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Abstract 

Resonance energy transfer (RET) and fluorescence fluctuation spectroscopies (FFS) are powerful 

fluorescence-based techniques for quantifying the self-association of membrane receptors within 

oligomeric complexes in living cells. However, RET spectrometry’s ability to extract information 

on the detailed quaternary structure of oligomers sometimes rests on assumptions regarding the 

relative abundances of oligomers of different sizes, while FFS techniques may provide oligomer 

size information but not quaternary structure details, as they lack a probe for inter-molecular 

distances. In this report, we introduce a method which we termed “intensity fluctuations and 

resonance energy transfer” (iFRET), which combines analysis of donor and acceptor intensity 

fluctuations with RET efficiency determination. Because the three measured quantities each have 

a unique dependence on the acceptor mole fraction (XA), simultaneous global fitting of all three 

dramatically reduces ambiguity in the data fitting and choice of the most appropriate fitting model. 

We demonstrate the effectiveness of the method on simulated brightness and RET efficiency data 

incorporating mixtures of monomers, dimers, and tetramers and show that iFRET analysis 

provides a major improvement in both identifying the correct quaternary structure model and 

extracting the relative abundances of the monomers, dimers, and tetramers. Conceivably, the 

enhanced resolution of iFRET could potentially provide insight into the functional significance of 

receptor oligomerization in the presence and absence of cognate ligands. 
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1. Introduction 

Interactions between membrane receptors are known to play a vital role in a large number of 

biological processes [1, 2]. However, understanding the functional roles of receptor interactions 

has proved challenging, in part because of the difficulty in characterizing the quaternary 

organization of proteins in their native environment [3]. Many protein assemblies are known to 

engage in dynamic association/disassociation equilibria, thus creating a concentration dependent 

mixture of different sized oligomers, further expanding the concept of quaternary structure and 

thereby complicating the analysis. Several in vitro and in vivo techniques have been developed in 

an attempt to augment knowledge of the various aspects of protein–protein interactions. Of these 

techniques, two classes of methods have been established which are at the forefront of measuring 

interactions in vivo: Resonance Energy Transfer [4-9] (RET) and Fluorescence Fluctuation 

Spectroscopy [10-13] (FFS).  

 RET is a physical process in which weak electronic coupling occurring between an 

electronically excited molecule (donor) and an adjacent molecule in its ground state (acceptor) 

results in a non-radiative transfer of energy [14, 15]. The radiationless transfer of energy is strongly 

dependent on distance and occurs when the two molecules are <10 nm from one another, 

coinciding nicely with the expected distances between monomer units in protein complexes. By 

measuring and analyzing the apparent efficiency of energy transfer (𝐸𝑎𝑝𝑝) from a population of 

donor and acceptor molecules, some of which may be interacting, rich information regarding the 

relative distance and orientation of the molecules with respect to one another can be extracted.  A 

multitude of studies have shown the effectiveness of utilizing RET for obtaining quantitative 

information on protein-protein interactions [16-22], including detailed information about the size 

and structure of membrane receptor complexes [23-27].  

 Typical RET-based approaches for quantifying protein-protein interactions rely on plotting 

the average 𝐸𝑎𝑝𝑝 against the ratio of the donor to acceptor concentrations in the sample [28], the 

fraction of donors or acceptors [29-31], or the total concentration of donors and acceptors [28, 32, 

33], and then fitting a model derived from the kinetic theory of RET [34] to the experimental data 

using the concentration of oligomers as a fitting parameter. Unfortunately, this method only works 

well if the number of protomers within an oligomeric complex and the geometry of the oligomer 

are a priory known (and fixed during the fitting process) [34], since otherwise an unlimited number 

of combinations between geometrical parameters and pairwise RET efficiencies fit the data equally 

well. To adddress this difficulty, we have previously introduced FRET spectrometry [24-26, 35], 

a method which interprets distributions of pixel-level 𝐸𝑎𝑝𝑝 values, as opposed to averages over 

large regions [36], using oligomeric models with various quaternary structures. For every 

quaternary structure, several possible ways exist of arranging the donor and acceptor (i.e., choosing 

their locations) within an oligomeric complex, and each arrangement, or oligomer configuration, 

corresponds to a specific peak in the Eapp distribution. The collection of various peak positions, 

termed a RET spectrum (or spectrogram), represents a unique fingerprint corresponding to a 

particular oligomeric structure [35, 37]. From the quaternary structure model which best fits the 

measured Eapp distributions, detailed geometrical parameters and pairwise RET efficiency values 

can then be extracted and combined with the average-based approaches to obtain the relative 

abundance of various oligomer species comprising the sample [29]. The main advantage of the 
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RET spectrometry approach is that it is currently the only in vivo method that allows determination 

of interprotomeric distances (i.e., quaternary structure) and proportions of different structures. Its 

main challenge is that it necessitates the use of rather complicated analysis procedures, which are 

difficult to implement outside of optics labs and may be time consuming too.  

 Fluorescence fluctuation spectroscopy encompasses a multitude of techniques that measure 

the diffusion coefficients, concentration, and molecular brightness of fluorescently labeled 

biomolecules by analyzing the correlations and/or distributions of fluorescence intensities [11, 38-

41]. The subset of FFS techniques which analyze the moments of fluorescence intensity 

distributions provide information on the average oligomeric size for the fluorescently labeled 

molecules within a complex by introducing the molecular brightness, i.e., the width of the 

distribution of intensities for fluorescent molecules over a given time period [42-46]. If two 

identical proteins, each tagged with the same fluorescent label, form a complex, then this dimeric 

complex will have twice the number of fluorophores than the single monomers diffusing alone, 

and hence twice the molecular brightness. When this oligomer enters the excitation volume of a 

focused laser beam, it will cause a broader distribution of fluorescence intensities than single 

monomers.  Because the molecular brightness of a complex of fluorescently labeled proteins scales 

linearly with the size of the complex, the moment-based FFS techniques are effective for 

determining the average size a protein complex forms (e.g., monomer, dimer, higher order 

oligomer) [47-50]. The main advantage of these methods is simplicity in operation and speed, 

while their main limitation is that they do not provide information on individual oligomer sizes or 

geometry but rather an average over mixtures of monomers, dimers, oligomers, etc. A recently 

developed moment-based approach, named two-dimensional fluorescence intensity fluctuation 

(2D FIF) spectrometry [51, 52], provides quantitative information on the relative abundance of 

various sized protein oligomers as a function of receptor concentration. This method is both fast 

and capable of extracting oligomer size, but does not provide information on oligomer geometry. 

 The advent of laser scanning microscopes which incorporate spectral resolution [53-58] 

has greatly enhanced the potential of using fluorescence based techniques for quantifying protein 

interactions. The acquisition of an entire fluorescence spectrum enables overlapping spectral 

profiles to be separated according to the distinct shapes of the spectra, using spectral unmixing [23, 

28, 59-61], which avoids the artifact of spectral crosstalk between fluorescent tags [62]. Spectrally 

resolved imaging is ideal for RET measurements because it allows for the quantitation of both 

donor and acceptor fluorescence intensity levels, from which the RET efficiency can be 

straightforwardly calculated. Likewise, a number of molecular brightness based FFS methods have 

incorporated multi-color measurements to enhance their effectiveness in separating mixtures of 

multiple species. Extensions to both Number and Brightness as well as Photon Counting 

Histogram techniques, termed ccN&B [63] and dual color PCH [64], respectively, measure the 

cross correlation of fluorescence amplitude fluctuations from two different colors, obtained from 

repeated measurements over time at a fixed position in a sample. More recently, Faust et al. have 

extended molecular brightness based methods which measure fluctuations in the spatial domain 

with multi-color analysis in a technique called Two-Color Spatial Cumulant Analysis (2c-

SpCA) [65].  Unfortunately, to date none of these multi-color approaches have incorporated a 

measurement of RET efficiency into their analysis procedure, and are therefore constrained to 

either resolving mixtures of non-interacting species to qualitatively probe the presence of 
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heteromeric interactions in the presence of RET, or quantifying the hetero-oligomerization of 

protein complexes when no RET is occurring between the fluorescent probes. Therefore, detailed 

structural information regarding protein oligomers can not be extracted from any of these 

approaches. 

 In this work, we propose a rather simple and robust multi-parameter approach which 

combines the analysis of donor and acceptor intensity fluctuations (IF) with RET efficiency values 

in a global analysis procedure called iFRET.  IF or RET measurements on their own can struggle 

to discriminate between fitting models incorporating mixtures of monomers, dimers, and higher 

order oligomers, when there is no a priori knowledge of either the sample composition or structure 

formed by interactions, as is often the case for measurements within living cells or other complex 

systems. We show that simultaneous measurement and global analysis of molecular brightness and 

RET data greatly enhances the resolution of information extracted when compared to the 

capabilities of the individual techniques alone. Because the two sets of measurements provide 

complementary information to one another, both structural information regarding the distances 

between protomers in a protein complex and the composition of the sample, i.e., percentage of 

monomers, dimers and higher order oligomers, were obtainable when the two techniques were 

combined. The increased resolution of iFRET arises from two key aspects of the method, which 

help restrict the variability and ambiguity in data fitting routines. The first aspect requires the 

measurement of relative concentrations of the donor and acceptor molecules. RET will alter the 

apparent brightness values of both the donor and acceptor populations, with the amount of change 

dependent not only on the value of RET efficiency but also on the acceptor mole fraction (XA), i.e., 

the fraction of total fluorophores which are acceptors. The nonlinear dependence of fluorescence 

intensity fluctuations and RET efficiency on XA is beneficial in that it serves as an additional 

measured parameter to the multi-modal approach. The second aspect is that all three data sets are 

simultaneously (or globally) fit with a common set of parameters. The simultaneous fitting greatly 

constrains the fitting parameter space and thereby helps restrict the choice of model which 

accurately predicts the data, increasing the accuracy with which the underlying system can be 

described. 

 We implemented iFRET on computer simulated brightness and RET efficiency data for 

mixtures of monomers, dimers, and higher order oligomers in the presence of experimental camera 

noise. Our results demonstrated the ability to extract two otherwise difficult pieces of information: 

(1) the relative abundances (or species fractions) and (2) geometrical parameters of each of each 

oligomeric complex comprising the mixture, even when there was no single dominant species in 

the mixture.  

2. Methods 

The main goal of this work is to demonstrate the value of simultaneously quantifying fluorescence 

fluctuation data from both donor and acceptors along with the RET occurring between the two. To 

that end, we must first develop a formalism for modeling fluorescence intensity fluctuations of 

donors forming oligomeric complexes with acceptors, and vice versa. The fluorescence signal at 

the complex level is the key component in modeling intensity fluctuations of donor and acceptor 

molecules individually. Because the fluorescence intensity of donors and acceptors in oligomeric 
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complexes depend on the RET occurring between protomers in the complex, we will first 

summarize the previously published kinetic theory of RET in multimeric complexes [34]. We will 

then describe the average donor and acceptor fluorescence emitted from individual oligomer 

complexes using the same theory. Finally, a formula for modeling the intensity fluctuations will 

be given. 

2.1. Theoretical model for the RET efficiency of an oligomeric complex 

Before we proceed, let us define a few quantities and variables of interest.  The size of the oligomer 

(denoted by an integer, n) represents the total number of molecules (i.e., donors plus acceptors), 

or protomers, within an oligomer consisting of k donors and n – k acceptors. For each pair of k and 

n-k values, there are (
𝑛
𝑘

) =
𝑛!

𝑘!(𝑛−𝑘)!
 possible ways of placing the donors and acceptors within the 

oligomer (see figure 1). Each of these ways are examples of different configurations, and are 

indexed by the letter q. 

 

 
Figure 1. All possible configurations, for each value of k, assumed by donors (green circles) and acceptors (yellow 

circles) in an oligomer of size n = 4. 

 

For a donor (D) in the close proximity of one or more acceptors (A), for example in an 

oligomer complex of size n>2, there can be a number of independent de-excitation pathways 

related to energy transfer equal to the number of acceptors in a complex; these are in addition to 

the usual non-radiative and radiative (i.e., fluorescence-producing) de-excitation pathways.  

Therefore the efficiency of energy transfer occurring between a donor, i, and a single acceptor, j, 

can be found by dividing the rate of energy transfer between the donor and acceptor, Γ𝑖,𝑗
𝑅𝐸𝑇, by the 

sum of rates for all de-excitation pathways of the donor, as follows [34]: 

 𝐸𝑖,𝑗,𝑛,𝑘,𝑞 =
Γ𝑖,𝑗

𝑅𝐸𝑇

Γ𝑟,𝐷+Γ𝑛𝑟,𝐷+∑ Γ𝑖,𝑗
𝑅𝐸𝑇𝑛−𝑘

𝑗=1

 (1) 

Here Γ𝑟,𝐷 and Γ𝑛𝑟,𝐷 are the radiative and non-radiative decay rates of the donor, respectively.  The 

sum over j in equation (1) represents all acceptors in close proximity to the donor, i.e., acceptors 

within the same complex. The total RET efficiency occurring for a single donor, i, in a complex 

of size n, number of donors k, and configuration q, is simply the sum of the individual RET 

efficiencies occurring between the donor and each acceptor in the complex:  



6 

 

 𝐸𝑖,𝑛,𝑘,𝑞 = ∑ 𝐸𝑖,𝑗,𝑛,𝑘,𝑞
𝑛−𝑘
𝑗=1 =

∑ Γ𝑖,𝑗
𝑅𝐸𝑇𝑛−𝑘

𝑗=1

Γ𝑟,𝐷+Γ𝑛𝑟,𝐷+∑ Γ𝑖,𝑗
𝑅𝐸𝑇𝑛−𝑘

𝑗=1

 (2) 

The set of distances between a donor and each of the acceptors in a particular configuration will 

be different for each individual donor in said configuration. Therefore, the individual donors within 

an oligomeric complex can have completely different sets of de-excitation pathways, and thereby 

exhibit entirely different RET efficiencies. The average RET efficiency per donor in the complex 

can be found by averaging the RET values of each individual donor: 

 𝐸𝑛,𝑘,𝑞 =
1

𝑘
∑ 𝐸𝑖,𝑛,𝑘,𝑞

𝑘
𝑖=1  (3) 

An example of the computed 𝐸𝑛,𝑘,𝑞 values for each possible configuration of a specific tetrameric 

oligomer are listed in Supplementary Figure 1, along with the average donor and acceptor signal 

(formulas derived below).  

2.2. Fluorescence intensity of donors and acceptors in oligomeric complexes 

The fluorescence emitted by each donor molecule within an oligomeric complex of size n not only 

depends on the fluorescent properties of the donor itself, but also its location relative to acceptor 

molecules within the complex. The brightness of a donor molecule, i, within an oligomer of size 

n, containing k donors, and in configuration q, can be broken into three factors, as follows:  

 ℰ𝑖,𝑛,𝑘,𝑞
𝐷𝐴 (𝜆𝑒𝑥) = 𝜉Γ𝑒𝑥,𝐷𝑄𝑖,𝑛,𝑘,𝑞

𝐷𝐴  (4) 

where Γ𝑒𝑥,𝐷 represents how efficiently the donor molecules are excited at the center of a focused 

laser beam of wavelength 𝜆𝑒𝑥, i.e., the excitation rate constant, and 𝜉 is a constant incorporating 

measuring system parameters, namely the collection efficiency of the photons, gain of the 

measuring system, and measurement integration time. Finally, 𝑄𝐷𝐴 represents the quantum yield 

of the donor molecule in the presence of nearby acceptors. Because the nearby acceptors present 

additional de-excitation pathways for the donor to lose energy non-radiatively, 𝑄𝐷𝐴 is lower than 

the quantum yield of the donor when no acceptors are present, which is represented by 𝑄𝐷. Each 

donor molecule will display a quantum yield dependent on the number and placement of acceptor 

molecules within the complex. The quantum yield of a donor in the presence of acceptors (i.e., 

RET) can be related to 𝑄𝐷 and the RET efficiency via the relation [34]: 

 𝑄𝑖,𝑛,𝑘,𝑞
𝐷𝐴 =𝑄𝐷(1 − 𝐸𝑖,𝑛,𝑘,𝑞) (5) 

where 𝐸𝑖,𝑛,𝑘,𝑞 is the RET efficiency of the ith donor, given by equation (2). By combining equations 

(4) and (5), the amount of fluorescence signal detected from a donor molecule can be written as: 

 ℰ𝑖,𝑛,𝑘,𝑞
𝐷𝐴 (𝜆𝑒𝑥) = 𝜀𝑚

𝐷 (1 − 𝐸𝑖,𝑛,𝑘,𝑞) (6) 

where 𝜀𝑚
𝐷 (𝜆𝑒𝑥) = 𝜉Γ𝑒𝑥,𝐷𝑄𝐷 represents the molecular brightness of the donor, i.e., the average 

detected signal of a monomeric form of the donor for a given exposure time. Finally, the total 

fluorescence measured for a particular oligomer configuration can be written as a sum of ℰ𝑖,𝑛,𝑘,𝑞
𝐷𝐴  

over the total number of donors, 𝑘, in the complex:  

 ℰ𝑛,𝑘,𝑞
𝐷𝐴 (𝜆𝑒𝑥) = ∑ ℰ𝑖,𝑛,𝑘,𝑞

𝐷𝐴𝑘
𝑖=1 = 𝜀𝑚

𝐷 𝑘(1 − 𝐸𝑛,𝑘,𝑞) (7) 

Here 𝐸𝑛,𝑘,𝑞 is the average RET efficiency per donor of the complex indexed by k and q, as given 

by equation (3). 
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 Similarly, the total fluorescence detected from an acceptor molecule, j, within an oligomer 

complex depends not only on the fluorescent properties of the acceptor itself, but also its location 

relative to donor molecules within the complex: 

 ℰ𝑗,𝑛,𝑘,𝑞
𝐴𝐷 (𝜆𝑒𝑥) = 𝜉 Γ𝑗,𝑛,𝑘,𝑞

𝑒𝑥,𝐴𝐷𝑄𝐴 (8) 

Unlike the donor case, the quantum yield, 𝑄𝐴, of the acceptor molecules remains unchanged in the 

presence of donors, however the excitation rate constant of the acceptor, Γ𝑗,𝑛,𝑘,𝑞
𝑒𝑥,𝐴𝐷

, increases due to 

additional excitations coming from nearby donor molecules: 

 Γ𝑗,𝑛,𝑘,𝑞
𝑒𝑥,𝐴𝐷 = Γ𝑒𝑥,𝐴 + Γ𝑒𝑥,𝐷 ∑ 𝐸𝑖,𝑗,𝑛,𝑘,𝑞

𝑘
𝑖=1  (9) 

where the first term in equation (9) represents the rate of direct excitation of the acceptor molecule 

by the laser, and the second term is the rate of excitation via energy transfer from donor molecules. 

Combining equations (8) and (9), the total signal detected from a single acceptor molecule in a 

complex with donors can then be written as: 

 ℰ𝑗,𝑛,𝑘,𝑞
𝐴𝐷 (𝜆𝑒𝑥) = 𝜀𝑚

𝐴 + 𝜀𝑚
𝐷 𝑄𝐴

𝑄𝐷
∑ 𝐸𝑖,𝑗,𝑛,𝑘,𝑞

𝑘
𝑖=1  (10) 

where the molecular brightness of a monomeric acceptor, 𝜀𝑚
𝐴 (𝜆𝑒𝑥) = 𝜉Γ𝑒𝑥,𝐴𝑄𝐴, has been 

introduced. The total amount of acceptor signal detected for the entire complex is found by 

summing over the contributions from each acceptor in said complex: 

 ℰ𝑛,𝑘,𝑞
𝐴𝐷 = (𝑛 − 𝑘)𝜀𝑚

𝐴 + 𝜀𝑚
𝐷 𝑄𝐴

𝑄𝐷
∑ ∑ 𝐸𝑖,𝑗,𝑛,𝑘,𝑞

𝑛−𝑘
𝑗=1

𝑘
𝑖=1  (11) 

The summation on the right side of equation (11) is simply the number of donors in the complex 

times the average RET efficiency per donor, as given by equation (3). Therefore, equation (11) 

simplifies to: 

 ℰ𝑛,𝑘,𝑞
𝐴𝐷 = (𝑛 − 𝑘)𝜀𝑚

𝐴 + 𝜀𝑚
𝐷 𝑄𝐴

𝑄𝐷 𝑘𝐸𝑛,𝑘,𝑞 (12) 

2.3. Calculation of RET efficiency from integrated fluorescence spectra 

When complete emission spectra of the donors and acceptors fluorescence are available in RET 

experiments [23, 28], expressions for the integrated emission spectra of donors in the presence of 

acceptors (𝐹𝐷𝐴) and acceptors in the presence of donors (𝐹𝐴𝐷) may be written for mixtures of 

various sized oligomers as [34]: 

 𝐹𝐷𝐴(𝜆𝑒𝑥) = ∑ 𝜇𝑛𝑛 ∑ (1 − 𝑋𝐴)𝑘(𝑋𝐴)(𝑛−𝑘) ∑ ℰ𝑛,𝑘,𝑞
𝐷𝐴(𝑛

𝑘)

𝑞=1
𝑛
𝑘=1  (13) 

 𝐹𝐴𝐷(𝜆𝑒𝑥) = ∑ 𝜇𝑛𝑛 ∑ (1 − 𝑋𝐴)𝑘(𝑋𝐴)(𝑛−𝑘) ∑ ℰ𝑛,𝑘,𝑞
𝐴𝐷(𝑛

𝑘)

𝑞=1
𝑛−1
𝑘=0  (14) 

where 𝜇𝑛 represents the total concentration of an oligomer of size n, and 𝑋𝐴 the total fraction of 

molecules which are acceptors (whether associated within oligomers or remaining as free 

monomers). The summation over n in equations (13) and (14) represents the total signal emanating 

from complexes of all sizes in the mixture. The contribution to the signal from monomers in 

equations (13) and (14), i.e., when n = 1, arises from only a single term in the sum; in this case 

ℰ1,1,1
𝐷𝐴  is equal to the monomeric brightness of the donor, 𝜀𝑚

𝐷 , which has been introduced in the 

preceeding section. Similarily, ℰ1,1,1
𝐴𝐷  is equal to the monomeric brightness of the acceptor, 𝜀𝑚

𝐴 , for 

the chosen excitation wavelength. 
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The apparent RET efficiency, defined as the ratio between the donor fluorescence lost due 

to RET and the fluorescence of the donor in the absence of acceptor, can be determined from the 

integrated fluorescence spectra of the donor and acceptor using the following relation [34]:  

 𝐸𝑎𝑝𝑝 = 1 −
𝐹𝐷𝐴(𝜆𝑒𝑥)

𝐹𝐷(𝜆𝑒𝑥)
 (15) 

where 𝐹𝐷(𝜆𝑒𝑥) is the wavelength-integrated fluorescence expected from the donor if no acceptor 

was present. In order to determine the value of 𝐹𝐷(𝜆𝑒𝑥), we break up the total fluorescence from 

donors and acceptors into two quantities [23, 34]: 

 𝐹𝐷𝐴(𝜆𝑒𝑥) = 𝐹𝐷(𝜆𝑒𝑥) − 𝐹𝐷
𝐹𝑅𝐸𝑇 (16) 

 𝐹𝐴𝐷(𝜆𝑒𝑥) = 𝐹𝐴(𝜆𝑒𝑥) +
𝑄𝐴

𝑄𝐷
𝐹𝐷

𝐹𝑅𝐸𝑇 (17) 

where 𝐹𝐷
𝐹𝑅𝐸𝑇 is the loss of emission from the donor due to RET. The total fluorescence expected 

from the acceptor if no donor was present, 𝐹𝐴(𝜆𝑒𝑥), can be set to zero if a donor-acceptor pair is 

chosen such that there exists an excitation wavelength in which the acceptor is not directly excited. 

In this scenario, equations (15)-(17) can be combined to write an expression for 𝐸𝑎𝑝𝑝 as a function 

of donor and acceptor integrated intensity values [23]: 

 𝐸𝑎𝑝𝑝 =
𝐹𝐴𝐷

𝑄𝐴
𝑄𝐷

∙𝐹𝐷𝐴+𝐹𝐴𝐷
 (18) 

In other situations, where both the donors and acceptors are excited – either by necessity or by 

choice – alternative ways exist of computing the RET efficiency as well as the donor and acceptor 

concentrations across all oligomeric species [33].Equation (18) has previously been used to 

compute the experimentally measured RET efficiency for every pixel in an image [23]. An average 

RET efficiency, 𝐸𝑎𝑣𝑒, also may be computed over a larger segment containing multiple pixels by 

first computing the average values of measured or simulated 𝐹𝐷𝐴 and 𝐹𝐴𝐷 over all the pixels in 

the segment, and inserting those values into equation (18). Herein, computer simulated values of 

𝐸𝑎𝑣𝑒 are then modeled theoretically and interpreted using equation (S2) of Supplementary Note 1. 

 

2.4. Modeling fluctuations in donor and acceptor fluorescence intensities 

The core idea behind fluctuation spectroscopy is quantifying fluctuations in fluorescence intensity 

values, obtained either by repeated measurement of a pixel in time, or by recording intensities from 

multiple adjacent pixels.  The amplitude of these intensity fluctuations carries information related 

to the molecular brightness of the molecule, which in turn, scales linearly with the size of the 

molecule. The apparent molecular brightness, 𝜀, of the molecules comprising the sample can be 

extracted from a straightforward set of intensity measurements by measuring the variance, 𝜎2, and 

mean, 〈𝐼〉, of said intensity distribution, using the following relation [51, 66]: 

 𝜀𝑒𝑓𝑓 =
𝜎2−𝜎𝐷𝐸𝑇

2

〈𝐼〉𝛾
 (19) 

where 𝛾 is a shape factor which depends on the shape of the laser PSF as well as the geometry of 

the sample, and 𝜎𝐷𝐸𝑇
2  the variance due to shot noise of the signal and noise characteristics of the 

detector. When a photon counting detector is used, 𝜎𝐷𝐸𝑇
2   is simply equal to 〈𝐼〉. If the sample under 

investigation is comprised of multiple types of oligomer species, e.g., monomers, dimers, trimers, 

etc. then the measured brightness given by equation (19) reflects a nonlinear combination of the 
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molecular brightness, 𝜀𝑙, of each species in the sample, weighted by the relative proportion, 𝜇𝑙, of 

each respective species [50]: 

 𝜀𝑒𝑓𝑓,𝑡ℎ𝑒𝑜 =
∑ 𝜀𝑙

2𝜇𝑙𝑙

∑ 𝜀𝑙𝜇𝑙𝑙
 (20) 

When the molecules in the sample are tagged with two different fluorescent labels, then we can 

actually recover two different distributions of intensities, i.e., one from the donor molecules and 

one from the acceptor molecules. Therefore, based on equation (20) we can write down an 

expression for the apparent molecular brightness of the donor, 

 𝜀𝑒𝑓𝑓
𝐷𝐴 =

𝜎𝐼𝐷
2 −𝜎𝐷𝐸𝑇

2

〈𝐼𝐷〉𝛾
 (21) 

where 𝜎𝐼𝐷

2  and 〈𝐼𝐷〉 represent the variance and mean of the intensity distribution for the donor, and 

another expression for the apparent molecular brightness of the acceptor,  

 𝜀𝑒𝑓𝑓
𝐴𝐷 =

𝜎𝐼𝐴
2 −𝜎𝐷𝐸𝑇

2

〈𝐼𝐴〉𝛾
 (22) 

where 𝜎𝐼𝐴

2  and 〈𝐼𝐴〉 represent the variance and mean of the measured acceptor intensities.   

 When RET is occurring between the two fluorescent tags, the interpretation of equations 

(21) and (22) requires additional considerations: 

(i) The pathways of energy transfer from donors to nearby acceptors reduces the intensity of 

the donor and increases that of the acceptor, which thereby alters the value of 𝜀𝑒𝑓𝑓
𝐷𝐴  and 

𝜀𝑒𝑓𝑓
𝐴𝐷 . 

(ii) From the standpoint of molecular brightness, the different possible donor and acceptor 

configurations within each oligomer of a certain size n result in completely different 

molecular species. In other words, different brightness values correspond to different k 

values, and even different configurations, q, within a particular k value. A simple example 

illustrating these points can be drawn from a solution of pure dimers.  Three different 

configurations of dimer molecules will be present in the sample: DD, DA, and AA dimers. 

When analyzing the intensity fluctuations from donor-only signals, DD dimers will have 

a molecular brightness twice that of the monomeric form of the donor fluorophore, AA 

dimers will have a brightness of zero, and the DA dimer will have a reduced brightness, 

when compared to a monomeric donor fluorophore, due to RET occurring between D and 

A. Therefore, the measured brightness value will be a nonlinear combination of the 

brightness values from all configurations, even for a solution with only a single oligomer 

size. Because of this inherent complexity in even the simplest of systems, one of the 

questions proposed in this manuscript is whether calculation of 𝜀𝑒𝑓𝑓
𝐷𝐴  and 𝜀𝑒𝑓𝑓

𝐴𝐷  delivers any 

meaningful insight to the molecules being studied. 

  

 Since the apparent molecular brightness of mixtures of donors forming complexes with 

acceptors is a nonlinear combination of the brightness values from all oligomer configurations, we 

can use equation (20) for the apparent molecular brightness of a mixture of multiple species, and 

simply treat each of the 2𝑛 possible oligomer configurations as an independent molecular species 

within the mixture. The molecular brightness of each individual species is the average fluorescence 

signal of the complex, which we have presented in the preceding section. By combining equations 

(7) and (12), we obtain a formula for the apparent brightness of donors: 
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 𝜀𝑒𝑓𝑓,𝑛
𝐷𝐴 =

∑ 𝜇𝑛,𝑘 ∑ (ℰ𝑛,𝑘,𝑞
𝐷𝐴 )

2(
𝑛
𝑘)

𝑞=1
𝑛
𝑘=1

∑ 𝜇𝑛,𝑘 ∑ ℰ𝑛,𝑘,𝑞
𝐷𝐴(𝑛

𝑘)

𝑞=1
𝑛
𝑘=1

=
𝜀𝑚

𝐷 ∑ 𝜇𝑛,𝑘 ∑ (1−𝐸𝑛,𝑘,𝑞)
2

𝑘2(
𝑛
𝑘)

𝑞=1
𝑛
𝑘=1

∑ 𝜇𝑛,𝑘 ∑ (1−𝐸𝑛,𝑘,𝑞)𝑘
(𝑛

𝑘)

𝑞=1
𝑛
𝑘=1

 (23) 

At first glance, equation (23) does not ease any concerns regarding the complexity of interpreting 

𝜀𝑒𝑓𝑓
𝐷𝐴 , as there are 2𝑛 terms in both the numerator and denominator, with each term involving a 

weighting factor, 𝜇𝑛,𝑘 , which represents the concentration of that particular oligomer 

configuration. However, all values of 𝜇𝑛,𝑘 are determined from only two parameters, the total 

oligomer concentration and 𝑋𝐴, as given by the following equation: 

 𝜇𝑛,𝑘 = 𝜇𝑛(1 − 𝑋𝐴)𝑘(𝑋𝐴)(𝑛−𝑘) (24) 

The term 𝜇𝑛 does cancel out in equation (23), for the scenario when only a single oligomer size is 

being taken into consideration. However, it does become an important factor when mixtures of 

various sized oligomers are considered.  Taking equation (24) into account, the set of free 

parameters to be inserted into equation (23) is limited to the following: 𝜀𝑚
𝐷 , 𝑋𝐴, and the RET 

efficiency of each oligomeric complex. 𝜀𝑚
𝐷 , is a measurable quantity typically found by calibration 

measurements on a monomeric form of the donor construct. The value of 𝑋𝐴 can be determined 

from measurements of the sample at two excitation wavelengths [29]. Therefore, the only 

adjustable parameter left is the 𝐸𝑛,𝑘,𝑞, which is completely defined by the oligomer structural 

model being tested. 

 A similar formula may be written for the apparent brightness obtained from monitoring 

fluctuations in the acceptor signal: 

 𝜀𝑒𝑓𝑓,𝑛
𝐴𝐷 =

∑ 𝜇𝑛,𝑘 ∑ (ℰ𝑛,𝑘,𝑞
𝐴𝐷 )

2(
𝑛
𝑘)

𝑞=1
𝑛−1
𝑘=0

∑ 𝜇𝑛,𝑘 ∑ ℰ𝑛,𝑘,𝑞
𝐴𝐷(𝑛

𝑘)

𝑞=1
𝑛−1
𝑘=0

=
∑ 𝜇𝑛,𝑘 ∑ [(𝑛−𝑘)𝜀𝑚

𝐴 +𝜀𝑚
𝐷 𝑄𝐴

𝑄𝐷𝑘𝐸𝑛,𝑘,𝑞]
2

(
𝑛
𝑘)

𝑞=1
𝑛−1
𝑘=0

∑ 𝜇𝑛,𝑘 ∑ [(𝑛−𝑘)𝜀𝑚
𝐴 +𝜀𝑚

𝐷 𝑄𝐴

𝑄𝐷𝑘𝐸𝑛,𝑘,𝑞]
(𝑛

𝑘)

𝑞=1
𝑛−1
𝑘=0

 (25) 

In addition to the parameters discussed above, equation (25) necessitates a value for 𝜀𝑚
𝐴 , the 

molecular brightness of a monomeric form of the acceptor molecule, which is also obtainable from 

calibration measurements. Choosing a donor-acceptor pair and excitation wavelength such that the 

acceptor molecule is not directly excited by the laser removes the need for a calibration 

measurement to determine 𝜀𝑚
𝐴 . 

Equations (23) and (25) (taken together with equation (24)) may be extended rather easily 

to incorporate monomers as well as additional oligomer sizes by summing over all terms in each 

of their respective oligomer species in both the numerator and denominator:  

 𝜀𝑒𝑓𝑓,𝑡ℎ𝑒𝑜
𝑋 (𝑋𝐴) =

∑ 𝜇𝑛,𝑘 ∑ ∑ (ℰ𝑛,𝑘,𝑞
𝑋 )

2(𝑛
𝑘)

𝑞=1
𝑛
𝑘=0𝑛

∑ 𝜇𝑛,𝑘 ∑ ∑ ℰ𝑛,𝑘,𝑞
𝑋(

𝑛
𝑘)

𝑞=1
𝑛
𝑘=0𝑛

 (26) 

Here X = DA or AD. In order to compute the fraction of molecules that a monomer or oligomer of 

size n comprises relative to the total number of molecules, we introduce the relative abundance, 

𝐴𝑛: 

 𝐴𝑛 =
𝑛𝜇𝑛

∑ 𝑛𝜇𝑛𝑛
 (27) 

Each value of 𝐴𝑛 signifies the fraction of individual molecules which are present in an oligomer 

of size n, relative to the total number of molecules in the sample, i.e., ∑ 𝐴𝑛𝑛 = 1. For example, in 

a mixture comprised of 10 tetramers, 20 dimers, and 40 monomers, the relative abundance of each 

of the species would be 33.3%.  
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2.5. Fitting residual for quantifying the difference between theoretical model 

and computer-simulated data 

Fitting of theoretical models to simulated 𝜀𝑒𝑓𝑓
𝐷𝐴 , 𝜀𝑒𝑓𝑓

𝐴𝐷 , or 𝐸𝑎𝑣𝑒 vs 𝑋𝐴 datasets was achieved by 

minimizing a fitting residual, defined here: 

 𝑓𝑖𝑡𝑡𝑖𝑛𝑔 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =
1

𝑀
∑

∑ (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑙,𝑚−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑙,𝑚)
2

𝑙

∑ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑙,𝑚
2

𝑙

𝑀
𝑚=1  (28) 

where the summation index l represents XA values, and the summation index m the different 

datasets being fitted, i.e., 𝜀𝑒𝑓𝑓
𝐷𝐴 , 𝜀𝑒𝑓𝑓

𝐴𝐷 , or 𝐸𝑎𝑣𝑒 vs 𝑋𝐴. Because up to three datasets were fitted 

simultaneously in the minimization procedures, the individual components of the residual values 

were weighted by the sum underneath each respective curve, in order that each dataset contributed 

equal weight to the combined residual. The sum underneath each curve was used as a weighting 

factor instead of dividing each term by its variance because the standard deviation of the average 

RET values was comparatively smaller than those of the two brightness terms, and thereby would 

“overweight” the fit of the 𝐸𝑎𝑣𝑒 relative to the other two. The smaller standard deviation for the 

average RET efficiency values is due to the fact that a single brightness point takes hundreds of 

intensity values to calculate, whereas an RET efficiency value can be calculated for each pixel.  

3. Results and discussion 

We used Monte-Carlo simulations to generate images mimicking distributions of various sized 

oligomers comprised of both donor and acceptor molecules. From these images, we were able to 

construct donor and acceptor intensity distributions, and thereby obtain both RET efficiency and 

donor/acceptor apparent brightness values, under varying conditions. This allowed us to test 

whether the formalism developed in the preceding sections for predicting donor and acceptor 

intensity variations was accurate. Once this was confirmed, we were able to use simulated data to 

test whether fitting plots of the donor and acceptor molecular brightness and average RET 

efficiency vs 𝑋𝐴 simultaneously added useful constraints to the data interpretation and thereby help 

to pinpoint the architecture of the underlying sample with greater accuracy, in contrast to 

traditional analysis procedures which monitor either RET or fluctuations individually.  

3.1. Testing the brightness theory using computer-simulated data 

We first wanted to confirm the validity of using equation (26) to model the intensity variance for 

donors and acceptors forming complexes. For this purpose, we used Monte-Carlo simulations to 

generate fluorescence images from distributions of rhombus shaped tetramers; details on each 

individual configuration of the rhombic tetramers are listed in Supplementary Figure 1. The 

simulation protocol is described in Supplementary Note 2. Briefly, a fixed number of tetramers 

were randomly distributed over matrix elements, or “pixels”; more than one complex was allowed 

to occupy each pixel. Individual molecules within a complex were assigned either a donor or an 

acceptor tag randomly, based on a probability computed from the acceptor mole fraction, 𝑋𝐴. 

Fluorescence intensity values of donors and acceptors were computed for each pixel by summing 

the counts generated from each individual complex assigned to said pixel. This entire process was 

repeated for a range of 𝑋𝐴. From the simulated images, we could analyze the fluctuations in both 
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donor and acceptor intensities and generate plots of 𝜀𝑒𝑓𝑓
𝐷𝐴  and 𝜀𝑒𝑓𝑓

𝐴𝐷  as a function of 𝑋𝐴, as shown 

by the blue symbols in figure 2. The input parameters used to generate the simulated brightness 

data were then inserted into equation (26) to calculate values for 𝜀𝑒𝑓𝑓
𝐷𝐴  and 𝜀𝑒𝑓𝑓

𝐴𝐷 ; these calculated 

values are shown by the solid red line in figure 2. As can be seen from the near perfect conformity 

between the simulated brightness data and the calculated values, the formalism leading to equation 

(26) for predicting the fluctuations of donor and acceptor intensities appears to be correct. 

 

 

Figure 2. Validation of the formulation used to describe (a) donor and (b) acceptor intensity fluctuations as a function 

of XA using computer-simulated images of distributions of tetrameric complexes. Each individual protomer within a 

tetramer was assigned either a donor or an acceptor identity; this assignment was randomly generated based on 

probability which was calculated using a fixed acceptor mole fraction value (XA). Each molecule was randomly 

distributed over 400 pixels, with an average of 25 protomers/pixel. From each 400-pixel segment, a value of 𝜀𝑒𝑓𝑓
𝐷𝐴  and 

𝜀𝑒𝑓𝑓
𝐴𝐷  was extracted. The simulation was performed for a number of XA values, with 1000 segments generated for each 

value of XA. The mean ±SD of 𝜀𝑒𝑓𝑓
𝐷𝐴  and 𝜀𝑒𝑓𝑓

𝐴𝐷  over all segments are shown by the blue symbols with error bars 

representing ±1 SD. The solid red line is generated by inserting the simulation parameters into equation (26). The 

exquisite fit of the red line to the data points demonstrates the validity of equation (26) when RET is occurring. 

Detailed RET efficiency and intensity values for the tetrameric complex are given in Supplementary Figure 1. 

Additional input parameters to the simulation: 𝜀𝑚
𝐴 = 0, 𝜀𝑚

𝐷 = 20, 𝐸𝑝 = 0.5, 𝜎𝐷𝐸𝑇
2 = 0, 𝛾 = 1. 

 

 Similarly good agreement between the theory and numerical simulations were obtained for 

dimeric and trimeric complexes, as seen in Supplementary Figure 2.  

3.2. Behavior of D and A brightness as a function of model parameters 

We next wanted to test how the shape of the plots of the donor and acceptor brightness (i.e., 𝜀𝑎𝑝𝑝
𝐷𝐴  

and 𝜀𝑎𝑝𝑝
𝐴𝐷 , respectively) vs. 𝑋𝐴 changed as a function of various model input parameters, including 

oligomer size, the relative abundance of various oligomer species, and the pairwise RET 

efficiency, 𝐸𝑝 (see reference [25] and Supplementary Note 3 for relation of 𝐸𝑝 to intramolecular 

distances within a protein complex). This exercise unveiled some interesting features in the donor 

and acceptor brightness vs. 𝑋𝐴 plots, suggesting that adding both of these datasets to the analysis 

of RET data will not be redundant, but restrict the choice of model which accurately predicts 

measured data and help to better resolve the complexity of the underlying system. In figure 3, both 

𝜀𝑒𝑓𝑓
𝐷𝐴  and 𝜀𝑒𝑓𝑓

𝐴𝐷  vs. 𝑋𝐴 were plotted for two different oligomer sizes and different values of 𝐸𝑝. 
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Changes in 𝐸𝑝 of course reflect changes in the distances between protomers within the oligomer 

(see Supplementary Note 3). 𝜀𝑒𝑓𝑓
𝐷𝐴  markedly depends on 𝑋𝐴, following a straight line at low 𝐸𝑝 

values and becoming more nonlinear as 𝐸𝑝 increases. This is in stark contrast to the behavior of 

the average RET efficiency vs. 𝑋𝐴 plots computed for the dimer only model (Supplementary Figure 

3a), which steadily increase as a function of 𝐸𝑝. 

 

 
Figure 3. Apparent brightness of donor, 𝜀𝑒𝑓𝑓

𝐷𝐴 , and acceptor, 𝜀𝑒𝑓𝑓
𝐴𝐷 , vs. acceptor mole fraction, XA, as determined from 

equation (26) for (a-b) dimers (n = 2) and (c-d) rhombus shaped tetramers (n = 4). The plots were generated for four 

different values of the pairwise RET efficiency, Ep, in order to illustrate the dependence of the curvature on the level 

of RET efficiency occurring in the complex. As is evident in (b), the value of 𝜀𝑒𝑓𝑓
𝐴𝐷  is uniquely determined by Ep for 

the case of dimers; this quantity is completely unaffected by changes in the dimer/monomer concentration ratio, as is 

seen in figure 4b. 

 As for the behavior of 𝜀𝑒𝑓𝑓
𝐴𝐷 , it is seen from figure 3(b) that it presents no dependence on 𝑋𝐴 

for the case of pure dimers. This behavior can be explained by first noting that the monomeric 

acceptor brightness, 𝜀𝑚
𝐴 , used in computing this plot was set to zero, which represents a situation 

where there is no direct excitation of the acceptor molecules with laser light. In this case, only the 

DA and AD configurations of the dimers, which are identical with regard to fluorescence 

properties, would generate acceptor signal. Therefore, there is actually only one species present 

which contributes to the acceptor signal. Any dependence of 𝜀𝑒𝑓𝑓
𝐴𝐷  on 𝑋𝐴 would be caused by a 

change in the proportion of various oligomer configurations, i.e., 𝜇𝑛,𝑘 of equation (24), as the ratio 

of donor to acceptor concentration changes. However, since the DD and AA molecules contribute 

nothing to the acceptor signal, this change in number is not reflected in the calculation of 𝜀𝑒𝑓𝑓
𝐴𝐷 , 

hence the constant 𝜀𝑒𝑓𝑓
𝐴𝐷  value over the entire 𝑋𝐴 range. By contrast, 𝜀𝑒𝑓𝑓

𝐴𝐷  is linearly dependent on 

𝐸𝑝 (see figure 3b), which provides an exquisite means for determining the true value of 𝐸𝑝 from 
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experiments. For larger oligomeric complexes, plots of 𝜀𝑒𝑓𝑓
𝐴𝐷  vs. XA acquire significant curvature, 

because more than one oligomer configuration now contributes to the acceptor fluorescence signal 

(see figure 3d). The plots of 𝜀𝑒𝑓𝑓
𝐴𝐷  vs XA still resolve different 𝐸𝑝 values quite clearly, as long as 

there are some donors in the system, i.e., for XA < 1. 

  

 
Figure 4. Apparent brightness values of donor, 𝜀𝑒𝑓𝑓

𝐷𝐴 , and acceptor, 𝜀𝑒𝑓𝑓
𝐴𝐷 , vs. acceptor mole fraction, XA, as determined 

from equation (26) for various ratios between: (a), (b) dimer and monomer concentrations and (c), (d) tetramer and 

dimer concentrations. The concentration ratio of the various oligomer species affects the plots in different manners. 

As is evident in (b), the 𝜀𝑒𝑓𝑓
𝐴𝐷  shape is completely unaffected by changes in the dimer/monomer concentration ratio, 

while variation in the concentration ratio of the oligomer species strongly modulates the value of the y-intercept in (a) 

and (c). 

Figure 4 illustrates the behavior of the brightness vs. XA plots for a mixture of monomers 

and dimers (panels a and b) as well as mixture of dimers and tetramers (panels c and d), as the 

concentration of the two species comprising the mixture is varied. As can be seen, 𝜀𝑎𝑝𝑝
𝐴𝐷  is 

completely unaffected by changes in the dimer/monomer concentration ratio. This is due to the 

fact that, when 𝜀𝑚
𝐴 = 0, the monomeric acceptors contribute nothing to the fluctuations in acceptor 

signal, as the acceptors are not directly excited by light. In contrast, a change in concentration ratio 

between the two species induces a strong change in the y-intercept of the 𝜀𝑎𝑝𝑝
𝐷𝐴  plot, as seen in 

figures 4(a) and 4(c) for both mixtures, as well as a change in the relative disposition along the y-

axis of the 𝜀𝑎𝑝𝑝
𝐴𝐷  vs. 𝑋𝐴 plots. 

 By combining the qualitative features illustrated in figures 3 and 4, one can easily envision 

how simultaneously fitting donor and acceptor brightness vs. 𝑋𝐴 plots would help pinpoint the 

correct structural model for mixtures of various oligomer sizes with unknown relative abundance 
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and structural properties and provide the correct parameters of the model. The y-intercept of the 

𝜀𝑒𝑓𝑓
𝐷𝐴  plot is the dominant contributor to resolving the relative abundance of each of the oligomer 

species, while the 𝜀𝑒𝑓𝑓
𝐴𝐷  helps to “lock in” the correct value of 𝐸𝑝, the dominant parameter related 

to the distances between protomers within the oligomer model being considered. 

3.3. Resolving mixtures of monomers and dimers using iFRET 

We next set out to determine whether the size and geometrical characteristics of the oligomers may 

be extracted from numerically simulated donor and acceptor brightness vs. XA plots using the 

theory described in section 2.4. For this purpose, we generated simulated brightness and RET 

efficiency data from mixtures of monomers and dimers (figure 5) as well as 

monomers/dimers/tetramers (figure 6) of the average RET efficiency, 𝐸𝑎𝑣𝑒, and donor/acceptor 

molecular brightness, 𝜀𝑒𝑓𝑓
𝐷𝐴  and 𝜀𝑒𝑓𝑓

𝐴𝐷 , as a function of XA. Each of the simulated data sets was fitted, 

both individually and globally, with the equations predicting these quantities theoretically 

(equations S2 and 26). The global analysis of the multi-parameter dataset, a procedure for which 

we have coined the term iFRET in this paper, signifies that a common set of parameters is used to 

generate a theoretical prediction for the structural oligomeric models from brightness and RET 

efficiency data.   

Knowing the input parameters used to generate the data, we were interested to see if fitting 

of the simulated data could return these known values. Furthermore, we were also interested in 

how “tightly” we could determine the best-fit parameters. To this end, we employed an iterative 

fitting process, the results of which are shown in figures 5(d-e) and 6(a), to help assess how unique 

the best-fit parameters were. To construct the plots shown in figures 5(d-e) and 6(a), one fitting 

parameter, e.g., 𝐸𝑝, was first set to a fixed value, and all other parameters were adjusted until the 

difference between the simulated brightness and RET efficiency data and theoretically predicted 

curves, quantified by the fitting residual given in Equation (28), was minimized. Then, 𝐸𝑝 was 

increased by a small increment, and the fitting procedure involving the other parameters was run 

again. 

 Figure 5 illustrates the result of applying the minimization procedure to data extracted from 

computer-generated images containing mixtures of dimers and monomers.  The relative abundance 

values used to generate the images were A2 = 0.667 for the dimers and A1 = 0.333 for the 

monomers, while the pairwise RET efficiency was set to 𝐸𝑝 = 0.5.  The fitting residuals obtained 

by fitting 𝜀𝑒𝑓𝑓
𝐷𝐴 , 𝜀𝑒𝑓𝑓

𝐴𝐷 , or 𝐸𝑝 vs. 𝑋𝐴 curves individually are shown using plots with filled symbols 

(see panels d and e in figure 5); in these cases, the fitting residual was defined so that it only 

included the “measured” (i.e., simulated) and theoretical terms from one of the 𝜀𝑒𝑓𝑓
𝐷𝐴 , 𝜀𝑒𝑓𝑓

𝐴𝐷 , or 𝐸𝑎𝑣𝑒 

vs. 𝑋𝐴 plots (M = 1 in Equation 28). Figure 5d shows that any 𝐸𝑝 can be used to fit the individual 

𝜀𝑒𝑓𝑓
𝐷𝐴  and 𝐸𝑎𝑣𝑒 vs 𝑋𝐴 plots, simply by adjusting the relative abundance values of the monomers and 

dimers to compensate for discrepancies between the theoretical and measured curves caused by 

varying the value of 𝐸𝑝. Conversely, fitting only the 𝜀𝑎𝑝𝑝
𝐴𝐷  vs. 𝑋𝐴 curve does not reveal unique 

information regarding the relative abundances of the two species, as the same exact fit is achieved 

regardless of 
𝐴2

𝐴1
⁄  value, as seen in figure 5e. We were never able to extract both the RET 
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efficiency and the relative abundance information (values of A1 and A2) from the fitting of 𝜀𝑒𝑓𝑓
𝐷𝐴 , 

𝜀𝑒𝑓𝑓
𝐴𝐷 , or 𝐸𝑎𝑣𝑒 vs 𝑋𝐴 curves individually (i.e., M = 1 in equation 28); we need to be able to fix either 

𝐸𝑝 or 
𝐴2

𝐴1
⁄  during the fitting. When 𝜀𝑒𝑓𝑓

𝐷𝐴  and 𝐸𝑎𝑣𝑒 vs 𝑋𝐴 curves are fitted simultaneously (i.e., M 

= 2 in equation 28), the “tightness” of the fitting residual vs. 𝐸𝑝 plot (green squares in figures 5d) 

improves slightly, although the curvature is still somewhat shallow. 

 
Figure 5. Simultaneous fitting of the average 𝜀𝑒𝑓𝑓

𝐷𝐴 , 𝜀𝑒𝑓𝑓
𝐴𝐷 , and 𝐸𝑎𝑣𝑒  values extracted from a Monte-Carlo simulated 

mixture of monomers and dimers with relative abundances A2=0.667, and A1=0.333 and a pairwise RET efficiency in 

the dimer of Ep=0.5. Each molecule was randomly distributed over a 400-pixel segment with an average of 25 

protomers/pixel. From each 400pixel segment, a value of 𝜀𝑒𝑓𝑓
𝐷𝐴 , 𝜀𝑒𝑓𝑓

𝐴𝐷 , and 𝐸𝑎𝑣𝑒  was extracted. The simulation was 

performed for a number of XA values, with 300 segments generated for each value of XA. The mean values of (a) 𝜀𝑒𝑓𝑓
𝐷𝐴  

(b) 𝜀𝑒𝑓𝑓
𝐴𝐷  and (c) 𝐸𝑎𝑣𝑒  , represented by blue symbols, were obtained by averaging over the 300 segments for each XA 

value; error bars denote ±1 SD. The red line represents the result of simultaneously fitting the brightness and RET 

efficiency simulated data sets using equations (26) and (S2). The best fit was obtained when using a pairwise RET 

efficiency value of Ep=0.5 and relative abundance values of:  A4=0, A2=0.667, and A1=0.333, exactly equal to the input 

parameters to the simulation. (d)-(e) Plots comparing the uniqueness of the best fit parameters by defining the fitting 

residual to incorporate one, two, or all three of the 𝜀𝑒𝑓𝑓
𝐷𝐴 , 𝜀𝑒𝑓𝑓

𝐷𝐴 , and 𝐸𝑎𝑣𝑒  vs. XA data: 𝜀𝑒𝑓𝑓
𝐷𝐴  only (red triangles), 𝜀𝑒𝑓𝑓

𝐴𝐷  only 

(pink triangles), 𝐸𝑎𝑣𝑒  only (black diamonds), 𝜀𝑒𝑓𝑓
𝐷𝐴  and 𝐸𝑎𝑣𝑒  (green squares), or 𝜀𝑒𝑓𝑓

𝐷𝐴  , 𝜀𝑒𝑓𝑓
𝐴𝐷 , and 𝐸𝑎𝑣𝑒  (blue circles).  

For each of the plots, either the parameter (d) Ep or (e) A2/A1 was held fixed and the other parameters altered until the 

lowest residual was achieved; each point in the plots represents the fitting residual value plotted against the 

corresponding value of the fixed parameter.  The fitting procedure which incorporated all three datasets (blue circles) 

clearly achieved the sharpest minimum. The parameters extracted from the point indicated by the blue arrow in (d) 

were used to generate the red lines of (a-c).  
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 Finally, the minimization procedure was performed when incorporating all three of the 

𝜀𝑒𝑓𝑓
𝐷𝐴 , 𝜀𝑒𝑓𝑓

𝐴𝐷 , or 𝐸𝑎𝑣𝑒 vs 𝑋𝐴 datasets into the fitting residual (i.e., M = 3 in equation 28).  The minima 

of the fitting residual vs. 𝐸𝑝 (figure 5, panel d) or 
𝐴2

𝐴1
⁄  (figure 5, panel e) resulting from the three-

component residual (blue open symbols) are very well defined, and the extracted fitting parameters 

match exactly those used for generating the computer-simulated brightness and RET efficiency 

data. It is evident from figure 5 (panels d and e) that the plots of 𝜀𝑒𝑓𝑓
𝐷𝐴 , 𝜀𝑒𝑓𝑓

𝐴𝐷 , and 𝐸𝑎𝑣𝑒 vs 𝑋𝐴 all must 

be included in the minimization procedure to fully realize the potential of iFRET. What is even 

more encouraging is the fact that we added more complexity to the model used to fit the simulated 

brightness and RET efficiency data, in the form of a third oligomer size (n = 4), and still obtained 

the correct input parameters.   

3.4. Identification of structural models for higher order oligomers from 

computer-simulated data 

We next wanted to gauge the power of this approach by applying it to an even more complicated 

mixture of molecules. Therefore, we added rhombus shaped tetramers to a mixture of monomers 

and dimers (A4 = 0.250, A2 = 0.400, A1 = 0.350) and again generated computer-simulated datasets 

for the donor/acceptor molecular brightness and average RET efficiency (figures 6a-c). The 

mixture of monomers, dimers and tetramers considered above is relevant to situations where each 

protomer has two binding sites with very different binding affinities. Details on all of the different 

rhombus tetramer configurations are listed in Supplementary Figure 1. Multiple iterative fitting 

procedures were performed using individual 𝜀𝑒𝑓𝑓
𝐷𝐴 , 𝜀𝑒𝑓𝑓

𝐴𝐷 , and 𝐸𝑎𝑣𝑒 vs 𝑋𝐴 curves as well as 

combinations of them, and once again, as is evident in figure 6(d), the most restrictive fitting 

process occurred when incorporating all three. Reassuringly, the best-fit parameters extracted from 

the three-component residual fitting, A4=0.243, A2=0.409, and A1=0.347, matched extremely well 

the value of the input parameters. An additional computer simulated dataset was generated from 

mixtures which incorporated trimer complexes in addition to monomers, dimers and tetramers 

(Supplementary Figure 4). Similarly good agreement was found between the input and the best-fit 

parameters extracted from analysis of the simulated data generated from the mixture which 

incorporated trimers as well. 

 The main critique one could raise regarding our analysis presented above of the mixture 

incorporating tetramers is that the correct model for the tetramer was known beforehand. We will 

illustrate next how effective this approach is when neither the oligomer size nor its structure is 

known a priori. We tested a variety of models on the simulated brightness and RET efficiency data 

shown in figure 6, which was generated using a mixture of monomers, dimers, and rhombus shaped 

tetramers. All of the oligomer models tested are shown in figure 7(a). Fitting residual vs. Ep plots 

have been prepared for each type of model (figure 7b) in order to see if a global minimum could 

be achieved across the various models tested. We considered the worst-case scenario for a model 

identification task, in which  the number of fitting parameters was the same for each model tested; 

this means that the polygons which were tested all had sides of equal length (equilateral triangle, 

rhombus, and square) and this side length was the same as the distance between fluorophores for 

the geometries possessing linear arrangements. Furthermore, the acute angle describing rhombus 



18 

 

model was held fixed (α = 60⁰) during the fitting process. Keeping the number of fitting parameters 

constant enabled a direct comparison between the resulting residual values from fitting each 

model. As seen in figure 7(b), the Fitting Residual vs. Ep plot for the correct model, the rhombus 

shaped tetramer, provided by far the lowest minimum fitting residual of all the oligomer types 

tested. The minimum fitting residual for the correct model, the rhombus, was 20-fold lower than 

the next best fitting model, the square tetramer, providing unambiguous identification of the former 

as the correct oligomer structure. 

 Additional tests were performed to evaluate how precisely detailed geometrical parameters 

describing a more arbitrarily shaped tetramer could be determined using iFRET. Simulated images 

were generated from mixtures of monomers, dimers and a parallelogram shaped tetramer whose 

side lengths were not equal (as opposed to the more ideal shapes shown in Fig. 7a). The 

geometrical parameters needed to describe the parallelogram are illustrated in Supplementary 

Figure 5. Fitting of the simulated data was performed with two additional fitting parameters 

included in the process: the acute angle, α, and the ratio of the lengths of the sides, 
𝑟2

𝑟1
⁄ , of the 

parallelogram. Even with the additional fitting parameters needed to describe the more 

complicated shape of the oligomer, the relative abundance values determined closely matched the 

input values. In addition, the parameters α and  
𝑟2

𝑟1
⁄   which describing the shape of the 

parallelogram also closely matched those of the oligomer used to generate the simulated data (See 

Supplementary Note 4 and Supplementary Tables 1 and 2). 
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Figure 6. Simultaneous fitting of the average 𝜀𝑒𝑓𝑓
𝐷𝐴 , 𝜀𝑒𝑓𝑓

𝐴𝐷 , and 𝐸𝑎𝑣𝑒  values extracted from a Monte-Carlo simulated 

mixture of monomers, dimers, and tetramers with relative abundances: A4=0.250, A2=0.400, and A1=0.350 and 

pairwise RET efficiency Ep=0.5.  Each molecule was randomly distributed over a 400 pixel segment with an average 

of 25 protomers/pixel. From each 400 pixel segment, a value of 𝜀𝑒𝑓𝑓
𝐷𝐴 , 𝜀𝑒𝑓𝑓

𝐴𝐷 , and 𝐸𝑎𝑣𝑒  was extracted. The simulation 

was performed for a number of XA values, with 300 segments generated for each value of XA. The mean values of (a) 

𝜀𝑒𝑓𝑓
𝐷𝐴  (b) 𝜀𝑒𝑓𝑓

𝐴𝐷  and (c) 𝐸𝑎𝑣𝑒 , represented by blue symbols, were obtained by averaging over the 300 segments for each 

XA value; error bars denote ±1 SD. The red line represents the result of simultaneously fitting the brightness and RET 

efficiency simulated data sets using equations (26) and (S2). The best fit was obtained when using a pairwise RET 

efficiency value of Ep=0.5 and relative abundance values:  A4 = 0.243, A2 = 0.405, and A1 = 0.349. (d) Comparison of 

fitting residual vs. Ep plots when one, two, or all three of 𝜀𝑒𝑓𝑓
𝐷𝐴 , 𝜀𝑒𝑓𝑓

𝐴𝐷 , and 𝐸𝑎𝑣𝑒  vs. XA data were included in the fitting 

residual: 𝜀𝑒𝑓𝑓
𝐷𝐴  only (red triangles), 𝜀𝑒𝑓𝑓

𝐴𝐷  only (pink triangles), 𝐸𝑎𝑣𝑒  only (black diamonds), 𝜀𝑒𝑓𝑓
𝐷𝐴  and 𝐸𝑎𝑣𝑒  (green 

squares), or 𝜀𝑒𝑓𝑓
𝐷𝐴 , 𝜀𝑒𝑓𝑓

𝐴𝐷 , and 𝐸𝑎𝑣𝑒  (blue circles).  For each plot, the parameter Ep was held fixed and the relative 

abundance parameters altered until the lowest fitting residual was achieved; each point in the plots represents the 

residual value plotted against the corresponding value for Ep used to achieve it.  The fitting procedure which 

incorporated all three datasets (blue circles) clearly achieved the sharpest minimum. The parameters extracted from 

the point indicated by the blue arrow were used to generate the red lines of (a-c). 

 

 
Figure 7. (a) Geometrical depiction of various oligomer structure models used for fitting the data shown in figure 6. 

(b) Fitting residual vs. Ep plots obtained after applying the various oligomer models shown in (a) to simulated 𝜀𝑒𝑓𝑓
𝐷𝐴 , 

𝜀𝑒𝑓𝑓
𝐴𝐷 , and 𝐸𝑎𝑣𝑒  vs. 𝑋𝐴 plots. A clear minimum of the fitting residual is seen for the correct quaternary structure model, 

the rhombus shaped tetramer with acute angle of 60° and Ep = 0.5. Furthermore, the correct relative abundance values 
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were also extracted using this model. The minimum fitting residual values for each of the oligomers tested are: 5.9 × 

10-5 for the linear trimer, 4.7 × 10-5 for the triangle trimer, 1.3 × 10-4 for the linear tetramer, 2.0 × 10-5 for the square 

tetramer, and as low as 1.1 × 10-6 for the rhombus tetramer. 

3.5. Testing iFRET from simulated data incorporating actual detector noise  

One potential challenge faced not only by iFRET but also by any fluorescence-based detection 

technique, including other RET-based and FFS-based techniques, is a dearth of photons at the 

extremities of the 𝑋𝐴 intervals under certain experimental conditions. For example, if the 

concentration of molecules is very low, and the direct excitation of the acceptor by the laser is 

negligible, then the amount of acceptor signal reaching the detector will be scarce for both low and 

high values of XA. For low signal levels, it is possible that the extraction of parameters from the 

𝜀𝑒𝑓𝑓
𝐷𝐴 , 𝜀𝑒𝑓𝑓

𝐴𝐷 , and 𝐸𝑎𝑣𝑒 vs 𝑋𝐴 datasets would become unreliable due to sources of noise typically 

found in fluorescence measurements. Therefore, we performed simulations to assess the effect of 

noise originating, from the charge amplification process in a cooled electron-multiplying CCD 

(EMCCD) camera, on the uniqueness of the parameter values extracted from the 𝜀𝑒𝑓𝑓
𝐷𝐴 , 𝜀𝑒𝑓𝑓

𝐴𝐷 , and 

𝐸𝑎𝑣𝑒 vs. 𝑋𝐴 plots. To add noise to the simulated brightness and RET efficiency data, the photon 

count was tallied for a particular pixel, and then run through a signal amplification process (see 

Supplementary Note 5 for more details).  The noise characteristics of the signal amplification 

(Supplementary Figure 6) were measured using a constant light source and an electron-multiplying 

CCD (EMCCD) camera (iXon Ultra 897, Andor Technologies, Belfast, UK).  
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Figure 8. a-c. Incorporation of EMCCD gain noise to Monte-Carlo simulations of various monomer, dimer, and 

tetramer mixtures. Molecules were distributed over 400-pixel segments at an average of 25 protomers/pixel. The 

intensity values from each pixel were computed, and then run through a charge amplification process (see 

Supplementary Note 5), to obtain an output intensity. From each 400-pixel segment, a value of 𝜀𝑒𝑓𝑓
𝐷𝐴 , 𝜀𝑒𝑓𝑓

𝐴𝐷 , and 𝐸𝑎𝑣𝑒  

was extracted from the EM Gain amplified intensities. The mean ±1 SD of (a) 𝜀𝑒𝑓𝑓
𝐷𝐴  (b) 𝜀𝑒𝑓𝑓

𝐴𝐷  and (c) 𝐸𝑎𝑣𝑒  , represented 

by blue circles for a three component mixture consisting of monomers, dimers and tetramers (A4=0.250, A2=0.400, 

and A1=0.350), and green squares for a two component mixture consisting of monomers and dimers (A4=0, A2=0.667, 

and A1=0.333), were obtained by averaging over the 300 segments for each XA value. The red line represents the result 

of simultaneously fitting the brightness and RET efficiency simulated data sets using equations (26) and (S2). d. Plots 

displaying the uniqueness of the best fit relative abundance and Ep fitting parameters. A clear minimum is established 

for both simulations at the input value of Ep=0.5, even in the presence of detector noise.  Best-fit relative abundance 

parameters for each of the simulations are given in Table 1. 

 

Simulations with EM gain amplification, and the associated noise factor, applied to photon 

counts were executed (see Table 1) for a mixture of monomers and dimers (see 2-Component 

Mixture heading in Table 1) as well as one incorporating rhombus shaped tetramers (3-Component 

Mixture heading), with the results shown in figure 8. While the error bars on the data points in 

each of the 𝜀𝑒𝑓𝑓
𝐷𝐴 , 𝜀𝑒𝑓𝑓

𝐴𝐷 , and 𝐸𝑎𝑣𝑒 vs. 𝑋𝐴 plots increased slightly, highly convergent fittings and 

accurate parameter extraction were still achieved, as can be seen in the fitting residual vs. Ep plots 

of figure 8(d) as well as from the comparison of input parameters used in computer simulations 

and the parameters extracted from data fitting, all of which are given in Table 1. 
 

Table 1. Comparison between the input parameters used for computer simulations of the data shown in Figure 8 and 

the best-fit parameters obtained from fitting equations (S2) and (26). Simulations were performed for mixtures 

incorporating monomers and dimers (2-Component Mixture) and monomers, dimers and tetramers (3-Component 

Mixture). The simulated data were fit using a total of seven adjustable parameters in the fitting procedure: α, 
𝑟2

𝑟1
⁄ , 

Ep, as well as the relative abundance values of tetramers, trimers, dimers, and monomers (i.e., 𝐴4 , 𝐴3, 𝐴2 and 𝐴1). 

 2-Component Mixture 3-Component Mixture 

Parameter  

Simulations 

Input 

Best-Fit 

Results 

Simulations 

Input Best-Fit Results 

𝐸𝑝 0.500 0.499 0.500 0.501 

α (⁰) - - 60.0 60.5 

𝑟2
𝑟1

⁄  - - 1.00 1.00 

A4 0.000 0.001 0.250 0.220 

A3 0.000 0.000 0.000 0.057 

A2 0.667 0.666 0.400 0.364 

A1 0.333 0.333 0.350 0.360 

 

4. Conclusion 
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FFS and RET are powerful techniques which have been vital to protein-protein interaction studies 

for the past three or four decades. However, when applied individually, both face challenges when 

it comes to describing the complex picture of membrane receptors self-associating or associating 

with other receptors to form oligomers. As we mentioned above, analysis of intensity fluctuations 

provides stoichiometric information about protein complexes but gives no information regarding 

their quaternary structure. Conversely, RET is ideally suited to measure intramolecular distances 

between protein subunits in a complex, and hence can deliver information on the proteins 

quaternary structure. However, when the proteins of interest form an equilibrium of multiple sized 

oligomers, knowledge regarding the relative abundances of the various oligomer sizes is needed 

to properly interpret the fluorescence data, otherwise multiple models can fit the data equally well.  

 We showed in this report that combining these two complementary techniques within a 

method, for which we have coined the term iFRET, helps restrict the choice of models which 

accurately predict the measured fluorescence data and leads to a more accurate quantification of 

the interactions of the underlying system. Because of the unique dependence of both the RET 

efficiency and intensity fluctuations on the ratio of donors to acceptors in the sample, adding 

measurements at various XA values further constrains the data fitting process and thereby increases 

the reliability of the best-fit parameter values. Using a global analysis procedure to simultaneously 

fit both RET and donor and acceptor intensity fluctuation data, we have demonstrated the 

remarkable ability of iFRET to accurately determine the relative abundance as well as the 

quaternary structure of the protein oligomer complexes comprising a mixture of monomers, 

dimers, and tetramers. 

 iFRET may be used to study the interactions of a variety of membrane receptors, including 

G protein-coupled receptors, receptor tyrosine kinases, and ligand-gated ion channels, as long as 

the protein of interest can be labeled with pairs of fluorescent proteins. The method should be 

implementable over a wide range of receptor concentrations, which allows for the compilation of 

oligomerization binding curves, represented by the relative abundance of a particular oligomer size 

as a function of the total concentration of molecules. From these binding curves, the 

association/dissociation constants characterizing not only the equilibrium between monomers and 

dimers, but also the equilibrium between dimers and higher order oligomers can be determined. In 

addition to the equilibrium constants, the geometrical parameters of the oligomers may be 

determined using iFRET. Changes in the equilibrium constants and/or geometrical parameters of 

the oligomers may be probed after treating the receptors with various agonists, antagonists, and 

inverse agonists. Therefore, we believe the wealth of information resulting from the application of 

iFRET could potentially provide insight into the functional significance of receptor 

oligomerization in living cells and the extent to which this organization is influenced by that of 

ligand binding. 
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