q) = 0

t—>—+00

as required.
This concludes the proof of Lemma 34, by Steps 1 and 2 when «(Q) > 0, and by
Steps 3 and 4 when «(Q) = 0. O

We will need a more uniform version of Lemma 34. The lemma below will allow us
to enhance a weak™ convergence to a uniform weak* convergence. Recall that the box
0 = la, b] x [c, d] is a-generic if the subset of G(X() consisting of those geodesics
with one endpoint in {a, b, ¢, d} has o-mass 0.
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Lemma 35 Let {an}, be a sequence of bounded measured geodesic laminations con-
verging, asn — oo, to a measure o on G(Xo) for the weak* topology. Then, for every
sequence {t,} converging to +00 in R and for every a-generic box Q C G(Xp),

. 1 ey
lim. t—L(E" "Lf1)(Q) = a(Q).

Note that the «, are only required to converge to « for the weak™ topology, not
for the uniform weak* topology. As a consequence, « is clearly a measured geodesic
lamination but is not necessarily bounded.

Proof This follows from a careful inspection of the proof of Lemma 34. We repeat the
steps of that proof.
STEP 1. liminf,_ o %L(E’""‘"[f])(Q) > a(0).

As in the proof of Lemma 34, assume o(Q) > 0 without loss of generality, and
choose a smaller box Q' = [a,b'] x [c,d'] C Q witha < b <bandc <d' < d,
and with a(Q’) > 0 close to «(Q). By countable additivity of o we can arrange that
Q' is a-generic and in particular that (3 Q") = 0.

For n large enough, o, (Q") > 0 by Lemma 6 and our hypothesis that «(d Q") = 0,
and the support of ;, therefore meets Q’. Among the geodesics of the support of o, that
are contained in Q’, let a, d!! be the one that is closest to the interval [d’, a] C 950 X0,

n

and let b/ c) be the one closest to [», ¢], in such a way thata < a, < b)) < b’ and

c<el<d <d.Set Q) =la), bl xI[c],d].

n’

The arguments used in Step 1 of the proof of Lemma 34 then show that, as in (16),

L(E""[£1)(Q) > L(E"'Lf1)(Q}) > taen(Q}) + log ("1 —1).

for the box Q"' = [b', b] x [d’, d].

By definition of the box QF, its mass o, (Q;) for the measured lamination o, is
equal to o, (Q’). Since we arranged that (9 Q') = 0, Lemma 6 then shows that
an(Q)) = ay(Q') converges to a(Q') as n tends to infinity. Therefore,

e
liminf — L(E™[f])(Q) > a(Q").

n—oo f,

As Q' can be chosen so that a(Q") is arbitrarily close to «(Q), we conclude that

N | y
lim inf - L(E"“[f1)(Q) = a(Q)

as required.
STEP 2. If a(Q) > 0, then lim sup,,_, o, 7 L(E"*[£1)(Q) < a(Q).

As in Step 2 of the proof of Lemma 34, pick a point ¢’ € b, c[ close to ¢, and a
pointa’ € |d, a close to a, such that «([a, b] x {c¢'}) = 0 and ({a} x [c, d]) = 0.
Then, the same argument as in that Step 2 shows that, for every n,

L(E"*" [ f1)(Q) < L(L/1)(Qye) + tntn(Qf) + 12 (Qr) + taa(Q)  (26)
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forthe boxes Q, , = [a, ' x[c,a'], Q), = [@’, al x[c,d] and Q!, = [a, b] x[(’, c].
By choice of the points @’ and ¢/, «(3 Q) = (3 Q) = 0. We can therefore apply
Lemma 6 when passing to the limit, and conclude that

1
lim sup -= L(E"[f1)(Q) < a(Q,) + a(Q) + a(Q).

n—oo n

Choosing a” and ¢’ so that «(Q/,) and «(Q/,) are arbitrarily small, we conclude
that

1
lim sup - L(E" [ £1)(Q) < a(Q).

n— o0 n

STEP 3.1If a(Q) = 0 and a(Q+) > 0, then limn%ooL(Et"“" [f])(Q) =0.

The argument is identical to that used for Step 3 of the proof of Lemma 34.
STEP 4. If a(Q) = 0 and a(Q+) = 0, then lim,,_, oo éL(E’""‘" [f])(Q) =0.

In the proof of Lemma 34, we used the fact that the support of « is disjoint from
the interior of Q- to reduce this step to Step 2. However, although a(Q1) = 0, it is
here quite possible that &, (Q) > 0 and that the support of o, meets the interior of
o+.

Let us decompose each «, as a sum «, = oanL + o, of two measured geodesic

L
laminations o2 and ), such that:

€L
e cvery geodesic of the support of anQ is contained in the orthogonal box Q, after
a possible orientation-reversal;
e the support of o/ is disjoint from the interior of Q.

As in Step 2 of the proof of Lemma 34, pick a point ¢’ € b, ¢[ close to ¢, and a
point @’ € ]d, a close to a, such that a([a, b] x {c'}) = 0 and &({a’} x [c,d]) = 0.
Because the support of «), is disjoint from the interior of Q-+, we can then apply to o,
this Step 2 of the proof of Lemma 34 and show that, for every n,

L(Et"a;’ [f1)(Q) SL(LFI)(QL) + tacty (QL) + taey (OL) + the, (Q)  (27)
for the boxes Q”, , = [a, ' x[c,a'], Q, = [a’, a]l x[c,d] and Q/, = [a, b] x [, c].

Compare Eq. (24).
Then, by Lemmas 32(b) and 33,

L(E"[£1)(Q) = L(E" E"[£1)(Q)
< L(EL @ Eni 1) 0) (28)
< L(E"[£1)(Q) + t,2 (0")

Combining (27) and (28), we conclude that
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L(E"*[£1)(Q) < L([f])(QZ/C/) + lna;l(Q;/) + tnd;,(Q:,/) + tney (Q) + anthL(QL()zg)
< L([f])(Q/a//C/) + [nan(Q/a/) + tnan(Q/C/) + than(Q) + tnan(QL)-

Because the boxes 0, O+, Q;,, Q/C, are a-generic, a,,(Q’a,) — a(Q;,),an(Q’c,) —

a(Qé,),ozn(Q) — a(Q) =0and o, (Q1) - a(Q1) = 0asn — oco. It follows that

1
lim sup t—L(E"’“” [f1)(Q) < a(Q)) + a(Q.).

n—oo n

We can make oz(Q;,) arbitrarily close to a({a} X [c, d]) = 0 and a(Qé,,) arbitrarily
close to a([a, b] x {c}) = 0 by choosing a’ sufficiently close to a and ¢’ sufficiently
close to c. This proves that

1
lim I—L(E’"”‘" [£1)(Q) = 0.

n—oo n

The combination of Steps 1, 2, 3 and 4 completes the proof of Lemma 35. O

5.5 Uniform weak* convergence of earthquake paths

We are now ready to prove Theorem 30, which we restate here as:

Theorem 36 Let o € MLpq(Xg) be a bounded measured geodesic lamination and let
[f]1 € T(Xo) be a point of the Teichmiiller space of Xo. Consider the left earthquake
E™: T(Xo) — T(Xg) fort € R, and the Liouville embedding L: T(X() — Cpa(X0)
from T(Xg) to the space Cpq(Xo) of bounded geodesic currents. Then,

lim iL(E“”[f]) =a

t—+oo |¢|

for the uniform weak* topology of Cpq(Xo).

Proof By symmetry between left and right earthquakes, we can restrict attention to
the limit as ¢t — +o00.

Itis easier to use a proof by contradiction. Suppose the property false. Then, because
the uniform weak* topology is metrizable (Lemma 4), there exists a sequence of real
numbers #, such that z, — +00 as n — oo but such that iL(E’"“[f]) = %LEtna[f]
does not converge to « for the uniform weak* topology. Passing to a subsequence if nec-
essary, this means that there exists a lower bound ¢ > 0, a test function & : G()?o) —- R
with compact support and a sequence of biholomorphic diffeomorphisms ¢, € H(Xo)
such that

1

_/ i goq),,dLEtna[f]_/ _ Eogudal > ¢ (30)
In JG(Xo) G(Xo)

for every n.
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I:et o, be the push forward of the measure « under the homeomorphism G()~( 0) —
G (Xp) induced by ¢,. Then «,, is clearly a measured geodesic lamination, and is
bounded by definition of this property. Also, by definition of the push forward,

/~ Eogo,,da:/ _ Eday,.
G(Xo) G(Xo)

Lift the quasiconformal diffeomorphism f: Xo — X representing [ f] € T(Xo)
to f XO — X. Then, in the Teichmiiller space ‘J'(XO) of the universal cover,
diagram chasmg in the construction of elementary earthquakes shows that E 2,[ f o

onl = E ()

En9[ f o @, = Em%] f ]. As a consequence the Liouville current L guan| 1=
L Emen [ F] is the push forward of Lgmejr] = Lpue (7] under the homeomorphlsm

On: G(io) — G(Xo) induced by ¢, € H(Xy). In particular,

[ f ] for every geodesic g € G(Xo) and every t € R. It follows that

/N gOgDndLEtna[f]Z/ - gdLEtnan[f]
G(Xo) G(Xo)

and we can rewrite (30) as

1
_/ ~ SdLEtnanf—/ - Edoz,, > &
In JG(Xo) G(Xo)

For every continuous function &’: G()?o) — R with compact support, the associ-
ated weak* seminorms

|Ct’n|§/: ‘/ - é’dan = ‘/ ~ %'/O(pnd()[‘
G(Xo) G(Xo)

are uniformly bounded because the measured geodesic lamination @ € MLpq(Xg)
is bounded. By weak* compactness (see for instance [7, chap. III, §1, n°9]) we can
therefore assume, after passing to a subsequence, that o, converges to some measured
geodesic lamination 8 for the weak* topology (but not necessarily for the uniform
weak™* topology).

Lemma 35 then states that for every -generic box QO

€1V

1 N [P
Jim —Lguen 1(Q) = lim —L(E"*"[1)(Q) = B(Q).

But this will contradict (31) if we approximate the test function & by a §-generic step
function, namely by a linear combination of the characteristic functions of a finite
family of B-generic boxes.

Therefore, our original assumption cannot hold, and - il (E ey f ]) converges to «
for the uniform weak* topology as t — +o0. O
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6 Naturality under quasiconformal diffeomorphisms

We conclude with a remark that our constructions are natural with respect to quasi-
conformal diffeomorphisms.

Let f: X; — X, be a quasiconformal diffeomorphism between two confor-
mally hyperbolic Riemann surfaces. If we lift f to a quasiconformal diffeomorphism
f X | = X, between universal covers, the quasisymmetric extension f doo X1 —
8OOX2 induces a homeomorphism f G(X 1) — G(Xz) and therefore a bijection
F: C(X1) — C(X2) between the corresponding spaces of geodesic currents.

Lemma 37 The above bijection restricts to a homeomorphism F: Cpq(X|) —
Cpa(X2), when the spaces Cpq(X1) and Cpq(X2) of bounded geodesic currents are
endowed with the uniform weak* topology.

Proof The main issue to deal with is that the definition of bounded geodesic currents
in X and of the uniform weak* topology of Cpq(X) involves the space H()N( 1) of
biholomorphic diffeomorphisms of the universal cover X\, whereas the corresponding
notlons in Xp 1nvolve H(X 2). Our proof will use an ad hoc correspondence between
H(Xl) and H(Xz) ~

Arbitrarily pick three distinct points x1, y1, 21 € 000 X1, counterclockwise in this
order, in the circle at infinity of X 1 and three distinct points x2, y2, 72 € 800)?2,
also in counterclockwise order. Then, for every blholomorphic map ¢ € H(f 2), there
exists a umque p(¢) € H(X1) sending the three points £ 1og ™' (x2), fLop~ ' (y2),
f o (Zz)tox1 v1,z1,respectively. This prov1desabgect10np H(Xz) — H(X/)
characterlzed by the property that for every ¢ € H(X 2) the map ¢ o f o p(p)~! sends
our base points x1, y1, 71 € aoo)? 1 to the base points x2, y2, 22 € 8OQX2, respectively.

We temporarily postpone the proof that F' sends Cpq(X1) to Cpa(X2), as the argu-
ment will be a simpler version of our proof that the restriction F': Cpg(X1) — Cpa(X2)
is continuous.

To prove that F: Chq(X1) — Cpg(X2) is continuous, consider a sequence of
bounded geodesic currents o, € Cpq(X1) converging to o, as n — o0, for the uni-
form weak* topology. We want to show that F(c;,) converges to F(tso) in Cphq(X2),
namely that

IF(en) = Flaso)lle =  sup ‘/ ~ SO(de(an)—f B sogadF(aoo)(—masn—mo
peH(Xp) /G(X2) G(X2)

(32)

for every continuous function & : G(X2) — R with compact support. It is easier to
use a proof by contradiction.

Suppose that (32) does not hold, in search for a contradiction. Then, passing to a
subsequence if necessary, there exists § > 0 and a sequence of biholomorphic maps
©On € H()Nfg) such that

[ govdPan - [ togdram)|>s (33)
G(X2) G(X2)
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for every n. Then, by definition of the measure F (),

/ _ Eo‘pndF(Oln)Z/ - §°¢n0fdan
G(X2) G(X1)

. (34)
= / _Eo(pnofoplen) ") oplpn)day
G(&1)

for the bijection p: H()N(l) — H()N(z) defined above. Similarly,
/ _ EogudF(ax) = f _Eo(pmofoplen) ) oplgn)das (35
G(X»7) G(X1)

The functions f,, =@, 0 f o p(pn)~ I BOOX 1 — 8OOX2 are uniformly qua31sym—
metric since M(f,,) = M(f) and by construction send x1, y1, 71 € aooxl to xp,
Y2, 22 € 300 X2, respectively. By a classical equicontinuity property (see [22, §11.5]),
they consequently form a relatively compact family in the space of quasisymmetric
homeomorphisms 300 X1 — 300X2, for the topology of uniform convergence. Passing
to a subsequence if necessary, we can therefore assume that the f,: doc X1 — 900 X2
uniformly converge to some homeomorphism fOO Then, as n — oo, the induced
homeomorphisms f,, G(Xl) — G(Xz) converge to foo G(Xl) — G(Xz) uni-
formly on compact subsets of G(X1).

By Egs. (34) and (35)

[ comdr@)- [ eopdrs)|
G(X2) G(X2)

:’/ - Soﬁlop((;on)dan_/ _ soﬁlop((pn)daoo‘
G(X1) G(X1)

g‘/ - soﬁop(ﬁon)dan_/ N gofooop(ﬁan)dan (36)
G(X1) G(X1)

[ soFeopnda— [ sofuopidan]
G(X1) G(X1)

+ ‘/ - éofooop((pn)daoo_/ - §°J?;LOP(<Pn)dOtoo‘.
G(X1) G(X1)

Choose a nonnegative continuous function n: G(X,) — R with compact support
that is constantly 1 on a neighborhood of the support of &. For an arbitrary & > 0, the
fact that fn converges to foo uniformly on compact subsets implies that

&0 fu — & o fool < Mo foo
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for n large enough, so that

\/ _ soﬁop(%)dcxn—/ _ &0 foo 0 plgn) daty
G(X1) G(X1)

Ss/ y 10 foo 0 plgn) day
G(X1) 37)

<& sup /N nofoompdocn
peH(X)) /G(X1)

< éllay ”ﬂof

for n large enough, where || ”no T is the (uniform weak®) seminorm on Cpq(X1)
defined by the function 7, o foo G(X 1) — R. Similarly

\f _ £0 fao0 plen) dane —/ _ o op(gon)daoo) < ellesollp 7, (38)
G(X1) G(X1) '
for n large enough. Finally,
]f _ £0 faoo plen) day, —/ _ &0 fxo p(gon)daoo\ <l = ool 739
GX» G(X1) '
Combining the inequalities of (36-39) we conclude that, for every ¢ > 0,

|f i Sogo,ldF(an)—/ _ EogudF(ao)| < cllanlof, +ellasollo;
G(X2) G(X2)

ot — @solo - (40)

for n large enough.

However, ”a"”nofw — ||ozoo||nofOc and ||a, — O‘oonsofw — 0 asn — oo since
ap — 0o In Cpg(X1), so that (40) contradicts (33) for & small enough.

This contradiction proves (32), and shows that the function F : Cpq(X1) — Cpa(X2)
is continuous.

A symmetric argument shows that the inverse F' 1. Cuq (X2) — Cpq(Xy) is con-
tinuous, so that F': Cpg(X1) — Cpa(X2) is a homeomorphism.

We had postponed the proof that our original function F: C(X;) — C(X3) sends
bounded geodesic current to bounded geodesic current. This is a simpler version of
the above continuity proof. For a bounded geodesic current o € Cpq(X2), suppose in
search of a contradiction that the geodesic current F'(«) € C(X>) is not bounded. As
in (32) and (33), this means that there exists a continuous function & : G(}N(Z) —- R
with compact support and a sequence of biholomorphic maps ¢, € H(X>) such that

)/N £ 0 gndF(@)| - coasn — . (41)
(X
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Passing to a subsequence if necessary, we can again arrange that the functions
fn =@y 0 f o p(pn)~ L. G(Xl) — G(Xz) converge to some homeomorphism foo,
uniformly on compact subsets of G(X1). Then, given ¢ > 0 and a continuous function
n: G(Xy) — R with compact support that is constantly 1 on a neighborhood of the
support of &,

‘/;(ff) o@ndF(Ol)‘_‘/G(X)Soﬁop((pn)do[‘
2 2
+‘/;;()~()Eof000p(¢n)da‘
2

<ellellor, + lonlle

for n large enough, as in (36-40). But this clearly contradicts (41), and therefore
concludes our proof that the geodesic current F («) is bounded.

As a consequence, the bijection F: C(X;) — C(X7) restricts to a map
F: Cpa(X1) — Cpa(X3), which we already proved is a homeomorphism for the
uniform weak* topologies. O

The quasiconformal diffeomorphism f: X| — X5 alsoinducesamap Fr: T(X|) —
T (X») between Teichmiiller spaces, by the property that FT([g]) =[gof NeTx 2)
for every [g] € T(X) represented by a quasiconformal diffeomorphism g: X; — X.
It is immediate from definitions that Fr is an isometry for the Teichmiiller metrics of
T(X1) and T(X>5).

It is also immediate from definitions that this construction is well-behaved with
respect to the Liouville embeddings L;: T(X;) — Cpg(X1) and Ly: T(X32) —
Cpa(X2). More precisely, the diagram

Cpa(X1) SN Cpa(X2)

LIT TLz

T(X1) — = T(X,)

is commutative.
The following property is then an automatic consequence of the continuity of
F: Coa(X1) = Cpa(X2).

Proposition 38 Let f: X1 — X, be a quasiconformal diffeomorphism between two
conformally hyperbolic Riemann surfaces. Then the isometry Fr: T(X1) — T(X32)
induced by f continuously extends to the Thurston bordifications T(X 1) UPMLpq(X1)
and T(X2) U PMLpg(X3) of Sect. 4.2. O
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In particular, we can consider the case where X| = X». The quasiconformal map-
ping class group of a conformally hyperbolic Riemann surface X is the group

MCG.(Xo) = {quasiconformal diffeomorphisms f: Xo — Xo}/ ~,

where the equivalence relation ~ identifies f1, fo: Xo — X when they are isotopic
by an isotopy that moves points by a uniformly bounded amount, for the Poincaré
metric. We refer to the results of [11] for several equivalent ways of expressing this
relation.

A quasiconformal diffeomorphism g: X¢ — X is aquasi-isometry for the Poincaré
metrics of Xo and X. It follows that, if the quasiconformal diffeomorphisms fi,
f2: Xo — Xy are isotopic by an isotopy that moves points by a uniformly bounded
amount, SO aregof]_1 andgofz_1 : Xo — Xp.Asaconsequence, if f1, f>: Xo — Xo
represent the same element of MCGgc(Xo), the maps Fi, F2: T(Xo) — T(Xo)
respectively induced by f1 and f> coincide. This defines an isometric action of the
quasiconformal mapping class group MCGgc(Xo) on the Teichmiiller space T(Xp).

Proposition 38 immediately implies the following result.

Corollary 39 The action of the quasiconformal mapping class group MCGgc(Xo)
on the Teichmiiller space T(Xo) continuously extends to the Thurston bordification
T(Xo) U PMLpq(Xo) of Sect. 4.2. m|
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