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Abstract—Accurate identification of the signal type in a shared-
spectrum scenario is critical for fair allocation of channel access.
It facilitates scheduling the transmissions of coexisting systems
(e.g., Wi-Fi, LTE LAA, and 5G NR-U) and avoids collisions,
especially when spectrum dynamics change rapidly. In this work,
we develop deep neural networks (DNNs) to detect coexisting
signal types based on In-phase/Quadrature (I/Q) samples without
decoding. By using segments of the samples of the received signal
as input, a Convolutional Neural Network (CNN) and a Recur-
rent Neural Network (RNN) are combined and trained using
categorical cross-entropy (CE) optimization. The classification
results show high accuracy for the proposed DNN, even when the
received signal is under the mixture. We then exploit spectrum
analysis of I/Q sequences to further improve the classification
accuracy. By applying Short-time Fourier Transform (STFT),
additional information in the frequency domain can be gained.
Accordingly, we enlarge the input size of the DNN. To verify the
effectiveness of the proposed detection framework, we conduct
over-the-air (OTA) experiments using USRP radios. The RF
signal is transmitted between antennas and is then captured to
evaluate the classification performance of our approach.

Index Terms—Machine learning, signal classification, coexis-
tence, convolutional neural networks, recurrent neural networks,
dynamic spectrum access, software-defined radio.

I. INTRODUCTION

The unprecedented demand for wireless services has

crowded the radio spectrum. Spectrum access (SA) provides

a potential remedy for the operation of heterogeneous wire-

less systems in congested and contested spectrum environ-

ments [1]. In SA, unlicensed users can use the common

channels when licensed users are idle [2]. However, it is

challenging to guarantee a given throughput level to coexisting

systems without knowing their usage statistics and access

behavior [3], [4]. Furthermore, there are active demands for

heterogeneous networks to share spectrum and avoid collisions

when uncoordinated service convoluted [5], [6]. To fulfill such

requirements, operators and end users need to sense the shared

medium and identify the active signals without having to

decode them.

Fast and accurate identification of the different types of

coexisting signals has always been an important aspect of

interleaving spectrum sharing. Common spectrum sensing

techniques are likelihood or feature-based [7], [8], e.g., cyclo-

stationarity. In these techniques, signal detection is performed

under certain assumptions of the underlying waveforms, e.g.,

their modulation and coding scheme, protocol behavior, prob-

ability distributions, etc., which strongly depend on the de-

coded signal. In addition to relying on specific model-based

assumptions, conventional sensing approaches often assume

that spectrum dynamics are slowly varying. To break the above

limitations, we propose a machine learning framework for

signal sensing and classification in coexistence scenarios with

fast-varying spectrum dynamics.

Deep learning has been successfully applied to various

classification and recognition problems [9]–[11]. It can support

high-dimensional input data, sizeable neural network models,

and adjustable parameters. In addition to traditional speech

and image recognition, deep neural networks (DNNs) have

also been applied to RF signal classification problems [12]–

[15]. However, most of these work attempt to classify the

data according to their modulation schemes, or they assume

the signal category to be highly related to such schemes. It

overwhelms the dynamics in a SA network, where one type

of signal protocol may have several modulation and coding

schemes. Moreover, existing efforts presume the received

signal is only corrupted with noise but does not consider

the possibility of mixed (superposed) unlicensed bands. As a

result, it is not possible to maintain satisfactory performance

in the fast varying SA network.

To investigate the application of DNNs in signal classi-

fication of coexisting waveforms, we focus on Wi-Fi, LTE

LAA, and 5G NR unlicensed, as for example, the case of

operating over the unlicensed 5GHz bands. We design a

convolutional neural network (CNN) and a recurrent neural

network (RNN) to detect the underlying wireless technology

based on the received I/Q samples. The CNN can capture

the sample features by the convolution calculation, while the

RNN can gain the sequence dependency when the feature is

flattened. Fig. 1 describes the procedures before where we

can apply the signal classifier. After the transmitted RF signal

is received by the antenna, it should be filtered and down-

converted into the analog signal. By applying an ADC, the

waveform is then converted to digital signals. The designed

protocol classifier can distinguish the signal type for the user

after the DSP block processes the signal.

To test the model accuracy, we start with an interleaving SA

scenario, whereby any but only one of the three techniques is

active at a time, i.e., there is no superposition of different

types except for channel noise. The average classification

accuracy for the interleaving scenario can achieve 92.1%
when the SNR is greater than 15 dB. Motivated by such

results, we then extend our effects to under mixed signals.

The classifier can correctly distinguish the mixture signal with

an accuracy of around 80% when the channel is in good

condition. To further improve the accuracy of the proposed

DNN classifier, we incorporate the frequency-domain analysis



(FDA) in its input. A short-time Fourier transform (STFT)

technique is applied to segments of the I/Q samples and obtain

their spectrogram. Based on the STFT, the DNN can extract

time-frequency features by employing a sliding Kaiser–Bessel

window. Such information can be combined with the original

DNN input (time-domain I/Q samples), resulting in significant

improvement in accuracy.

We validate the performance of the proposed classifier using

experiments on an software-defined radio (SDR) platform.

Over-the-air (OTA) experiments are conducted with USRP

sets. The signals are generated by the Matlab communication
toolbox and 5G toolbox and then connected to the USRP.

We set three USRP-2921 with antennas correspond to the

signal types Wi-Fi, LTE, and 5G NR. During the transmission,

signals can be selected as active or inactive by the control

of USRP. Correspondingly, the signals are superposed with

selected types and with the channel noise when transmitted

between antennas. The RF signal is then captured by the

receiver and used for the classification. Our contributions are

summarized as follows:

• We introduce a DNN-based classification algorithm for

coexisting signals in a shared-spectrum scenario. By

adjusting parameter settings, we generate extensive data

set featured by signal types of Wi-Fi, LTE, and 5G NR

and use them for training and testing classifiers.

• We propose an FDA-CNN-LSTM framework to differ-

entiate between various signal types. The performance

of the proposed DNN-based classifier is compared with

other methods from various perspectives.

• To improve the classification accuracy, STFT is applied

to provide extra spectrogram information. The average

algorithm accuracy is improved by around 14% when

frequency-domain analysis is included.

• We verify the proposed experimentally detection frame-

work with an OTA experiment conducted on USRP sets.

The RF signals are transmitted and mixed between an-

tennas and are then captured to evaluate the performance

of our identification approach. The accuracy can achieve

91% in our experiment when SNR is greater than 15 dB.

The rest of the paper is organized as follows. Section II

presents the related work in deep learning-based signal clas-

sification. Section III describes the generation of the dataset

for simulation and experiment. In section IV, we introduce

the neural network architecture that we designed for protocol

classification. In Section V, We analyze the performance of the

proposed model. The details and results of the corresponding

SDR experiment are explained in Section VI. Section VII

concludes the paper.

II. RELATED WORK

Signal classification is a critical and challenging problem

in a dynamic resource allocation network. Correct detection

allows the coordinator to avoid the interference sources, which

can actively improve the total network resources’ efficiency.

The authors explore the modulation scheme classification

problem with deep learning (DL) algorithm in [12], [13] and
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Fig. 1. Signal processing to obtain the I/Q samples for classification.

prove it can achieve more than 90% classification accuracy

when the signal is in a high SNR environment. After that,

the deep learning based signal classification problem become

extensively popular. In [14], the distributed sensor network’s

modulation schemes are detected and classified by deep learn-

ing models. [15] shows the generative adversarial method can

sort the data in a cognitive radio network. In [16], in-network

users, out-network users, and jammers are distinguished by

CNN to improve the in-network users’ throughput and out-

network users’ success ratio. Unlike these work, our deep

learning model is trained for signal protocol detection in a

coexisting environment. Instead of the modulation scheme, the

protocol features are easier corrupted and harder distinguish-

able by the mixture of other sources’ signals. As a result, we

apply a CNN and an RNN to characterize the pattern from the

I/Q samples dynamically.

In addition to the previously mentioned signal classification

scenario, neural networks have also been profitably applied to

other time-series classification problems in [17]–[20]. It proves

that neural networks have a higher degree of freedom and

can achieve even higher accuracy than conventional methods.

Other authors also successfully employed in other wireless

communication areas [21]–[24] to help improve the network’s

efficiency (e.g., minimize congestion, improve throughput,

and simplify the connection setup). In [25], deep learning

is applied to coordinate multipoint downlink transmission in

NR heterogeneous networks. [26] propose and deep learning

based unlicensed bands sharing structure for LTE and WiFi

system. However, these approaches ignore the importance

of successfully detect the required signal type in coexisting

environments. Moreover, it’s even more arduous to recognize

the signal in a spectrum access or heterogeneous network.

In this paper, we provide a framework to detect the signal

without requiring decoding them even in a corrupted situation.

In addition to the traditional deep neural network, we also

include the frequency analysis to discriminate the signal types

accurately. We then build the SDR platform to make sure the

model is also viable in a real environment. The testing result

is impressive in both the simulation and the experiment.

III. DATASET GENERATION

The waveforms of these signals were generated using the

Matlab 5G and communication toolbox, which specifies a

set of signal features, including the baseband In-phase and

Quadrature values, channel bandwidth, modulation and coding

scheme (MCS), subcarrier spacing, and allocated resource

blocks. We generated sample waveforms of the three tech-



nologies based on different parameter settings supported by

LTE, Wi-Fi, and 5G NR standards, as described in Table I.

Of the various possible features, we considered the baseband

I/Q samples at the receiver (noise added) as the input to the

classifier. I/Q samples can be easily obtained before decoding

the signal, and they provide a rich representation of the actual

waveform. Specifically, key parameters such as the MCS and

the channel state information (CSI) are readily captured in

the I/Q samples. Accordingly, instead of taking all the signal

parameters as inputs to the artificial neural network (ANN),

we only rely on the measured I/Q samples, hence significantly

reducing the size of the ANNs. The receiver architecture

considered in this paper is shown in Fig. 1. The received RF

signal is down-converted and digitized to obtain the raw I/Q

sample set. By applying a sliding window, these I/Q samples

are divided into multiple sequences, each consisting of 512 I/Q

pairs. These sequences are used as the data sets to train various

classifiers. Approximately 100,000 such segments were used,

split into 80% sequences for training and 20% sequences for

testing.

To demonstrate the viability of the deep learning algorithm

in the coexisting signal situation, we test the classification

accuracy in both simulation and experiment. During the sim-

ulation, different types of signals are mixed under the same

additive white Gaussian noise (AWGN) channel. While, during

the experiment, the baseband signals are up-converted RF

signals then transmitted over the air, so that the channel reflects

the real noise of an indoor environment. We connect three

USRP sets to the waveform generator, which allows us to

transmit all three types of the waveforms simultaneously. To

distinguish all possible labels under different environments, we

collect both independent and mixture transmission data. At the

receiver side, the antenna keeps receiving the RF signals. Then

the waveforms are filtered and down-converted to I/Q samples

and used for classifying. There are three types of independent

signals, three types of double-mixtures, and one type of triple-

mixture. For the multi-waveform situation, each component is

transmitted with the same channel-gain, so that they take a

roughly equal portion of the received commixture. As a result,

there are seven types of the signal need to be categorized in

the dataset.

IV. NEURAL NETWORK ARCHITECTURE

In this section, we consider a CNN and an LSTM network

as our classifier to distinguish the signal types, as shown

in Fig. 2. The input is the segmented I/Q sequences, as

we describe in Section III. After the input is fed, STFT is

applied in these sequences to obtain the frequency power

strength distribution. Such frequency-domain strength data is

passed into the convolutional layer along with the original I/Q

value to allow the CNN capture features. Then the output is

connected to the pooling layer. Notice that the information

exchange between the convolutional layer and the pooling

layer may repeat several times in the structure, so we don’t

draw all the layers out. It happens in the dense layer as well.

The output from convolution and pooling is then flattened to

TABLE I
PARAMETER OPTIONS FOR WAVEFORM GENERATOR.

Protocol Parameter Possible Values

LTE

Reference
Channel

R.1, R.2, R.3, R.4, R.5, R.6, R.7,
R.8, R.9, R.10, R.11, R.12, R.13,
R.14, R.25, R.26, R.27, R.28, R.31-
3A, R.31-4, R.43, R.44, R.45, R.45-
1, R.48, R.50, R.51, R.6-27RB, R.12-
9RB, R.11-45RB

Number of
Subframes

6, 8, 10

Modulation
Schemes

QPSK, 16QAM, 64QAM

Transmission
Bandwidth
[RB]

1, 6, 15, 25, 27, 39, 50, 75, 100

Duplex
Mode

FDD, TDD

5G

Frequency
Range

450 MHz-6 GHz, 24.25 GHz-52.6 GHz

Subcarrier
Spacing
(kHz)

15,30,60

Modulation
Schemes

QPSK, 64QAM, 256QAM

Channel
Bandwidth
(MHz)

5, 10, 15, 20, 25, 30, 40, 50

Duplex
Mode

FDD, TDD

Wi-Fi

Channel
Coding

BCC, LDPC

Modulation
Schemes

BPSK, QPSK, 16QAM, 64QAM,
256QAM

Guard
Interval

Short, Long

Channel
Bandwidth
(MHz)

20, 40, 80, 160

low dimensional data. It helps better extract the time-series

dependencies from the sequences in the bridged the recurrent

layers (LSTM layers). After that, the dense layer and softmax

layer calculate the probability and assign the label for the input

sequence.

CNN is widely employed in visual imagery analysis by its

convenience to calculate the convolution for high dimensional

input. On the other hand, an LSTM network is used consider-

ably to solve time-series problems. LSTM network combines

the different weights of the sequence value and calculates

the value by some optimization function in a recurrent way.

Therefore, the outcome of the network cares more about the

dependency and correlation of the sequence. To combine the

advantages of a CNN and an LSTM together, we customized

a framework which allows a recurrent layer connected to

convolutional layers. It could reinforce time-series analysis

into CNN and could help capture the dependency between

samples. To train such a network, we collected the data from

−10 dB to 20 dB with a step increment of 2 dB following

the setting we described previously. At each SNR, there are

roughly 1000 samples {st}Tt=1 from each signal type, where

each sample includes the I/Q values of 512 data points x.



Segmented Sequence
Short-time Fourier 

Transform Convolutional layer Pooling layer Flatten layer

…
...

LSTM

LSTM

LSTM

LSTM layer Dense layer Softmax layer

LSTM

…
...

…
...

…
...

…
...

…
...

Fig. 2. Overview of the proposed FDA-CNN-LSTM classifier.

A. Convolutional Neural Network

A CNN typically consists of fully-connected layers, polling

layers, convolutional layers, and a softmax layer. It can be

trained by the input samples st and the corresponding category

yt from M labels. Then, the labeled dataset can be defined

as: D = {(s1, y1), (s2, y2), ..., (sT , yT )}. Let yt be the tth
sample’s category with yt ∈ {L} = {l1, l2, ..., lM}, where lr
stands for the label r. Under such definition, we can train and

get the hypothesis H(st) = yt, which predicts the category yt
of st that matches the actual one yt.

Samples’ feature can be obtained by the convolutional layers

during the training. For sample s in two dimensional matrix,

convolutional layer V is extracted by the convolutional kernel:

V(λ)(μ) = b(λ)(μ) +

W∑
w=0

H∑
h=0

K(w)(h)s(λ+w)(μ+ h) (1)

where W and H are the width and height of the convolutional

kernel, K is the filter kernel, and b is the bias. To avoid

gradient vanishing, we also employ scaled exponential linear

unit (SELU) as activation functions in the convolutional layers:

SELU(u) = λ

{
p if u > 0

αeu − α if u ≤ 0
(2)

where u is the output of the convolutional layer; α and λ are

the constant value in the SELU setting.

After the feature captured in the convolutional layer, it’s

connected to the max pooling layer. A max pooling layer helps

reduce computing costs by decreasing the dimensionality of

the data; besides, it helps prevent the over-fitting problem by

providing an abstracted form of the representation. The results

of the max polling is flattened and then passed to the LSTM

layer to allow the recurrent. The detail of the LSTM layers

will be discussed in the followed section. Then the output of

the recurrent layer gets through a dense layer. In dense layers,

features are mapped until it satisfies the requirement of the

output shape. Therefore, the last dense layer in our neural

network has seven neurons to pass each class’s likelihood to

the softmax layer. The probability of each label is normalized

to provide category prediction in the softmax layer:

P = {pl1 , pl2 , ..., plM } =
eŷm∑M
r=1 e

ŷr

(3)

where ŷ is the output of dense layer, and plm is the probability

of the input to be classified into label m.

Our neural network can make a prediction of the given input

data x by the hypothesis H under parameter setting θ: y =
H(θ, x). To measure the difference between an estimated label

y and the real label y, the cross-entropy is introduced to allow

the neural network self-involving by this error. In our case,

the cross-entropy function is used as the loss function during

the training:

L(θ) = −
∑
r

Brlog(yr) (4)

where {Br}mr=1 is a binary variable which will be 1 if the label

r is correct among m categories and yr is the corresponding

probability of the correction. The CNN minimizes the loss

function during the training by calculating the gradient of θ
at each step j. Then, θ gets updated with the corresponding

learning rate η as follows:

θj = θj−1 − η�θL(θ) (5)

B. Recurrent Neural Network

A typical LSTM network is consists of multiple LSTM cells

that determine the parameters of the hidden layers. At each

time step j, xj is system input and δj is the output of the

LSTM cell. The cell output at the previous time step, δj−1,

is combined with the current system input xj to form the

input for the current cell. The state of each cell is Cj , which

records the system memory. Cj is updated at each time step.

To control the information flow through the cell, several gates

are applied, including an input gate (ij), output gate (oj), and

forget gate (fj). Each gate generates an output between 0 and

1, where the value of the output is calculated by a sigmoid (σ)

function. An output of 0 indicates that the input of the gate is

totally blocked, while an output of 1 indicates all information



of the input is kept in the cell. The input, output, and forget

gates are calculated as follows:

ij = σ(Wixj + Uiδj−1 + bi)

oj = σ(Woxj + Uoδj−1 + bo)

fj = σ(Wfxj + Ufδj−1 + bf )

(6)

where Wi, Wo, and Wf are the weights of the three gates; Ui,

Uo, and Uf are the corresponding recurrent weights; and bi,
bo, and bf are the bias values of the three gates.

Similar to the gate function, we combine the current inputs

and previous cell state Cj−1 to update the cell state. The

difference is that instead of a sigmoid, the inputs will be

processed by a hyperbolic tangent function that generates an

output between −1 and 1:

C̃j = tanh(Wcxj + Ucδj−1 + bc) (7)

After the update, C̃j is multiplied by the output of the input

gate, which is then used as the first component to update the

cell state. Another component for updating the cell state is

the previous cell state, which is processed by the forget gate

to determine how past data is to be utilized. With the two

components, the cell state at time j is updated as:

Cj = fjCj−1 + ijC̃j (8)

The output of the cell hj , which will be used at time j + 1,

is calculated by the multiplication of the output gate and the

tanh function of the current cell state:

hj = oj tanh(Cj) (9)

C. Frequency-domain Analysis

Although the signal shows substantial similarity in time-

domain, the spectrogram may still be distinguishable after we

apply a Fourier transform, as shown in Fig. 3. The frequency-

domain analysis is commonly employed in image processing

as well as wireless signal transforming. Such investigation

can compensate for the overlook of hidden information in

neural networks when the input is time-series I/Q sequences.

Besides, frequency-domain signal classification emphasizes

the spectrum characteristic on the periodic pattern, which is

hard to fully captured by time-series analysis. On the other

hand, one convenience of the neural network is its flexibility

in input’s shape, which makes it possible for us to include

the spectrogram information into the network by increasing

the input dimension. After such a transform, the frequency

analysis consequence can be fed with the I/Q sample into the

neural network.

The frequency-domain analysis is conducted in the base-

band signal. In particular, a short-time Fourier Transform

(STFT) is applied to the I/Q sequences:

X(τ, ω) =

∫ ∞

−∞
x(k)w(k − τ)e−iωkdk (10)

where x(k) is the time-series signal to be transformed, and

w(τ) is the Kaisar-Bessel window function. X(τ, ω) is es-

sentially the Fourier Transform of x(k)w(k − τ), which is a
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(a) Spectrogram for 5G NR signal
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(b) Spectrogram for Wi-Fi signal

Fig. 3. Example of frequency-domain analysis for 5G NR and Wi-Fi signals.

complex function representing the phase and magnitude of the

signal over time and frequency. The Kaisar-Bessel window is

described as follows to extract the time-frequency features:

w(o) =
I0(β

√
1− ( o−O/2

O/2 )2)

I0(β)
(11)

where I0 is the zeroth-order Bessel function of the first

kind. O is the window length, and β is the shape factor,

which can be determined by side-lobe attenuation α. STFT

is used to determine the sinusoidal frequency and phase

content of local sections of a signal as it changes over time.

It uses short sequence segments to analyze the spectrogram

so that it matches well with our neural network training,

which also divides a long sequence signal into several equal

length training samples. The original network is extended to

a higher resolution one, including frequency information as

other dimension features. Unlike figure classification, time-

series I/Q samples, as well as their time-series features, still

play an essential role as part of the input. The amplitude

fluctuation, phase change, and signal dependency pattern are

hidden in the I/Q sequences, which can not be replaced by the

spectrogram.

V. ALGORITHM PERFORMANCE ANALYSIS

A. Benchmark Algorithm

We compare our algorithm with some traditional machine

learning (ML) algorithms and independent CNN and LSTM

network. As for ML algorithms, we investigate the support

vector machine (SVM) and random forests (RF) to verify that

ML methods are viable to solve such a signal classification

problem. The traditional SVM is successfully applied in class

distinction by determining the boundary while maximizing

the margin between classes. As our signal classification is

not linearly separable, we employ a soft margin in the SVM

model to further improve its accuracy. By introducing slack

variables ξ, the multiplications of the soft margin and ξ can

be added to the objective function. After using Lagrangian

relaxation, we transform the above constrained problem to an

unconstrained one. Furthermore, the objective function of the

resulting unconstrained problem becomes a quadratic function.

The optimal weight matrix can be obtained during the training

by solving each part’s derivative in the objective function
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Fig. 4. Classification performance comparison under AWGN.

at every epoch. After such a procedure, the trained SVM is

then used for testing the classification accuracy. Meanwhile,

RF methods are also investigated in our signal classification

problem. The decision tree in RF provides a prediction strategy

that traces through all sub-decisions that lead to a particular

solution so that the tree’s number plays a vital role in RF

methods. We also evaluate such performance by setting the

RF under different tree numbers.

We compare the proposed methods with these ML methods,

and the results show the merits of our approach. Due to the

proposed approach includes both CNN and RNN architectures,

the performance of independent CNN and RNN is also con-

sidered as comparison candidates. Basically, the independent

CNN model architecture is described as the same in IV-A but

without any LSTM layer. While the independent RNN is the

LSTM network defined in IV-B, which passes the output to

the dense layers to generate the predicted label for input data.

B. Classification based on I/Q Samples

In the simulation, we assume the signal is transmitted under

additive white Gaussian noise (AWGN) channel. It is the con-

dition under which analytic feature extractors should generally

perform well and matches the analytic model assumptions.

Before introducing STFT, we first consider the input as I/Q

pairs without frequency analysis. The data generation details

are described in Section III. During the testing, the SNR

increases 2 dB at each step, and all the mentioned ML/DL

algorithm is compared under the same environment setting.

As we can see in Fig. 4, the accuracy of nonlinear-SVM is

always lower when SNR is less than 10 dB. The achievable

accuracy rate is less than 70% for such an algorithm. The

random forest can improve the accuracy prominently from 0 to

10 dB intervals. The performance improved when the number

of trees increases from 10 to 20, but we can’t guarantee

further improvement when we keep expanding the tree number.

Accuracy can be optimized when the tree number is set to

around 20. LSTM is overwhelmed when SNR is less than

6 dB; however, it’s accuracy increases faster when SNR is

greater. It indicates that LSTM can have better performance

under better channel conditions. CNN can achieve similar

accuracy when SNR is higher than 14 dB in our case. Besides,

CNN performs even better under the lower SNR range com-

pared with other algorithms. The proposed architecture, which

includes the LSTM layer into CNN, can further improve the

neural network’s performance. It achieves higher accuracy than

CNN and LSTM; meanwhile, it behaves better in almost all

SNR conditions. From our observation, the algorithms obtain

the highest accuracy when SNR is greater than 16 dB.

The confusion matrix for the proposed combined neural

network is depicted in Fig. 5. As shown in Fig. 5(a), the correct

rate for single LTE, Wi-Fi, and 5G NR is more than 63%,

while the accuracy for the mixed signal is around 50%. Similar

results happen in Fig. 5(b) and Fig. 5(c), where the classifier

can achieve higher classification accuracy for independent

signals. The reason is that the independent signal features are

more noticeable compared with the signal mixed with other

types. When signals are under a coexisting environment, the

waveforms are corrupted with each other. Such corruption

makes the amplitude and phase of the received I/Q samples

deviate from the predetermined pattern. After the noise is

introduced, it becomes even more difficult to distinguish these

signals. Another observation is that the proposed approach

can avoid the misdetection of highly similar types so that

each type’s misclassification is distributed evenly. By contrast,

the classifiers like SVM and RF are harder to separate the

categories when some types have higher closeness. Therefore,

the false-positive rate would be much higher between LTE

and 5G NR, for the closeness of them is greater than that of

Wi-Fi. In our proposed algorithm, the false prediction doesn’t

concentrate on specific types, which means the combined

neural network can distinguish the classes even though they

are extremely comparable. Finally, from the plot, we can find

that the classifier accuracy increases fast between 4 dB and

8 dB but slows down between 8 dB and 12 dB. It’s because

the influence the noise is almost neglectable with very high

SNR, and the signals have less improvement in purity when

SNR is greater than 10 dB. As a result, the performance of

the classifier becomes more steady in such an SNR range.

C. Impact of Frequency-domain Analysis

We then add the FDA into the I/Q samples, as introduced

in Section IV-C. To be specific, STFT is applied to I/Q

sequences, and the results are reflected as the spectrogram.

Such frequency strength is also fed into the neural network

along with the original I/Q pairs to train the model. The FDA is

only based on the I/Q samples, so there is no extra information

required for the input data. We then compare the performance

of neural networks at 20 dB and summarize the results in

Fig. 6. The classification accuracy is improved for all learning

algorithms, proving that the FDA provides more information

that regular machine learning algorithms can not obtain from

the time-series input. The improvement is less evident for

the RF algorithm, which means the influence of frequency

strength may weaken under the trees. In fact, the RF algorithm

makes a decision based on all the trees’ predictions. However,
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Fig. 5. Confusion matrices for superimposed signals without FDA.
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Fig. 6. Impact of FDA on different algorithms.

spectrogram information can not guarantee to improve the

performance of all of them. Thus, the effect is averaged among

trees, which weakens the advance. For CNN, LSTM, and

their combination, the accuracy is enhanced by approximately

15%. The proposed algorithm can achieve 93% accuracy after

including spectrogram analysis.

1) STFT Resolution: STFT resolution quantitatively relates

to the mainlobe width of the transform of the window. To

analyze the influence of resolution, we capture a period

signal from received LTE with 10 sub-carriers and use it

as an example. The computed power spectrum of the input

shown in Fig. 7(a) visualizes the fraction of time that a

particular frequency component is present in a signal. When

time resolution Tres increased from 200 ms to 700 ms, both

the power density and strength decrease in all frequencies.

Tres controls the duration of the segments used to compute

the short-time power spectra that form the spectrogram so

that it decides the precision of signal energy distribution in

the frequency space. In our case, the signal power becomes

vaguer with lower Tres. However, such fuzzy figures enlarge

the spectrogram difference between different types of signals.

As a result, the higher Tres can not guarantee better classifier

performance. During the test, we find when the Tres is around

600 ms, the proposed classifier can achieve the best accuracy.

The results are as described in Table II.

2) Spectral Leakage: Spectral leakage occurs when a non-

integer number of periods of a signal is sent to the STFT. One

Fres = 12.8337 Hz, Tres = 200 ms
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Fig. 7. Spectrogram under different STFT resolutions and spectral leakages.

reason for such leakage is that the spectrum is the convolution

between frequency function and sample sequences, which in-

evitably creates the new frequency components. These compo-

nents are directly affected by the spectral windowing function;

thus, they are considered as results of spectral leakage. To

control the spectral leakage, we introduce by the leakage

coefficient, which is a real numeric scalar between 0 and

1. It restraints the Kaiser window sidelobe attenuation which

is also relative to the mainlobe width. When adjusting such

coefficients, the resolution frequency Fres changes correspond-

ingly. When leakage is 1, Fres is 0.06006 cycles/minute, while,

when leakage is 0.65, Fres becomes 0.12993 cycles/minute.

As depicted in Fig. 7(b), the power spectrum records more

changes in frequency when leakage is 1. Such details expand

the diversity between signal types; however, these changes

also include more noise for the classifier. As a result, leakage

doesn’t have a monotonous with classification accuracy. By

comparing different leakage settings as depicted in Table II,

the proposed classifier performs better when leakage is be-

tween 0.6 and 0.8 during the simulation.

D. Impact of RNN Layer

The LSTM layer is one typical type of RNN layer, and

we propose to investigate an integrated CNN/LSTM design

that takes advantage of both CNNs and LSTM networks.

CNN employs convolution layers to extract multidimensional

data features and achieve accurate classification, but it cannot
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Fig. 8. Confusion matrices for superimposed signals with FDA.

TABLE II
ACCURACY OVER TIME RESOLUTION AND SPECTRAL LEAKAGE.

Time Resolution (ms) Accuracy Spectral Leakage Accuracy

100 89.3% 0.1 83.5%
200 90.2% 0.2 87.2%
300 90.8% 0.3 89.4%
400 91.3% 0.4 90.8%
500 92.1% 0.5 91.3%
600 93.4% 0.6 92.2%
700 93.0% 0.7 93.7%
800 92.6% 0.8 92.1%
900 91.7% 0.9 90.9%
1000 91.3% 1 88.6%
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Fig. 9. Achievable accuracy and required epochs under different segment
length.

capture the dependency pattern in the data. In contrast, an

LSTM network captures such dependency by storing the

memory in the hidden layers, but it produces a regression

instead of a probabilistic outcome. After we introduce such

layers into the CNN, the performance improves as plotted

in the confusion matrix. The overall accuracy improves from

when LSTM layers are connected to convolutional layers. In

Fig. 8, the LSTM network can achieve similar accuracy with

CNN. However, it misclassifies between LTE+ Wi-Fi and Wi-

Fi-5G NR heavily. By combining CNN with LSTM, such

misclassification is eliminated. The average accuracy is further

improved to 92%.

E. Segment Length

The length of input sequences also influences the perfor-

mance of the neural network. Fig. 9(a) describes the achievable

accuracy trends with the range of segments. The accuracy

TX USRP 2921 USRP 2944 R
RX

Fig. 10. Experiment setup used for performance evaluation.

is only around 20% when the segment period is short, and

it increases fast with input duration until 400. The growth

then slows down after that. It’s because more features hidden

in the sequence can be captured when the segment is more

extended, and the signal types are more distinguishable when

the difference of the sequences is expanded due to its length.

However, the performance is not ensured to be enhanced for

that too many features included can incur the over-fitting

problem. It’s reflected in Fig.9(a) that the accuracy stops rapid

raising and even reduces after the length is greater than 600.

Fig. 9(b) depicts the epochs required to achieve expected

accuracy when the length of segments changes. When the

segment period is short, the proposed network’s performance

fluctuates considerably and takes more epochs to be steady.

It’s due to the insufficient input sequence duration and the

low expected accuracy. With the length growing, the epochs

reduced to around 20 when sequence duration is 200, which

means the network can obtain a table prediction condition

with such length. Then the epochs increase because the neural

network needs more training when the input is more extensive.

VI. EXPERIMENT

A. USRP Settings

We further evaluate the proposed classification model on a

testbed consisting of three NI USRP-2921 and one NI USRP-



2944R. The indoor experiment setup is shown in Fig. 10,

where the distance between the transmitter and receiver is

roughly 2 meters, and each of them is equipped with 8 dBi

antennas operating at 5 GHz frequency. The transmitters are

synchronized by OctoClock CDA-2990 if transmitting differ-

ent types of signals simultaneously. There are 500 Mbytes

worth of experimental traces for 7 different classes of signals

that are collected, namely WiFi-only, LTE-only, 5G-only,

WiFi-LTE, WiFi-5G, LTE-5G, and WiFI-LTE-5G. In all the

experiments, signals transmit at the center frequency of 5

GHz with a bandwidth of 20 MHz. The receiver has a gain

of 30 dB and a sampling rate of 20 Msps centered at the 5

GHz center frequency, with collecting time equals to 250 ms.

The WiFi waveform is transmitted by generating the WiFi

waveform using baseband samples of 802.11 ac (VHT) with

BPSK modulation and 1/2 rate with a PSDU length of 1024

bytes, and it consists of 26080 samples. The LTE waveform

is generated by downlink RMC with the reference channel of

R.9, which has a 64 QAM modulation and is of size 250000.

We also generate 5G waveforms using 5G DL FRC with QPSK

modulation, a rate of 1/3 with a subcarrier spacing of 15 kHz,

and a size of 250000. As a result, we gather IQ samples for

different transmission gains ranging from 0− 30 dB and later

use them for our DL processes.

B. Evaluation of The Proposed Integrated Approach

As depicted in Fig. 11, the achievable accuracy increases

fast with channel gain until 15 dB. Then, it slows down and

converges to a steady-state. For the environment setting is

kept the same during the whole experiment, we assume the

noise power is at the same level when we control channel

gains. Thus, by adjusting the amplifier which controls the

gain, the SNR changes accordingly. Similar to the previous

simulation, the performance is hard to improve when the SNR

reaches the bound. It may because the features have already

been fully obtained, and the noise effects are neglectable after

such a point. To compare the influence of the FDA, a basic

CNN is used to predict the signal type. The proposed FDA

approach can enhance the accuracy by more than 10%. It’s due

to the FDA expand the I/Q samples from the time-domain to

the frequency-domain, which amplifies the difference between

signal types. We also analyze the effect of the LSTM layer,

and we find it can raise the accuracy by around 10% when

channel gain is greater than 20 dB compared with non-LSTM

layer model. Besides, such RNN layers can improve the

performance under all channel gains in our experiment.

VII. CONCLUSION

In this work, we develop deep neural networks to detect co-

existing signal types by I/Q samples without having to decode

them. With segmented sample sequences, CNN is combined

with RNN and then trained. The classification results show

competitive accuracies by neural networks when the received

signal is under the mixture. We then apply STFT on I/Q se-

quences to further improve the classification accuracy. Neural

networks show considerable improvement after including the
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Fig. 11. Average accuracy vs. channel gain.

spectrogram. Moreover, to verify that the proposed detection

framework is viable in a real environment, an OTA experiment

is then conducted with USRP sets. The proposed deep neural

architecture can achieve accurate classification in both the

simulation and the experiment.
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