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Melt pool temperature is a critical parameter for the majority of additive manufacturing processes. Monitoring of
the melt pool temperature can facilitate the real-time detection of various printing defects such as voids, over-
extrusion, filament breakage, clogged nozzle, etc. that occur either naturally or as the result of malicious
hacking activity. This study uses an in situ, multi-sensor approach for monitoring melt pool temperature in which
non-contact infrared temperature sensors with customized field of view move along with the extruder of a fused
deposition modeling-based printer and sense melt pool temperature from a very short working distance
regardless of its X-Y translational movements. A statistical method for defect detection is developed and utilized
to identify temperature deviations caused by intentionally implemented defects. Effective detection for multiple
defect types and sizes is demonstrated using both a simple L-shaped test geometry and a more complex industry
standard test article. Strengths and limitations of this approach are presented, and the potential for expansion via
more advanced data analysis techniques such as machine learning are discussed.

1. Introduction

Fused deposition modeling (FDM) is one of the most promising and
continuously growing additive manufacturing (AM) techniques that
possesses the advantages of printing lightweight and complex parts with
fewer operational steps [1,2]. Unlike conventional manufacturing, in-
ternal features are printed at the same time as the structure, which
eliminates further processing steps and use of expensive tools [3].
Moreover, material deposition in specific print location ensures effective
material consumption and low product final weight [2]. Along with
these advantages, this manufacturing technology can present unique
challenges in terms of mechanical performance and dimensional accu-
racy. Some major issues of FDM include pore/void formation,
over-extrusion, shrinkage, corner warping, delamination, and clogging
of material in the nozzle [4]. These defects can lead to high dimensional
error and poor mechanical properties [5]. In certain cases, the number
or severity of defects can require reprinting of the entire part which
increases material usage and lead time. Besides naturally occurring
defects, malicious entities may seek to induce defects as a means of
sabotaging printed parts via hacking of the printing apparatus. Thus, it is
advantageous to implement in situ condition monitoring whenever

possible in order to take corrective measures during the print or abort
the print entirely in the case of a critical defect condition. Also, when
consistent quality assurance is a requirement, AM becomes unreliable
without the aid of in situ quality monitoring measures [6]. In the longer
term, in situ process monitoring with real-time defect detection will
create new possibilities to establish a self-adaptive system with sophis-
ticated machine learning-enabled prediction features, which will
transform AM into a more dependable and commercially viable tech-
nique [1,7].

A crucial parameter for any AM process involving a thermoplastic
polymer is the temperature of the melted region, which dictates vis-
cosity within the melt and thermal residual stress build-up during so-
lidification [8,9]. Because temperature affects the way in which the
molten materials flows, accumulates, and bonds to the existing mate-
rials, the temperature of the extruded material has a strong influence on
the formation of defects, inter-layer bonding strength, and other aspects
of the print which are critical to its final performance [10]. Thus, de-
viations of temperature within the melted region can be a strong indi-
cator of a printing defect. Physically, a lack of extruded material may
lead to a void and correspond to a lower than expected temperature as
the cooler material underneath remains exposed for example, while an
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excess of hot material occurs with an over extrusion event may lead to an
abnormally high temperature or an irregular temperature trend in the
vicinity of the event. For these reasons, there have been previous efforts
to achieve real-time temperature monitoring of various types of AM
processes [8,11]. The majority of these have involved a stationary, in-
dustry standard infrared (IR) thermal camera focused on a single print
region to measure spatial and temporal temperature profiles of printed
layers and corresponding sublayers during print. However, there are
significant limitations when using a stationary temperature monitoring
approach such as this. First, a stationary imaging system must be posi-
tioned to be able to view the full printing region of interest (ROI), which
can negatively affect the resolution of fine features for larger ROI. Be-
sides compromised spatial resolution, the ROI can easily be partially or
entirely obscured by the moving extruder head assembly which in-
creases the chance of missing crucial temperature profiles generated
right after the extrusion of material. Due to the size of camera and its
large field of view (FOV), it is often a challenge to set up the camera in an
appropriate location of the 3D printer to get the desired view without
any obstacle. Further, if real-time monitoring of temperatures is the
end-goal of such measurements, there must be an associated back-end
image analysis solution in place to translate the thermal images into
actionable data. Depending on the size, complexity, and number of
images to be analyzed, this may not be a trivial task.

An improved approach would instead use IR thermal sensors that
move with the print head to monitor the ROI from a shorter working
distance and with a FOV that includes on the recently extruded material
and its immediate vicinity. In addition, the focus on the melt pool region
by one or more sensors would facilitate more direct back-end analysis of
their associated signal outputs as opposed to requiring image analyses.
In one previous work that adopted this approach, a single IR tempera-
ture sensor was attached to an FDM printer to monitor the melt pool
temperature along with a variety of other physical sensors in order to
analyze signal patterns under different process conditions and to learn
how they might correlate with process states and the evolution of build
failure [12]. With respect to temperature sensing specifically, the use of
a single sensor limits the ability of temperature monitoring to one spe-
cific direction. As the FDM printer extruder moves along both X and Y
axes during printing, there will be a loss of usable temperature infor-
mation for any of the two axes depending on extruder movements. This
then suggests that a multi-sensor approach may be advantageous, but to
the best of our knowledge has never been previously explored. This
question of whether multiple sensors provide superior defect detection
compared to single-sensor approaches forms the hypothesis investigated
here.

In this work, a multi-sensor approach has been developed in which
two IR thermal sensors are integrated within an FDM-based 3D printer
such that there is a very short distance between the sensors and the
extruder. In this way, a small target sensing area has been established
near the melt pool region, i.e., the critical contact point where newly
extruded material is deposited onto the workpiece surface. This en-
hances the sensors spatial sensitivity to defects. As the sensors move
along with the extruder unit, they provide continuous in situ process
monitoring and anomaly detection in real-time. Further, the use of
multiple sensors allows for the temperature of the extruded material to
be monitored regardless of X-Y translation direction. When this multi-
sensor data is interpreted in conjunction with the G-code controlling
the printer head, additional insight into local temperature distributions
and defect location within the part can be obtained as compared to a
single sensor. This approach is demonstrated for both a simple part ge-
ometry as well as a more complex industry standard test article.
Strengths and limitations of this approach are presented, and the po-
tential for expansion via more advanced data analysis techniques such as
machine learning are discussed.
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2. Methodology
2.1. Fused Deposition Modeling (FDM)-based 3D Printer

In an FDM printing process, the material is heated within an extruder
head and then selectively deposited through a nozzle that traces the
part’s cross-sectional geometry to produce 3D parts directly from a CAD
model in a layer-by-layer manner. A wide range of materials are avail-
able for this manufacturing process such as polylactic acid (PLA),
acrylonitrile butadiene styrene, polycarbonate, and PCABS blend [13].
For the purpose of this work, a commercial FDM-based desktop 3D
printer (LulzBot TAZ 6) was used as the example test. PLA was chosen as
the printing material due to its widespread usage, though the calibration
and sensing methods employed for this work can be easily applied to
many other commonly used FDM materials. For printing of the PLA, the
extruder temperature was set in the range of 205-210 °C and the print
bed temperature was set to 60 °C. Printed samples were first drawn using
commercial CAD software, and later the commercial slicing software
CURA was used to convert the CAD STL file to a G-code file which ul-
timately controlled the motion of the printer head during a print process.

2.2. Selection of IR temperature sensor

A commercial IR temperature sensor (Texense IRN-2) was selected
for this work based on its performance specifications and ease of inte-
gration. For the chosen 3D printer, the maximum extruder temperature
reaches 210 °C during print. Thus, the specific Texense IRN-2 sensor
model with a maximum temperature of 300 °C was selected to ensure
that the sensing scale was optimized for achieving a strong and easily
measured voltage signal output. The sensor accuracy is 2% of full scale
while the output signal is on a 0-5 V scale per manufacturer specifica-
tions. As stated previously, it is advantageous for the FOV to be com-
parable to or slightly larger than the melt pool and its immediate
vicinity. To achieve this, a custom aperture made of low emissivity
highly polished aluminum with a center hole of 2.5 mm diameter was
installed on the face of each sensor to reduce its standard FOV and tune
its spatial resolution to that desired in this application. In its stock form,
the sensors would have a spot size of approximately 8 mm diameter at
the targeted working distance of 25 mm. With the custom apertures
attached, the spot size of the sensors was found to be approximately 4
mm at the same working distance, which for an extruder nozzle diam-
eter of 0.5 mm represents a sensing region roughly eight nozzle di-
ameters across and was found to produce good results as shown via the
results to be discussed in the following sections.

2.3. Calibration of IR sensor

When it comes to infrared temperature measurements, the apparent
temperature of an object is a function of both its temperature and its
thermal emissivity, which is a material property. For some surfaces, the
emission of thermal radiation may also be dependent on the direction of
observation. As a result, accuracy in temperature measurement requires
calibration of IR sensors to the specific material, surface condition, and
observation angle that will be utilized in practice. With this goal in
mind, IR sensor calibration procedures were conducted for each indi-
vidual sensor as shown in Fig. 1. The sample used for calibration was a
25 mm x 25 mm x 3.5 mm PLA part printed on the LulzBot Taz6 printer
using the same printer settings as used for the printed parts analyzed
later in this work. Beneath the PLA sample was a 25 mm x 25 mm thin
film Kapton heater and two sets of thin 25 mm x 25 mm copper (Cu)
plates. The two Cu plates were used to ensure better thermal contact and
more uniform temperature distribution on the backside of the PLA
sample. The Cu-heater-Cu sandwich was attached with the PLA sample
using a thermally conductive epoxy. For temperature measurements,
three J-type thermocouples were inserted inside the PLA sample through
three 1 mm diameter holes which each extended to near the center line
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Fig. 1. Annotated illustrations of the IR sensor calibration (a) setup and (b) PLA sample.

of the calibration sample. Three thermocouples with 4 mm spacing were
used in order to quantify the degree of temperature uniformity in the
center of the sample where the IR sensor’s viewing region would occur.
Through all initial test runs, temperature differences of less than 1 °C
were found between the three thermocouples which verifies that this
setup succeeded in creating a uniform temperature distribution
throughout the central region of the PLA sample to be used for IR sensor
calibration.

Calibration was completed in two steps. In the first step, the tem-
perature of the sample’s top surface was measured via a fourth J-type
thermocouple in direct contact with center of the top surface of the PLA
sample. This was done to establish a known relationship between the
temperatures measured by the three embedded thermocouples and the
actual temperature at the top surface of the PLA sample. In the second
step, the fourth thermocouple was removed, and the sample top surface
was instead observed using the IRN-2 sensor. The sensor was first
outfitted with the FOV-reducing aperture described above and oriented
at the same design angle and working distance to be utilized when in-
tegrated onto the moving printer head. In this way, a sensor-specific
correlation between a given IR sensor’s IR voltage output and the sur-
face temperature of the PLA was obtained for the same emissivity, sur-
face condition, FOV, and direction of view as during actual printing,
with representative results shown in Fig. 2. To associate the actual
temperature at the top surface of the PLA sample obtained from the
fourth thermocouple along with the IR sensor’s voltage output, the
embedded thermocouples average temperature was considered as the
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Fig. 2. Sensor signal output vs top surface temperature of PLA sample.

baseline. During calibrations, the sample’s maximum top surface tem-
perature was limited to approximately 80 °C to prevent the sample from
deforming. Thus, to achieve voltage and temperature relations for
higher temperature conditions, regression analysis and extrapolation
was applied. Prior to performing the final calibration experiments, a test
for angle dependency was conducted by taking data at 90° and 58.6°,
where the latter is the designated angle for the sensor’s eventual inte-
gration with printer head. No significant differences between the two
data sets were observed, which led to the conclusion that the angular
dependence for the IR temperature measurement was weak for this
specific material and surface condition combination. In wider practice,
because emissivity and surface roughness are material/print parame-
ters, strictly speaking a change in feedstock or material should neces-
sitate a new calibration be performed for each sensor. However, many
polymers have similar emissivity values and if the surface roughness of
the print will be unchanged, this may not be entirely necessary every
time.

2.4. Sensor integration

Following calibration, the two IRN-2 sensors were attached to the 3D
printer’s extruder unit. Custom designed 3D printed brackets were used
to hold the sensors at an angle of 58.6°, which is the angle at which the
sensors can be mounted on the extruder unit to sense the appropriate
printing zone without impeding any existing hardware (Fig. 3(a-b)).
Both the sensor-bracket assemblies were mounted with the extruder unit
such that one sensor’s viewing spot follows the extruder from its front
while the other sensor’s viewing spot follows the extruder from its left
side as shown conceptually in Fig. 3(c). In this way, the sensors provide
temperature data for two different axes of movement of the extruder and
facilitate the multi-directional observation capability of the in situ
measurement system. During sensor integration, sensor-I was set at a
working distance of 25 mm from its ROI (the region near melt pool in
front of the extruder), and sensor-II was set at a working distance of
23 mm from its ROI (the melt pool region to the side of the extruder). As
can be seen in Fig. 3, both sensors are located in close proximity to the
extruder head hardware such that there is a possibility of signal
contamination from the much hotter extruder impacting the IR signal
being sought from the printed part. To mitigate this, a low emissivity
polished aluminum sheet was installed around the extruder within the
space between it and the sensors to act as a thermal radiation shield.

2.5. Design of print sample and intentional defect generation

For initial testing of in situ monitoring using the two IR sensors, a
simple L-shaped sample was first utilized as shown in Fig. 4. According
to the implemented sensor integration, sensor-I will be most effective
during the + Y-axial movement of the extruder and sensor-II will be
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Fig. 3. (a) An illustration of sensors measuring melt pool temperature, (b) Image showing both sensors attached with the extruder head and (c) top view showing two

different sensing zone for the sensors.
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Fig. 4. (a) CAD images of the L-shaped sample (numbers in mm), (b) Layer
view of printing taken from commercial slicing software and (c) Intentional
defects on the L-shaped test print.

most effective during the + X-axial movement of the extruder.

The L-shaped sample designed here enables both the sensors to be
ensured to be effective for more than two third of the duration of a single
sample print. The STL file of the sample CAD was imported into the
commercial slicing software CURA, which sliced the sample into 11
layers (8 skin layers and 3 fill layers). The layer view of the slicing
software shows the print orientations for the different layers as given in
Fig. 4(b). For layer-1, the extruder starts moving along the —X direction
and then turns at 90° to print along +Y direction to complete the layer.
Thus, for layer-1 only sensor-I remains effective as it senses the heated
region near melt pool along the +Y direction. For layer-2 the orientation
changes. Now the extruder starts moving along +X direction and after
completing the horizontal part of the L-shaped sample’s second layer,

the extruder moves toward the vertical region of the sample and com-
pletes the layer by moving along +Y direction again. Thus, for layer-2
both sensor-I and sensor-II will be effective for temperature sensing
Fig. 4(b). The consecutive layers will be printed by alternating these two
types of layer orientation.

After the design of the L-shaped test sample, a repeatable method of
creating intentional defects at known locations within the sample was
devised in order to quantify how well the sensors were able to detect
defects or anomalies as they occurred. The two types of intentional de-
fects able to be created and analyzed in this work are voids (lack of
material) and over-extrusion (excess of material). The creation of
intentional defects was achieved by manipulation of the G-Code that
controls the print process after it was generated by the software but prior
to initiating printing. By changing multiple extrusion commands within
the G-Code, voids of controllable size at known locations were created
during a given test print. To create an over-extrusion event, both feed
rate and extrusion action commands within the G-Code were changed.
Three different sizes of voids were implemented in which the void width
was varied. The other two void size parameters i.e., length and height of
voids, were constant and similar to sample width and layer height which
are 10 mm and 0.25 mm, respectively. Fig. 4(c) shows representative
examples of the two types of defects implemented via G-Code
manipulation.

3. Analysis of temperature signals for defect detection

Test prints were done for standard profile, 40% infill, and without
any build plate adhesion. As stated earlier, the L-shaped sample con-
sisted of 11 layers (8 skin layers and 3 fill layers in a 4-3-4 combina-
tion). For every layer, printing started with the walls followed by the
skins and fills. Fig. 5 shows a typical temperature signal versus time data
set for a test run with no defects present, which we term a “good print” to
distinguish from prints with defects. Regions in time corresponding to
the printing of wall, skin, fill, and different layers are marked. This
temperature versus time pattern for a good L-shaped part print was
found to be highly repeatable between repeated runs.

To accomplish defect detection, a simple statistical approach was
developed for this proof-of-concept study which is similar to a rudi-
mentary form of machine learning. To create a reliable baseline data set
for a good (defect-free) print against which to compare the defect-laden
prints, temperature data obtained from three good prints was first
averaged point-by-point in time. Then, the standard deviation ¢ of the
three good prints were likewise determined point-by-point in time. By
adding or subtracting a certain number of standard deviations from the
averaged baseline data, an upper control limit (UCL = average + n o)
and lower control limit (LCL = average — n o) control chart was created.
By comparing the data from a test print against this control chart, the
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Fig. 5. A typical good print temperature plot of the L-shaped sample obtained from sensor-I.

presence of a given defect could be identified via violation of either the
UCL or LCL at specific instances in time. After repeated calibration trials
with defects of known location, it was determined that using n = 3 in the
above definitions of UCL and LCL was able to reliably and repeatedly
identify defect presence without creating frequent false positives where
no defects were present.

In terms of sensor accuracy for defect detection, it is important to
point out a few key aspects. First, as stated above the sensor accuracy is
2% of full scale per manufacturer specifications. This refers to the ab-
solute temperature accuracy of the sensor, not its noise level. The actual
output of the sensor is very stable for a given steady-state temperature,
with noise on the order of <0.05% of the signal magnitude. Thus, the
influence of random point-by-point error is minimal. Second, the inde-
pendent calibrations performed for each sensor eliminates the influence
of any sensor-to-sensor output variation. Third, the manner in which the
sensors are utilized to identify defects is important. Because the detec-
tion scheme is based on comparison of the output from each sensor for a
known “good print” against the output from those same sensors for a

Temperature (°C)
130 4

120 3mm Void 3mm Void
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80+

— UCL LCL Defect Print
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“test print” in question, any bias error not already accounted for via
sensor-specific calibration would be present in both the “good print”
data and the “test print” data taken with the same exact sensor. Thus,
even if there is some residual absolute error present with a given sensor,
via usage of a comparison approach the defect detection scheme
employed here is still able to be effective.

3.1. Void defect detection

Intentional voids of different sizes were implemented in multiple
locations and layers of the L-shaped sample, where over-extrusion was
implemented only on the topmost layer of the sample into one known
location. The defected samples were printed with a cold printer to get
defect print temperature data from both of the sensors using a com-
mercial data acquisition device. Fig. 6 shows temperature data taken
during a test print with intentional void defects of varying sizes as well
as one instance of an over-extrusion event. The UCL and LCL control
chart data are also plotted for comparison and to evaluate defect
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Fig. 6. +/—30 control chart comparing defected print temperature data with the control limits. (a) Control chart for sensor-I (b) Control chart for sensor-II
comparing void and over-extrusion defects at multiple locations. Locations of defects introduced via G-code manipulation are indicated.
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detection. As can be seen, the presence of a defect leads to a deviation of
the temperature signal from the baseline as manifested by going below
the LCL. Void defects as small as 1.5 mm of width were detected suc-
cessfully at different layers of print by the +/- 36 control chart. To
evaluate the ability of increasing the sensitivity of the defect detection
scheme, +/- 1.5 ¢ and +/- 20 control charts were also tested for this
case. However, this led to multiple instances of false positives where
defects were flagged to have occurred when there were no defects pre-
sent. Thus, the +/- 30 control chart was chosen as being the most
appropriate for this work. In order to illustrate this point visually, ex-
amples of UCL and LCL comparisons using a 1.5 o, 20, and 30 basis have
been added into the Supplementary Material document as Figs. S1-S3,
respectively.

Over repeated trials, voids implemented on different layers of the
vertical part of L-shaped sample were always captured by sensor-I while
moving at +Y direction. Three different sizes of voids were tested which
are clearly visible by the sensor-I control chart’s outliers as labeled in
Fig. 6(a). Voids were also implemented in the horizontal part of the same
L-shaped sample, but there were no significant fluctuations or valleys
observed in the sensor-I control chart for those void defects. This result
highlights the necessity of having more than one IR sensor in order to
achieve robust defect detection along multiple head movement di-
rections. For this example, the second sensor (sensor-II) captures IR
signals at the +X direction and is thus able to detect these defects that
sensor-I does not. Fig. 6(b) gives the sensor-II control chart for the same
test print as shown for sensor-I in Fig. 6(a) and identifies the voids
implemented on different layers of the L-shaped sample’s horizontal
part.

3.2. Over-extrusion defect and T-test for comparing slopes

Over-extrusion events were implemented only on the topmost layer
(vertical part) of the L-shaped sample, with an example of an over-
extrusion event’s temperature signature marked in Fig. 6(a). Over-
extrusion results in an excess of material being deposited in a specific
region, with the exact directional movement of the excess material being
unpredictable. If this excess molten material rolls or bulges into the FOV
of a sensor, it can manifest itself as an unexpected positive change in
slope within the temperature versus time data. If, however, the excess
material causes a movement of material away from the targeted area/
FOV, the defect manifests itself as an unexpected negative change in
slope within the temperature versus time data. For the case shown in
Fig. 6(a), instead of a drop in temperature outlying the LCL as seen for
void defects, a significantly different slope is observed in the marked
part of the control chart. This negative slope, while notably different
from the baseline derived UCL and LCL lines, does not actually lead to a
UCL or LCL violation. As a result, the simplistic UCL/LCL approach
which was shown to be effective at identifying voids would not on its
own be successful in flagging this as a print defect. Instead, the ability to
detect an over-extrusion event requires the inclusion of a second sta-
tistical approach which determines the significance of the slope differ-
ence between baseline data and the test print at corresponding points in
print time. A hypothesis test was conducted using a T-test for this pur-
pose, where the null hypothesis is that there is no significant difference
between baseline and test print slopes and the alternate hypothesis is
that the difference between the slopes is significant. This T-test was
conducted between the defective print data and the average of three
good prints data, taking a moving average of sample size n = 5. P-values
were obtained from the T-test calculations, which were then compared
with a significance level (alpha) = 0.001. If the P-value chosen is lower
than the decided significance level, then the null hypothesis is rejected
and the alternate hypothesis is accepted. As an example, the lowest P-
value was found to be 0.00082 at the over-extrusion event marked in
Fig. 6(a), which is lower than the decided significance level. Thus, the
deviation of slope method of identifying aberrations in printing behavior
that do not necessarily violate UCL or LCL bounds is an effective means
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of detecting the occurrence of over-extrusion events or other defects that
may not be found otherwise.

3.3. Standard test article results

After conducting these initial tests with the simplistic L-shaped
sample, similar tests were performed on a different part geometry which
was comparatively complex and covered more variations in extruder
head movement. Thus, a new part geometry was chosen from literature
which resembles the NAS 979 standard test article, also known as the
circle diamond square test [12]. The version of the standard test article
utilized in this work is shown in Fig. 7.

Creation of a baseline data set and its associated UCL and LCL was
performed as before for the L-shaped part. Intentional voids were
implemented on different features of the test article which are shown in
Fig. 7(b). Defect print temperature data was then plotted in the control
chart shown in Fig. 8 which is a break line plot of the original. Outliers
from the LCL are visible for the voids implemented in the stepped re-
gions and in the triangular features of the part. Outliers for these void
defects were visible by sensor-1, while no outliers or significant fluctu-
ations were found in the sensor-II data which again highlights the
advantage of a multi-sensor approach. An over-extrusion defect was
implemented at the end of the print and is also labeled in Fig. 8. Here,
sensor-I data shows an increase of temperature which created an outlier
to its UCL. Sensor-II, on the other hand, also showed a significant fluc-
tuation but which was opposite to sensor-I and resulted in a LCL viola-
tion. This is hypothesized to be due to the unpredictable direction in
which the over-extruded excess material flows as it builds up on the part
surface, with more hot material being visible by one sensor and a lack of
material being seen by the other in this instance. Regardless, the printing
defect event was able to be seen as an aberration in the expected
behavior by both sensors and thus flagged as an issue accordingly.

4. Discussion

Results presented in Figs. 6 and 8 show significant thermal fluctua-
tions at the locations of intentionally implemented defects. However,
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Fig. 7. (a) CAD images of the standard test article (dimensions in mm), (b) 3D
printed standard test article with intentional defects.
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not every defect was simultaneously observable by both sensors due to
their differing orientations with respect to extruder head movement.
This result supports the need for multiple sensors focusing on differing
regions in order to achieve truly effective in situ defect detection in
FDM-based AM. In this work, two sensors were implemented to sense at
two different axial directions, with the integration of additional sensors
being limited by the presence of existing hardware. However, we expect
that two additional sensors may be required in order to ensure
comprehensive monitoring.

The results presented here also demonstrate that the integrated IR
sensors facilitate the detection of a minimum void width of around
1.5 mm. This resolution was achieved by using a customized aperture
and by designing sensors working distance as small as possible without
disturbing the printer’s operation. Further decreasing the aperture size
and working distance could lead to improved defect detection size res-
olution if the practical challenges of doing so can be overcome. Future
works could investigate these changes to achieve a more robust moni-
toring approach for FDM-based AM. However, some changes would be
specific to the printer model in question and may not necessarily
translate to the broader field. Thus, in this work we focused on the
broader topic of a general multi-sensor IR temperature-based approach
towards in situ defect detection in real time.

In developing the means to interpret the raw temperature versus
time data, two different statistical approaches were implemented in this
work to detect and verify the significance of a temperature fluctuation.
The simple statistical approaches for this proof-of-concept study were
meant to mimic a rudimentary form of machine learning in which the
algorithm receives baseline data as its training and compares incoming
data to this learned behavior. First, a +/—3¢ control chart featuring
baseline-associated UCL and LCL was applied to a given part geometry to
locate features that violate the control limits. This worked well for void
identification but did not always work for over-extrusion events. Next, a
hypothesis test was able to test the significance of a slope deviation
within the test data as compared to baseline data, which is helpful when
only slope-like fluctuation is present instead of a UCL/LCL outlier. These
experiences demonstrate that a robust data analysis scheme is an ab-
solute requirement of an effective in situ monitoring solution, and that
simple statistical methods such as these may not be infallible for

complex printing patterns or specialized cases even if the temperature
sensing aspects are working perfectly. Thus, a powerful and perhaps
even necessary next step towards developing this technology would be
to incorporate real machine learning into the process monitoring in
which a more robust and complex algorithm with more inputs can be
trained to recognize aberrations in the multi-sensor temperature data
with greater reliability and precision than can be done by simple,
traditional statistics as utilized here.

The eventual need for machine learning and automated data
handling is even more apparent for more complex print geometries,
longer print times, and more integrated sensors. The data generated
from in situ monitoring under these conditions could be considerable.
For example, in this work all preliminary analysis was done for an L-
shaped test sample designed in a way that the sample was very basic but
provided a print orientation that allowed both the sensors to be active
for defect detection. Due to its simplicity, the number of print temper-
ature patterns as well as their duration was very small; thus, defect
detection with control charts was possible even with the naked eye. To
experiment on a more complex and realistic geometry, a standard test
article was then utilized. Several findings were observed during this test.
For an over-extrusion defect two sensors at same time instance showed
two different and opposite kind of fluctuations. Sensor-I showed outlier
from the upper control limit and sensor-II showed outlier from the lower
control limit. But for the simple L-shaped sample a negative slope was
visible in the control chart. This led to a conclusion that, depending on
print orientation, geometry of features, and defect position different
types of fluctuations could be observed but may differ in their trend.

5. Conclusion

In this work, real time in situ detection of void and over-extrusion
defects was effectively demonstrated using commercial components
and fundamental statistical methods. The benefits of the multi-sensor
approach were demonstrated, and the ability of the system to work
with complex industry standard part geometries was shown. Voids as
small as 1.5 mm width were successfully detected by both the sensors.
Over-extrusion defects showed a significantly different slope instead of
control limit violation, thus necessitating a multi-faceted approach to
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statistical analysis of the temperature data. This multi-sensor approach
along with the developed statistical data analysis has been shown here to
be effective but could be significantly improved if combined with the
algorithms of machine learning. With additional development, the
multi-sensor temperature monitoring approach described here will not
only provide an indication of defects like voids and over-extrusion, but
also other anomalies such as filament breakage, clogged nozzle, or even
unforeseen events which may lead to unsatisfactory part performance.
In addition, this approach may help detect intentional sabotage attempts
of printed parts by malicious parties through hacking of the AM hard-
ware in order to induce defects.
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