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A B S T R A C T   

Melt pool temperature is a critical parameter for the majority of additive manufacturing processes. Monitoring of 
the melt pool temperature can facilitate the real-time detection of various printing defects such as voids, over- 
extrusion, filament breakage, clogged nozzle, etc. that occur either naturally or as the result of malicious 
hacking activity. This study uses an in situ, multi-sensor approach for monitoring melt pool temperature in which 
non-contact infrared temperature sensors with customized field of view move along with the extruder of a fused 
deposition modeling-based printer and sense melt pool temperature from a very short working distance 
regardless of its X-Y translational movements. A statistical method for defect detection is developed and utilized 
to identify temperature deviations caused by intentionally implemented defects. Effective detection for multiple 
defect types and sizes is demonstrated using both a simple L-shaped test geometry and a more complex industry 
standard test article. Strengths and limitations of this approach are presented, and the potential for expansion via 
more advanced data analysis techniques such as machine learning are discussed.   

1. Introduction 

Fused deposition modeling (FDM) is one of the most promising and 
continuously growing additive manufacturing (AM) techniques that 
possesses the advantages of printing lightweight and complex parts with 
fewer operational steps [1,2]. Unlike conventional manufacturing, in
ternal features are printed at the same time as the structure, which 
eliminates further processing steps and use of expensive tools [3]. 
Moreover, material deposition in specific print location ensures effective 
material consumption and low product final weight [2]. Along with 
these advantages, this manufacturing technology can present unique 
challenges in terms of mechanical performance and dimensional accu
racy. Some major issues of FDM include pore/void formation, 
over-extrusion, shrinkage, corner warping, delamination, and clogging 
of material in the nozzle [4]. These defects can lead to high dimensional 
error and poor mechanical properties [5]. In certain cases, the number 
or severity of defects can require reprinting of the entire part which 
increases material usage and lead time. Besides naturally occurring 
defects, malicious entities may seek to induce defects as a means of 
sabotaging printed parts via hacking of the printing apparatus. Thus, it is 
advantageous to implement in situ condition monitoring whenever 

possible in order to take corrective measures during the print or abort 
the print entirely in the case of a critical defect condition. Also, when 
consistent quality assurance is a requirement, AM becomes unreliable 
without the aid of in situ quality monitoring measures [6]. In the longer 
term, in situ process monitoring with real-time defect detection will 
create new possibilities to establish a self-adaptive system with sophis
ticated machine learning-enabled prediction features, which will 
transform AM into a more dependable and commercially viable tech
nique [1,7]. 

A crucial parameter for any AM process involving a thermoplastic 
polymer is the temperature of the melted region, which dictates vis
cosity within the melt and thermal residual stress build-up during so
lidification [8,9]. Because temperature affects the way in which the 
molten materials flows, accumulates, and bonds to the existing mate
rials, the temperature of the extruded material has a strong influence on 
the formation of defects, inter-layer bonding strength, and other aspects 
of the print which are critical to its final performance [10]. Thus, de
viations of temperature within the melted region can be a strong indi
cator of a printing defect. Physically, a lack of extruded material may 
lead to a void and correspond to a lower than expected temperature as 
the cooler material underneath remains exposed for example, while an 
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excess of hot material occurs with an over extrusion event may lead to an 
abnormally high temperature or an irregular temperature trend in the 
vicinity of the event. For these reasons, there have been previous efforts 
to achieve real-time temperature monitoring of various types of AM 
processes [8,11]. The majority of these have involved a stationary, in
dustry standard infrared (IR) thermal camera focused on a single print 
region to measure spatial and temporal temperature profiles of printed 
layers and corresponding sublayers during print. However, there are 
significant limitations when using a stationary temperature monitoring 
approach such as this. First, a stationary imaging system must be posi
tioned to be able to view the full printing region of interest (ROI), which 
can negatively affect the resolution of fine features for larger ROI. Be
sides compromised spatial resolution, the ROI can easily be partially or 
entirely obscured by the moving extruder head assembly which in
creases the chance of missing crucial temperature profiles generated 
right after the extrusion of material. Due to the size of camera and its 
large field of view (FOV), it is often a challenge to set up the camera in an 
appropriate location of the 3D printer to get the desired view without 
any obstacle. Further, if real-time monitoring of temperatures is the 
end-goal of such measurements, there must be an associated back-end 
image analysis solution in place to translate the thermal images into 
actionable data. Depending on the size, complexity, and number of 
images to be analyzed, this may not be a trivial task. 

An improved approach would instead use IR thermal sensors that 
move with the print head to monitor the ROI from a shorter working 
distance and with a FOV that includes on the recently extruded material 
and its immediate vicinity. In addition, the focus on the melt pool region 
by one or more sensors would facilitate more direct back-end analysis of 
their associated signal outputs as opposed to requiring image analyses. 
In one previous work that adopted this approach, a single IR tempera
ture sensor was attached to an FDM printer to monitor the melt pool 
temperature along with a variety of other physical sensors in order to 
analyze signal patterns under different process conditions and to learn 
how they might correlate with process states and the evolution of build 
failure [12]. With respect to temperature sensing specifically, the use of 
a single sensor limits the ability of temperature monitoring to one spe
cific direction. As the FDM printer extruder moves along both X and Y 
axes during printing, there will be a loss of usable temperature infor
mation for any of the two axes depending on extruder movements. This 
then suggests that a multi-sensor approach may be advantageous, but to 
the best of our knowledge has never been previously explored. This 
question of whether multiple sensors provide superior defect detection 
compared to single-sensor approaches forms the hypothesis investigated 
here. 

In this work, a multi-sensor approach has been developed in which 
two IR thermal sensors are integrated within an FDM-based 3D printer 
such that there is a very short distance between the sensors and the 
extruder. In this way, a small target sensing area has been established 
near the melt pool region, i.e., the critical contact point where newly 
extruded material is deposited onto the workpiece surface. This en
hances the sensors spatial sensitivity to defects. As the sensors move 
along with the extruder unit, they provide continuous in situ process 
monitoring and anomaly detection in real-time. Further, the use of 
multiple sensors allows for the temperature of the extruded material to 
be monitored regardless of X-Y translation direction. When this multi- 
sensor data is interpreted in conjunction with the G-code controlling 
the printer head, additional insight into local temperature distributions 
and defect location within the part can be obtained as compared to a 
single sensor. This approach is demonstrated for both a simple part ge
ometry as well as a more complex industry standard test article. 
Strengths and limitations of this approach are presented, and the po
tential for expansion via more advanced data analysis techniques such as 
machine learning are discussed. 

2. Methodology 

2.1. Fused Deposition Modeling (FDM)-based 3D Printer 

In an FDM printing process, the material is heated within an extruder 
head and then selectively deposited through a nozzle that traces the 
part’s cross-sectional geometry to produce 3D parts directly from a CAD 
model in a layer-by-layer manner. A wide range of materials are avail
able for this manufacturing process such as polylactic acid (PLA), 
acrylonitrile butadiene styrene, polycarbonate, and PCABS blend [13]. 
For the purpose of this work, a commercial FDM-based desktop 3D 
printer (LulzBot TAZ 6) was used as the example test. PLA was chosen as 
the printing material due to its widespread usage, though the calibration 
and sensing methods employed for this work can be easily applied to 
many other commonly used FDM materials. For printing of the PLA, the 
extruder temperature was set in the range of 205–210 ◦C and the print 
bed temperature was set to 60 ◦C. Printed samples were first drawn using 
commercial CAD software, and later the commercial slicing software 
CURA was used to convert the CAD STL file to a G-code file which ul
timately controlled the motion of the printer head during a print process. 

2.2. Selection of IR temperature sensor 

A commercial IR temperature sensor (Texense IRN-2) was selected 
for this work based on its performance specifications and ease of inte
gration. For the chosen 3D printer, the maximum extruder temperature 
reaches 210 ◦C during print. Thus, the specific Texense IRN-2 sensor 
model with a maximum temperature of 300 ◦C was selected to ensure 
that the sensing scale was optimized for achieving a strong and easily 
measured voltage signal output. The sensor accuracy is 2% of full scale 
while the output signal is on a 0–5 V scale per manufacturer specifica
tions. As stated previously, it is advantageous for the FOV to be com
parable to or slightly larger than the melt pool and its immediate 
vicinity. To achieve this, a custom aperture made of low emissivity 
highly polished aluminum with a center hole of 2.5 mm diameter was 
installed on the face of each sensor to reduce its standard FOV and tune 
its spatial resolution to that desired in this application. In its stock form, 
the sensors would have a spot size of approximately 8 mm diameter at 
the targeted working distance of 25 mm. With the custom apertures 
attached, the spot size of the sensors was found to be approximately 4 
mm at the same working distance, which for an extruder nozzle diam
eter of 0.5 mm represents a sensing region roughly eight nozzle di
ameters across and was found to produce good results as shown via the 
results to be discussed in the following sections. 

2.3. Calibration of IR sensor 

When it comes to infrared temperature measurements, the apparent 
temperature of an object is a function of both its temperature and its 
thermal emissivity, which is a material property. For some surfaces, the 
emission of thermal radiation may also be dependent on the direction of 
observation. As a result, accuracy in temperature measurement requires 
calibration of IR sensors to the specific material, surface condition, and 
observation angle that will be utilized in practice. With this goal in 
mind, IR sensor calibration procedures were conducted for each indi
vidual sensor as shown in Fig. 1. The sample used for calibration was a 
25 mm × 25 mm × 3.5 mm PLA part printed on the LulzBot Taz6 printer 
using the same printer settings as used for the printed parts analyzed 
later in this work. Beneath the PLA sample was a 25 mm × 25 mm thin 
film Kapton heater and two sets of thin 25 mm × 25 mm copper (Cu) 
plates. The two Cu plates were used to ensure better thermal contact and 
more uniform temperature distribution on the backside of the PLA 
sample. The Cu-heater-Cu sandwich was attached with the PLA sample 
using a thermally conductive epoxy. For temperature measurements, 
three J-type thermocouples were inserted inside the PLA sample through 
three 1 mm diameter holes which each extended to near the center line 
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of the calibration sample. Three thermocouples with 4 mm spacing were 
used in order to quantify the degree of temperature uniformity in the 
center of the sample where the IR sensor’s viewing region would occur. 
Through all initial test runs, temperature differences of less than 1 ◦C 
were found between the three thermocouples which verifies that this 
setup succeeded in creating a uniform temperature distribution 
throughout the central region of the PLA sample to be used for IR sensor 
calibration. 

Calibration was completed in two steps. In the first step, the tem
perature of the sample’s top surface was measured via a fourth J-type 
thermocouple in direct contact with center of the top surface of the PLA 
sample. This was done to establish a known relationship between the 
temperatures measured by the three embedded thermocouples and the 
actual temperature at the top surface of the PLA sample. In the second 
step, the fourth thermocouple was removed, and the sample top surface 
was instead observed using the IRN-2 sensor. The sensor was first 
outfitted with the FOV-reducing aperture described above and oriented 
at the same design angle and working distance to be utilized when in
tegrated onto the moving printer head. In this way, a sensor-specific 
correlation between a given IR sensor’s IR voltage output and the sur
face temperature of the PLA was obtained for the same emissivity, sur
face condition, FOV, and direction of view as during actual printing, 
with representative results shown in Fig. 2. To associate the actual 
temperature at the top surface of the PLA sample obtained from the 
fourth thermocouple along with the IR sensor’s voltage output, the 
embedded thermocouples average temperature was considered as the 

baseline. During calibrations, the sample’s maximum top surface tem
perature was limited to approximately 80 ◦C to prevent the sample from 
deforming. Thus, to achieve voltage and temperature relations for 
higher temperature conditions, regression analysis and extrapolation 
was applied. Prior to performing the final calibration experiments, a test 
for angle dependency was conducted by taking data at 90◦ and 58.6◦, 
where the latter is the designated angle for the sensor’s eventual inte
gration with printer head. No significant differences between the two 
data sets were observed, which led to the conclusion that the angular 
dependence for the IR temperature measurement was weak for this 
specific material and surface condition combination. In wider practice, 
because emissivity and surface roughness are material/print parame
ters, strictly speaking a change in feedstock or material should neces
sitate a new calibration be performed for each sensor. However, many 
polymers have similar emissivity values and if the surface roughness of 
the print will be unchanged, this may not be entirely necessary every 
time. 

2.4. Sensor integration 

Following calibration, the two IRN-2 sensors were attached to the 3D 
printer’s extruder unit. Custom designed 3D printed brackets were used 
to hold the sensors at an angle of 58.6◦, which is the angle at which the 
sensors can be mounted on the extruder unit to sense the appropriate 
printing zone without impeding any existing hardware (Fig. 3(a-b)). 
Both the sensor-bracket assemblies were mounted with the extruder unit 
such that one sensor’s viewing spot follows the extruder from its front 
while the other sensor’s viewing spot follows the extruder from its left 
side as shown conceptually in Fig. 3(c). In this way, the sensors provide 
temperature data for two different axes of movement of the extruder and 
facilitate the multi-directional observation capability of the in situ 
measurement system. During sensor integration, sensor-I was set at a 
working distance of 25 mm from its ROI (the region near melt pool in 
front of the extruder), and sensor-II was set at a working distance of 
23 mm from its ROI (the melt pool region to the side of the extruder). As 
can be seen in Fig. 3, both sensors are located in close proximity to the 
extruder head hardware such that there is a possibility of signal 
contamination from the much hotter extruder impacting the IR signal 
being sought from the printed part. To mitigate this, a low emissivity 
polished aluminum sheet was installed around the extruder within the 
space between it and the sensors to act as a thermal radiation shield. 

2.5. Design of print sample and intentional defect generation 

For initial testing of in situ monitoring using the two IR sensors, a 
simple L-shaped sample was first utilized as shown in Fig. 4. According 
to the implemented sensor integration, sensor-I will be most effective 
during the + Y-axial movement of the extruder and sensor-II will be 

Fig. 1. Annotated illustrations of the IR sensor calibration (a) setup and (b) PLA sample.  

Fig. 2. Sensor signal output vs top surface temperature of PLA sample.  
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most effective during the + X-axial movement of the extruder. 
The L-shaped sample designed here enables both the sensors to be 

ensured to be effective for more than two third of the duration of a single 
sample print. The STL file of the sample CAD was imported into the 
commercial slicing software CURA, which sliced the sample into 11 
layers (8 skin layers and 3 fill layers). The layer view of the slicing 
software shows the print orientations for the different layers as given in 
Fig. 4(b). For layer-1, the extruder starts moving along the −X direction 
and then turns at 90◦ to print along +Y direction to complete the layer. 
Thus, for layer-1 only sensor-I remains effective as it senses the heated 
region near melt pool along the +Y direction. For layer-2 the orientation 
changes. Now the extruder starts moving along +X direction and after 
completing the horizontal part of the L-shaped sample’s second layer, 

the extruder moves toward the vertical region of the sample and com
pletes the layer by moving along +Y direction again. Thus, for layer-2 
both sensor-I and sensor-II will be effective for temperature sensing 
Fig. 4(b). The consecutive layers will be printed by alternating these two 
types of layer orientation. 

After the design of the L-shaped test sample, a repeatable method of 
creating intentional defects at known locations within the sample was 
devised in order to quantify how well the sensors were able to detect 
defects or anomalies as they occurred. The two types of intentional de
fects able to be created and analyzed in this work are voids (lack of 
material) and over-extrusion (excess of material). The creation of 
intentional defects was achieved by manipulation of the G-Code that 
controls the print process after it was generated by the software but prior 
to initiating printing. By changing multiple extrusion commands within 
the G-Code, voids of controllable size at known locations were created 
during a given test print. To create an over-extrusion event, both feed 
rate and extrusion action commands within the G-Code were changed. 
Three different sizes of voids were implemented in which the void width 
was varied. The other two void size parameters i.e., length and height of 
voids, were constant and similar to sample width and layer height which 
are 10 mm and 0.25 mm, respectively. Fig. 4(c) shows representative 
examples of the two types of defects implemented via G-Code 
manipulation. 

3. Analysis of temperature signals for defect detection 

Test prints were done for standard profile, 40% infill, and without 
any build plate adhesion. As stated earlier, the L-shaped sample con
sisted of 11 layers (8 skin layers and 3 fill layers in a 4–3–4 combina
tion). For every layer, printing started with the walls followed by the 
skins and fills. Fig. 5 shows a typical temperature signal versus time data 
set for a test run with no defects present, which we term a “good print” to 
distinguish from prints with defects. Regions in time corresponding to 
the printing of wall, skin, fill, and different layers are marked. This 
temperature versus time pattern for a good L-shaped part print was 
found to be highly repeatable between repeated runs. 

To accomplish defect detection, a simple statistical approach was 
developed for this proof-of-concept study which is similar to a rudi
mentary form of machine learning. To create a reliable baseline data set 
for a good (defect-free) print against which to compare the defect-laden 
prints, temperature data obtained from three good prints was first 
averaged point-by-point in time. Then, the standard deviation σ of the 
three good prints were likewise determined point-by-point in time. By 
adding or subtracting a certain number of standard deviations from the 
averaged baseline data, an upper control limit (UCL = average + n σ) 
and lower control limit (LCL = average – n σ) control chart was created. 
By comparing the data from a test print against this control chart, the 

Fig. 3. (a) An illustration of sensors measuring melt pool temperature, (b) Image showing both sensors attached with the extruder head and (c) top view showing two 
different sensing zone for the sensors. 

Fig. 4. (a) CAD images of the L-shaped sample (numbers in mm), (b) Layer 
view of printing taken from commercial slicing software and (c) Intentional 
defects on the L-shaped test print. 
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presence of a given defect could be identified via violation of either the 
UCL or LCL at specific instances in time. After repeated calibration trials 
with defects of known location, it was determined that using n = 3 in the 
above definitions of UCL and LCL was able to reliably and repeatedly 
identify defect presence without creating frequent false positives where 
no defects were present. 

In terms of sensor accuracy for defect detection, it is important to 
point out a few key aspects. First, as stated above the sensor accuracy is 
2% of full scale per manufacturer specifications. This refers to the ab
solute temperature accuracy of the sensor, not its noise level. The actual 
output of the sensor is very stable for a given steady-state temperature, 
with noise on the order of <0.05% of the signal magnitude. Thus, the 
influence of random point-by-point error is minimal. Second, the inde
pendent calibrations performed for each sensor eliminates the influence 
of any sensor-to-sensor output variation. Third, the manner in which the 
sensors are utilized to identify defects is important. Because the detec
tion scheme is based on comparison of the output from each sensor for a 
known “good print” against the output from those same sensors for a 

“test print” in question, any bias error not already accounted for via 
sensor-specific calibration would be present in both the “good print” 
data and the “test print” data taken with the same exact sensor. Thus, 
even if there is some residual absolute error present with a given sensor, 
via usage of a comparison approach the defect detection scheme 
employed here is still able to be effective. 

3.1. Void defect detection 

Intentional voids of different sizes were implemented in multiple 
locations and layers of the L-shaped sample, where over-extrusion was 
implemented only on the topmost layer of the sample into one known 
location. The defected samples were printed with a cold printer to get 
defect print temperature data from both of the sensors using a com
mercial data acquisition device. Fig. 6 shows temperature data taken 
during a test print with intentional void defects of varying sizes as well 
as one instance of an over-extrusion event. The UCL and LCL control 
chart data are also plotted for comparison and to evaluate defect 

Fig. 5. A typical good print temperature plot of the L-shaped sample obtained from sensor-I.  

Fig. 6. +/−3σ control chart comparing defected print temperature data with the control limits. (a) Control chart for sensor-I (b) Control chart for sensor-II 
comparing void and over-extrusion defects at multiple locations. Locations of defects introduced via G-code manipulation are indicated. 
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detection. As can be seen, the presence of a defect leads to a deviation of 
the temperature signal from the baseline as manifested by going below 
the LCL. Void defects as small as 1.5 mm of width were detected suc
cessfully at different layers of print by the +/- 3σ control chart. To 
evaluate the ability of increasing the sensitivity of the defect detection 
scheme, +/- 1.5 σ and +/- 2σ control charts were also tested for this 
case. However, this led to multiple instances of false positives where 
defects were flagged to have occurred when there were no defects pre
sent. Thus, the +/- 3σ control chart was chosen as being the most 
appropriate for this work. In order to illustrate this point visually, ex
amples of UCL and LCL comparisons using a 1.5 σ, 2σ, and 3σ basis have 
been added into the Supplementary Material document as Figs. S1-S3, 
respectively. 

Over repeated trials, voids implemented on different layers of the 
vertical part of L-shaped sample were always captured by sensor-I while 
moving at +Y direction. Three different sizes of voids were tested which 
are clearly visible by the sensor-I control chart’s outliers as labeled in 
Fig. 6(a). Voids were also implemented in the horizontal part of the same 
L-shaped sample, but there were no significant fluctuations or valleys 
observed in the sensor-I control chart for those void defects. This result 
highlights the necessity of having more than one IR sensor in order to 
achieve robust defect detection along multiple head movement di
rections. For this example, the second sensor (sensor-II) captures IR 
signals at the +X direction and is thus able to detect these defects that 
sensor-I does not. Fig. 6(b) gives the sensor-II control chart for the same 
test print as shown for sensor-I in Fig. 6(a) and identifies the voids 
implemented on different layers of the L-shaped sample’s horizontal 
part. 

3.2. Over-extrusion defect and T-test for comparing slopes 

Over-extrusion events were implemented only on the topmost layer 
(vertical part) of the L-shaped sample, with an example of an over- 
extrusion event’s temperature signature marked in Fig. 6(a). Over- 
extrusion results in an excess of material being deposited in a specific 
region, with the exact directional movement of the excess material being 
unpredictable. If this excess molten material rolls or bulges into the FOV 
of a sensor, it can manifest itself as an unexpected positive change in 
slope within the temperature versus time data. If, however, the excess 
material causes a movement of material away from the targeted area/ 
FOV, the defect manifests itself as an unexpected negative change in 
slope within the temperature versus time data. For the case shown in 
Fig. 6(a), instead of a drop in temperature outlying the LCL as seen for 
void defects, a significantly different slope is observed in the marked 
part of the control chart. This negative slope, while notably different 
from the baseline derived UCL and LCL lines, does not actually lead to a 
UCL or LCL violation. As a result, the simplistic UCL/LCL approach 
which was shown to be effective at identifying voids would not on its 
own be successful in flagging this as a print defect. Instead, the ability to 
detect an over-extrusion event requires the inclusion of a second sta
tistical approach which determines the significance of the slope differ
ence between baseline data and the test print at corresponding points in 
print time. A hypothesis test was conducted using a T-test for this pur
pose, where the null hypothesis is that there is no significant difference 
between baseline and test print slopes and the alternate hypothesis is 
that the difference between the slopes is significant. This T-test was 
conducted between the defective print data and the average of three 
good prints data, taking a moving average of sample size n = 5. P-values 
were obtained from the T-test calculations, which were then compared 
with a significance level (alpha) = 0.001. If the P-value chosen is lower 
than the decided significance level, then the null hypothesis is rejected 
and the alternate hypothesis is accepted. As an example, the lowest P- 
value was found to be 0.00082 at the over-extrusion event marked in 
Fig. 6(a), which is lower than the decided significance level. Thus, the 
deviation of slope method of identifying aberrations in printing behavior 
that do not necessarily violate UCL or LCL bounds is an effective means 

of detecting the occurrence of over-extrusion events or other defects that 
may not be found otherwise. 

3.3. Standard test article results 

After conducting these initial tests with the simplistic L-shaped 
sample, similar tests were performed on a different part geometry which 
was comparatively complex and covered more variations in extruder 
head movement. Thus, a new part geometry was chosen from literature 
which resembles the NAS 979 standard test article, also known as the 
circle diamond square test [12]. The version of the standard test article 
utilized in this work is shown in Fig. 7. 

Creation of a baseline data set and its associated UCL and LCL was 
performed as before for the L-shaped part. Intentional voids were 
implemented on different features of the test article which are shown in 
Fig. 7(b). Defect print temperature data was then plotted in the control 
chart shown in Fig. 8 which is a break line plot of the original. Outliers 
from the LCL are visible for the voids implemented in the stepped re
gions and in the triangular features of the part. Outliers for these void 
defects were visible by sensor-I, while no outliers or significant fluctu
ations were found in the sensor-II data which again highlights the 
advantage of a multi-sensor approach. An over-extrusion defect was 
implemented at the end of the print and is also labeled in Fig. 8. Here, 
sensor-I data shows an increase of temperature which created an outlier 
to its UCL. Sensor-II, on the other hand, also showed a significant fluc
tuation but which was opposite to sensor-I and resulted in a LCL viola
tion. This is hypothesized to be due to the unpredictable direction in 
which the over-extruded excess material flows as it builds up on the part 
surface, with more hot material being visible by one sensor and a lack of 
material being seen by the other in this instance. Regardless, the printing 
defect event was able to be seen as an aberration in the expected 
behavior by both sensors and thus flagged as an issue accordingly. 

4. Discussion 

Results presented in Figs. 6 and 8 show significant thermal fluctua
tions at the locations of intentionally implemented defects. However, 

Fig. 7. (a) CAD images of the standard test article (dimensions in mm), (b) 3D 
printed standard test article with intentional defects. 
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not every defect was simultaneously observable by both sensors due to 
their differing orientations with respect to extruder head movement. 
This result supports the need for multiple sensors focusing on differing 
regions in order to achieve truly effective in situ defect detection in 
FDM-based AM. In this work, two sensors were implemented to sense at 
two different axial directions, with the integration of additional sensors 
being limited by the presence of existing hardware. However, we expect 
that two additional sensors may be required in order to ensure 
comprehensive monitoring. 

The results presented here also demonstrate that the integrated IR 
sensors facilitate the detection of a minimum void width of around 
1.5 mm. This resolution was achieved by using a customized aperture 
and by designing sensors working distance as small as possible without 
disturbing the printer’s operation. Further decreasing the aperture size 
and working distance could lead to improved defect detection size res
olution if the practical challenges of doing so can be overcome. Future 
works could investigate these changes to achieve a more robust moni
toring approach for FDM-based AM. However, some changes would be 
specific to the printer model in question and may not necessarily 
translate to the broader field. Thus, in this work we focused on the 
broader topic of a general multi-sensor IR temperature-based approach 
towards in situ defect detection in real time. 

In developing the means to interpret the raw temperature versus 
time data, two different statistical approaches were implemented in this 
work to detect and verify the significance of a temperature fluctuation. 
The simple statistical approaches for this proof-of-concept study were 
meant to mimic a rudimentary form of machine learning in which the 
algorithm receives baseline data as its training and compares incoming 
data to this learned behavior. First, a +/−3σ control chart featuring 
baseline-associated UCL and LCL was applied to a given part geometry to 
locate features that violate the control limits. This worked well for void 
identification but did not always work for over-extrusion events. Next, a 
hypothesis test was able to test the significance of a slope deviation 
within the test data as compared to baseline data, which is helpful when 
only slope-like fluctuation is present instead of a UCL/LCL outlier. These 
experiences demonstrate that a robust data analysis scheme is an ab
solute requirement of an effective in situ monitoring solution, and that 
simple statistical methods such as these may not be infallible for 

complex printing patterns or specialized cases even if the temperature 
sensing aspects are working perfectly. Thus, a powerful and perhaps 
even necessary next step towards developing this technology would be 
to incorporate real machine learning into the process monitoring in 
which a more robust and complex algorithm with more inputs can be 
trained to recognize aberrations in the multi-sensor temperature data 
with greater reliability and precision than can be done by simple, 
traditional statistics as utilized here. 

The eventual need for machine learning and automated data 
handling is even more apparent for more complex print geometries, 
longer print times, and more integrated sensors. The data generated 
from in situ monitoring under these conditions could be considerable. 
For example, in this work all preliminary analysis was done for an L- 
shaped test sample designed in a way that the sample was very basic but 
provided a print orientation that allowed both the sensors to be active 
for defect detection. Due to its simplicity, the number of print temper
ature patterns as well as their duration was very small; thus, defect 
detection with control charts was possible even with the naked eye. To 
experiment on a more complex and realistic geometry, a standard test 
article was then utilized. Several findings were observed during this test. 
For an over-extrusion defect two sensors at same time instance showed 
two different and opposite kind of fluctuations. Sensor-I showed outlier 
from the upper control limit and sensor-II showed outlier from the lower 
control limit. But for the simple L-shaped sample a negative slope was 
visible in the control chart. This led to a conclusion that, depending on 
print orientation, geometry of features, and defect position different 
types of fluctuations could be observed but may differ in their trend. 

5. Conclusion 

In this work, real time in situ detection of void and over-extrusion 
defects was effectively demonstrated using commercial components 
and fundamental statistical methods. The benefits of the multi-sensor 
approach were demonstrated, and the ability of the system to work 
with complex industry standard part geometries was shown. Voids as 
small as 1.5 mm width were successfully detected by both the sensors. 
Over-extrusion defects showed a significantly different slope instead of 
control limit violation, thus necessitating a multi-faceted approach to 

Fig. 8. (a) +/−3σ control chart for sensor-I and (b) sensor-II comparing voids and over-extrusion defects at multiple locations within the standard test article. Break 
line plots are created due to the length of data. 
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statistical analysis of the temperature data. This multi-sensor approach 
along with the developed statistical data analysis has been shown here to 
be effective but could be significantly improved if combined with the 
algorithms of machine learning. With additional development, the 
multi-sensor temperature monitoring approach described here will not 
only provide an indication of defects like voids and over-extrusion, but 
also other anomalies such as filament breakage, clogged nozzle, or even 
unforeseen events which may lead to unsatisfactory part performance. 
In addition, this approach may help detect intentional sabotage attempts 
of printed parts by malicious parties through hacking of the AM hard
ware in order to induce defects. 
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