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Abstract
We study the probabilistic convergence between the mapper graph and the Reeb graph
of a topological space X equipped with a continuous function f : X → R. We first
give a categorification of the mapper graph and the Reeb graph by interpreting them in
terms of cosheaves and stratified covers of the real lineR. We then introduce a variant
of the classic mapper graph of Singh et al. (in: Eurographics symposium on point-
based graphics, 2007), referred to as the enhanced mapper graph, and demonstrate
that such a construction approximates the Reeb graph of (X, f ) when it is applied to
points randomly sampled from a probability density function concentrated on (X, f ).
Our techniques are based on the interleaving distance of constructible cosheaves and
topological estimation via kernel density estimates. Following Munch and Wang (In:
32nd international symposium on computational geometry, volume 51 of Leibniz
international proceedings in informatics (LIPIcs), Dagstuhl, Germany, pp 53:1–53:16,
2016), we first show that the mapper graph of (X, f ), a constructibleR-space (with a
fixed open cover), approximates the Reeb graph of the same space. We then construct
an isomorphism between the mapper of (X, f ) to the mapper of a super-level set
of a probability density function concentrated on (X, f ). Finally, building on the
approach of Bobrowski et al. (Bernoulli 23(1):288–328, 2017b), we show that, with
high probability, we can recover the mapper of the super-level set given a sufficiently
large sample. Our work is the first to consider themapper construction using the theory
of cosheaves in a probabilistic setting. It is part of an ongoing effort to combine sheaf
theory, probability, and statistics, to support topological data analysis with random
data.
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1 Introduction

In recent years, topological data analysis has been gainingmomentum in aiding knowl-
edge discovery of large and complex data. A great deal of work has been focused on
data modeled as scalar fields. For instance, scientific simulations and imaging tools
produce data in the form of point cloud samples equipped with scalar values, such
as temperature, pressure and grayscale intensity. One way to understand and char-
acterize the structure of a scalar field f : X → R is through various forms of
topological descriptors, which provide meaningful and compact abstraction of the
data. Popular topological descriptors can be classified into vector-based ones such as
persistence diagrams (Edelsbrunner et al. 2002) and barcodes (Ghrist 2008; Carlsson
et al. 2004), graph-based ones such as Reeb graphs (Reeb 1946) and their variants
merge trees (Beketayev et al. 2014) and contour trees (Carr et al. 2003), and complex-
based ones such as Morse complexes, Morse–Smale complexes (Gerber and Potter
2012; Edelsbrunner et al. 2003a, b), and the mapper construction (Singh et al. 2007).

For a topological space X equipped with a function f : X → R, the Reeb graph,
denoted as R(X, f ), encodes the connected components of the level sets f −1(a) for
a ranging overR. It summarizes the structure of the data, represented as a pair (X, f ),
by capturing the evolution of the topology of its level sets. Research surrounding
Reeb graphs and their variants has been very active in recent years, from theoretical,
computational and applications aspects, see Biasotti et al. (2008) for a survey. In the
multivariate setting, Reeb spaces (Edelsbrunner et al. 2008) generalize Reeb graphs
and serve as topological descriptors of multivariate functions f : X → Rd . The Reeb
graph is then a special case of a Reeb space for d = 1.

One issue with Reeb spaces are their limited applicability to point cloud data. To
facilitate their practical usage, a closely related construction called mapper (Singh
et al. 2007) was introduced to capture the topological structure of a pair (X, f ) (where
f : X → Rd ). Given a topological space X equipped with a Rd -valued function f ,
for the classic mapper construction, we work with a finite good cover U = {Uα}α∈A of
f (X) for some indexing set A, such that f (X) ⊆ ⋃

Uα . Let f ∗(U) denote the cover
of X obtained by considering the path-connected components of f −1(Uα) for each
α. The mapper construction of (X, f ) is defined to be the nerve of f ∗(U), denoted as
N f ∗(U), see Fig. 1h for an example. By definition, themapper is an abstract simplicial
complex; and its 1-dimensional skeleton is referred to as the classic mapper graph in
this paper.

As a computable alternative to the Reeb space, the mapper has enjoyed tremendous
success in data science, including cancer research (Nicolau et al. 2011) and sports
analytics (Alagappan 2012); it is also a cornerstone of several data analytics companies
such as Ayasdi and Alpine Data Labs.Many variants have been studied in recent years.
The α-Reeb graph (Chazal and Sun 2014) redefines the equivalence relation between
points using open intervals of length at most α. The multiscale mapper (Dey et al.
2016) studies a sequence of mapper constructions by varying the granularity of the
cover. The multinerve mapper (Carriére and Oudot 2018) computes the multinerve
(de Verdiére et al. 2012) of the connected cover. The Joint Contour Net (JCN) (Carr
and Duke 2013, 2014) introduces quantizations to the cover elements by rounding
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Probabilistic convergence and stability of randommapper… 101

the function values. The extended Reeb graph (Barral and Biasotti 2014) uses cover
elements from a partition of the domain without overlaps.

Although themapper construction has beenwidely appreciated by the practitioners,
our understanding of its theoretical properties remains fragmentary. Some questions
important in theory and in practice center around its structure and its relation to the
Reeb graph.

Q1. Information content What information is encoded by the mapper? How much
information can we recover about the original data from the mapper by solving
an inverse problem?

Q2. StabilityWhat is the structural stability of the mapper with respect to perturba-
tions of its function, domain and cover?

Q3. ConvergenceWhat is an appropriate metric under which the mapper converges
to the Reeb graph as the number of sampled points goes to infinity and the
granularity of the cover goes to zero?

To the best of our knowledge, our work is the first to address convergence in a prob-
abilistic setting. Given a mapper construction applied to points randomly sampled
from a probability density function, we prove an asymptotic result: as the number of
points n → ∞, the mapper graph construction approximates that of the Reeb graph
up to the granularity of the cover with high probability.

Information, stability and convergence We discuss our work in the context of related
literature in topological data analysis. As many topological descriptors, the mapper
summarizes the information from the original data through a lossy process. To quantify
its information content, Dey et al. (2017) studied the topological information encoded
by Reeb spaces, mappers and multi-scale mappers, where 1-dimensional homology
of the mapper was shown to be no richer than the domain X itself. Carriére and Oudot
(2018) characterized the information encoded in the mapper using the extended per-
sistence diagram of its corresponding Reeb graph. Gasparovic et al. (2018) provided
full descriptions of persistent homology information of a metric graph via its intrinsic
Čech complex, a special type of nerve complex. In this paper, we study the information
content of the mapper via a (co)sheaf-theoretic approach; in particular, through the
notion of display locale, we introduce an intermediate object called the enhancedmap-
per graph, that is, a CW complex with weighted 0-cells. We show that the enhanced
mapper graph reduces the information loss during summarization and may be of inde-
pendent interest.

In terms of stability, Carriére and Oudot (2018) derived stability for the mapper
graphusing the stability of extendedpersistence diagrams equippedwith the bottleneck
distance under Hausdorff orWasserstein perturbations of the data (Cohen-Steiner et al.
2009). Our work is similar to Carriére and Oudot (2018) in a sense that we study the
stability of the enhanced mapper graph with respect to perturbation of the data (X, f ),
where the local stability depends on how the cover U is positioned in relation to the
critical values of f . However, we formalize the structural stability of the enhanced
mapper graph using a categorification of the mapper algorithm and the interleaving
distance of constructible cosheaves.

When f is a scalar field and the connected cover of its domain R consists of a
collection of open intervals, the mapper construction is conjectured to recover the
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102 A. Brown et al.

Reeb graph precisely as the granularity of the cover goes to zero (Singh et al. 2007).
Babu (2013) studied the above convergence using levelset zigzag persistence modules
and showed that the mapper converges to the Reeb graph in the bottleneck distance.
Munch and Wang (2016) characterized the mapper using constructible cosheaves and
proved the convergence between the (classic) mapper and the Reeb space (for d ≥ 1)
in interleaving distance. The enhanced mapper graph defined in this paper is similar
to the geometric mapper graph introduced in Munch and Wang (2016). The differ-
ences between the enhanced mapper graph and geometric mapper consist of technical
changes in the geometric realization of each space as a quotient of a disjoint union
of closed intervals. Proposition 1 implies that the enhanced mapper graph is isomor-
phic to the display locale of the mapper cosheaf, giving theoretic significance to the
geometrically realizable enhanced mapper graph.

Dey et al. (2017) established a convergence result between the mapper and the
domain under a Gromov–Hausdorff metric. Carriére and Oudot (2018) showed con-
vergence between the (multinerve) mapper and the Reeb graph using the functional
distortion distance (Bauer et al. 2014). The enhanced mapper graph we define plays
a role roughly analogous to the multinerve mapper in Carriére and Oudot (2018),
although with several important distinctions. Most significantly is the fact that the
enhanced mapper graph is an R-space, and as such is not a purely combinatorial
object, in contrast to the multinerve mapper, which is a simplicial poset. Carriére
et al. (2018) proved convergence and provided a confidence set for the mapper using
a bottleneck distance on certain extended persistence diagrams. They showed that the
mapper is an optimal estimator of the Reeb graph and provided a statistical method for
automatic parameter tuning using the rate of convergence. Like Carriére et al. (2018),
this paper studies a notion of consistency (detailed below) for the mapper algorithm.
In contrast to Carriére et al. (2018), the results provided here use the Reeb distance
on constructible R-graphs (defined in Sect. 2) rather than bottleneck distances on
extended persistence diagrams, and are applicable to more general topological spaces
(i.e., we do not require X to be a smooth manifold).

Probabilistic mapper inference This work is part of an effort to harness the theory
of probability and statistics to support and analyze the use of topological methods
with random data. To date, most of this effort has been put into problems related
to the homology and persistent homology of random point clouds. The problem of
homological inference relates to the ability to recover the homology (or persistent
homology) of an unknown space or function given random observations. In a noiseless
setup this problem was studied in Niyogi et al. (2008), Bobrowski (2019), Chazal
et al. (2015), de Kergorlay et al. (2019), Wang and Wang (2018). The noisy setup was
studied in Niyogi et al. (2011), Bobrowski et al. (2017b), Chazal et al. (2017), Fasy
et al. (2014). Briefly, these works provide methods to recover the homology, together
with assumptions that guarantee correct recovery with high probability. In many of
these, the results are asymptotic, taking the number of points n → ∞. Themain reason
for taking limits, is that the mathematics become more tractable, and provide simpler
and more intuitive statements. Such asymptotic results can be considered as proofs of
consistency for such homology estimation procedures. In Sect. 3, we apply results of
Bobrowski et al. (2017b) to study consistency of the enhanced mapper construction
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Probabilistic convergence and stability of randommapper… 103

introduced in Sect. 2. The statistical techniques we use are similar to those developed
inChazal et al. (2011). For further discussion of the differences between the techniques
used in Sect. 3 and the results of Chazal et al. (2011), see Bobrowski et al. (2017b).

In a way, the work here uses similar ideas to perform “mapper inference”, a type
of structural inference, and proves consistency. Other probabilistic studies related
to applied topology mainly include limiting theorems (laws of large numbers, and
central limit theorems), and extreme value analysis for the homology and persistent
homology of random data (see e.g. Yogeshwaran et al. 2016; Hiraoka et al. 2018;
Owada and Adler 2017; Bobrowski et al. 2017a; Kahle and Meckes 2013). However,
these are much more detailed quantitative statements than what we are looking for
when working with the mapper construction.

Contributions We highlight four contributions of this paper.

– First, in Sect. 2.3, we introduce and construct an enhanced mapper graph. This
graph retains more geometric information about the underlying space than the
combinatorially defined classic mapper graph, multinerve mapper graph, and geo-
metric mapper graph (defined in Munch and Wang (2016)). Moreover, we show
that the enhanced mapper graph construction provides a concrete realization of
the display locale of a constructible cosheaf.

– Second, in Sect. 2.5, we give a categorical interpretation of the mapper construc-
tion. This categorification allows us to view mapper construction as a functor
from the category of cosheaves to the category of constructible cosheaves. We
can recover a geometric realization of the mapper construction from the categori-
cal realization by taking enhanced mapper graphs, i.e., the display locales, of the
corresponding constructible cosheaves.

– Third,we prove convergence (Theorem1) and stability (Theorem3) for themapper
cosheaf in the interleaving distance.

– Finally, we obtain results on the approximation quality of random mapper graphs
obtained from noisy data on spaces which are not assumed to be manifolds (The-
orem 2).

Moreover, using the results of de Silva et al. (2016), each of our theorems are reinter-
preted in terms of the geometrically-defined enhancedmapper graph andReeb distance
on R-graphs. This reinterpretation allows us to state our main result below without
referring to the machinery of cosheaf theory.

Theorem (Corollary 3) Let R(X, f ) be the Reeb graph of a constructible R-space
(X, f ), D̂π

n be the enhanced mapper graph associated to the cosheaf D̂π
n defined in

Sect. 4, and dR(·, ·) be the Reeb distance defined in Sect. 2. Using the notation defined
in Sect. 3, if there exists ε < δU such that p is ε-concentrated on X, then

lim
n→∞P

(
dR

(
D̂π

n ,R(X, f )
) ≤ res f U

)
= 1.

Intuitively speaking, the above theorem states that we can recover (a variant of) the
mapper graph using the theory of cosheaves in a probabilistic setting. In particular,with
high probability, the distance between an enhanced mapper graph and the Reeb graph
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(a) (c)(b) (d) (e) (f) (g) (h)

Fig. 1 An example of an enhanced mapper graph. a AnR-space (X, f ) given by a topological space X (in
blue) equipped with a height function f : X → R. b Reeb graph of (X, f ). c Nice cover of R with open
intervals. d Visualization of the mapper cosheaf. e Stratification of R. f Disjoint union of closed intervals
(D̃, in the notation of Sect. 2.3), with quotient isomorphic to the enhanced mapper graph. g Enhanced
mapper graph (D, in the notation of Sect. 2.3). h Classic mapper graph of (X, f ) (color figure online)

is upper bounded by the resolution of the cover (denoted as res f U, see Definition 15)
as the number of samples goes to infinity. The proof of the theorem relies on two
preliminary results. First, in Theorem 1, we construct an interleaving between the
Reeb cosheaf and mapper cosheaf. Proposition 8 is the second key ingredient of the
proof, giving a probabilistic recovery of the mapper cosheaf from random points.
By interpreting the enhanced mapper graph in terms of cosheaf theory, we are able
to simplify many of the proofs for convergence and stability. Generally, this paper
illustrates the utility of combining sheaf theory with statistics in order to study robust
topological and geometric properties of data.

Pictorial overview To better illustrate our key constructions, we give an example
of an enhanced mapper graph. As illustrated in Fig. 1, given a topological space
equipped with a height function (X, f ), we are interested in studying how well its
classic mapper graph (h) (with a fixed cover) approximates its Reeb graph (b). In
order to study this problem, we construct a categorification of the mapper graph,
through the theory of constructible cosheaves (d). The display locale functor is used
to recover a geometric object from these category-theoretic constructible cosheaves.
The geometric realization of the display locale of the mapper cosheaf is referred to
as the enhanced mapper graph (g). We outline an explicit geometric realization of the
enhanced mapper graph as a quotient of a disjoint union of closed intervals (f).

The main result of the paper, Theorem 2, gives (with high probability) a bound on
the interleaving distance between the Reeb cosheaf and the enhanced mapper cosheaf.
In order to interpret this result in terms of probabilistic convergence (Corollary 3), we
apply the display locale functor to obtain the Reeb graph and the enhanced mapper
graph from their cosheaf-theoretic analogues. This procedure results (with high prob-
ability) in a bound on the Reeb distance between an enhanced mapper graph and the
Reeb graph of a constructible R-space with random data.
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2 Background

In this section, we review the results of de Silva et al. (2016) together with Munch
and Wang (2016), showing that the interleaving distance between the mapper of the
constructibleR-space (X, f ) relative to the open cover U ofR and the Reeb graph of
(X, f ) is bounded by the resolution of the open cover.Motivated by the categorification
of Reeb graphs in de Silva et al. (2016), we introduce a categorified mapper algorithm,
and restate the main results of Munch and Wang (2016) in this framework.

Categorification, in this context, means that we are interested in using the theory of
constructible cosheaves to study Reeb graphs and mapper graphs. We can accomplish
this by defining a cosheaf (the Reeb cosheaf) whose display locale is isomorphic to
a given Reeb graph. One goal (completed in de Silva et al. 2016) of this approach is
to use cosheaf theory to define an extended metric on the category of Reeb graphs.
A natural candidate from the perspective of cosheaf theory is the interleaving dis-
tance. Suppose we want to use the interleaving distance of cosheaves to determine
if two Reeb graphs are homeomorphic. We can first think of each Reeb graph as the
display locale of a cosheaf, F and G , respectively. This allows us to rephrase our
problem as that of determining if the cosheaves,F and G , are isomorphic. In general,
interleaving distances cannot answer this question, since the interleaving distance is
an extended pseudo-metric on the category of all cosheaves. In other words, having
interleaving distance equal to 0 is not enough to guarantee that F and G are isomor-
phic as cosheaves. This seems to suggest that the interleaving distance is insufficient
for the study of Reeb graphs. However (due to results of de Silva et al. 2016), if we
restrict our study to the category of constructible cosheaves (over R), we can avoid
this subtlety. The interleaving distance is in fact an extended metric on the category
of constructible cosheaves. If two constructible cosheaves have interleaving distance
equal to 0, then they are isomorphic as cosheaves. Therefore, the display locales of con-
structible cosheaves (overR) are homeomorphic if the interleaving distance between
the cosheaves is equal to 0. In other words, if we want to know if two Reeb graphs
are homeomorphic, it is sufficient to consider the interleaving distance between con-
structible cosheaves F and G , provided that the display locales of the constructible
cosheaves recover the Reeb graphs. Therefore, in the remainder of this section, we
define a mapper cosheaf, and show that the Reeb cosheaf of a constructibleR-space is
a constructible cosheaf, and that the mapper cosheaves are constructible. This allows
us to use the commutativity of diagrams and the interleaving distance to prove conver-
gence of the corresponding display locales, that is, the Reeb graphs and the enhanced
mapper graphs. We use the example in Fig. 1 as a reference for various notions.

2.1 ConstructibleR-spaces

We begin by defining constructible R-spaces, which we consider to be the underly-
ing spaces for estimating the Reeb graphs, see Fig. 1. Constructible R-spaces can be
considered as a class of topological spaces which provide a natural setting for gener-
alizing aspects of classical Morse theory to the study of singular spaces. Like smooth
manifolds equipped with a Morse function, constructible R-spaces are topological
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spaces equipped with a real valued function f , whose fibers, f −1(x), satisfy certain
regularity conditions. Specifically, the topological structure of the fibers of the real
valued function are required to only change at a finite set of function values. The
function values which mark changes in the topological structure of fibers are referred
to as critical values.

Definition 1 (de Silva et al. 2016)AnR-space is a pair (X, f ), whereX is a topological
space and f : X → R is a continuous map. A constructible R-space is an R-space
(X, f ) satisfying the following conditions:

1. There exists a finite increasing sequence of points S = {a0, . . . , an} ⊂ R, two
finite sets of locally path-connected spaces {V0, . . . , Vn} and {E0, . . . , En−1},
and two sets of continuous maps {�i : Ei → Vi } and {ri : Ei → Vi+1}, such
that X is the quotient space of the disjoint union

n∐

i=0

Vi × {ai } 

n−1∐

i=0

Ei × [ai , ai+1]

by the relations

(�i (x), ai ) ∼ (x, ai ) and (ri (x), ai+1) ∼ (x, ai+1)

for all i and x ∈ Ei .
2. The continuous function f : X → R is given by projection onto the second

factor of X.

These are the objects of categoriesR-space andR-spacec, consisting ofR-spaces
and constructibleR-spaces, respectively. Morphisms in these categories are function-
preservingmaps; that is,ϕ : (X, f ) → (Y, g) is givenby a continuousmapϕ : X → Y

such that g ◦ ϕ(x) = f (x).

Example 1 A smooth compact manifold X with a Morse function f constitutes a
constructibleR-space. For instance, Fig. 1a illustrates a topological spaceX equipped
with a height function f ; the pair (X, f ) is an R-space. Similarly, a height function
f on a torus X gives rise to an R-space (X, f ) in Fig. 6a.

In fact, X is not required to be a manifold for (X, f ) to be an R-space. Throughout
the remainder of this paper, we assume that (X, f ) is a constructible R-space.

Definition 2 (de Silva et al. 2016) An R-graph is a constructible R-space such that
the sets Vi and Ei are finite sets (with the discrete topology) for all i .

Example 2 The Reeb graph of a constructible R-space is an R-graph. For instance,
the Reeb graph of (X, f ) in Fig. 1b is an R-graph. Similarly, the Reeb graph of a
Morse function on a torus is an R-graph, see Fig. 6b.
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2.2 Constructible cosheaves

Sheaves and cosheaves are category-theoretic structures, called functors, which pro-
vide a framework for associating data to open sets in a topological space. These
associations are required to preserve certain properties inherent to the topology of the
space. In this way, one can study the topological structure of the space by studying
the data associated to each open set by a given sheaf or cosheaf. In the following
sections, we will use cosheaves to encode information about a constructibleR-space
by associating open intervals in the real line to sets of (path-)connected components
of fibers of the real valued function corresponding to the constructibleR-space.

Let Int be the category of connected open sets inRwith inclusions which we refer
to as intervals, and Set the category of abelian groups with group homomorphism
maps. We first define a cosheaf over R, which we propose to be the natural objects
for categorifying the mapper algorithm.

Definition 3 A pre-cosheaf F on R is a covariant functor F : Int → Set. The
category of precosheaves on R is denoted SetInt with morphisms given by natural
transformations.

A pre-cosheaf F is a cosheaf if

lim−→
V∈V

F (V ) = F (U )

for each open interval U ∈ Int and each open interval cover V ⊂ Int of U , which is
closed under finite intersections. The full subcategory ofSetInt consisting of cosheaves
is denoted Csh.

Remark 1 We note that usually, cosheaves are defined over the category of arbitrary
open sets rather than the category of connected open sets. However, the category of
cosheaves defined over connected open sets is equivalent to the category of cosheaves
defined over arbitrary open sets, by the colimit property of cosheaves. When we define
smoothing operations on cosheaves in Sect. 2.4, there are important distinctions that
will make clear the need for the definition with respect to Int, as set-thickening oper-
ations do not preserve the cosheaf property otherwise.

Since we are interested in working with cosheaves which can be described with a
finite amount of data, we will restrict our attention to a well-behaved subcategory of
Csh, consisting of constructible cosheaves (defined below). Constructibility can be
thought of as a type of “tameness” assumption for sheaves and cosheaves.

Definition 4 A cosheafF is constructible if there exists a finite set S ⊂ R of critical
values such that F [U ⊂ V ] is an isomorphism whenever S ∩ U = S ∩ V . The full
subcategory of Csh consisting of constructible cosheaves is denoted Cshc.

2.3 The Reeb cosheaf and display locale functors

We introduce the Reeb cosheaf and display locale functors. These functors relate the
category of constructible cosheaves to the category ofR-graphs, and provide a natural
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categorification of the Reeb graph (de Silva et al. 2016). In other words, via both
Reeb cosheaf functor and display locale functors, one could consider the translation
between the data and their corresponding categorical interpretations.

Let R f be the Reeb cosheaf of (X, f ) on R, defined by

R f (U ) = π0(X
U ),

where X
U := f −1(U ) and π0(X

U ) denotes the set of path components of X
U .

Definition 5 The Reeb cosheaf functor C from the category of constructibleR-spaces
to the category of constructible cosheaves

R-spacec CshcC

is defined by C((X, f )) = R f . For a function-preserving map ϕ : (X, f ) → (Y, g),
the resulting morphism C[ϕ] is given by C[ϕ] : R f (U ) = π0 ◦ f −1(U ) → π0 ◦
g−1(U ) = Rg(U ) induced by ϕ ◦ f −1(U ) ⊆ g−1(U ).

Definition 6 The costalk of a (pre-)cosheaf F at x ∈ R is

Fx = lim←−
I�x

F (I ).

For each costalk Fx , there is a natural map Fx → F (I ) (given by the universal
property of limits) for each open interval I containing x .

In order to related the Reeb and mapper cosheaves to geometric objects, we make use
of the notion of display locale, introduced in Funk (1995).

Definition 7 The display locale of a cosheaf F (as a set) is defined as

D(F ) =
∐

x∈R
Fx .

A topology on D(F ) is generated by open sets of the form

UI ,a = {s ∈ Fx : x ∈ I and s �→ a ∈ F (I )},

for each open interval I ∈ Int and each section a ∈ F (I ).

The display locale gives a functor from the category of cosheaves to the category of
R-graphs,

Cshc R-graph.
D
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We proceed by giving an explicit geometric realization of the display locale of a
constructible cosheaf. Let F be a constructible cosheaf with set of critical values
R0 ⊂ R. LetR1 = R\R0 be the complement ofR0, so that we form a stratification

R = R0 
 R1,

See Fig. 1e for an example (black points are in R0, their complements are in R1).
Let S1 be the set of connected components of R1, i.e., the 1-dimensional stratum
pieces. For x ∈ R0, let Ix denote the largest open interval containing x such that
Ix ∩ R0 = {x}. Let

D̃(F ) :=
∐

V∈S1
V × F (V ) 


∐

x∈R0

{x} × F (Ix ),

where V is the closure of V and the product C × ∅ of a set C with the empty set is
understood to be empty. Geometrically, D̃(F ) is a disjoint union of connected closed
subsets ofR; if the support ofF is compact, then D̃(F ) is a disjoint union of closed
intervals and points. Let π denote the projection map

π : D̃(F ) → R

(x, a) �→ x .

Suppose (x, a) ∈ V × F (V ) ⊂ D̃(F ) and x ∈ R0. We have that V ∩ R0 = ∅ and
Ix ∩ V �= ∅ (because x lies on the boundary of V ). By maximality of Ix , we have the
inclusion V ⊂ Ix . Let ϕ(x,a) be the map

ϕ(x,a) : F (V ) → F (Ix )

induced by the inclusion V ⊂ Ix . We can extend this map to the fiber of π over x ,

ψx : π−1(x) → F (Ix ),

where ψx ((x, a)) := ϕ(x,a)(a) if (x, a) ∈ V ×F (V ) and ψx ((x, a)) := a if (x, a) ∈
{x} × F (Ix ). Finally, we define an equivalence relation of points in D̃(F ). Suppose
(x, a), (y, b) ∈ D̃(F ). Then (x, a) ∼ (y, b) if

1. x = y ∈ R0, and
2. ψx (a) = ψx (b) ∈ F (Ix ).

Finally, let

D(F ) := D̃(F )/ ∼

be the quotient of D̃(F ) by the equivalence relation. The projection π factors through
the quotient, giving a map π̄ : D(F ) → R.
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Proposition 1 IfF is a constructible cosheaf with set of critical values S, thenD(F )

is a 1-dimensional CW-complex which is isomorphic (as an R-space) to the display
locale, D(F ), of F .

Proof We will construct a homeomorphism γ : D(F ) → D(F ) which preserves the
natural quotient maps f̄ : D(F ) → R and π̄ : D(F ) → R. Given x ∈ R1, we
have that π̄−1(x) = {x} ×F (V ), where V is the connected component ofR1 which
contains x . SinceF is constructible with respect to the chosen stratification, we have
thatF (V ) ∼= Fx . This gives a bijection from π̄−1(x) to f̄ −1(x). For x ∈ R0, the fiber
π̄−1(x) is by construction in bijection with F (Ix ). Again, since F is constructible
and Ix ∩ R0 = B(x) ∩ R0 for each sufficiently small neighborhood B(x) of x , we
have that F (Ix ) ∼= Fx . These bijections define a map γ : D(F ) → D(F ), which
preserves the quotient maps by construction. All that remains is to show that γ is
continuous.

Suppose x ∈ R1, and let V be the connected component of R1 which contains x ,
and B(x) be an open neighborhood of x such that B(x) ⊂ V . Then Fy ∼= F (V ) for
each y ∈ B(x), and F (B(x)) ∼= F (V ). Recall the definition of the basic open sets
UI ,a in the definition of display locale (with notation adjusted to better align with the
current proof),

UI ,a =
{

s ∈ Fy ⊂
∐

x∈R
Fx : y ∈ I and s �→ a ∈ F (I )

}

.

Using the above isomorphisms to simplify the definition according to the current
set-up, we get

UB(x),a ∼=
⎧
⎨

⎩
a ∈

∐

y∈B(x)

F (V )

⎫
⎬

⎭
.

Therefore, γ −1(UB(x),a) = B(x) × {a}, which is open in the quotient topology on
D(F ).

Suppose x ∈ R0, and let B(x) be a neighborhood of x such that B(x) ⊂ Ix . Let
V1 and V2 denote the two connected components of R1 which are contained in Ix . If
y ∈ B(x), thenFy is isomorphic to eitherF (V1),F (V2), orF (Ix ). Moreover, since
F is constructible, we have that F (B(x)) ∼= F (Ix ). Let a′ ∈ F (Ix ) correspond to
a ∈ F (B(x)) under the isomorphismF (Ix ) ∼= F (B(x)). Following the definitions,
we have that

π−1
(
γ −1(UB(x),a)

)
= (

V1 ∩ B(x)
) × F [V1 ⊂ Ix ]−1(a′)


 (
V2 ∩ B(x)

) × F [V2 ⊂ Ix ]−1(a′)

 {x} × {a′},

where F [Vi ⊂ Ix ]−1(a′) is understood to be a (possibly empty) subset of F (Vi ). It
follows that γ −1(UB(x),a) is open in the quotient topology onD(F ). Therefore, γ −1
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maps open sets to open sets, and we have shown that γ is a homeomorphism which
preserves the quotient maps f̄ and π̄ , i.e., f̄ (γ ((x, a))) = π̄((x, a)) = x . �

It follows from the proposition that D(F ) is independent (up to isomorphism) of
choice of critical values R0. Additionally, we now note that we can freely use the
notationD(F ) or D(F ) to refer to the display locale of a constructible cosheaf over
R. We will continue to use both symbols, reserving D for the display locale of an
arbitrary cosheaf, and usingD when we want to emphasize the above equivalence for
constructible cosheaves.

In de Silva et al. (2016), it is shown that the Reeb graph R(X, f ) of (X, f ) is
naturally isomorphic to the display locale ofR f . Moreover, the display locale functor
D and the Reeb functor C are inverse functors and define an equivalence of categories
between the category of Reeb graphs and the category of constructible cosheaves on
R. This equivalence is closely connected to the more general relationships between
constructible cosheaves and stratified coverings studied in Woolf (2009). The result
allows us to define a distance between Reeb graphs by taking the interleaving distance
between the associated constructible cosheaves as shown in the following section.

2.4 Interleavings

We start by defining the interleavings on the categorical objects. Interleaving is a
typical tool in topological data analysis for quantifying proximity between objects
such as persistence modules and cosheaves. For U ⊆ R, let U �→ Uε := {y ∈ R |
‖y −U‖ ≤ ε}. If U = (a, b) ∈ Int, then Uε = (a − ε, b + ε).

Definition 8 LetF and G be two cosheaves onR. An ε-interleaving betweenF and
G is given by two families of maps

ϕU : F (U ) → G (Uε), ψU : G (U ) → F (Uε)

which are natural with respect to the inclusion U ⊂ Uε, and such that

ψUε ◦ ϕU = F [U ⊂ U2ε], ϕUε ◦ ψU = G [U ⊂ U2ε]

for all open intervals U ⊂ R. Equivalently, we require that the diagram

F (U ) F (Uε) F (U2ε)

G (U ) G (Uε) G (U2ε)

ϕU ϕUε

ψU ψUε

commutes, where the horizontal arrows are induced by U ⊆ Uε ⊆ U2ε.
The interleaving distance between two cosheaves F and G is given by

dI (F ,G ) := inf{ε | there exists an ε-interleaving between F and G }.
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Now that we have an interleaving for elements of Cshc along with an equivalence
of categories between Cshc and R-graph, we can develop this into an interleaving
distance for the Reeb graphs themselves. The interleaving distance for Reeb graphs
will be defined using a smoothing functor, which we construct below.

Definition 9 Let (X, f ) be a constructible R-space. For ε ≥ 0, define the thickening
functor Tε to be

Tε(X, f ) = (X × [−ε, ε], fε),

where fε(x, t) = f (x) + t . Given a morphism α : X → Y,

Tε(α) : X × [−ε, ε] → Y × [−ε, ε]
(x, t) �→ (α(x), t).

The zero section map is the morphism (X, f ) → Tε(X, f ) induced by

X → X × [−ε, ε]
x �→ (x, 0).

Proposition 2 (de Silva et al. 2016, Proposition 4.23) The thickening functor Tε maps
R-graphs to constructible R-spaces, i.e., if (G, g) ∈ R−graphs then Tε(G, g) ∈
R−spacesc.

In general, the thickening functor Tε will output a constructible R-space, and not
anR-graph. In order to define a ‘smoothing’ functor forR-graphs (following de Silva
et al. 2016), we need to introduce a Reeb functor, which maps a constructibleR-space
to anR-graph.

Definition 10 The Reeb graph functor R maps a constructible R-space (X, f ) to
an R-graph (X f , f̄ ), where X f is the Reeb graph of (X, f ) and f̄ is the function
induced by f on the quotient space X f . The Reeb quotient map is the morphism
(X, f ) → R(X, f ) induced by the quotient map X → X f .

Now we can define a smoothing functor on the category of R-graphs.

Definition 11 Let (G, f ) ∈ R-graph. The Reeb smoothing functor Sε : R-graph →
R-graph is defined to be the Reeb graph of an ε-thickened R-graph

Sε(G, f ) = R (Tε(G, f )) .

The Reeb smoothing functor Sε defined above is used to define an interleaving
distance for Reeb graphs, called the Reeb interleaving distance. The Reeb interleaving
distance, defined below, can be thought of as a geometric analogue of the interleaving
distance of constructible cosheaves. Let ζ ε

F
be the map from (F, f ) to Sε(F, f ) given

by the composition of the zero section map (F, f ) → Tε(F, f )with the Reeb quotient
map Tε(F, f ) → R(Tε(F, f )). To ease notation, we will denote the composition of
ζ ε
F

: (F, f ) → Sε(F, f ) with ζSε(F, f ) : Sε(F, f ) → Sε(Sε(F, f )) by ζ ε
F
(ζ ε

F
(F, f )).
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Fig. 2 A counter example
showing why we use Int rathar
than Open(R) for the definition
of cosheaves in our context. See
Remark 3

Definition 12 Let (F, f ) and (G, g) be R-graphs. We say that (F, f ) and (G, g) are
ε-interleaved if there exists a pair of function-preserving maps

α : (F, f ) → Sε(G, g) and β : (G, g) → Sε(F, f )

such that

Sε(β) (α(F, f )) = ζ ε
F

(
ζ ε
F
(F, f )

)
and Sε(α) (β(G, g)) = ζ ε

G

(
ζ ε
G
(G, g)

)
.

That is, the diagram

(F, f ) ζ ε
F
(F, f ) ζ ε

F

(
ζ ε
F
(F, f )

)

(G, g) ζ ε
G
(G, g) ζ ε

G

(
ζ ε
G
(G, g)

)

α Sε(α)

β Sε(β)

commutes.
The Reeb interleaving distance, dR ((F, f ), (G, g)), is defined to be the infimum

over all ε such that there exists an ε-interleaving of (F, f ) and (G, g):

dR ((F, f ), (G, g)) := inf{ε : there exists an ε-interleaving of (F, f ) and (G, g)}.

Remark 2 We should remark on a technical aspect of the above definition. The compo-
sition ζ ε

F
◦ζ ε

F
(F, f ) is naturally isomorphic to ζ 2ε

F
(F, f ). However, since the definition

of the Reeb interleaving distance requires certain diagrams to commute, it is necessary
to specify an isomorphism between ζ ε

F
◦ ζ ε

F (F, f ) and ζ 2ε
F

(F, f ) if one would like
to replace ζ ε

F
◦ ζ ε

F (F, f ) with ζ 2ε
F

(F, f ) in the commutative diagrams. Therefore, we
choose to work exclusively with the composition of zero section maps, rather than
working with diagrams which commute up to natural isomorphism.

The remaining proposition of this section gives a geometric realization of the inter-
leaving distance of constructible cosheaves.

Proposition 3 (de Silva et al. 2016) D(F ) and D(G ) are ε-interleaved as R-graphs
if and only ifF and G are ε-interleaved as constructible cosheaves.

Remark 3 Cosheaves are usually defined as functors on the category of open sets
instead of functors on the connected open sets. We choose to use Int instead of
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Open(R) due to technical issues that arise when we begin smoothing the func-
tors. Basically, smoothing the functor does not produce a cosheaf when the intervals
are replaced by arbitrary open sets in R. Consider the example of Fig. 2, where
X is a line with map f projection onto R. Say U ε is the thickening of a set,
U ε = {x ∈ R | |x − U | < ε}. Then we can pick an ε so that Aε is two disjoint
intervals, and (A ∪ B)ε is one interval. Let F be the functor U �→ π0 f −1(U ) which
is a cosheaf representing the Reeb graph. Then the functor F ◦ (·)ε is not a cosheaf
since by the diagram,

∅ = F((A ∩ B)ε) F(Aε) = {••}

{•} = F(Bε) colim = {• • •}

F(A ∪ B)ε = {•} is not the colimit of F(Aε) and F(Bε).1

2.5 Categorifiedmapper

In this section, we interpret classicmapper (for scalar functions), a topological descrip-
tor, as a category theoretic object. This interpretation, in terms of cosheaves and
category theory, simplifies many of the arguments used to prove convergence results
in Sect. 4. We first review the classic mapper and then discuss the categorified mapper.
The main ingredient needed to define the mapper construction is a choice of cover.
We say a cover of R is good if all intersections are contractible. A cover U is locally
finite if for every x ∈ R, Ux = {V ∈ U : x ∈ V } is a finite set. In particular, locally
finiteness implies that the cover restricted to a compact set is finite. For the remainder
of the paper, we work with nice covers which are good, locally finite, and consist only
of connected intervals, see Fig. 1c for an example.

We will now introduce a categorification of mapper. Let U be a nice cover ofR. Let
NU be the nerve ofU, endowedwith theAlexandroff topology. Consider the continuous
map

η : R → NU

x �→
⋂

V∈Ux

V ,

where the intersection
⋂

V∈Ux
V is viewed as an open simplex of NU. The mapper

functor MU : SetInt → SetInt can be defined as

MU(C ) = η∗(η∗(C )),

where η∗ and η∗ are the (pre)-cosheaf-theoretic pull-back and push-forward operations
respectively. However, rather than defining η∗ and η∗ in generality, we choose to work

1 We thank Vin de Silva for this counterexample.
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with an explicit description ofMU(C )given below. For notational convenience, define

IU : Int → Int

U �→ η−1(St(η(U ))),

where St(η(U )) denotes the minimal open set in NU containing η(U ) := ∪x∈Uη(x)
(the open star of η(U ) in NU). It is often convenient to identify IU(U ) with a union
of open intervals in R.

Lemma 1 Using the notation defined above, we have the equality

IU(U ) =
⋃

x∈U

⋂

V∈Ux

V ,

where
⋂

V∈Ux
V is viewed as a subset of R (not as a simplex of NU).

Proof If y ∈ ⋃
x∈U

⋂
V∈Ux

V , then there exists an x ∈ U such that y ∈ V for all
V ∈ Ux . In other words, Ux ⊆ Uy . Therefore, η(y) ≥ η(x) in the partial order of
NU. Therefore, η(y) ∈ St(η(U )). This implies that

⋃
x∈U

⋂
V∈Ux

V ⊆ IU(U ). For
the reverse inclusion, assume that u ∈ IU(U ), i.e., η(u) ∈ St(η(U )). This implies
that there exists v ∈ U such that η(u) ≥ η(v). In other words, Uv ⊆ Uu . Therefore
u ∈ ∩V∈UvV , and u ∈ ⋃

v∈U
⋂

V∈Uv
V . �


Under this identification, it is clear that IU(U ) is an open set inR (since the open cover
U is locally finite), and if U ⊂ V then IU(U ) ⊂ IU(V ). Moreover, since

⋂
V∈Ux

V is
an interval open neighborhood of x and U is an open interval, then IU(U ) is an open
interval. Therefore, IU can be viewed as a functor from Int to Int.

Finally, we can give MU(C ) an explicit description in terms of the functor IU.

Definition 13 The mapper functor MU : SetInt → SetInt is defined by

MU(C )(U ) := C (IU(U )),

for each open interval U ∈ Int.

Since IU is a functor from Int to Int, it follows thatMU is a functor from SetInt to
SetInt. Hence,MU(C ) is a functor from the category of pre-cosheaves to the category
of pre-cosheaves. In the following proposition, we show that if C is a cosheaf, then
MU(C ) is in fact a constructible cosheaf.

Proposition 4 Let U be a finite nice open cover of R. The mapper functor MU is a
functor from the category of cosheaves onR to the category of constructible cosheaves
onR:

MU : CSh → CShc.

Moreover, the set of critical points ofMU(F ) is a subset of the set of boundary points
of open sets in U.

123



116 A. Brown et al.

Proof We will first show that if C is a cosheaf onR, thenMU(C ) is a cosheaf onR.
We have already shown that MU(C ) is a pre-cosheaf. So all that remains is to prove
the colimit property of cosheaves. Let U ∈ Int and V ⊂ Int be a cover of U by open
intervals which is closed under intersections. By definition ofMU(C ), we have

lim−→
V∈V

MU(C )(V ) = lim−→
V∈V

C (IU(V )).

Notice that IU(V) := {IU(V ) : V ∈ V} forms an open cover of IU(U ). However, in
general this cover is no longer closed under intersections. We will proceed by showing
that passing from V to IU(V)′ := {⋂i∈I Wi : {Wi }i∈I ⊂ IU(V)} does not change the
colimit

lim−→
V∈V

C (IU(V )).

Suppose I1 and I2 are two open intervals in V such that I1 ∩ I2 = ∅ and IU(I1) ∩
IU(I2) �= ∅. Recall that U′ is the union of U with all intersections of cover elements
in U, i.e., the closure of U under intersections. By the identification

IU(Ii ) =
⋃

x∈Ii

⋂

V∈Ux

V ,

there exists a subset {Wj } j∈J ⊂ U′ such that

IU(I1) ∩ IU(I2) =
⋃

j∈J

W j .

Suppose there exist V1, V2 ∈ U′ such that Vi � V1 ∪ V2 (i.e., one set is not a subset of
the other), and V1∪V2 ⊂ IU(I1)∩IU(I2). In other words, suppose that the cardinality
of J , for any suitable choice of indexing set, is strictly greater than 1. Then there
exists x1, x2 ∈ I1 such that x1 ∈ V1 \ V2 and x2 ∈ V2 \ V1. Let w either be a point
contained in V1 ∩ V2 (if V1 ∩ V2 �= ∅) or a point which lies between V1 and V2. Since
I1 is connected, we have that w ∈ I1. A similar argument shows that w ∈ I2, which
implies the contradiction I1 ∩ I2 �= ∅. Therefore,

IU(I1) ∩ IU(I2) = W ,

for some W ∈ U′. Suppose W = ⋂
k∈K Wk for some {Wk}k∈K ⊂ U, and let I1 =

J1, J2, . . . , Jn = I2 be a chain of open intervals in V, such that J j ∩ J j+1 �= ∅. We
have that

I1 ∪
⋃

k∈K
Wk ∪ I2
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is connected, because I1, I2, and
⋃

k∈K Wk are intervals with
⋃

k∈K Wk ∩ I1 and⋃
k∈K Wk ∩ I2 nonempty. Therefore, for each j , J j ∩ Wk �= ∅ for some k, i.e.,

W ⊂ IU(J j ). In conclusion, we have shown that

IU(I1) ∩ IU(I2) ⊆ IU(J j ) for each j .

Following the arguments in the proof of Proposition 4.17 of de Silva et al. (2016), it
can be shown that

lim−→
V∈V

C (IU(V )) = lim−→
U∈IU(V)

C (U ) = lim−→
U∈IU(V)′

C (U ).

Since C is a cosheaf, we can use the colimit property of cosheaves to get

lim−→
V∈V

MU(C )(V ) = C (IU(U )).

ThereforeMU(C ) is cosheaf. We will proceed to show thatMU(C ) is constructible.
Let S be the set of boundary points for open sets in U. Since U is a finite, good cover

ofR, S is a finite set. IfU ⊂ V are two open sets inR such thatU ∩ S = V ∩ S, then
IU(U ) = IU(V ). Therefore MU(F )(U ) → MU(F )(V ) is an isomorphism. �


We use the mapper functor to relate Reeb graphs (the display locale of the Reeb
cosheaf R f ) to the enhanced mapper graph (the display locale of MU(R f )). In par-
ticular, the error is controlled by the resolution of the cover, as defined below.

Definition 14 Let U be a nice cover ofR andF a cosheaf onR. The resolution of U
relative to F , denoted resF U, is defined to be the maximum of the set of diameters
of UF := {V ∈ U : F (V ) �= ∅}:

resF U := max{diam(V ) : V ∈ UF }.

Here we understand the diameter of open sets of the form (a,+∞) or (−∞, b) to be
infinite. Therefore, the resolution resF U can take values in the extended non-negative
numbers R≥0 
 {+∞}.
Remark 4 IfR f is a Reeb cosheaf of a constructibleR-space (X, f ), thenR f (V ) �= ∅
if and only if V ∩ f (X) �= ∅.
Definition 15 Define res f U by

res f U := max{diam(V ) : V ∈ U f },

where U f := {V ∈ U : V ∩ f (X) �= ∅}.
The following theorem is analogous to Munch and Wang (2016, Theorem 1), adapted
to the current setting. Specifically, our definition of the mapper functor MU differs
from the functorPK ofMunch andWang (2016), and the convergence result ofMunch
and Wang (2016) is proved for multiparameter mapper (whereas the following result
is only proved for the one-dimensional case).
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Theorem 1 (cf. Munch and Wang 2016, Theorem 1) Let U be a nice cover of R, and
F a cosheaf on R. Then

dI (F ,MU(F )) ≤ resF U.

Proof If resF U = +∞, then the inequality is automatically satisfied. Therefore, we
will work with the assumption that resF U < +∞. Let δU = resF U < +∞. We will
prove the theorem by constructing a δU-interleaving of the sheaves F and MU(F ).
Suppose I ∈ Int. For each x ∈ I , let Wx = ⋂

V∈Ux
V . Recall that

IU(I ) =
⋃

x∈I
Wx .

Ideally, we would construct an interleaving based on an inclusion of the form IU(I ) ⊂
IδU . However, this inclusion will not always hold. For example, if U is a finite cover,
then it is possible for I to be a bounded open interval, and for IU(I ) to be unbounded.

We will include a simple example to illustrate this behavior. Suppose U =
{(−∞,−1), (−2, 2), (1,+∞)} and let F be the constant cosheaf supported at 0,
i.e. F (U ) = ∅ if 0 /∈ U and F (V ) = {∗} if 0 ∈ V . Consider the interval I = (0, 3).
For each x ∈ (0, 1] ⊂ I , we have that Wx = (−2, 2). If x ∈ (1, 2) ⊂ I , then
Wx = (−2, 2) ∩ (1,+∞). Finally, if x ∈ [2, 3) ⊂ I , then Wx = (1,+∞).
Therefore, IU(I ) = (−2,+∞), which is unbounded. However, we observe that
F ((−∞,−1)) = ∅, F ((−2, 2)) = {∗}, and F ((1,+∞)) = ∅. Therefore, (in the
notation of Definition 14) UF = {(−2, 2)}, and resF U = diam((−2, 2)) = 4.

Although IU(I ) may be unbounded, we can construct an interval I ′ which is con-
tained in IδU and satisfies the equalityF (IU(I )) = F (I ′). The remainder of the proof
will be dedicated to constructing such an interval.

Let W := {U : U = ∩a∈AWa for some A ⊂ I } be an open cover of IU(I ) which
is closed under intersections and generated by the open sets Wx . Then the colimit
property of cosheaves gives us the equality

F (IU(I )) = lim−→
U∈W

F (U ).

Let E := {e ∈ I : F (We) = ∅}. If U = ∩a∈AWa and A ∩ E �= ∅, then F (U ) = ∅.
Let WI\E = {U ∈ W : U = ∩a∈AWa for some A ⊂ I \ E}. We should remark
on a small technical matter concerning I \ E . In general, this set is not necessarily
connected. If that is the case, we should replace I \ E with the minimal interval which
covers I \ E . Going forward, we will assume that I \ E is connected. Altogether we
have

MU(F )(I ) = F (IU(I )) = lim−→
U∈W

F (U ) = lim−→
U∈WI\E

F (U ) = F

⎛

⎝
⋃

x∈I\E
Wx

⎞

⎠ .
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If x ∈ I \ E , then Wx ∩ I �= ∅ and F (Wx ) �= ∅. Therefore, Wx ⊆ IδU , since
diam(Wx ) ≤ δU. Moreover,

⋃

x∈I\E
Wx ⊆ IδU .

The above inclusion induces the following map of sets

ϕI : MU(F )(I ) → F (IδU),

which gives the first family of maps of the δU-interleaving. The second family of maps

ψI : F (I ) → MU(F )(IδU),

follows from the more obvious inclusion I ⊂ IU(IδU). Since the interleaving maps
are defined by inclusions of intervals, it is clear that the composition formulae are
satisfied:

ψIδU
◦ ϕI = F [I ⊂ I2δU], ϕIδU

◦ ψI = MU(F )
[
I ⊂ I2δU

]
.

�

Remark 5 One might think that Theorem 1 can be used to obtain a convergence result
for the mapper graph of a general R-space. However, we should emphasize that
the interleaving distance is only an extended pseudo-metric on the category of all
cosheaves. Therefore, even if the interleaving distance betweenF andMU(F ) goes
to 0, this does not imply that the cosheaves are isomorphic. We only obtain a conver-
gence result when restricting to the subcategory of constructible cosheaves, where the
interleaving distance gives an extended metric.

The display locale D(MU(R f )) of the mapper cosheaf is a 1-dimensional CW-
complex obtained by gluing the boundary points of a finite disjoint union of closed
intervals, see Fig. 1h.Wewill refer to this CW-complex as the enhanced mapper graph
of (X, f ) relative to U, see Fig. 1g. There is a natural surjection from D(MU(R f ))

to the nerve of the connected cover pull-back of U, N f ∗(U), i.e., from the enhanced
mapper graph to the mapper graph, when the cover U contains open sets with empty
triple intersections.

Using the Reeb interleaving distance and the enhanced mapper graph, we obtain
and reinterpret the main result of Munch and Wang (2016) in the following corollary.

Corollary 1 (cf. Munch and Wang 2016, Corollary 6) Let U be a nice cover ofR, and
(X, f ) ∈ R-spacec. Then

dR(R(X, f ),D(MU(R f ))) ≤ res f U.

Throughout this section we introduce several categories and functors which we
will now summarize. Let R-graph be the category of R-graphs (i.e., Reeb graphs),
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R-spacec the category of constructibleR-spaces,Cshc be the category of constructible
cosheaves onR,Sε and Tε the smoothing and thickening functors,D the display locale
functor, and MU the mapper functor. Altogether, we have the following diagram of
functors and categories,

R-graph Cshc

R-spacec

Tε

Sε

C

R

MU.
D

Enhanced mapper graph algorithm Finally, we briefly describe an algorithm for con-
structing the enhanced mapper graph, following the example in Fig. 1. Let (X, f ) be a
constructibleR-space (see Sect. 2.1). For simplicity, suppose that the cover U consists
of open intervals, and contains no nonempty triple intersections (U ∩ V ∩ W = ∅ for
all U , V ,W ∈ U). Let R0 be the union of boundary points of cover elements in the
open cover U. Let R1 be the complement of R0 in R. The set R0 is illustrated with
gray dots in Fig. 1e. We begin by forming the disjoint union of closed intervals,

∐

I

I × π0( f
−1(UI )),

where the disjoint union is taken over all connected components I of R1, I denotes
the closure of the open interval I , andUI denotes the smallest open set in U∪{U ∩V |
U , V ∈ U} which contains I . In other words, UI is either the intersection of two
cover elements in U orUI is equal to a cover element in U. The sets π0( f −1(UI )) are
illustrated in Fig. 1d. Notice that there is a natural projection map from the disjoint
union to R, given by projecting each point (y, a) in the disjoint union onto the first
factor, y ∈ R. The enhanced mapper graph is a quotient of the above disjoint union by
an equivalence relation on endpoints of intervals. This equivalence relation is defined
as follows. Let (y, a) ∈ I × π0( f −1(UI )) and (z, b) ∈ J × π0( f −1(UJ )) be two
elements of the above disjoint union. If y ∈ R0, then y is contained in exactly one cover
element inU, denoted byUy .Moreover,if y ∈ R0, then there is amapπ0( f −1(UI )) →
π0( f −1(Uy)) induced by the inclusion UI ⊆ Uy . Denote this map by ψ(y,I ). An
analogous map can be constructed for (z, b), if z ∈ R0. We say that (y, a) ∼ (z, b)
if two conditions hold: y = z is contained in R0, and ψ(y,I )(a) = ψ(z,J )(b). The
enhancedmapper graph is the quotient of the disjoint union by the equivalence relation
described above.

For example, as illustrated in Fig. 1, seven cover elements of U in (c) give rise to
a stratification of R into a set of points R0 and a set of intervals R1 in (e). For each
interval I in R1, we look at the set of connected components in f −1(UI ). We then
construct disjoint unions of closed intervals based on the cardinality of π0( f −1(UI ))

for each I ∈ R1. For adjacent intervals I1 and I2 in R1, suppose that I1 is contained
in the cover element V and I2 is equal to the intersection of cover elements V and
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W in U. We consider the mapping from π0( f −1(UI2)) to π0( f −1(UI1)) (d). Here, we
have that UI2 = V ∩ W and UI1 = V . We then glue these closed intervals following
the above mapping, which gives rise to the enhanced mapper graph (g). Appendix A
outlines these algorithmic details in the form of pseudocode.

3 Model

Let X be a compact locally path connected subset ofRd . As stated in the introduction,
study related to topological inference usually splits between noiseless and noisy set-
tings. In the former, we assume that a given sample is drawn from X directly, while in
the latter we allow random perturbations that produce samples inRd that need not be
onX, but rather in its vicinity. In this paper, we address the noisy setting directly, using
the machinery for super-level sets estimation developed in Bobrowski et al. (2017b).
The basic inputs are a continuous function f : Rd → R, and a probability density
function p : Rd → R. OurR-space of interest will be (X, f |X), and we will assume
we are provided samples of X via p. Then, given a nice cover U, we can compare the
Reeb graph of (X, f |X) to the mapper graph computed from the samples.

3.1 Setup

In this section, we give some basic assumptions on f , p, U, and their interactions.
We start with some notation for the various sets of interest. Let Xδ = {y ∈ Rd :
infx∈X d(x, y) ≤ δ} be the δ-thickening of X, and let DL = p−1([L,+∞)) be
a super-level set of p. Given an open set V ⊂ R, define X

V := X ∩ f −1(V ). Let
X
V
δ := Xδ∩ f −1(V ) be the elements ofXδ whichmap to V , and DV

L := DL∩ f −1(V ).
See Fig. 3 for an example of this notation. It is important to note that X

V
δ is not

necessarily equal to the δ-thickening of X
V .

With this notation, we will assume that p is ε-concentrated on X as defined next
with an example given in Fig. 4.

Definition 16 A probability density function p is ε-concentrated on X if there exists
open intervals I1, I2, and a real number δ > 0 such that

X ⊂ DL1 ⊂ Xδ ⊂ DL2 ⊂ Xε,

for any L1 ∈ I1 and L2 ∈ I2.

Definition 17 A probability density function p is concentrated on X if p is ε-
concentrated on X for all ε > 0.

We now turn our attention to U, a nice cover of R.

Definition 18 The local H0-critical value over V is defined as

δV = sup{δ | H0(X
V )

∼=−→ H0(X
V
δ )}.
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Fig. 3 This figure illustrates the inverse images X
V (in purple) and X

V
δ (union of tan and purple) for an

annulus with height function and open interval V . Notice that in this example the δ-thickening ofX
V would

include X
V
δ as a proper subset, hence (XV )δ �= X

V
δ

Fig. 4 An example of the concentrated definition. The left side of the figure illustrates a probability density
function (PDF) p which is ε-concentrated on an annulus X. The center image illustrates the thickened
space Xδ , bounded by the red curves, and the super-level set DL1 . The right side of the figure illustrates
the thickened space Xε , bounded by the blue curves, and the super-level set DL2 . Together, we see that
X ⊂ DL1 ⊂ Xδ ⊂ DL2 ⊂ Xε (color figure online)

Let U′ := {V ⊂ R : V = ∩α∈AUα for some {Uα}α∈A ⊂ U}. The global H0-
critical value over U is defined as

δU := min
V∈U′ δV .
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Throughout the paper, we assume that the global H0-critical value overU is positive,
i.e.

δU = min
V∈U′ δV > 0.

The positivity of local H0-critical values is nontrivial and often fails for constructible
R-spaces which have singularities which lie over the boundary of one of the open sets
in the open coverU. In futurework, it would be interesting to relax this assumption, and
study convergence when the diameter of the union of open sets V for which δV = 0,
is small.

3.2 Approximation by super-level sets

In this section, we study how super-level sets of probability density functions (PDFs)
can model the topology of constructible R-spaces.

We need some further control over the relationship between the PDF p and the
cover elements via the following definition.

Definition 19 Given an open set V , we say that L is H0-regular over V if there exists
ν > 0 such that for all ε1 < ε2 ∈ (L − ν, L + ν), the inclusion Dε2 ⊂ Dε1 induces an

isomorphism H0(DV
ε2

)
∼=−→ H0(DV

ε1
).

Throughout the paper we will assume that the PDF p is tame, in the sense that the set
of points which are H0-regular over V is dense inR, for any given open set V .

Assume the global H0-critical value δU is positive, and p is δ2-concentrated on X

for some δ2 such that 0 < δ2 < δU. By definition, there exist L1, L2 and δ1 such that

1. X ⊂ DL1 ⊂ Xδ1 ⊂ DL2 ⊂ Xδ2

2. 0 < δ1 < δ2 < δU
3. L1 and L2 are H0-regular over V for each V ∈ U′.

The set of points which are H0-regular over V for each V ∈ U′ is dense inR. If L1
is not H0-regular over V for some V ∈ U′, then L1 can be turned into a regular value
with an arbitrarily small perturbation.Moreover, by theDefinition 16, this perturbation
can be done without breaking the chain of inclusions X ⊂ DL1 ⊂ Xδ1 ⊂ DL2 ⊂ Xδ2 .
We therefore continue under the assumption that L1 is H0-regular over V for each
V ∈ U′.

Proposition 5 Assume that p is ε-concentrated on X for some ε < δU. Let

D(V ) := Im
(
H0(D

V
L1

) → H0(D
V
L2

)
)

.
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Then for each V ∈ U′, we have H0(X
V ) ∼= D(V ) and further for each V ⊂ W ∈ U′

the following diagram commutes,

H0(X
V ) D(V )

H0(X
U ) D(U ).

∼=

∼=

The proof will require the following technical lemma.

Lemma 2 Suppose we have the following commutative diagram of vector spaces

A B

DC E
∼= ∼=

with C ∼= D ∼= E. Then Im(D → B) = Im(A → B) and the map

D
∼=−→ Im(A → B)

is an isomorphism of vector spaces.

Proof The map D → B is injective since D → E is an isomorphism and the diagram
commutes. Therefore, Im(D → B) ∼= D. Moreover, since the diagram commutes,
Im(A → B) ⊂ Im(D → B). Suppose b ∈ Im(D → B), i.e., there exists d ∈ D
which maps to b. Since C → D is an isomorphism, there exists c ∈ C which maps to
d ∈ D. Let a ∈ A be the image of c ∈ C under the map C → A. Since the diagram
commutes, we have that a ∈ A maps to b ∈ B under the map A → B. Therefore,
b ∈ Im(A → B). We have therefore shown that Im(A → B) = Im(D → B) ∼= D. �


Proof of 5 Choose δ2 > 0 such that δ2 < δU and p is δ2-concentrated on X. Applying
the definition of δ2-concentrated, we have X ⊂ DL1 ⊂ Xδ1 ⊂ DL2 ⊂ Xδ2 . For
V ⊂ W we have the following commutative diagram of vector spaces

H0(DV
L1

) H0(DV
L2

)

H0(X
V
δ1

)

H0(DW
L1

) H0(DW
L2

)

H0(X
W
δ1

)H0(X
W )

H0(X
V )

H0(X
W
δ2

)

H0(X
V
δ2

)
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Since δ1 < δ2 < δU, by definition of global H0-critical value overU, all four horizontal
maps

H0(X
V ) −→ H0(X

V
δ1

) −→ H0(X
V
δ2

) and H0(X
W ) −→ H0(X

W
δ1

) −→ H0(X
W
δ2

)

are isomorphisms. Applying 2, we can conclude that

H0(X
V ) −→ D(V ) and H0(X

W ) −→ D(W )

are isomorphisms of vector spaces. Since the diagram commutes, the image of D(V )

under the map H0(DV
L2

) → H0(DW
L2

) is contained in D(W ). Therefore, H0(DV
L2

) →
H0(DW

L2
) induces a mapD(V ) → D(W ), which completes the commutative diagram

of the theorem. �


3.3 Point-cloudmapper algorithm

Given data {X1, . . . , Xn} i.i.d∼ p, where p is a PDF, we can estimate p using a kernel
density estimator (KDE) of the form,

p̂(x) := 1

CKnrd

n∑

i=1

Kr (x − Xi ),

where K (x) is a given kernel function, Kr := K (x/r), and CK is a constant defined
below. The kernel function should satisfy the following:

1. supp(K ) ⊂ B1(0), and K (x) is smooth in B1(0).
2. K (x) ∈ [0, 1], and maxx K (x) = K (0) = 1,
3.

∫
Rd K (x)dx = CK with CK ∈ (0, 1).

Using p̂ we can estimate the super-level sets DL using

D̂L(n, r) :=
⋃

i : p̂(Xi )≥L

Br (Xi ), (1)

and the sets DV
L using

D̂V
L (n, r) := D̂L(n, r) ∩ f −1(V ). (2)

Choose εi such that Li +2εi , Li −2εi are within the H0-regularity range of Li over V
for each V ∈ U and L1−2ε1 > L2 +2ε2. In the following, we will use the term “with
high probability” (w.h.p.) to mean that the probability of an event to occur converges
to 1 as n → ∞.

Proposition 6 Fix L and V , and set D̂V
L := D̂V

L (n, r). Fixing ε > 0, there exists a
constant Cε > 0 (independent of L and V ) such that if nrd ≥ Cε log n, then the
following diagram of inclusion relations holds w.h.p.,
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D̂V
L+ε D̂V

L−ε

DV
LDV

L+2ε DV
L−2ε

Proof The proof appears as part of the proof of Theorem 3.3 in Bobrowski et al.
(2017b). �

Next, define the random vector space

D̂i (V ) := Im
(
H0(D̂

V
Li+εi

) → H0(D̂
V
Li−εi

)
)

.

Corollary 2 If nrd ≥ Cεi log n, then w.h.p. the random map

H0(D
V
Li

) → D̂i (V )

is an isomorphism.

Proof The corollary follows from applying 2–6. �

From here on, unless otherwise stated, we will assume that r is chosen so that nrd ≥
max(Cε1 ,Cε2) log n, so that 2 holds for both ε1, ε2.

Proposition 7 For every V ⊂ W ∈ U′, we have the following commutative diagram
w.h.p.,

�

H0(DV
Li

) D̂i (V )
∼=

H0(DW
Li

) D̂i (W ).
∼=

Proof The proof follows the same arguments as the proof of Proposition 5, and using
Corollary 2. �


Finally, we define the following random vector space,

D̂(V ) := Im
(
H0(D̂

V
L1+ε1

) → H0(D̂
V
L2−ε2

)
)

.

Proposition 8 Assume that p is ε-concentrated on X for some ε < δU. For every
V ⊂ W ∈ U′, we have the following commutative diagram w.h.p.,

�

H0(X
V ) D̂(V )

∼=

H0(X
W ) D̂(W ),

∼=
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where the constants L1 and L2 (defining D̂) are given by the definition of ε-
concentrated, and the constants ε1 and ε2 are given by the H0-regularity of L1 and
L2, respectively.

Proof We will use the assumption that L1 − 2ε1 > L2 + 2ε2 repeatedly for each of
the super-level set inclusions in the proof. The inclusion of spaces D̂V

L1−ε1
⊂ D̂V

L2−ε2

induces a homomorphism H0(D̂V
L1−ε1

) → H0(D̂V
L2−ε2

). Restricting the domain of

this map, we get a homomorphism D̂1(V ) → H0(D̂V
L2−ε2

). Since L1 − ε1 > L2 +
ε2 > L2 − ε2, the map D̂1(V ) → H0(D̂V

L2−ε2
) factors through H0(D̂V

L2+ε2
) →

H0(D̂V
L2−ε2

), forming the commutative diagram

�

D̂1(V ) H0(D̂V
L2−ε2

)

H0(D̂V
L2+ε2

)

This implies that Im(D̂1(V ) → H0(D̂V
L2−ε2

)) ⊂ D̂2(V ), and gives a map D̂1(V ) →
D̂2(V ), which w.h.p. completes the following commutative diagram,

�

H0(DV
L1

) D̂1(V )
∼=

H0(DV
L2

) D̂2(V )
∼=

where the horizontalmaps are given byCorollary 2. Therefore, applying Proposition 5,
we have

H0(X
V )

∼=−→ D(V )
w.h.p.∼= Im

(
D̂1(V ) → D̂2(V )

)
.

Since D̂V
L1+ε1

⊂ D̂V
L1−ε1

⊂ D̂V
L2+ε2

⊂ D̂V
L2−ε2

,wehave that Im
(
D̂1(V ) → D̂2(V )

)
=

D̂(V ). The map D̂(V ) → D̂(W ) in the statement of the proposition (and the com-
mutativity of the resulting diagram) is induced by the inclusion D̂V

L2−ε2
↪→ D̂W

L2−ε2
in the following commutative diagram.
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D̂V
L1+ε1

D̂V
L1−ε1

DV
L1

D̂W
L1+ε1

D̂W
L1−ε1

DW
L1

DW
L1+2ε1

DV
L1+2ε1

DW
L1−2ε1

DV
L1−2ε1

D̂V
L2+ε2

D̂V
L2−ε2

DV
L2

D̂W
L2+ε2

D̂W
L2−ε2

DW
L2

DW
L2+2ε2

DV
L2+2ε2

DW
L2−2ε2

DV
L2−2ε2

X
V

X
W

X
V
δ1

X
W
δ1

X
V
δ2

X
W
δ2

�


4 Main results

In this section, we prove convergence of the random enhanced mapper graph to the
Reeb graph, as well as stability of the enhanced mapper graph under certain per-
turbations of the corresponding real valued function. Using the model described in
Sect. 3, we generate random data, which is used to define a cosheaf which estimates
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the connected components of fibers of the real valued function associated to a given
constructibleR-space. In the proof of Theorem 2, we show that, with high probability,
the cosheaf constructed using random data is isomorphic to themapper functor applied
to the Reeb cosheaf defined in Sect. 2. We then use the results established in Sect. 2
to translate the cosheaf theoretic statement into a geometric statement (Corollary 3)
for the corresponding R-graphs.

To begin, we identify a sufficient condition for determining when a morphism of
constructible cosheaves is an isomorphism. A morphism F → G of cosheaves is a
family of maps F (V ) → G (V ), for each open set V , which form a commutative
diagram

�

F (V ) G (V )

F (W ) G (W )

for each pair of open sets V ⊂ W . The morphism F → G is an isomorphism
if each of the maps F (V ) → G (V ) is an isomorphism. Our first result shows
that for cosheaves of the form MU(F ), it is sufficient to consider only the maps
MU(F )(V ) → MU(G )(V ) for open sets V ∈ U′.

Proposition 9 LetC andD be cosheaves onR. An isomorphismMU(C ) → MU(D)

of cosheaves is uniquely determined by a family of isomorphisms MU(C )(V ) →
MU(D)(V ) for each V ∈ U′, which form a commutative diagram

�

MU(C )(V ) MU(D)(V )
∼=

MU(C )(W ) MU(D)(W )
∼=

for each pair V ⊂ W ∈ U′.

Proof Proposition 4 shows thatMU(C ) andMU(D) are constructible cosheaves over
R. The proof then follows from de Silva et al. (2016, Proposition 3.10). �

Recalling the notation of Sects. 2 and 3, for a super-level set DL of p, letRDL be the
Reeb cosheaf of (DL , f ) on R, defined by

RDL (U ) = π0(D
U
L )

for each open setU ⊂ R. LetRD̂L
be the Reeb cosheaf of (D̂L , f ) onR, defined by

RD̂L
(U ) = π0(D̂

U
L )
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where D̂L , D̂U
L are defined in (1), (2), respectively, and U ⊂ R is an open set. We

should note that (DL , f ) and (D̂L , f ) are not apriori constructible spaces, so the
cosheavesRDL andRD̂L

are not necessarily constructible. However, in what follows
we will work exclusively with MU(RDL ) and MU(RD̂L

), which are constructible
cosheaves by Proposition 4.

Let D̂π
n be the cosheaf defined by

D̂π
n := MU

(
Im

(
RD̂L1+ε1

→ RD̂L2−ε2

))
,

with constants n, L1, L2, ε1, and ε2 chosen in Sect. 3. More explicitly, D̂π
n maps an

open interval U to elements of the set RD̂L2−ε2
(IU(U )) which lie in the image of the

set RD̂L1+ε1
(IU(U )) under the map induced by the inclusion D̂L1+ε1 ⊆ D̂L2−ε2 . By

Proposition 4, D̂π
n is a constructible cosheaf.

Theorem 2 Assume there exists ε < δU such that p is ε-concentrated on X, then

lim
n→∞P

(
dI (D̂

π
n ,RX) ≤ res f U

)
= 1.

Proof An inclusion of open sets Y ⊂ Z induces a map

π0(Y ) → π0(Z),

of the corresponding sets of path-connected components of Y and Z respectively. Each
set of path-connected components forms a basis for the homology group in degree 0.
Therefore, the map from π0(Y ) to π0(Z) extends to a map between homology groups,
resulting in the following commutative diagram

�

π0(Y ) H0(Y )

π0(Z) H0(Z).

By combining the preceding commutative diagram with Proposition 8, we see that for
every V ⊂ W ∈ U′, the following diagram commutes w.h.p.

�

π0(X
V ) D̂π

n (V )
∼=

π0(X
W ) D̂π

n (W ).
∼=
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Notice that if V ∈ U′, then IU(V ) = V . By Proposition 9 we have that

D̂π
n

w.h.p.∼= MU(RX).

Therefore, w.h.p.

dI (D̂
π
n ,MU(RX)) = 0.

Theorem 1, combined with the triangle inequality, implies the theorem. �

Corollary 3 Let R(X, f ) be the Reeb graph of a constructible R-space (X, f ), and
D(D̂π

n ) be the display locale of the mapper cosheaf defined above. If there exists
ε < δU such that p is ε-concentrated on X, then

lim
n→∞P

(
dR

(
D(D̂π

n ),R(X, f )
) ≤ res f U

)
= 1.

If p is concentrated on X, then the above corollary will hold for nice open covers
with arbitrarily small resolution, as long as δU remains positive. Therefore, Corollary 3
implies that we can use random point samples from p to construct mapper graphs that
are (w.h.p.) arbitrarily close (in the Reeb distance) to the Reeb graph of X.

To conclude, we will turn our attention to the stability of mapper cosheaves corre-
sponding to a constructible space (X, f ) under perturbations of the function f . The
following theorem uses the machinery of cosheaf theory to prove that the mapper
cosheaf is stable as long as the singular points of the constructible R-space X are
sufficiently “far away” from the set of boundary points of our open cover U.

Theorem 3 Suppose F and G are constructible cosheaves over R, with a common
set of critical values S. Let U be a nice open cover of R, with set of boundary points
B. Assume that

dI (F ,G ) < min{|s − b| : s ∈ S, b ∈ B}.

Then

dI (MU(F ),MU(G )) < dI (F ,G ).

Moreover, if F is the Reeb cosheaf of (X, f ) and G is the Reeb cosheaf of (X, g),
then

dI (MU(F ),MU(G )) < || f − g||∞.

Proof Suppose ϕU : F (U ) → G (Uε) and ψU : G (U ) → F (Uε) give an ε-
interleaving of F and G . Recall that

MU(F )(U ) = F (IU(U )).
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Then

ϕIU(U ) : MU(F )(U ) → G (IU(U )ε).

In general, this does not give us an ε-interleaving of MU(F ) and MU(G ), because
IU(U )ε �= IU(Uε). However, we will proceed by showing that each of these sets
contain the same set of critical values.

Following the definition of IU, we see that for each U ∈ Int, IU(U ) is an open
interval inR, with boundary points contained in B. ThereforeIU(U )∩S ⊂ IU(U )ε∩S.
If the inclusion is not an equality, then there must exist s ∈ S such that s ∈ IU(U )ε
and s /∈ IU(U ). In other words, if IU(U ) ∩ S � IU(U )ε ∩ S, then there exists s ∈ S
and b ∈ B such that |s − b| < ε.

Define

NU,ε(U ) := IU(Uε) ∩ IU(U )ε.

By the arguments above, if ε < min{|s − b| : s ∈ S, b ∈ B}, then IU(U ) ∩ S =
IU(U )ε ∩ S. It follows that NU,ε(U ) ∩ S = IU(U ) ∩ S = IU(U )ε ∩ S, because
IU(U ) ⊂ IU(Uε). By the definition of constructibility, this implies that the natural
extension map G [NU,ε(U ) ⊂ IU(U )ε] (denoted by e for notational brevity)

G (NU,ε(U ))
e−−−→ G (IU(U )ε)

is an isomorphism, and therefore is invertible. The composition

MU(F )(U )
ϕ−→ G (IU(U )ε)

e−1−−→ G (NU,ε(U )) → G (IU(Uε)) = MU(G )(Uε)

gives an ε-interleaving ofMU(F ) andMU(G ), because each map in the composition
is natural with respect to inclusions. Therefore

dI (MU(F ),MU(G )) < dI (F ,G ).

WhenF is the Reeb cosheaf of (X, f ) and G is the Reeb cosheaf of (X, g), the second
statement of the theorem is a direct consequence of the above inequality and de Silva
et al. (2016, Theorem 4.4). �


5 Discussion

In this paper, we work with a categorification of the Reeb graph (de Silva et al. 2016)
and introduce a categorified version of the mapper construction. This categorification
provides the framework for using cosheaf theory and interleaving distances to study
convergence and stability for mapper constructions applied to point cloud data. In this
setting, the Reeb graph of a constructibleR-space is realized as the display locale of a
constructible cosheaf (which we refer to as the Reeb cosheaf, following de Silva et al.
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Fig. 5 An example of the enhanced mapper graphD(MU(R f )) and the Reeb graphR(T, f ) of the height
function f on the torus T, with an open cover U of f (T) consisting of two open intervals. The maps q and
f q are the natural quotient factorization of f obtained from the definition of the Reeb graph. Similarly, p

and f p are the quotient map and factorization of f obtained from the definition of the enhanced mapper
graph

2016). In Sect. 2.5, we define a mapper functor from the category of cosheaves to the
category of constructible cosheaves, giving a category theoretic interpretation of the
mapper construction. We then define the enhanced mapper graph to be the display
locale of themapper functor applied to theReeb cosheaf.We give an explicit geometric
realization of the display locale as the quotient of a disjoint union of closed intervals,
as illustrated in Fig. 5. In Sect. 3, we give a model for randomly sampling points
from a probability density function concentrated on a constructible R-space. After
applying kernel density estimates, we consider an enhanced mapper graph generated
by the random data. The main result of the paper, Theorem 2, then gives (with high
probability) a bound on the Reeb distance between the Reeb graph and the enhanced
mapper graph generated by a random sample of points.

Refinement to classic mapper graph The enhanced mapper graph suggests a few
refinements to the classic mapper construction. Firstly, rather than an open cover U
of f (X) (the image of the constructible R-space X in R), it is more natural from the
enhanced mapper perspective to start with a finite subset R0 of R. From this finite
subset, the enhanced mapper graph can be computed by first producing a finite disjoint
union of closed intervals, with each interval associated to a connected component of
the complement of R0. Then, by prescribing attaching maps on boundary points of
the disjoint union of closed intervals, one can obtain a combinatorial description of
the enhanced mapper graph as a graph with vertices labeled with real numbers. The
enhanced mapper graph then has the structure of a stratified cover of f (X), the image
of the constructible R-space X in R. As such, the enhanced mapper graph contains
more information than the classic mapper graph. Specifically, edges of the enhanced
mapper graph have a naturally defined length which captures geometric information
about the underlying constructibleR-space. Therefore, the enhanced mapper graph is
naturally geometric, meaning that it comes equipped with a map to R.
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Fig. 6 Variations of mapper graphs for the height function on a torus. a Torus with a height function. b
Reeb graph. c Nice cover. d Visualization of the mapper cosheaf. e Stratification of R. f Disjoint union
of closed intervals, D̃(MU(R f )), with quotient isomorphic to the enhanced mapper graph. g Enhanced
mapper graph, D(MU(R f )). h Disjoint union of closed intervals used to construct geometric mapper
graph (Munch and Wang 2016). i Geometric mapper graph. j Multinerve mapper graph. k Classic mapper
graph

Variations of mapper graphs We return to an in-depth discussion among variations
of classic mapper graphs. As illustrated in Fig. 6 for the R-space (T, f ), that is, a
torus equipped with a height function, the enhanced mapper graphs (g), geometric
mapper graphs (i) studied byMunch andWang (2016), and multinerve mapper graphs
(j), have all been shown to be interleaved with Reeb graphs (b) (Munch and Wang
2016; Carriére and Oudot 2018). To further illustrate the subtle differences among
the enhanced, geometric, mutinerve and classic mapper graphs, we give additional
examples in Figs. 7 and 8. In certain scenarios, some of these constructions appear to
be identical or very similar to each other. We would like to understand the information
content associated with the above variants of mapper graphs, all of which are used
as approximations of the Reeb graph of a constructible R-space. As illustrated in
Fig. 6, given an enhanced mapper graph (g) and an open cover (c), one can recover
the the multinerve mapper graph (j), the geometric mapper graph (i), and the classic
mapper graph (k). In future work, it would be interesting to quantify precisely the
reconstruction ordering of these variants with and without any knowledge of the open
cover.

In order to study convergence and stability of each variation of the mapper graph, it
is necessary to assign function values to vertices of the graph. For the classic mapper
graph or multinerve mapper graph, each vertex can be assigned, for instance, the
value of the midpoint of a corresponding interval in R. However, the display locale
of a cosheaf overR admits a natural projection onto the real line, making a choice of
function values unnecessary for the enhanced mapper graph. For this reason, we view
the enhanced mapper graph as a natural variation of the mapper graph, well-suited for
studying stability and convergence, with a natural interpretation in terms of cosheaf
theory.
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Fig. 7 A return to the example illustrated in Fig. 1. Variations of mapper graphs of a height function on a
topological space. aA topological space with a height function. b Reeb graph. cNice cover. dVisualization
of the mapper cosheaf. e Stratification of R. f Disjoint union of closed intervals with quotient isomorphic
to the enhanced mapper graph. g Enhanced mapper graph. h Disjoint union of closed intervals used to
construct geometric mapper graph (Munch and Wang 2016). i Geometric mapper graph. j Multinerve and
classic mapper graph

Fig. 8 Variations of mapper graphs of a height function on a topological space consisting of two line
segments. aA topological space consisting of two line segments. bReeb graph. cNice cover. dVisualization
of the mapper cosheaf. e Stratification of R. f Disjoint union of closed intervals with quotient isomorphic
to the enhanced mapper graph. g Enhanced and geometric mapper graph. i Multinerve and classic mapper
graph

Multidimensional setting and parameter tuning It is natural to extend the enhanced
mapper graph (and more generally the categorification of mapper graphs) to multidi-
mensional Reeb spaces and multi-parameter mapper through studying constructible
cosheaves and stratified covers of RN , for N > 1. We would also like to study the
behavior of the parameter δU for various constructible spaces and open covers. In
general, this parameter can vanish for “bad” choices of open cover U. It would be
worthwhile to extend the results of this paper to obtain bounds on the interleaving
distance when δU vanishes. In conclusion, we hope for the results of this paper to pro-
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mote the utility of combining methods from statistics and sheaf theory for the purpose
of analyzing algorithms in computational topology.
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A Pseudocode for the enhancedmapper graph algorithm

The following pseudocode (Algorithm 1) outlines an algorithm for computing the
enhanced mapper graph, which is stored as a graph G = (F, E) with a vertex set F
and an edge set E , together with a real-valued function f : F → R.

Fig. 9 An illustration of notations used in the pseudocode of Algorithm 1
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Algorithm 1: Compute an enhanced mapper graph with oracles.
Input:
– A finite set of pairwise intersecting open intervals: {Ui := (u−

i , u+
i )}i∈A

– For each interval, a set returned by a set oracle:

– For each Ui , a set Σi := π0( f
−1(Ui ))

– For each (Ui ,Ui+1), a set Σ(i,i+1) := π0( f
−1(Ui ∩Ui+1))

– For each pair of intervals, a set map returned by a set-map oracle:
For each (Ui ,Ui+1), set maps

ρ−
i : Σ(i,i+1) → Σi , ρ+

i : Σ(i,i+1) → Σi+1.

Output:

– A graph G = (F, E) with a vertex set F and an edge set E ⊆ F × F
– A function f : F → R

Initialize F = ∅ and E = ∅
for i ∈ A do

Set Σ+
i := Σi × {+}

Set Σ−
i := Σi × {−}

F ← F 
 Σ−
i 
 Σ+

i
for s ∈ Σi do

E ← E 
 ((s, −), (s, +))

f ((s, +)) :=
{
u−
i+1 if i + 1 ∈ A

u+
i if i + 1 /∈ A,

f ((s, −)) :=
{
u+
i−1 if i − 1 ∈ A

u−
i if i − 1 /∈ A,

end
end
for (i, i + 1) ∈ A × A do

for t ∈ Σ(i,i+1) do
E ← E 
 ((ρ−

i (t), +), (ρ+
i (t), −))

end
end

The algorithm assumes that we are given sets π0( f −1(U )) (denoted by Σ in the
pseudocode) and set maps π0( f −1(U )) → π0( f −1(V )) (denoted by ρ in the pseu-
docode) for various U ⊂ V ⊂ R. In other words, the algorithm assumes that there
is an oracle (referred to as a set oracle) that takes as input an inverse mapping of
an interval and returns its corresponding set of path-connected components. It also
assumes that there is a set-map oracle that keeps tracks of set maps between a pair of
path-connected components (each component is denoted by s in the pseudocode). In
Section 3, we give a statistical approach for computing such sets and set maps through
kernel density estimates.

In Algorithm 1, let U = {Ui }i∈A denote a finite set of pairwise intersecting open
intervals. For simplicity, suppose the index set A ⊂ Z contains consecutive integers.
That is, for each interval Ui := (u−

i , u+
i ) (for some i ∈ A), we have u−

i < u+
i−1 <
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u−
i+1 < u+

i < u+
i+1 (assuming i − 1, i + 1 ∈ A). For each interval Ui , Σi :=

π0( f −1(Ui )) denotes the set of path-connected components. For each path-connected
component s ∈ Σi , the pairs (s,+) ∈ Σi × {+,−} and (s,−) ∈ Σi × {+,−}
represent the two vertices associated to the edge in the enhanced mapper graph which
corresponds to s. Similarly, for each path-connected component t ∈ Σ(i,i+1), the
pairs (ρ−

i (t),+) and (ρ+
i (t),−) represent the two vertices associated to the edge in

the enhanced mapper graph which corresponds to t .
For clarity, Fig. 9 illustrates notations used in the pseudocode of Algorithm 1. It is

based on a zoomed view of Fig. 1c–f. The maps ρ−
i and ρ+

i define how the red vertices
and blue vertices (as end points of intervals) are glued together to form an enhanced
mapper graph. In this particular example, (ρ−

i (t),+) (a blue vertex) matches with
(s,+) (a red vertex), due to the fact that ρ−

i (t) = s.
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