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Abstract

Resonant inelastic X-ray scattering (RIXS) is used increasingly for characterizing low-

energy collective excitations in materials. RIXS is a powerful probe, which often requires

sophisticated theoretical descriptions to interpret the data. In particular, the need for

accurate theories describing the influence of electron-phonon (e-p) coupling on RIXS

spectra is becoming timely, as instrument resolution improves and this energy regime

is rapidly becoming accessible. To date, only rather exploratory theoretical work has

been carried out for such problems. We begin to bridge this gap by proposing a versatile

variational approximation for calculating RIXS spectra in weakly doped materials, for a

variety of models with diverse e-p couplings. Here, we illustrate some of its potential

by studying the role of electron mobility, which is completely neglected in the widely

used local approximation based on Lang-Firsov theory. Assuming that the e-p coupling

is of the simplest, Holstein type, we discuss the regimes where the local approximation

fails, and demonstrate that its improper use may grossly underestimate the e-p coupling

strength.
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1 Introduction

Resonant inelastic X-ray scattering [1] is being increasingly used to study electron-phonon (e-p)

interactions in quantum materials [2–13]. This application is facilitated by improvements in

both experimental resolution [1,14] and in our understanding of how the scattering process

generates lattice excitations [3–5,8,15–17].

The most commonly used framework for analyzing phonon excitations in RIXS data is the

atomic limit (or single-site) approximation developed by Ament et al. [15], which first estab-

lished the theoretical connection between phonon excitation intensities and the e-p coupling

constant. Originally developed with Cu L-edge measurements of the high-Tc cuprates in mind,

this approximation completely neglects charge fluctuations during all stages of the RIXS process

and effectively treats the system as a set of isolated sites whose charge density couples to local

phonon modes (see Sec. 2.4). This treatment was motivated by the expectation that electron

correlations localize carriers in the initial and final states, while the strong core-hole potential in

the intermediate state conspires with its short lifetime to confine the excited valence electron to

the site where it is created. With these approximations, the RIXS cross-section can be evaluated

exactly [15], resulting in an analytic expression suitable for fitting experimental data [6,10–12].

A key result is that the ratios of intensities of successive phonon excitations are related in a

one-to-one manner to the ratio M/Γ between the e-p coupling M and the inverse core-hole

lifetime parameter Γ .

As we show here, the accuracy of this single-site model depends significantly on the degree

to which the excited valence electron is localized in the intermediate state. This observation

poses a problem for the community. Many studies of phonon excitations are conducted at

the O K-edge, which involves an oxygen 1s ! 2p transition. The oxygen 1s core level is

relatively shallow, resulting in a weaker core hole potential and a longer core hole lifetime

(small Γ ) [4,8,10]; both of these aspects favor intermediate states where the valence electron

explores the neighborhood of the core-hole site instead of being localized at that one site.

Furthermore, recent studies have addressed lightly doped band insulators [10], and doped

cuprates [11, 12], where one or more of the states involved in the scattering process are

delocalized, and yet these studies have utilized the localized model to analyze the data. To

better understand the implications of these studies, we must determine how the itineracy of

the electrons affects the RIXS intensity.

There have been several attempts to extend the single-site model to more general cases.

For example, early efforts focused on extending the approach to small clusters using exact
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diagonalization (ED) [4, 8]. While these models are only able to retain a limited subset of

phonon modes, they do capture the effects of electron itineracy over a few unit cells, and

produce results in qualitative agreement with the single-site model (no quantitative comparison

of the intensities predicted by each model has been made). More recently, Devereaux et

al. [16] developed a model for the RIXS cross-section for a system of itinerant electrons using

perturbation theory. This approach, while general, currently only includes the lowest order

diagrams responsible for the single-phonon excitations. As such, its predictions cannot be

directly compared against analyses based on the single-site model, which generally revolve

around multi-phonon processes. Finally, Geondzhian and Gilmore [18] have shown that even

within the single-site approximation, either adding coupling to a second phonon mode and/or

allowing for a different phonon frequency in the intermediate state considerably affect the

quantitative interpretation of the RIXS spectra.

It is important to mention also that Geondzhian and Gilmore [17] have questioned whether

the intensity of the phonon excitations should be attributed solely to the coupling between the

valence electrons and the lattice. Instead, they propose that the interaction should be viewed

as an exciton-lattice coupling, with an additional interaction between the core hole and the

lattice. We briefly discuss below the importance of such excitonic effects.

In this paper we propose a new, versatile, accurate, and numerically efficient approach for

studying the effects of e-p coupling on RIXS spectra in band insulators. Our new approach

removes most limitations inherent to the atomic limit approximation of Ref. [15] because it is

based on a variational method called the Momentum Average (MA) approximation [19,20].

Its variational nature comes from the fact that this approximation constrains the possible

carrier-plus-phonons configurations to a subset that we believe is most relevant for the problem

at hand. We can then verify the accuracy of the specific choice for what is retained by increasing

the variational space of allowed configurations and checking if convergence has been achieved

or not. This MA approach has been used very successfully to study single polarons and single

bipolarons in infinite systems, at all coupling strengths, and in a variety of models with e-p

couplings. Beside its success in dealing with the simplest Holstein coupling, the accuracy of

MA has been validated for models with non-trivial diagonal g(q) couplings, e.g., breathing-

mode phonon couplings [21] and for off-diagonal models with g(k,q) couplings [22–24] (The

latter cannot even be meaningfully studied in the single-site, atomic limit.) MA has also been

generalized to the study of e-p couplings to multiple phonon modes [25], to models involving

multiple electronic bands [26,27], and to e-p couplings beyond the linear approximation [28,29].

Any combinations of the above features are straightforward to implement, e.g. g(k,q) couplings

in models with multiple electronic bands [30–32] or a mix of g(q) and g(k,q) couplings [33,34].

Especially relevant for the consideration of RIXS spectra was the generalization of MA to models

that include disorder [35] (the core-hole attraction is a very simple form of disorder). In this

latter context, the accuracy of MA for predicting polaron spectra in the presence of attractive

potentials like that due to the core-hole was validated by comparison with state-of-the-art,

unbiased numerical methods in Ref. [36]. In all the work described above, the phonons were

assumed to be dispersionless, Einstein modes. The generalization of MA to deal with dispersive

optical phonons has been achieved very recently [37], and can thus be added to the list of

cases that can be treated with MA. Insofar as single polarons and bipolarons are concerned,

MA has been shown to have good quantitative accuracy everywhere in the parameter space

except in the strongly adiabatic limit. Ref. [38] recently overcame this last limitation, however,

by implementing a numerical procedure that allows the inclusion of an arbitrary number of

configurations within the variational space.

Being based on MA, our approach for modeling RIXS spectra inherits all the capabilities

listed above, allowing the investigation of a large variety of models with e-p coupling within a

unified framework. Its only current limitation is to the study of insulators or very weakly doped
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materials, due to the fact that MA has not yet been extended to systems with finite carrier

concentrations.

As an aside, it is also useful to emphasize that even though all the discussions here are

focused on electron-phonon couplings, the same formalism can be applied to study RIXS spectra

for systems with electron-magnon interactions. Indeed, our variational MA approach produces

single spin-polaron dispersions in excellent agreement with ED calculations for several such

models (see, for instance, Refs. [39] and [40]).

The effort of implementing this new approach is only worthwhile, however, if the difference

between its predictions and those of the more basic single-site approximation are consider-

able. Here, we demonstrate that this is the case (and use it as an opportunity to explain the

general framework, which can then be generalized to all the other cases mentioned above) by

investigating the fundamental question of when and how is the itinerancy of the electron in

the intermediary states relevant to RIXS spectra. Specifically, we consider the case where a

core electron is excited into an otherwise empty valence band, where it is free to interact with

phonons. This specific problem is relevant, for example, to recent O K-edge experiments on

SrIrO3/SrTiO3 heterostructures, where the core 1s electrons of the SrTiO3 layers are excited

into a nearly empty band [10]. (In that case, the core electron interacts with the LO4 optical

phonon branch, which can be approximately modeled using a Ω ⇡ 100 meV Einstein phonon.)

By comparing our results with those obtained from the atomic limit approximation we can

highlight the role played by the width of the valence band, as well as the dimensionality and

symmetry of the underlying lattice.

Our MA method recovers the results of the single-site model in the atomic limit (when the

bandwidth of the valence band is set to zero). It also has access to multi-phonon excitations,

which allows us to make quantitative comparisons between localized and itinerant cases.

Using this framework, we show that while the single-site approximation captures the phonon

excitations of an itinerant system qualitatively, it may significantly underestimate the e-p coupling

strength. We also demonstrate that electron mobility in the intermediate state produces

a momentum dependence in the intensity of the phonon excitations, even when both the

underlying e-p coupling, and the phonon dispersion, are momentum independent. These

results should be kept in mind when using the single-site model to do quantitative RIXS

analysis.

The way to understand the effect of all the various features of a model with general e-p

coupling is to add them one by one and see when and why they are relevant, i.e. when their

addition leads to a quantitatively significant change to the predicted RIXS spectra. Once this

knowledge is collected, it will be possible to know how much detail needs to be included in a

model, depending on the specific parameters of the system studied with RIXS. For instance,

the example chosen here will show that if the core-hole potential is very large then the atomic

limit approximation is adequate, but it becomes less so as the core-hole potential becomes

smaller, in which case the MA approach must be used if accurate estimates are desired. We

emphasize again that all the generalizations mentioned above can be implemented within the

same framework; however, to keep the length of this paper reasonable, we will present other

generalizations elsewhere.

The paper is organized as follows: In Sec. 2 we introduce the methodology of our research.

In particular, Sec. 2.1 presents the lattice Holstein model and the basics of the RIXS theoretical

framework, Sec. 2.2 discusses the role of coupling of the core hole to the lattice, Sec. 2.3 outlines

the implementation of the variational MA method to the calculation of the RIXS cross-section,

and Sec. 2.4 presents the Lang-Firsov solution in the atomic limit, for completeness. From there,

we proceed to the numerical results in Sec. 3, where we present several interesting theoretical

consequences of electron mobility for the RIXS cross-section. Finally, in Sec. 4, we conclude

the paper with a summary and conclusions. We also include a short Appendix outlining the
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calculation of the non-interacting Green’s functions in the presence of the on-site core hole

potential.

2 Methods

2.1 The Model

Throughout this work, we describe the RIXS process using the Kramers-Heisenberg formalism,

where the scattered intensity is directly proportional to the differential cross-section

d2�

dΩd!
/
X

f

|F f g |
2�(E f � Eg �!). (1)

Here, F f g is the RIXS scattering amplitude

F f g =
X

n,i

eiq ·Ri
h f |D†

i
|nihn|D

i
|gi

Eg � En +!in + iΓ
, (2)

where Eg , En, and E f are the energies of the initial |gi, intermediate |ni, and final | f i states of

the scattering process, respectively; !in and k in (!out and kout) are the energy and momentum

of the incoming (outgoing) X-ray, respectively; ! = !out �!in and q = kout � k in are the

energy and momentum transferred to the system, respectively; and Di is a local dipole operator

describing the relevant core-valence transition. To be consistent with Ref. [15], we neglect the

orbital-dependent factors appearing in the dipole operator and set D
i
=
P

� d
†
i,�

p
i,�

, where

p
i,�

annihilates a spin � core electron at site i and d
†
i,�

creates a spin � valence electron at the

same site. We set ~h= 1 throughout this work.

We now consider the case where the incident X-ray locally excites a core electron into an

otherwise empty valence band (e.g., a p! d transition, although the specific orbitals involved

are irrelevant within our level of modeling). To model the e-p interactions in the valence band,

we use the Holstein Hamiltonian H =Ht +Hp +He-p, where

Ht = �t
X

hi ji
(d

†
i
d

j
+H.c.) =
X

k

✏
k
d

†
k
d

k
(3)

describes the hopping of the valence electron with the bare dispersion ✏
k
. We focus our

discussion on the square lattice with ✏k = �2t
⇥

cos(kx a) + cos(ky a)
⇤

, where t is the nearest

neighbor hopping integral. Generalizations to other band structures and other dimensions are

straightforward, and will be mentioned later. As discussed above, d
†
i

creates a valence electron

on site i; we suppress the spin index of the fermion operators from now on as it is irrelevant

when at most one valence electron may exist in the system. For this same reason, electron

correlations within the valence band are irrelevant and hence ignored.

The second term in the Hamiltonian,

Hp =!0

X

i

b
†
i
b

i
(4)

describes an optical Einstein phonon mode, and the third term,

He-p = M
X

i

d
†
i
d

i
(b

†
i
+ b

i
) (5)
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describes the e-p interaction between the valence electron and a local phonon mode. Here, b
†
i

creates a phonon with energy !0 at site i, and M is the Holstein e-p coupling.

In the intermediate state, the valence electron feels a strong attractive potential from the

localized core-hole left behind during the RIXS process. We model this using a local potential

He-h = �UQ

X

i

d
†
i
d

i
(1� p

†
i
p

i
), (6)

as is commonly done in the literature, where UQ characterizes the strength of the core-hole’s

potential. (Longer range potentials can easily be treated in a similar manner.)

Our model is identical to the local model used in Ref. [15] for Holstein coupling when the

hopping integral t of the d-band vanishes (no itinerancy in the intermediate state). We note

that because our approach assumes that the core electron is excited into an otherwise empty

band, this same electron must ultimately decay and annihilate the core hole. Therefore, we are

modeling an indirect RIXS process, similar to Ament et al. [15].

Finally, a Holstein coupling of the core-hole to the same phonons, like that suggested by

Ref. [17], can be included in this model with an additional term:

Hh-p = Mh

X

i

(1� p
†
i
p

i
)(b

†
i
+ b

i
).

We discuss its relevance next.

2.2 Coupling the core-hole to the lattice

We begin by examining qualitatively the effects of adding the coupling between the

lattice and the core-hole. Let site i be the site where the core hole is created. In the

intermediate state, the core hole-phonon Hamiltonian at this particular site becomes:

Hp + Hh-p = !0 b
†
i
b

i
+ Mh(b

†
i
+ b

i
) = !0B

†
i
B

i
� M2

h
/!0, where we have introduced the

displaced phonon operators Bi = bi + Mh/!0. The e-p coupling at this site now becomes:

He-p = Md
†
i
d

i
(b

†
i
+b

i
) = Md

†
i
d

i
(B

†
i
+B

i
�2Mh/!0). In other words, using the displaced phonon

operators b j ! B j = b j +�i j Mh/!0, this Hamiltonian maps directly onto a model where the

core-hole is not coupled to the lattice, provided that we renormalize the core-hole attractive

potential UQ! Ueff
Q = UQ + 2M Mh/!0, and shift the overall energy of the intermediate state

by �M2
h
/!0.

The energy shift in the intermediate state reflects the polaron formation energy associated

with the lattice distortion induced by the core-hole. It is an overall constant that shifts the

energies En of all the intermediary states, so it does not affect the shape of the RIXS spectra.

Much more relevant is the core-hole potential renormalization Ueff
Q = UQ + 2M Mh/!0,

which should reduce Ueff
Q . We expect a reduction here because M Mh < 0 due to the opposite

charges of the core hole and the valence electron, which drive opposite distortions of the lattice:

if one induces a local expansion, the other induces a local contraction. (In more complex

models with multiple bands one can envision other possible scenarios, but for the minimal

model studied here, this is the only option.) The energy �2M Mh/!0 represents an effective

on-site repulsion between the core-hole and the valence electron, due to their coupling to the

lattice. If the two charges are at different sites, each forms a polaron by creating its optimal

local lattice distortion, thus lowering the total energy by Eapart = �M2/!0 � M2
h
/!0 (if we

set t = 0). In contrast, when the core hole and excited electron occupy the same site, they

sabotage each other’s distortions and the polaron formation energies are mostly lost. The

exciton-polaron energy (again, if t = 0) is Eonsite = �(M +Mh)
2/!0 = Eapart � 2M Mh/!0 ⇡ 0

if M ⇡ �Mh, reflecting the fact that a site hosting both the core-hole and the valence electron

(i.e. an exciton) is effectively neutral and thus will not distort the lattice much. The valence
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electron and the core hole occupy atomic orbitals with different wavefunctions so |M | 6= |Mh|,

although if one envisions the distortion as arising from breathing-mode like displacements of

the neighboring O atoms, as is often the case in oxides, then their magnitudes could be rather

comparable.

The conclusion is that coupling of the core-hole to the lattice is likely to further undermine

the validity of the single-site approximation, because it effectively weakens the core-hole

potential from its bare value, thus favoring itinerancy of the valence electron. The more

time the valence electron spends at other sites, the more likely it is to create a distortion at

those sites and thus leave behind phonons away from the core-hole site. As we show in the

following, this leads to a q dependence of the RIXS spectra that is entirely missed by the

single-site approximation. This physics becomes more relevant in the limit of stronger e-p and

core-hole-phonon couplings.

Determining the absolute importance of the coupling between the core-hole and the lattice

requires accurate calculations for Mh and M . This task is non-trivial, because the core hole

and excited valence electrons will experience different degrees of electronic screening [12].

Nevertheless, this issue should be kept in mind when interpreting RIXS data. This being said,

our goal here is to assess the role of electron mobility relative to the purely local model, which

neglects this core-hole coupling. We therefore set Mh = 0 from here onward. To first order,

one can estimate the contribution of the hole-lattice coupling by replacing UQ with Ueff
Q in the

following results. In view of these arguments, we will consider a range of UQ values in this

work that skews below those typically found in the literature. For example, UQ is often taken to

be in the range ⇡ 4� 6 eV [8,41–43], depending on the elemental edge. Adopting Ω ⇡ 100

meV as a typical optical phonon energy probed by RIXS, we consider UQ/Ω in the range of

20� 40 throughout.

A more detailed analysis of both this core hole-lattice coupling and of various other possible

generalizations mentioned in the introduction will be presented elsewhere.

2.3 MA solution

To apply the MA method, we first recast the scattering amplitude of Eq. (2) in terms of a

propagator:

F f g =
X

i

eiq ·Ri h f |p†
i
d

i
G(z)d

†
i
p

i
|gi, (7)

where G(z) = [z�H]�1 is the resolvent operator, and z =!in+ Eg + iΓ . From now on, we take

the initial state |gi = |0i to be the vacuum of excitations (no phonons, no core hole, no valence

electron) so that Eg = 0.

Following common practice, we assume that the core hole is immobile, so its only role

is to provide an on-site attraction UQ when the valence electron is at the core-hole site i:

He-h ! �UQd
†
i
d

i
. As a result, we need to calculate propagators of the form h f |d

i
G

i
(z)d

†
i
|0i,

where | f i can have arbitrary numbers of phonons left behind after the core hole decays. From

now on we indicate the location of the core hole using the index i of the resolvent Gi(z), to

reflect the attractive potential �UQd
†
i
d

i
included in the Hamiltonian of the valence electron.

Such Green’s functions for the valence electron in the presence of this “impurity potential”

and of Holstein coupling to the lattice have been calculated with MA for the case | f i= |0i in

Refs. [35,36], where the accuracy of MA was also demonstrated by comparison with state-of-

the-art unbiased numerical results. For completeness, we briefly review this solution here and

show its generalization for other phonon states | f i compatible with the variational space we

use to implement MA. We also review the physical meaning of the approximations made within

MA, so that it becomes clear what processes are included and what processes are ignored by it.
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We define:

G
(i)

i j
(z) = h0|d

i
G

i
(z)d

†
j
|0i, (8)

where the superscript (i) indicates that the core-hole attraction is at site i (in Refs. [35,36],

the attractive potential is placed at site 0). To calculate this, we employ Dyson’s identity:

Gi(z) = G0,i(z) + G
i
(z)He-pG0,i(z), (9)

where G0,i(z) = [z � (Ht +Hp � Ud
†
i
d

i
)]�1 is the resolvent in the presence of the core-hole

potential but in the absence of the e-p coupling. This Hamiltonian can be diagonalized straight-

forwardly so its propagators

G
(0,i)

i j
(z) = h0|d

i
G

0,i
(z)d

†
j
|0i

are simple to calculate; for completeness, their derivation is provided in the Appendix.

Using Dyson’s identity in Eq. (8) we find:

G
(i)

i j
(z) = G

(0,i)

i j
(z) +M
X

l

F
(i)

1
(z, l)G

(0,i)

l j
(z), (10)

where for n� 1 we introduce the generalized propagators:

F (i)n (z, l) = h0|d
i
G

i
(z)d

†
l
(b

†
l
)n|0i. (11)

Eq. (10) is exact, and reflects the fact that the valence electron can move from site j to any other

site l and create a phonon there through the local Holstein e-p coupling, hence the appearance

of the generalized propagator with n= 1. Solving Eq. (10) requires knowledge of all F
(i)

1
(z, l).

We use Dyson’s identity to generate equations of motion for these new propagators:

F
(i)

1
(z, l) =
X

p

h0|d
i
G

i
(z)He-pd†

p b
†
l
|0iG(0,i)

pl
(z �!0).

Consider He-pd†
p b

†
l
|0i. If p = l, the e-p coupling can either remove the phonon or add a

second one. If p 6= l, only addition of a second phonon is possible, resulting in propagators with

kets of the form d†
p b†

p b
†
l
|0i. Extensive work has shown that at low energies and for Holstein

coupling, the latter processes are much less likely than the former [35,36]: because the coupling

is local, it is energetically favorable for the electron to remain with its phonon cloud once it

starts building it rather than abandon it to move elsewhere to form another cloud.

The simplest version of MA, which we implement here, solves the problem within the

variational space that only allows single-site phonon configurations like (b
†
l
)n|0i. Generaliza-

tions to larger variational spaces, where phonons are spread over several sites, are possible

and have been implemented for other couplings where they are necessary to obtain accurate

results; however, using this specific variational space has been shown to be a very accurate

approximation for the Holstein coupling [35,36]. This approximation reduces the generalized

propagators that appear in the equations of motion to only those defined in Eq. (11):

F (i)n (z, l) = M[F
(i)

n+1
(z, l) + nF

(i)

n�1
(z, l)]G

(0,i)

l l
(z � n!0).

This recursive equation admits the solution

F (i)n (z, l) = An(l � i, z)F
(i)

n�1
(z, l),

where the coefficients are the continued fractions

An(l � i, z) =
nMG

(0,i)

l l
(z � n!0)

1�MG
(0,i)

l l
(z � n!0)An+1(l � i, z)

. (12)
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They depend only on the distance between the core-hole site i and the cloud site l, as expected

on physical grounds (mathematically, this is because G
(0,i)

l l
(z) depends on l � i, see Appendix)

and are calculated by imposing the physical condition AN (l � i, z) = 0 for a sufficiently large

N . (The cutoff N is found by increasing its value until the continued fractions are converged.)

Once these continued fractions are known, we have:

F (i)n (z, l) =

n
Y

k=1

Ak(l � i, z)G
(i)

il
(z). (13)

Using this in Eq. (10) allows us to bring it into a self-consistent form:

G
(i)

i j
(z) = G

(0,i)

i j
(z) +M
X

l

G
(i)

il
(z)A1(l � i, z)G

(0,i)

l j
(z). (14)

For a finite-size system this equation can be solved as is, but for an infinite system it becomes

intractable due to the infinite sum over l. Sites l far from the core-hole site i can be efficiently

dealt with by noting that A1(l � i, z)! A1(z) when |l � i|� 1, where

An(z) =
nMG

(0)

l l
(z � n!0)

1�MG
(0)

l l
(z � n!0)An+1(z)

(15)

are the corresponding continued fractions in a clean system, with UQ = 0. We define the

effective potential

v(l � i, z) = M[A1(l � i, z)� A1(z)],

which goes to zero fast as l moves away from i, and rewrite Eq. (14) as

G
(i)

i j
(z) = G

(0,i)

i j
(⇣) +
X

l

G
(i)

il
(z)v(l � i, z)G

(0,i)

l j
(⇣), (16)

with ⇣= z �MA1(z). A diagrammatic expansion of this effective potential is available in Fig.

2 of Ref. [36], and reveals that it describes the scattering of the electron on the core-hole

potential in the presence of the phonons from the polaron cloud. That work studied the effect

of a ’single site impurity’ on the behavior of a polaron; for us, this impurity potential is the

core-hole potential.

If UQ = 0, there is no core-hole attraction and this reduces G
(i)

i j
(z) ! Gi j(z) = G

(0)

i j
(⇣),

showing that the free-particle propagator energy is renormalized by the MA self-energy

Σ(z) = MA1(z) [19,20]. This renormalization is responsible for the emergence of the Holstein

polaron as the low-energy quasiparticle in the clean system.

If UQ 6= 0, Eq. (16) shows that the full solution has two components. The first is G
(0,i)

i j
(⇣),

which is the bare particle propagator in the presence of the core-hole potential, with the same

renormalization of its energy z! ⇣. It, therefore, can be interpreted as the polaron propagator

in the presence of the bare core-hole potential UQ. Interestingly, this is not the full answer.

The second part
P

l G
(i)

il
(z)v(l � i, z)G

(0,i)

l j
(⇣) shows that the e-p coupling also renormalizes this

bare core-hole potential by generating an additional potential v(l � i, z). Its dependence on the

energy z reflects retardation effects. Unlike the bare core-hole potential, v(l � i, z) is not local

although it vanishes fast with increasing |l � i|. Previous work [35,36] shows that we achieve

convergence by summing up to second nearest-neighbors (nn) of site i, i.e. by imposing a

cutoff pv = 2 such that we set v(l � i, z) ⌘ 0 for |l � i| > pv, in Eq. (16). A more technical

discussion of Eq. (16), including a diagrammatic analysis, is provided in Ref. [36]. A more

physical discussion is provided below.

If we set pv = 2, Eq. (16) allows us to find G
(i)

il
(z) when l = i, l is nn to i, and l is a nnn to

i from a linear system of three coupled equations. Once these particular G
(i)

il
(z) are known,

9
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Eq. (16) produces any other G
(i)

i j
(z) of interest. Other values of the cutoff pv are handled

similarly.

Returning to the RIXS amplitudes of Eq. (7), when | f i = |0i the needed propagator is

G
(i)

ii
(z), which is computed as just described. This discussion also shows that the only other final

states possible within this variational space are of the form | f i / (b†
l
)n|0i, where now l can be

any site in the system, not just the core-hole site i as assumed in the single-site approximation.

This aspect requires us to find the propagators h0| bn
lp
n!

d
i
G

i
(z)d

†
i
|0i, which are Fourier transforms

of the amplitude of probability that after creating a cloud at site l, the valence electron returns

to site i where it annihilates the core-hole. We remind the reader that we assume that there is

a single electron in the valence band in the intermediate state. If the valence band is instead

partially filled, then any other electron could decay and fill the core hole, further complicating

the analysis.

The new propagators can be linked to the ones already calculated. Let

F̃ (i)n (z, l) = h0|d
i
G

i
(z)d

†
i
(b

†
l
)n|0i, (17)

so that

h0|
bn

lp
n!

d
i
G

i
(z)d

†
i
|0i=

[F̃ (i)n (z
⇤, l)]⇤
p

n!
.

Within the MA variational space, we find the equation of motion for this propagator to be:

F̃ (i)n (z, l) = M[F
(i)

n+1
(z, l) + nF

(i)

n�1
(z, l)]G

(0,i)

l i
(z � n!0).

Comparing with the equation of motion for F (i)n (z, l), we conclude that

F̃ (i)n (z, l) =
G
(0,i)

l i
(z � n!0)

G
(0,i)

l l
(z � n!0)

F (i)n (z, l)

and therefore [see Eq. (13)]:

F̃ (i)n (z, l) =
G
(0,i)

l i
(z � n!0)

G
(0,i)

l l
(z � n!0)

n
Y

k=1

Ak(l � i, z)G
(i)

il
(z). (18)

All the components in this expression have already been calculated in the process of obtaining

the various G
(i)

il
(z).

Within this version of MA, the RIXS cross-section can be expressed as

d2�

dΩd!
/
�

�

�

X

i

eiq ·Ri G
(i)

ii
(z)

�

�

�

2

�(!) +

1
X

n=1

1

n!

X

l

�

�

�

X

i

e�iq ·Ri F̃ (i)n (z
⇤, l)

�

�

�

2

�(!� n!0). (19)

Using various symmetries such as the fact that G
(i)

ii
(z) is independent of i, while F̃ (i)n (z

⇤, l)

depends only on i � l, we can further simplify this to find our final result for the RIXS cross-

section:

d2�

dΩd!
/
�

�G
(i)

ii
(z)
�

�

2
N�q ,0�(!) +

1
X

n=1

1

n!

�

�

�

X

�

eiq ·R� F̃ (i)n (z
⇤, i +�)

�

�

�

2

�(!� n!0), (20)

where N !1 is the number of sites in the system. In principle, the sum over � in the above

expression extends over all the sites in the system; however, in reality, it converges fast with

increasing |�| because it is not very probable that phonons will be left behind at sites i + �

very far away from the core-hole site i after the RIXS process. We define a second cutoff p to

10
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Figure 1: A schematic representation of the RIXS process as treated in (a) the MA

theory and (b) the Lang-Firsov localized theory.

truncate this sum, by restricting it to only |�| p. To simplify the analysis, in the following we

set p = pv and increase its value until convergence is achieved, thus guaranteeing that both

cutoffs are sufficiently large. We emphasize that the physical origin of these two cutoffs is very

different (as further discussed below) and, therefore, convergence could be achieved for very

different values of p and pv for other models. In those cases, it might be more efficient to

converge them separately.

To summarize, the steps in the calculation are (i) choosing the cutoffs for � in Eq. (20),

for p = |l � i| in Eq. (16), and for N for the continued fractions of Eqs. (12) and (15).

Specifically, we increase these cutoffs until convergence is achieved; (ii) calculating the needed

generalized propagators F̃ (i)n (z, l) of Eq. (18). Specifically, expressions for the bare propagators

G
(0,i)

l i
(z� n!0) are provided in Appendix, the continued fractions Ak(l � i, z) are obtained from

Eq. (12), and the propagators G
(i)

il
(z) are obtained from solving the coupled Eqs. (16); (iii) the

expression of Eq. (20) is then evaluated.

The last issue is the choice of !in that enters the z argument when calculating the RIXS

intensity. In experiments, this is measured as !in =!
max
in
+∆ where ∆ is the detuning from

the value !max
in

corresponding to the maximum in the x-ray absorption spectroscopy (XAS)

spectrum. Within our framework, the XAS intensity can be computed using

IXAS/�
1

⇡
Im

ñ

X

n

hg|D†
i
|nihn|Di |gi

Eg +!in � En + iΓ

ô

= � 1

⇡
ImG

(i)

ii
(z). (21)

When presenting our results, we always consider the RIXS intensity at resonance, i.e., at

an incident photon energy z = zres chosen such that the zero-phonon (elastic) peak has its

11
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maximum amplitude. This energy corresponds to !in = !
max
in

. Later, we will also analyze

changes in peak intensities as a function of the detuning ∆ away from this zres value.

Before moving on, it may be helpful to provide a more physical understanding of the MA

approximation to clarify which processes it includes. Consider first when the valence electron

is created but without creating a core-hole companion (for instance, in an inverse ARPES

experiment). This electron can move anywhere in the system because of the finite hopping t,

but it propagates as a polaron rather than a bare electron due to the e-p coupling. In other

words, the electron distorts the lattice in its vicinity and will be temporarily trapped within this

local potential. In order to hop, it must first absorb all those phonons, then move to another

spot, where it creates another cloud and is temporarily trapped in that vicinity, etc. These

processes renormalize the polaron dispersion and are fully included within our approximation

– indeed, setting UQ = 0 recovers the Holstein polaron MA spectrum. The approximation in

describing this phenomenology is that the phonon cloud’s spatial extent is limited to one site.

As already mentioned, this is an excellent approximation for the Holstein model and can be

relaxed to a more extended cloud for other models, when needed.

Adding the core-hole changes this picture because its attractive potential is likely to keep the

polaron closer to the core-hole site. The electron can still travel anywhere with its polaron cloud

within our approximation, but the probability of going far from the core-hole site decreases as

UQ increases. However, the presence of the core-hole site has a second effect, which becomes

relevant when the polaron cloud is close enough to the core-hole site that this region is sampled

by the electron while temporarily trapped within the phonon cloud. In this case, the electron

will scatter on the core-hole potential, but this process is affected by the cloud’s presence

and structure. This renormalization of the effective potential is described by the additional

potentials v(i � l) in Eq. (16), when the core-hole is at site i and the polaron cloud is at site l.

After a time of order 1/Γ of exploring the lattice in the vicinity of the core-hole site, the electron

will recombine with the core-hole, leaving behind its polaron cloud. This cloud can be anywhere

in the system but, of course, it is more likely to be near or at the core-hole site.

In contrast to all these processes included within the MA calculation, the one-site approxi-

mation restricts the electron (and therefore its polaron cloud) to only be at the core-hole site,

as schematically illustrated in Figure 1.

2.4 The Lang-Firsov Localized Limit

If we set t = 0, our result simplifies to the well-known one-site formulation, which we will

refer to as the Lang-Firsov localized limit. In this case, G
(0,i)

il
(z) = �il/(z + UQ) because the

valence electron cannot leave the core-hole site. One consequence of this is that only the � = 0

term contributes to the n� 1 peaks of the RIXS cross-section, and its q -dependence is lost as

a result. The continued fractions become Padé-type expansions in this limit and after some

cumbersome work, it can be shown that

F f g/
X

m

Bn f mBmng

z + UQ �!0(m�↵2)
, (22)

where ng and n f are the number of phonons in the initial state |gi and the final state | f i,
respectively, ↵= M/!0, and

Bmn(↵) = e�↵
2/2
p

n!m!

n
X

l=0

(�1)m+l↵2l+m�n

(n� l)!l!(m� n+ l)!
(23)

are the appropriate Frank-Condon factors for m� n; for m< n the indices have to be reversed

to Bnm(↵). This is the result predicted by the Ament et al. [15] approximation for this model,

which we will use for comparison with our MA predictions.
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Figure 2: A comparison of the XAS spectra, as obtained using the MA method for

p = 0 (dashed lines) and p = 2 (solid lines). Results are shown in the main panel for

parameters t = 5, UQ = 20, and Γ = 2. The inset shows results obtained from a p = 2

calculation for the same parameter set but with Γ = 0.5. Note that the x-axis of the

inset spans the same range as the main panel.

3 Results and discussion

In this section, we present numerical results obtained using the method outlined above and their

comparison to the single site solution developed in Ref. [15]. In all cases, we set !0 = 1 as the

unit of energy. Assuming this is on the order of 100 meV in physical units, we then adopt t = 5,

UQ = 20–40, and Γ = 2, as representative of the values appearing in the literature [4,12,41].

We emphasize that the core hole lifetime broadening Γ is responsible for the broadening of

the spectral functions along the incident photon energy axis. Separately, we broaden the RIXS

spectra as a function of energy loss with a broadening ⌘ = 0.05, so that the � functions in

Eq. (20) become Lorentzians. This new parameter is mimicking the instrumental broadening

related to the resolving power of the monochromator and the detector. These are beyond the

theoretical treatment of this work, and so ⌘ is set to an arbitrary, small number.

In the following we present MA results for different cutoffs p = 0,1,2. We remind the

reader that this cutoff enters the calculation in two different ways: (i) it characterizes the

range of the renormalized potential, i.e., the range of the sum over l in Eq. (16); and (ii) it

defines the area where phonons can be left behind after the RIXS process, i.e., the sum over �

in Eq. (20). The latter provides a spatial constraint on the source of the interference effects

leading to the q dependence. As mentioned, we could handle the two cutoffs independently

but for this model that is not necessary.

3.1 Results for the X-ray Absorption Spectra

One important consideration for the theoretical calculations presented herein is the location

of the absorption resonance energy at which the RIXS experiment is performed. Generally,

the location of the maximum of the XAS spectra, which determines the optimal absorption

resonance for the RIXS process, does not coincide with the energy of the non-interacting

quasiparticle. For example, the resonance peak is shifted in part by the polaron formation

energy (equal to �M2/!0 at t = 0), which is already captured in the single-site Lang-Firsov

calculation. This shift is also affected by the core hole potential UQ. In experimental practice,
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Figure 3: Resonance position as determined from the maximum of the XAS spectrum,

Eq. (21), as a function of e-p coupling M and for a wide range of core hole potential

values UQ; t = 5, Γ = 2. The difference between the p = 0 (dashed lines) and p = 2

(solid lines) solutions is visible at strong coupling M > 1. The discontinuity at UQ = 10

is due to bimodality of the XAS spectrum in this regime.

this issue is resolved by first performing an XAS experiment to determine the resonance position,

and using that value as the input for the RIXS experiment. We perform a similar procedure

here, by first finding the XAS maximum from Eq. (21) for any given set of parameters and

performing the RIXS calculation at that incidence energy.

Figure 2 presents the XAS spectrum for the parameters UQ = 20, Γ = 2 and several interme-

diate e-p coupling values M , in a region chosen so as to show where the spectrum undergoes

the most dramatic changes. Here, MA results are shown for p = 0 and for p = 2. They are in

good agreement for small couplings M , but for larger couplings, one can see a difference which

indicates that increasing importance of considering final RIXS states with phonons excited

away from the core-hole site (p 6= 0). The plot is presented as a function of !̄ =<[z] + UQ to

adjust the incidence energy for the core hole potential; thus, !̄ = 0 corresponds to exciting the

core electron into the non-interacting quasiparticle state while the other energies correspond

to exciting the core electron into a polaronic state where a phonon cloud dresses the carrier. As

the coupling constant M increases, the location of the XAS maximum shifts to lower energies,

while the spectra broaden and become flatter.

In the inset of Fig. 2 we show the same XAS spectral functions but for a longer core-hole

lifetime (smaller broadening Γ = 0.5) which allows the multi-phonon sidebands, spaced by

!0 = 1, to be resolved. Their number increases in the strong coupling regime, and turns

the XAS absorption into a multi-peak function for which finding the maximum, especially

numerically, can become a challenge. This is one reason why we do not consider such small

core-hole broadenings in the following.

To further explore the evolution of the XAS spectra, Fig. 3 summarizes the position of its

maximum as a function of M and UQ, as determined from the MA calculations p = {0,2}.

The two MA approximations agree well for small coupling, but they start to deviate from one

another for stronger coupling. This is no surprise, as for stronger coupling on average there will

be more phonons in the system, and thus higher-order contributions will matter more. What is

more surprising is that the weak coupling baseline varies strongly and non-monotonically with

UQ: for a wide band system (UQ < t), the resonance is at !̄res ⇡ 0. It shifts rapidly to large

negative values for intermediate UQ, but then starts moving back towards zero as UQ grows.
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Figure 4: The RIXS spectrum obtained using the MA method for different q

momentum transfers, for increasing cluster sizes p = {0,1,2}. Parameters are

t = 5, UQ = 20, M = 1, Γ = 2, ⌘ = 0.05.

Recall that !̄ has been corrected for the lowest order shift caused by the core hole potential

UQ, so the effect at play here is highly non-linear and resulting from the subtle interplay of

parameters in the intermediate regime.

Another interesting feature is that for very strong coupling, M � 1, !res starts to shift more

rapidly towards larger negative shifts before turning back towards zero, here exemplified as a

discontinuity in the UQ = 10 curve. The physical effects associated with the huge phonon clouds

appearing at strong coupling become highly non-linear. This behavior is in contrast to the

simple quadratic behavior predicted by the single-site Lang-Firsov treatment. The sudden jump

in the UQ = 10 curve is the direct result of the transition to a bimodal spectrum, characteristic of

the intermediate core-hole potential UQ, as the intensity of a higher energy sideband gradually

overtakes that of the original maximum. Thus, theoretical predictions in this regime should be

treated with caution, although the regime deemed physical seems to not be affected by these

complications.

We expect that these strong coupling effects observed here are rare and are unlikely to

be encountered in most real materials. We will, therefore, focus our attention on studying

parameters for which the XAS maintains a single well-defined maximum, and avoid presenting

results outside of this regime. In the next section, we first show RIXS results for an incident

photon energy set to coincide with this maximum in the XAS spectra. We then explore the

dependence of our results on detuning away from this resonance in Sec. 3.3.

3.2 Results for the RIXS Spectra

We begin by highlighting the first of several key, qualitative differences between our results and

those of the single site approximation of Ref. [15]. Specifically, we find that the RIXS intensity

predicted by the MA approximation with p � 1 depends on the transferred momentum q , even

though we are studying (for comparison reasons) a simple model where neither the phonon

spectrum nor the electron-phonon coupling have any explicit momentum dependence. This

aspect is illustrated in Fig. 4, where we plot the RIXS spectra for MA results corresponding

to p = {0,1,2}, for q = (0,0), (⇡, 0), (⇡,⇡), (⇡/2,⇡/2); all spectra are normalised to the

single-phonon peak at q = (0,0), and curves with different p are shifted vertically to ease

comparison.
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Figure 5: The RIXS spectrum obtained using the MA method for p = 2 (lines, colors

for different e-p interaction) and the localized Lang-Firsov approximation (points, in

corresponding colors). A comparison at Γ = 2 for UQ = 20 and UQ = 40 is shown; the

localized solution effectively corresponds to UQ =1. The elastic peak is removed

and all data sets are normalized to the one phonon peak for ease of comparison.

First, Fig. 4 reveals that the single site (p = 0) MA solution has no momentum dependence;

however, this is no longer true if p � 1. The origin of this q dependence stems from the fact that

for a finite p, there are multiple possible final RIXS configurations, with phonons left behind

at different sites within distance p of the core-hole site (these phonons carry the transferred

momentum q). The total RIXS intensity measures the interference between the amplitudes of

probabilities for these various outcomes, see Eq. (20), and therefore depends on q . The p = 0

MA case, similar to the Ament et al. single-site approximation [15], has a single possible final

state for a given number of phonons, and thus no interference is possible.

For q = 0, the interference is constructive and leads to the highest possible RIXS intensity.

The intensity then drops with increasing q – this effect is large and easily visible for the one-

phonon peak, but the inset of Fig. 4 shows that it is true for the peaks with more phonons as

well. The reason for the suppression of this dependence with increasing n is that the probability

for many phonons to be left far from the core-hole site decreases with the number n of phonons,

so for larger n the answer is increasingly dominated by the configuration with the phonons at

the core-hole site. The same tendency arises (not shown) with increasing UQ, which tends to

bind the electron closer to the core-hole site, and thus lower the probability for phonons to be

left behind at other sites.

We note that the momentum dependence affects only the intensity of the peaks, but not

their locations. This is in agreement with intuition, because the location of the RIXS peaks is

controlled by the dispersion of the phonons, and these are dispersionless in the model analyzed

here. Our MA approximation is able to treat dispersive phonons, as will be discussed elsewhere,

and indeed in that case the peak locations also acquire a q -dependence. These two effects

provide a nice illustration of how different ingredients of the model may affect different aspects

of the RIXS curve, potentially allowing us to identify and quantify them.

Finally, we note that the MA results of Fig. 4 converge fast with increasing p, in particular

the changes between p = 1 and p = 2 are very minor. In the following, we will present p = 2

results as being essentially converged.

Next, we compare the MA RIXS spectra with those predicted by the single-site approximation.

The latter have no q dependence, making a meaningful comparison questionable. We use the
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Figure 6: The amplitude of the first four RIXS peaks at q = (0,0) as a function of

the hopping parameter t, as calculated using the MA single site method. All curves

are normalized to the peak amplitude at t = 0. The three sets of parameters under

consideration are presented with different colors and the linestyle indicates different

e-p coupling M . The vertical dashed line marks the value of t assumed throughout

this work.

q = 0, p = 2 MA results and scale all spectra to the value of the n= 1 peak. The comparison

is shown in Figure 5 for two extreme values of the core hole potential UQ = 40 (lower plots)

and UQ = 20 (upper plots), for several different e-p couplings, marked in different colors. The

same spectra, computed using the localized Lang-Firsov approximation of Ref. [15] are also

plotted as solid dots for comparison.

As expected, the agreeement is better for the larger UQ, which favors the localization of

the valence electron closer to the core-hole site. Even there, however, quantitative differences

are seen to arise with increasing e-p coupling M . Specifically, we find that finite t results in

a relative decrease of the spectral weight of the multi-phonon excitations, compared to the

single-site prediction; however, overall the two methods are in good agreement. In the small

UQ limit, on the other hand, the mobility of the valence electron results in a substantially

reduced spectral weight for the multi-phonon peaks, and this is seen even for the weakest e-p

coupling considered. A way to understand this is that for t = 0, the effective e-p coupling is

essentially infinite, as there is no competing process to the formation of the cloud. A finite

t, however, brings a second energy scale in the problem: the formation of the phonon cloud

(which promotes localization) now competes against the tendency of the valence electron to be

in an extended state, promoted by t.

Our results show that the effect of the electron mobility on the RIXS spectrum can be

substantial. To get a better idea of just how important it is, Fig. 6 plots the evolution of the

intensity of the first four phonon peaks as a function of t, as predicted at q = 0 by MA for

three different values of e-p coupling M . All curves are normalized to their corresponding peak

intensity at t = 0. The value t = 5, which is assumed throughout this work, is marked with a

dashed line. Fig. 6 clearly shows that the peak intensity decays significantly with increasing t

for all relevant UQ values. Moreover, we can also see that the relative intensity of the higher-

order peaks decays faster. This observation is of vital importance for the interpretation of

experimental data, as discussed next.
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Figure 7: The first three phonon peak ratios as a function of coupling M/Γ . The linear

dependence implies RIXS might be a good technique for directly determining the e-p

coupling. Parameters for the O K-edge: t = 5, UQ = 20, Γ = 2.

In the seminal work that inspired this research, Ament et al. [15] suggested that RIXS

might be a particularly useful technique for directly determining the e-p coupling strength

M . This idea is based on a rather involved analysis that consists in plotting, in double-log

scale, the ratios of consecutive peaks against the ratio M/Γ . In the approximation of Ament et

al. [15], the result is a known function depending solely on M/Γ . This means that if this ratio

can be measured experimentally, one can use this known function to infer the corresponding

value of M/Γ . In Fig 7, we plot these corresponding functions for three ratios of consecutive

peak intensities, as predicted by Ament et al. (curves labeled “LF, localized”) [15]. They

are seen to be linear over a broad span of M/Γ values up to the intermediate values, and

saturating towards 1 for larger values. For comparison, we also show our q = (0,0) MA

predictions for a mobile valence electron, for p = 0, 1, 2 (which again demonstrate that p = 2

results are essentially converged). The results are for the weak core-hole potential UQ = 20,

where the effects of the electron itinerancy are more pronounced. Interestingly, while the

overall shape of the curves is similar, we see that a finite t produces a significant shift in the

curves. This shift might seem like a small change, however, due to the logarithmic scale, it can

result in an underestimate of the coupling constant by a factor of 2–3 for these parameters.

More importantly, the MA prediction will vary in non-trivial ways as a function of UQ, t and q ,

unlike for the single-site approximation where they only depend on M/Γ . These observations

show that great care has to be taken when analyzing RIXS data using the single site theory,

because the effects of electron mobility and the core hole potential can have a significant impact

on the final result.

3.3 The effects of Electron Mobility on Detuning

Next, we turn our attention to the dependence of the RIXS intensity on the incident photon

energy, by allowing it to be detuned away from the XAS resonance, so that !in =!
max
in
+∆,

where ∆ < 0 corresponds to energies below the resonance. Within the single-site model, it has

been shown [11] that the detailed shape of these decay curves reveals information about the

nature of phononic modes and their coupling strength. To perform a similar analysis, Fig. 8

plots the intensity of the first phonon excitation for several coupling values of M as a function

of ∆, again only at q = (0,0). Each curve is normalized to the peak maximum and shifted

such that !̄ = 0 to align the curve maxima for comparison. Results are shown for the localized

Lang-Firsov theory and for our p = 0 and p = 2 MA calculation for the weak core-hole potential

UQ = 20, where the difference between the theories is more pronounced.

In terms of their relative approximations, the curves obtained using MA in the single-site
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Figure 8: Single phonon spectral functions |F1,0(z)|
2, corresponding to the amplitude

of the one phonon peak, as a function of detuning from resonance; calculated assuming

a weak core-hole potential (t = 5, UQ = 20, Γ = 2) using (a) the localized Lang-Firsov

model, (b) MA p = 0, and (c) MA p = 2, for a number of different couplings. The

curves are shifted and normalised to their maxima to highlight the details of their

decay.

Figure 9: Single phonon spectral functions |F1,0(z)|
2, corresponding to the amplitude

of the one phonon peak, as a function of detuning from resonance; calculated assuming

a strong core-hole potential (t = 5, UQ = 40, Γ = 2) using (a) the localized Lang-Firsov

model, (b) MA p = 0, and (c) MA p = 2, for a number of different couplings. The

curves are shifted and normalised to their maxima to highlight the details of their

decay.

approximation (p = 0) are closest in spirit to those obtained using the single-site Lang-Firsov

model. Interestingly, while the trend obtained with both methods looks quite similar overall,

the curves decay much faster for the MA treatment of the problem, indicating that the resonance

is narrower for a mobile electron. More importantly, we find that the distinction between

the different couplings is less prominent within the MA approach, in stark contrast to the

Lang-Firsov result, which predicts a strong separation between the curves. At the same time,

the difference between the p = 0 and p = 2 MA calculations is relatively small, which indicates

that the extended region for the phonon cloud does not contribute as much as one might expect,

given the electron’s mobility.

Interestingly, for a stronger core-hole potential (UQ = 40) the picture is slightly different.

Although the MA curves still decay faster than those of the single-site theory, and they still differ

very little between p = 0 and p = 2, now they become more clearly separated as a function

of M , similar to the single-site Lang-Firsov result. The reason is that for these parameters the

hopping integral t is much smaller compared to the core hole potential, which tends to localize
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Figure 10: Ratio of the first four RIXS peaks (denoted with different colors) between

the 2D and the 1D model with twice the bandwidth (t1D = 2t) and for three different

couplings M (indicated with different line types). Calculated with MA p = 0 for

parameters UQ = 20, Γ = 2.

the electron much more than in the previous case.

Thus, we can conclude that while the Lang-Firsov theory could give satisfactory results in

specific parameter regimes where the electron mobility can be neglected, it is not sufficient to

accurately describe systems where the core hole is long-lived and strongly screened.

3.4 The role of dimensionality

Finally, we note that the MA theory presented here differs from the localized Lang-Firsov theory

in one more, very fundamental way. The localized theory considers the single core hole site as

decoupled from its actual lattice, which makes it effectively a 0D theory. Our MA calculation is

done on an infinite square lattice, and even for p = 0 the free-electron propagators retain the

information about the 2D band structure of the system. One might, thus, wonder whether the

RIXS spectrum is only affected by the bandwidth W = zt, or whether the details of the density

of states also play a role.

To address this question, Fig. 10 plots for the intensity of the first four phonon excitations as

a function of hopping parameter t. Here, the intensities are plotted as ratios of values obtained

for a 2D square and a 1D lattice. To force both to have the same bandwidth, the 1D hopping

parameter is set at twice that of the respective 2D result, t1D = 2t. If the results were to depend

only on the bandwidth, then the ratios should be equal to one. Indeed, that is the value found

for t = 0, where both of the models converge on the localized result. In contrast, all the plots

display a non-monotonic behavior as a function of t, reaching as high as 1.5 before dropping

off below one at large t. This result demonstrates that intensities of the phonon excitations for

the 2D case at first diminish slower than for 1D, but eventually drop below the 1D signal. More

importantly, the fact that we observe a strong t dependence indicates that the peak intensities

are also sensitive to the dimension of the system and its lattice geometry. These aspects, then,

should be added to the long list of other factors (besides M/Γ ) that control the location of the

curves like those shown in Fig. 7, and which will therefore influence the M/Γ value that one

might obtain based on them.
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4 Summary and Conclusions

We have extended the Momentum Average (MA) approximation—a well established, variational,

semi-analytical method for computing Green’s functions—to model the effect of e-p coupling

on RIXS spectra. Our approach can be used to treat the case where the core electron is excited

into an empty band where it interacts with the lattice, and it improves on the widely used

single-site model based on a localized Lang-Firsov formalism in that it allows us to consider the

role of electron mobility t and its interplay with the core-hole potential UQ. This is the aspect

that we focused on here, even though MA can be generalized to study a much broader class of

models.

Using MA, we have demonstrated that the localized model is insufficient for analyzing RIXS

data when the valence electron is expected to be more delocalized. Moreover, we showed that

the electron’s mobility is expected to be particularly crucial at edges with shallow, long-lived

core hole states. This result has important implications for future RIXS experiments attempting

to extract quantitative estimates for the e-p coupling constant from O K-edge measurements.

For example, our work suggests that the improper use of a fully localized theory severely

underestimates the electron-phonon coupling obtained from the relative multi-phonon peak

analysis.

We also observed several other interesting effects that were not considered before and could

not be derived from the localized model. One such effect was the observation that electron

mobility induces a dependence on the momentum transfer q , even though the e-p coupling is

completely momentum independent. Another critical point is the strong suppression of the RIXS

signal with electron delocalization, due to a competition between mobility and electron-phonon

coupling, a fact also with potential experimental consequences. We also show that our results

are sensitive not only to the bandwidth but also to the details of the density of states. Finally, we

analyzed the dependence of the resonance position (XAS maximum) on the model parameters,

as well as the behavior of the spectral function away from resonance. All of these facts are

of empirical importance and offer highly non-trivial opportunities to verify our predictions

experimentally.

Finally, we stress that our results are obtained in the limit of a single carrier in the interme-

diate state. They are, therefore, most relevant to band insulators. At this time it is unclear how

much of this will carry over to the many-particle case. It is possible that strong correlations

in cuprates, for example, could reduce the importance of itinerancy in the intermediate state.

Nevertheless, given the significant qualitative changes in the RIXS spectra we have observed

here, a theory must be developed for the many-particle case.
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A Free propagators

A.1 In the clean system

The 2D real space Green’s function for the clean lattice (no core-hole potential) is defined as

G
(0)

i j
(z) = h0|d

i
G0(z)d

†
j
|0i, (A.1)
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where G0(z) = [z�Ht]
�1 is the resolvent operator for a free electron. Ht is trivial to diagonalize

and thus the free propagators can be expressed as a Fourier transform of the momentum space

Green’s function

G
(0)

i j
(z) =

1

(2⇡)2

Z

d2k
eik·(Ri�R j)

z � ✏k

, (A.2)

where ✏k is the 2D electron dispersion. G
(0)

i j
(z) depends only on the relative distance |Ri �R j |,

as expected because of invariance to lattice translations.

The above integral can be expressed analytically in terms of elliptic integrals, using a set of

recurrence relations [44,45]. There also exist efficient numerical procedures analogous to the

continued fraction technique [46,47], which allow for accurate calculations of these Green’s

functions.

A.2 With the core-hole potential

Consistent with the main text, we define the inhomogeneous Green’s function as

G
(0,i)

jl
(z) = h0|d

j
G

0,i
(z)d

†
l
|0i, (A.3)

where G0,i(z) = [z � (Ht +Vi)]
�1 is the resolvent operator and Vi = �Ud

†
i
d

i
is the attraction

from the core-hole located at site i.

Using Dyson’s identity, it is straightforward to show that

G
(0,i)

jl
(z) = G

(0)

jl
(z)� UG

(0,i)

ji
(z)G

(0)

il
(z),

from which we find the propagator to/from the core hole site

G
(0,i)

ji
(z) =

G
(0)

ji
(z)

1+ UG
(0)

ii
(z)

,

which we can now use to find the general propagator for any pair of sites

G
(0,i)

jl
(z) = G

(0)

jl
(z)� U

G
(0)

ji
(z)G

(0)

il
(z)

1+ UG
(0)

ii
(z)

.
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