Signal Detection and Classification in Shared
Spectrum: A Deep Learning Approach

Abstract—Accurate identification of the signal type in a shared-
spectrum scenario is critical for fair allocation of channel access.
It facilitates scheduling the transmissions of coexisting systems
(e.g., Wi-Fi, LTE LAA, and 5G NR-U) and avoids collisions,
especially when spectrum dynamics change rapidly. In this work,
we develop deep neural networks (DNNs) to detect coexisting
signal types based on In-phase/Quadrature (I/Q) samples without
decoding. By using segments of the samples of the received signal
as input, a Convolutional Neural Network (CNN) and a Recur-
rent Neural Network (RNN) are combined and trained using
categorical cross-entropy (CE) optimization. The classification
results show high accuracy for the proposed DNN, even when the
received signal is under the mixture. We then exploit spectrum
analysis of I/Q sequences to further improve the classification
accuracy. By applying Short-time Fourier Transform (STFT),
additional information in the frequency domain can be gained.
Accordingly, we enlarge the input size of the DNN. To verify the
effectiveness of the proposed detection framework, we conduct
over-the-air (OTA) experiments using USRP radios. The RF
signal is transmitted between antennas and is then captured to
evaluate the classification performance of our approach.

Index Terms—Machine learning, signal classification, coexis-
tence, convolutional neural networks, recurrent neural networks,
dynamic spectrum access, software-defined radio.

I. INTRODUCTION

The unprecedented demand for wireless services has
crowded the radio spectrum. Spectrum access (SA) provides
a potential remedy for the operation of heterogeneous wire-
less systems in congested and contested spectrum environ-
ments [1]. In SA, unlicensed users can use the common
channels when licensed users are idle [2]. However, it is
challenging to guarantee a given throughput level to coexisting
systems without knowing their usage statistics and access
behavior [3], [4]. Furthermore, there are active demands for
heterogeneous networks to share spectrum and avoid collisions
when uncoordinated service convoluted [5], [6]. To fulfill such
requirements, operators and end users need to sense the shared
medium and identify the active signals without having to
decode them.

Fast and accurate identification of the different types of
coexisting signals has always been an important aspect of
interleaving spectrum sharing. Common spectrum sensing
techniques are likelihood or feature-based [7], [8], e.g., cyclo-
stationarity. In these techniques, signal detection is performed
under certain assumptions of the underlying waveforms, e.g.,
their modulation and coding scheme, protocol behavior, prob-
ability distributions, etc., which strongly depend on the de-
coded signal. In addition to relying on specific model-based
assumptions, conventional sensing approaches often assume

that spectrum dynamics are slowly varying. To break the above
limitations, we propose a machine learning framework for
signal sensing and classification in coexistence scenarios with
fast-varying spectrum dynamics.

Deep learning has been successfully applied to various
classification and recognition problems [9]-[11]. It can support
high-dimensional input data, sizeable neural network models,
and adjustable parameters. In addition to traditional speech
and image recognition, deep neural networks (DNNs) have
also been applied to RF signal classification problems [12]-
[15]. However, most of these work attempt to classify the
data according to their modulation schemes, or they assume
the signal category to be highly related to such schemes. It
overwhelms the dynamics in a SA network, where one type
of signal protocol may have several modulation and coding
schemes. Moreover, existing efforts presume the received
signal is only corrupted with noise but does not consider
the possibility of mixed (superposed) unlicensed bands. As a
result, it is not possible to maintain satisfactory performance
in the fast varying SA network.

To investigate the application of DNNs in signal classi-
fication of coexisting waveforms, we focus on Wi-Fi, LTE
LAA, and 5G NR unlicensed, as for example, the case of
operating over the unlicensed SGHz bands. We design a
convolutional neural network (CNN) and a recurrent neural
network (RNN) to detect the underlying wireless technology
based on the received 1/Q samples. The CNN can capture
the sample features by the convolution calculation, while the
RNN can gain the sequence dependency when the feature is
flattened. Fig. 1 describes the procedures before where we
can apply the signal classifier. After the transmitted RF signal
is received by the antenna, it should be filtered and down-
converted into the analog signal. By applying an ADC, the
waveform is then converted to digital signals. The designed
protocol classifier can distinguish the signal type for the user
after the DSP block processes the signal.

To test the model accuracy, we start with an interleaving SA
scenario, whereby any but only one of the three techniques is
active at a time, i.e., there is no superposition of different
types except for channel noise. The average classification
accuracy for the interleaving scenario can achieve 92.1%
when the SNR is greater than 15 dB. Motivated by such
results, we then extend our effects to under mixed signals.
The classifier can correctly distinguish the mixture signal with
an accuracy of around 80% when the channel is in good
condition. To further improve the accuracy of the proposed
DNN classifier, we incorporate the frequency-domain analysis



(FDA) in its input. A short-time Fourier transform (STFT)
technique is applied to segments of the I/Q samples and obtain
their spectrogram. Based on the STFT, the DNN can extract
time-frequency features by employing a sliding Kaiser—Bessel
window. Such information can be combined with the original
DNN input (time-domain I/Q samples), resulting in significant
improvement in accuracy.

We validate the performance of the proposed classifier using
experiments on an software-defined radio (SDR) platform.
Over-the-air (OTA) experiments are conducted with USRP
sets. The signals are generated by the Matlab communication
toolbox and 5G toolbox and then connected to the USRP.
We set three USRP-2921 with antennas correspond to the
signal types Wi-Fi, LTE, and 5G NR. During the transmission,
signals can be selected as active or inactive by the control
of USRP. Correspondingly, the signals are superposed with
selected types and with the channel noise when transmitted
between antennas. The RF signal is then captured by the
receiver and used for the classification. Our contributions are
summarized as follows:

o We introduce a DNN-based classification algorithm for
coexisting signals in a shared-spectrum scenario. By
adjusting parameter settings, we generate extensive data
set featured by signal types of Wi-Fi, LTE, and 5G NR
and use them for training and testing classifiers.

o We propose an FDA-CNN-LSTM framework to differ-
entiate between various signal types. The performance
of the proposed DNN-based classifier is compared with
other methods from various perspectives.

o To improve the classification accuracy, STFT is applied
to provide extra spectrogram information. The average
algorithm accuracy is improved by around 14% when
frequency-domain analysis is included.

o We verify the proposed experimentally detection frame-
work with an OTA experiment conducted on USRP sets.
The RF signals are transmitted and mixed between an-
tennas and are then captured to evaluate the performance
of our identification approach. The accuracy can achieve
91% in our experiment when SNR is greater than 15 dB.

The rest of the paper is organized as follows. Section II

presents the related work in deep learning-based signal clas-
sification. Section III describes the generation of the dataset
for simulation and experiment. In section IV, we introduce
the neural network architecture that we designed for protocol
classification. In Section V, We analyze the performance of the
proposed model. The details and results of the corresponding
SDR experiment are explained in Section VI. Section VII
concludes the paper.

II. RELATED WORK

Signal classification is a critical and challenging problem
in a dynamic resource allocation network. Correct detection
allows the coordinator to avoid the interference sources, which
can actively improve the total network resources’ efficiency.
The authors explore the modulation scheme classification
problem with deep learning (DL) algorithm in [12], [13] and
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Fig. 1. Signal processing to obtain the I/Q samples for classification.
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prove it can achieve more than 90% classification accuracy
when the signal is in a high SNR environment. After that,
the deep learning based signal classification problem become
extensively popular. In [14], the distributed sensor network’s
modulation schemes are detected and classified by deep learn-
ing models. [15] shows the generative adversarial method can
sort the data in a cognitive radio network. In [16], in-network
users, out-network users, and jammers are distinguished by
CNN to improve the in-network users’ throughput and out-
network users’ success ratio. Unlike these work, our deep
learning model is trained for signal protocol detection in a
coexisting environment. Instead of the modulation scheme, the
protocol features are easier corrupted and harder distinguish-
able by the mixture of other sources’ signals. As a result, we
apply a CNN and an RNN to characterize the pattern from the
I/Q samples dynamically.

In addition to the previously mentioned signal classification
scenario, neural networks have also been profitably applied to
other time-series classification problems in [17]—[20]. It proves
that neural networks have a higher degree of freedom and
can achieve even higher accuracy than conventional methods.
Other authors also successfully employed in other wireless
communication areas [21]-[24] to help improve the network’s
efficiency (e.g., minimize congestion, improve throughput,
and simplify the connection setup). In [25], deep learning
is applied to coordinate multipoint downlink transmission in
NR heterogeneous networks. [26] propose and deep learning
based unlicensed bands sharing structure for LTE and WiFi
system. However, these approaches ignore the importance
of successfully detect the required signal type in coexisting
environments. Moreover, it’s even more arduous to recognize
the signal in a spectrum access or heterogeneous network.
In this paper, we provide a framework to detect the signal
without requiring decoding them even in a corrupted situation.
In addition to the traditional deep neural network, we also
include the frequency analysis to discriminate the signal types
accurately. We then build the SDR platform to make sure the
model is also viable in a real environment. The testing result
is impressive in both the simulation and the experiment.

III. DATASET GENERATION

The waveforms of these signals were generated using the
Matlab 5G and communication toolbox, which specifies a
set of signal features, including the baseband In-phase and
Quadrature values, channel bandwidth, modulation and coding
scheme (MCS), subcarrier spacing, and allocated resource
blocks. We generated sample waveforms of the three tech-



nologies based on different parameter settings supported by
LTE, Wi-Fi, and 5G NR standards, as described in Table I.
Of the various possible features, we considered the baseband
I/Q samples at the receiver (noise added) as the input to the
classifier. I/Q samples can be easily obtained before decoding
the signal, and they provide a rich representation of the actual
waveform. Specifically, key parameters such as the MCS and
the channel state information (CSI) are readily captured in
the I/Q samples. Accordingly, instead of taking all the signal
parameters as inputs to the artificial neural network (ANN),
we only rely on the measured I/Q samples, hence significantly
reducing the size of the ANNs. The receiver architecture
considered in this paper is shown in Fig. 1. The received RF
signal is down-converted and digitized to obtain the raw 1/Q
sample set. By applying a sliding window, these 1/Q samples
are divided into multiple sequences, each consisting of 512 1/Q
pairs. These sequences are used as the data sets to train various
classifiers. Approximately 100,000 such segments were used,
split into 80% sequences for training and 20% sequences for
testing.

To demonstrate the viability of the deep learning algorithm
in the coexisting signal situation, we test the classification
accuracy in both simulation and experiment. During the sim-
ulation, different types of signals are mixed under the same
additive white Gaussian noise (AWGN) channel. While, during
the experiment, the baseband signals are up-converted RF
signals then transmitted over the air, so that the channel reflects
the real noise of an indoor environment. We connect three
USRP sets to the waveform generator, which allows us to
transmit all three types of the waveforms simultaneously. To
distinguish all possible labels under different environments, we
collect both independent and mixture transmission data. At the
receiver side, the antenna keeps receiving the RF signals. Then
the waveforms are filtered and down-converted to I/Q samples
and used for classifying. There are three types of independent
signals, three types of double-mixtures, and one type of triple-
mixture. For the multi-waveform situation, each component is
transmitted with the same channel-gain, so that they take a
roughly equal portion of the received commixture. As a result,
there are seven types of the signal need to be categorized in
the dataset.

IV. NEURAL NETWORK ARCHITECTURE

In this section, we consider a CNN and an LSTM network
as our classifier to distinguish the signal types, as shown
in Fig. 2. The input is the segmented I/Q sequences, as
we describe in Section III. After the input is fed, STFT is
applied in these sequences to obtain the frequency power
strength distribution. Such frequency-domain strength data is
passed into the convolutional layer along with the original I/Q
value to allow the CNN capture features. Then the output is
connected to the pooling layer. Notice that the information
exchange between the convolutional layer and the pooling
layer may repeat several times in the structure, so we don’t
draw all the layers out. It happens in the dense layer as well.
The output from convolution and pooling is then flattened to

TABLE I
PARAMETER OPTIONS FOR WAVEFORM GENERATOR.

Protocol| Parameter [ Possible Values

R.1, R.2, R3, R4, R.5 R.6, R.7,
R.8, RY9, R.10, R.11, R.12, R.13,
Reference R.14, R.25, R.26, R.27, R.28, R.31-
Channel 3A, R.31-4, R43, R44, R.45, R45-
LTE 1, R.48, R.50, R.51, R.6-27RB, R.12-
9RB, R.11-45RB
Number of
Subframes 6, 8,10
Modulation
Schemes QPSK, 16QAM, 64QAM
Transmission
Bandwidth 1, 6, 15, 25, 27, 39, 50, 75, 100
[RB]
Duplex
Mode FDD, TDD
Prequency | 450 MHz-6 GHz, 24.25 GHz-52.6 GHz
Range
Subcarrier
3G Spacing 15,30,60
(kHz)
Modulation
Schemes QPSK, 64QAM, 256QAM
Channel
Bandwidth 5, 10, 15, 20, 25, 30, 40, 50
(MHz)
Duplex
Mode FDD, TDD
Channel BCC, LDPC
Coding
Wi-Fi Modulation BPSK, QPSK, 16QAM, 64QAM,
Schemes 256QAM
Guard
Interval Short, Long
Channel
Bandwidth 20, 40, 80, 160
(MHz)

low dimensional data. It helps better extract the time-series
dependencies from the sequences in the bridged the recurrent
layers (LSTM layers). After that, the dense layer and softmax
layer calculate the probability and assign the label for the input
sequence.

CNN is widely employed in visual imagery analysis by its
convenience to calculate the convolution for high dimensional
input. On the other hand, an LSTM network is used consider-
ably to solve time-series problems. LSTM network combines
the different weights of the sequence value and calculates
the value by some optimization function in a recurrent way.
Therefore, the outcome of the network cares more about the
dependency and correlation of the sequence. To combine the
advantages of a CNN and an LSTM together, we customized
a framework which allows a recurrent layer connected to
convolutional layers. It could reinforce time-series analysis
into CNN and could help capture the dependency between
samples. To train such a network, we collected the data from
—10 dB to 20 dB with a step increment of 2 dB following
the setting we described previously. At each SNR, there are
roughly 1000 samples {s;}7_; from each signal type, where
each sample includes the I/Q values of 512 data points x.
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Fig. 2. Overview of the proposed FDA-CNN-LSTM classifier.

A. Convolutional Neural Network

A CNN typically consists of fully-connected layers, polling
layers, convolutional layers, and a softmax layer. It can be
trained by the input samples s; and the corresponding category
y¢ from M labels. Then, the labeled dataset can be defined
as: D = {(s1,v1),(82,Y2), .., (s7,y7)}. Let y; be the tth
sample’s category with y; € {L} = {l1,ls,...,lns }, wWhere [,
stands for the label . Under such definition, we can train and
get the hypothesis H(s;) = 7,, which predicts the category 7,
of s; that matches the actual one y;.

Samples’ feature can be obtained by the convolutional layers
during the training. For sample s in two dimensional matrix,
convolutional layer V is extracted by the convolutional kernel:

W H
V) (1) = b (1) + Y Y K(w)(h)s(A+w)(u+h) (1)
h=0

w=0

where W and H are the width and height of the convolutional
kernel, K is the filter kernel, and b is the bias. To avoid
gradient vanishing, we also employ scaled exponential linear
unit (SELU) as activation functions in the convolutional layers:

ifu>0

SELU(u) = )\{ P i < 0 )

ae’ — a

where u is the output of the convolutional layer; o and \ are
the constant value in the SELU setting.

After the feature captured in the convolutional layer, it’s
connected to the max pooling layer. A max pooling layer helps
reduce computing costs by decreasing the dimensionality of
the data; besides, it helps prevent the over-fitting problem by
providing an abstracted form of the representation. The results
of the max polling is flattened and then passed to the LSTM
layer to allow the recurrent. The detail of the LSTM layers
will be discussed in the followed section. Then the output of
the recurrent layer gets through a dense layer. In dense layers,
features are mapped until it satisfies the requirement of the
output shape. Therefore, the last dense layer in our neural
network has seven neurons to pass each class’s likelihood to

the softmax layer. The probability of each label is normalized
to provide category prediction in the softmax layer:

P {pluplw"',le} 27]‘\4:1 o (3)
where  is the output of dense layer, and p;,, is the probability
of the input to be classified into label m.

Our neural network can make a prediction of the given input
data x by the hypothesis # under parameter setting 0: y =
H(0, z). To measure the difference between an estimated label
y and the real label y, the cross-entropy is introduced to allow
the neural network self-involving by this error. In our case,
the cross-entropy function is used as the loss function during
the training:

L(0) == Blog(y,) 4

where {53, }"  is a binary variable which will be 1 if the label
7 is correct among m categories and ¥, is the corresponding
probability of the correction. The CNN minimizes the loss
function during the training by calculating the gradient of 6
at each step j. Then, 6 gets updated with the corresponding
learning rate 7 as follows:

0; =0;—1—nVeL(0) (5)

B. Recurrent Neural Network

A typical LSTM network is consists of multiple LSTM cells
that determine the parameters of the hidden layers. At each
time step j, z; is system input and J; is the output of the
LSTM cell. The cell output at the previous time step, d;_1,
is combined with the current system input x; to form the
input for the current cell. The state of each cell is C, which
records the system memory. C; is updated at each time step.
To control the information flow through the cell, several gates
are applied, including an input gate (¢;), output gate (o;), and
forget gate (f;). Each gate generates an output between 0 and
1, where the value of the output is calculated by a sigmoid (o)
function. An output of 0 indicates that the input of the gate is
totally blocked, while an output of 1 indicates all information



of the input is kept in the cell. The input, output, and forget
gates are calculated as follows:

ij = O'(Wixj + Ui(Sj_l + bl)
0j =0(Woxj +Usdj_1 + bo) (6)
fi =o(Wyaj +Usdj1 +by)

where W;, W,, and W are the weights of the three gates; U,
U,, and Uy are the corresponding recurrent weights; and b,
b, and by are the bias values of the three gates.

Similar to the gate function, we combine the current inputs
and previous cell state C;_; to update the cell state. The
difference is that instead of a sigmoid, the inputs will be
processed by a hyperbolic tangent function that generates an
output between —1 and 1:

Cj = tanh(Wcmj + Ucéjfl + bc) (7)

After the update, éj is multiplied by the output of the input
gate, which is then used as the first component to update the
cell state. Another component for updating the cell state is
the previous cell state, which is processed by the forget gate
to determine how past data is to be utilized. With the two
components, the cell state at time j is updated as:

Cj = f;Cj_1 +1i;C; (8)

The output of the cell h;, which will be used at time j + 1,
is calculated by the multiplication of the output gate and the
tanh function of the current cell state:

hj = 0j tanh(C’j) 9)
C. Frequency-domain Analysis

Although the signal shows substantial similarity in time-
domain, the spectrogram may still be distinguishable after we
apply a Fourier transform, as shown in Fig. 3. The frequency-
domain analysis is commonly employed in image processing
as well as wireless signal transforming. Such investigation
can compensate for the overlook of hidden information in
neural networks when the input is time-series I/Q sequences.
Besides, frequency-domain signal classification emphasizes
the spectrum characteristic on the periodic pattern, which is
hard to fully captured by time-series analysis. On the other
hand, one convenience of the neural network is its flexibility
in input’s shape, which makes it possible for us to include
the spectrogram information into the network by increasing
the input dimension. After such a transform, the frequency
analysis consequence can be fed with the I/Q sample into the
neural network.

The frequency-domain analysis is conducted in the base-
band signal. In particular, a short-time Fourier Transform
(STFT) is applied to the I/Q sequences:

X(r,w) = /00 z(B)w(k — 7)e”“Fdk (10)

— 00
where z(k) is the time-series signal to be transformed, and
w(7) is the Kaisar-Bessel window function. X (7,w) is es-
sentially the Fourier Transform of x(k)w(k — 7), which is a
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Fig. 3. Example of frequency-domain analysis for 5G NR and Wi-Fi signals.

complex function representing the phase and magnitude of the
signal over time and frequency. The Kaisar-Bessel window is
described as follows to extract the time-frequency features:

 I(By1- ()
wlo) = Io(B)

where Iy is the zeroth-order Bessel function of the first
kind. O is the window length, and 3 is the shape factor,
which can be determined by side-lobe attenuation . STFT
is used to determine the sinusoidal frequency and phase
content of local sections of a signal as it changes over time.
It uses short sequence segments to analyze the spectrogram
so that it matches well with our neural network training,
which also divides a long sequence signal into several equal
length training samples. The original network is extended to
a higher resolution one, including frequency information as
other dimension features. Unlike figure classification, time-
series I/Q samples, as well as their time-series features, still
play an essential role as part of the input. The amplitude
fluctuation, phase change, and signal dependency pattern are
hidden in the I/Q sequences, which can not be replaced by the
spectrogram.

Y

V. ALGORITHM PERFORMANCE ANALYSIS
A. Benchmark Algorithm

We compare our algorithm with some traditional machine
learning (ML) algorithms and independent CNN and LSTM
network. As for ML algorithms, we investigate the support
vector machine (SVM) and random forests (RF) to verify that
ML methods are viable to solve such a signal classification
problem. The traditional SVM is successfully applied in class
distinction by determining the boundary while maximizing
the margin between classes. As our signal classification is
not linearly separable, we employ a soft margin in the SVM
model to further improve its accuracy. By introducing slack
variables &, the multiplications of the soft margin and £ can
be added to the objective function. After using Lagrangian
relaxation, we transform the above constrained problem to an
unconstrained one. Furthermore, the objective function of the
resulting unconstrained problem becomes a quadratic function.
The optimal weight matrix can be obtained during the training
by solving each part’s derivative in the objective function
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Fig. 4. Classification performance comparison under AWGN.

at every epoch. After such a procedure, the trained SVM is
then used for testing the classification accuracy. Meanwhile,
RF methods are also investigated in our signal classification
problem. The decision tree in RF provides a prediction strategy
that traces through all sub-decisions that lead to a particular
solution so that the tree’s number plays a vital role in RF
methods. We also evaluate such performance by setting the
RF under different tree numbers.

We compare the proposed methods with these ML methods,
and the results show the merits of our approach. Due to the
proposed approach includes both CNN and RNN architectures,
the performance of independent CNN and RNN is also con-
sidered as comparison candidates. Basically, the independent
CNN model architecture is described as the same in IV-A but
without any LSTM layer. While the independent RNN is the
LSTM network defined in IV-B, which passes the output to
the dense layers to generate the predicted label for input data.

B. Classification based on I/Q Samples

In the simulation, we assume the signal is transmitted under
additive white Gaussian noise (AWGN) channel. It is the con-
dition under which analytic feature extractors should generally
perform well and matches the analytic model assumptions.
Before introducing STFT, we first consider the input as 1/Q
pairs without frequency analysis. The data generation details
are described in Section III. During the testing, the SNR
increases 2 dB at each step, and all the mentioned ML/DL
algorithm is compared under the same environment setting.
As we can see in Fig. 4, the accuracy of nonlinear-SVM is
always lower when SNR is less than 10 dB. The achievable
accuracy rate is less than 70% for such an algorithm. The
random forest can improve the accuracy prominently from 0 to
10 dB intervals. The performance improved when the number
of trees increases from 10 to 20, but we can’t guarantee
further improvement when we keep expanding the tree number.
Accuracy can be optimized when the tree number is set to
around 20. LSTM is overwhelmed when SNR is less than
6 dB; however, it’s accuracy increases faster when SNR is
greater. It indicates that LSTM can have better performance

under better channel conditions. CNN can achieve similar
accuracy when SNR is higher than 14 dB in our case. Besides,
CNN performs even better under the lower SNR range com-
pared with other algorithms. The proposed architecture, which
includes the LSTM layer into CNN, can further improve the
neural network’s performance. It achieves higher accuracy than
CNN and LSTM; meanwhile, it behaves better in almost all
SNR conditions. From our observation, the algorithms obtain
the highest accuracy when SNR is greater than 16 dB.

The confusion matrix for the proposed combined neural
network is depicted in Fig. 5. As shown in Fig. 5(a), the correct
rate for single LTE, Wi-Fi, and 5G NR is more than 63%,
while the accuracy for the mixed signal is around 50%. Similar
results happen in Fig. 5(b) and Fig. 5(c), where the classifier
can achieve higher classification accuracy for independent
signals. The reason is that the independent signal features are
more noticeable compared with the signal mixed with other
types. When signals are under a coexisting environment, the
waveforms are corrupted with each other. Such corruption
makes the amplitude and phase of the received I/Q samples
deviate from the predetermined pattern. After the noise is
introduced, it becomes even more difficult to distinguish these
signals. Another observation is that the proposed approach
can avoid the misdetection of highly similar types so that
each type’s misclassification is distributed evenly. By contrast,
the classifiers like SVM and RF are harder to separate the
categories when some types have higher closeness. Therefore,
the false-positive rate would be much higher between LTE
and 5G NR, for the closeness of them is greater than that of
Wi-Fi. In our proposed algorithm, the false prediction doesn’t
concentrate on specific types, which means the combined
neural network can distinguish the classes even though they
are extremely comparable. Finally, from the plot, we can find
that the classifier accuracy increases fast between 4 dB and
8 dB but slows down between 8 dB and 12 dB. It’s because
the influence the noise is almost neglectable with very high
SNR, and the signals have less improvement in purity when
SNR is greater than 10 dB. As a result, the performance of
the classifier becomes more steady in such an SNR range.

C. Impact of Frequency-domain Analysis

We then add the FDA into the I/Q samples, as introduced
in Section IV-C. To be specific, STFT is applied to 1/Q
sequences, and the results are reflected as the spectrogram.
Such frequency strength is also fed into the neural network
along with the original I/Q pairs to train the model. The FDA is
only based on the I/Q samples, so there is no extra information
required for the input data. We then compare the performance
of neural networks at 20 dB and summarize the results in
Fig. 6. The classification accuracy is improved for all learning
algorithms, proving that the FDA provides more information
that regular machine learning algorithms can not obtain from
the time-series input. The improvement is less evident for
the RF algorithm, which means the influence of frequency
strength may weaken under the trees. In fact, the RF algorithm
makes a decision based on all the trees’ predictions. However,
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Fig. 6. Impact of FDA on different algorithms.

spectrogram information can not guarantee to improve the
performance of all of them. Thus, the effect is averaged among
trees, which weakens the advance. For CNN, LSTM, and
their combination, the accuracy is enhanced by approximately
15%. The proposed algorithm can achieve 93% accuracy after
including spectrogram analysis.

1) STFT Resolution: STFT resolution quantitatively relates
to the mainlobe width of the transform of the window. To
analyze the influence of resolution, we capture a period
signal from received LTE with 10 sub-carriers and use it
as an example. The computed power spectrum of the input
shown in Fig. 7(a) visualizes the fraction of time that a
particular frequency component is present in a signal. When
time resolution T, increased from 200 ms to 700 ms, both
the power density and strength decrease in all frequencies.
T,es controls the duration of the segments used to compute
the short-time power spectra that form the spectrogram so
that it decides the precision of signal energy distribution in
the frequency space. In our case, the signal power becomes
vaguer with lower T,.s. However, such fuzzy figures enlarge
the spectrogram difference between different types of signals.
As a result, the higher T\ can not guarantee better classifier
performance. During the test, we find when the T\ is around
600 ms, the proposed classifier can achieve the best accuracy.
The results are as described in Table II.

2) Spectral Leakage: Spectral leakage occurs when a non-
integer number of periods of a signal is sent to the STFT. One
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Fig. 7. Spectrogram under different STFT resolutions and spectral leakages.

reason for such leakage is that the spectrum is the convolution
between frequency function and sample sequences, which in-
evitably creates the new frequency components. These compo-
nents are directly affected by the spectral windowing function;
thus, they are considered as results of spectral leakage. To
control the spectral leakage, we introduce by the leakage
coefficient, which is a real numeric scalar between O and
1. It restraints the Kaiser window sidelobe attenuation which
is also relative to the mainlobe width. When adjusting such
coefficients, the resolution frequency F,.s changes correspond-
ingly. When leakage is 1, F,s is 0.06006 cycles/minute, while,
when leakage is 0.65, F,.s becomes 0.12993 cycles/minute.
As depicted in Fig. 7(b), the power spectrum records more
changes in frequency when leakage is 1. Such details expand
the diversity between signal types; however, these changes
also include more noise for the classifier. As a result, leakage
doesn’t have a monotonous with classification accuracy. By
comparing different leakage settings as depicted in Table II,
the proposed classifier performs better when leakage is be-
tween 0.6 and 0.8 during the simulation.

D. Impact of RNN Layer

The LSTM layer is one typical type of RNN layer, and
we propose to investigate an integrated CNN/LSTM design
that takes advantage of both CNNs and LSTM networks.
CNN employs convolution layers to extract multidimensional
data features and achieve accurate classification, but it cannot
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TABLE II

ACCURACY OVER TIME RESOLUTION AND SPECTRAL LEAKAGE.
Time Resolution (ms) | Accuracy Spectral Leakage | Accuracy

100 89.3% 0.1 83.5%

200 90.2% 0.2 87.2%

300 90.8% 0.3 89.4%

400 91.3% 0.4 90.8%

500 92.1% 0.5 91.3%

600 93.4% 0.6 92.2%

700 93.0% 0.7 93.7%

800 92.6% 0.8 92.1%

900 91.7% 0.9 90.9%

1000 91.3% 1 88.6%
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Fig. 9. Achievable accuracy and required epochs under different segment
length.

capture the dependency pattern in the data. In contrast, an
LSTM network captures such dependency by storing the
memory in the hidden layers, but it produces a regression
instead of a probabilistic outcome. After we introduce such
layers into the CNN, the performance improves as plotted
in the confusion matrix. The overall accuracy improves from
when LSTM layers are connected to convolutional layers. In
Fig. 8, the LSTM network can achieve similar accuracy with
CNN. However, it misclassifies between LTE+ Wi-Fi and Wi-
Fi-5G NR heavily. By combining CNN with LSTM, such
misclassification is eliminated. The average accuracy is further
improved to 92%.

E. Segment Length

The length of input sequences also influences the perfor-
mance of the neural network. Fig. 9(a) describes the achievable
accuracy trends with the range of segments. The accuracy

USRP 2921 USRP 2944 R

Fig. 10. Experiment setup used for performance evaluation.

is only around 20% when the segment period is short, and
it increases fast with input duration until 400. The growth
then slows down after that. It’s because more features hidden
in the sequence can be captured when the segment is more
extended, and the signal types are more distinguishable when
the difference of the sequences is expanded due to its length.
However, the performance is not ensured to be enhanced for
that too many features included can incur the over-fitting
problem. It’s reflected in Fig.9(a) that the accuracy stops rapid
raising and even reduces after the length is greater than 600.

Fig. 9(b) depicts the epochs required to achieve expected
accuracy when the length of segments changes. When the
segment period is short, the proposed network’s performance
fluctuates considerably and takes more epochs to be steady.
It’s due to the insufficient input sequence duration and the
low expected accuracy. With the length growing, the epochs
reduced to around 20 when sequence duration is 200, which
means the network can obtain a table prediction condition
with such length. Then the epochs increase because the neural
network needs more training when the input is more extensive.

VI. EXPERIMENT
A. USRP Settings

We further evaluate the proposed classification model on a
testbed consisting of three NI USRP-2921 and one NI USRP-



2944R. The indoor experiment setup is shown in Fig. 10,
where the distance between the transmitter and receiver is
roughly 2 meters, and each of them is equipped with 8 dBi
antennas operating at 5 GHz frequency. The transmitters are
synchronized by OctoClock CDA-2990 if transmitting differ-
ent types of signals simultaneously. There are 500 Mbytes
worth of experimental traces for 7 different classes of signals
that are collected, namely WiFi-only, LTE-only, 5G-only,
WiFi-LTE, WiFi-5G, LTE-5G, and WiFI-LTE-5G. In all the
experiments, signals transmit at the center frequency of 5
GHz with a bandwidth of 20 MHz. The receiver has a gain
of 30 dB and a sampling rate of 20 Msps centered at the 5
GHz center frequency, with collecting time equals to 250 ms.
The WiFi waveform is transmitted by generating the WiFi
waveform using baseband samples of 802.11 ac (VHT) with
BPSK modulation and 1/2 rate with a PSDU length of 1024
bytes, and it consists of 26080 samples. The LTE waveform
is generated by downlink RMC with the reference channel of
R.9, which has a 64 QAM modulation and is of size 250000.
We also generate 5SG waveforms using 5G DL FRC with QPSK
modulation, a rate of 1/3 with a subcarrier spacing of 15 kHz,
and a size of 250000. As a result, we gather IQ samples for
different transmission gains ranging from 0 — 30 dB and later
use them for our DL processes.

B. Evaluation of The Proposed Integrated Approach

As depicted in Fig. 11, the achievable accuracy increases
fast with channel gain until 15 dB. Then, it slows down and
converges to a steady-state. For the environment setting is
kept the same during the whole experiment, we assume the
noise power is at the same level when we control channel
gains. Thus, by adjusting the amplifier which controls the
gain, the SNR changes accordingly. Similar to the previous
simulation, the performance is hard to improve when the SNR
reaches the bound. It may because the features have already
been fully obtained, and the noise effects are neglectable after
such a point. To compare the influence of the FDA, a basic
CNN is used to predict the signal type. The proposed FDA
approach can enhance the accuracy by more than 10%. It’s due
to the FDA expand the I/Q samples from the time-domain to
the frequency-domain, which amplifies the difference between
signal types. We also analyze the effect of the LSTM layer,
and we find it can raise the accuracy by around 10% when
channel gain is greater than 20 dB compared with non-LSTM
layer model. Besides, such RNN layers can improve the
performance under all channel gains in our experiment.

VII. CONCLUSION

In this work, we develop deep neural networks to detect co-
existing signal types by I/Q samples without having to decode
them. With segmented sample sequences, CNN is combined
with RNN and then trained. The classification results show
competitive accuracies by neural networks when the received
signal is under the mixture. We then apply STFT on I/Q se-
quences to further improve the classification accuracy. Neural
networks show considerable improvement after including the
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Fig. 11. Average accuracy vs. channel gain.

spectrogram. Moreover, to verify that the proposed detection
framework is viable in a real environment, an OTA experiment
is then conducted with USRP sets. The proposed deep neural
architecture can achieve accurate classification in both the
simulation and the experiment.

REFERENCES

[1] “IEEE standard for definitions and concepts for dynamic spectrum
access: terminology relating to emerging wireless networks, system
functionality, and spectrum management,” IEEE Std 1900.1-2019 (Re-
vision of IEEE Std 1900.1-2008) , vol., no., pp.1-78, 23 April 2019.

[2] Q. Wang et al., “Robust large-scale spectrum auctions against false-
name bids,” IEEE Transactions on Mobile Computing, vol. 16, no. 6,
pp. 1730-1743, June 2017.

[3] Qualcomm,“Extending LTE advanced to unlicensed spectrum,” Qual-
comm Incorporated White Paper, pp. 1-12, Dec. 2013.

[4] 3GPP, “Study on licensed-assisted access using LTE,” 3GPP Work Item
Description, RP-141664, Sep. 2014.

[5] K. Kosek-Szott, J. Gozdecki, K. Loziak, M. Natkaniec, L. Prasnal, S.
Szott, and M. Wagrowski, “Coexistence issues in future WiFi networks,”
IEEE Network, vol. 31, no. 4, pp. 86-95, July 2017.

[6] M. Hirzallah, W. Afifi and M. Krunz, “Full-duplex-based rate/mode
adaptation strategies for Wi-Fi/LTE-U coexistence: a POMDP ap-
proach,” IEEE JSAC, vol. 35, no. 1, pp. 20-29, Jan. 2017

[7]1 O. A. Dobre, A. Abdi, and a. W. S. Y. Bar-Ness, “Survey of auto-
matic modulation classification techniques: classical approaches and new
trends,” IET Communications, vol. 1, no. 2, pp. 137-156, 2007.

[8] W. C. Headley and C. R. C. M. d. Silva, “Asynchronous classification of
digital amplitude-phase modulated signals in flat-fading channels,” IEEE
Transactions on Communications, vol. 59, no. 1, pp. 7-12, January 2011.

[9] J. Nam, K. Choi, J. Lee, S. Chou and Y. Yang, “Deep learning for audio-

based music classification and tagging: teaching computers to distinguish

rock from bach,” IEEE Signal Processing Magazine, vol. 36, no. 1, pp.

41-51, Jan. 2019.

M. Kim, B. Cao, T. Mau and J. Wang, “Speaker-independent silent

speech recognition from flesh-point articulatory movements using an

LSTM neural network,” IEEE/ACM Transactions on Audio, Speech, and

Language Processing, vol. 25, no. 12, pp. 2323-2336, Dec. 2017.

K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning for image

recognition,” in Proc. IEEE CVPR’16, Las Vegas, NV, June 2016, pp.

770-778.

T. J. O’Shea, J. Corgan, and T. C. Clancy,” Convolutional radio

modulation recognition networks,” In Proc. International conference

on engineering applications of neural networks, 2016, pp. 213-226,

Springer.

T.J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-air deep learning based

radio signal classification,” IEEE Journal of Selected Topics in Signal

Processing, vol. 12, no. 1, pp. 168-179, Feb. 2018.

S. Rajendran, W. Meert, D. Giustiniano, V. Lenders and S. Pollin, “Deep

learning models for wireless signal classification with distributed low-

cost spectrum sensors,” IEEE Transactions on Cognitive Communica-

tions and Networking, vol. 4, no. 3, pp. 433-445, Sept. 2018.

[10]

[11]

[12]

[13]

[14]



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

B. Tang, Y. Tu, Z. Zhang and Y. Lin, “Digital signal modulation
classification with data augmentation using generative adversarial nets
in cognitive radio networks,” IEEE Access, vol. 6, pp. 15713-15722,
2018.

Y. Shi, K. Davaslioglu, Y. E. Sagduyu, W. C. Headley, M. Fowler and
G. Green, “Deep learning for RF signal classification in unknown and
dynamic spectrum environments,” in Proc. IEEE DySPAN’19, Newark,
NJ, USA, 2019, pp. 1-10.

M. G. Baydogan, G. Runger and E. Tuv, “A bag-of-features framework
to classify time series,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 35, no. 11, pp. 2796-2802, Nov. 2013.

J. Long, E. Shelhamer and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. CVPR’15, Boston, MA, 2015, pp.
3431-3440

F. Karim, S. Majumdar, H. Darabi and S. Chen, “LSTM fully Convolu-
tional networks for time series classification,” IEEE Access, vol. 6, pp.
1662-1669, 2018.

F. Karim, S. Majumdar and H. Darabi, “Insights into LSTM fully
convolutional networks for time series classification,” IEEE Access, vol.
7, pp. 67718-67725, 2019.

A. H. Y. Abyaneh, M. Hirzallah and M. Krunz, “Intelligent-CW: Al-
based framework for controlling contention window in WLANSs,” in
Proc. IEEE DySPAN’19, Newark, NJ, USA, 2019, pp. 1-10.

A. Berian, 1. Aykin, M. Krunz and T. Bose, “Deep learning based
identification of wireless protocols in the PHY layer,” in Proc. IEEE
ICNC, Big Island, HI, USA, 2020, pp. 287-293.

A. Albanna and H. Yousefi’Zadeh, “Congestion minimization of LTE
networks: a deep learning approach,” IEEE/ACM Transactions on Net-
working, vol. 28, no. 1, pp. 347-359, Feb. 2020.

X. Du, H. Van Nguyen, C. Jiang, Y. Li, F. R. Yu and Z. Han, “Virtual
relay selection in LTE-V: a deep reinforcement learning approach to
heterogeneous data,” IEEE Access, vol. 8, pp. 102477-102492, 2020.
F. B. Mismar and B. L. Evans, “Deep learning in downlink coordinated
multipoint in new radio heterogeneous networks,” IEEE Wireless Com-
munications, vol. 8, no. 4, pp. 1040-1043, Aug. 2019.

J. Tan, L. Zhang, Y. Liang and D. Niyato, “Intelligent sharing for LTE
and WiFi systems in unlicensed bands: a deep reinforcement learning
approach,” IEEE Transactions on Communications, vol. 68, no. 5, pp.
2793-2808, May 2020.



