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The study of covering systems with distinct moduli (common differences)
was initiated almost 70 years ago by Erdős [3], who posed many problems
about these systems over the following decades. The most famous of these
was his so-called ‘minimum modulus problem’, which asked whether there
exist such systems with arbitrarily large minimum modulus. This problem
was resolved by Hough [5] in 2015, following important work by Filaseta,
Ford, Konyagin, Pomerance and Yu [4].

Theorem 1.1 (Hough [5]). In any covering system of the integers with

distinct moduli, the minimum modulus is at most 1016.

Hough’s paper moreover introduced a new method, which we call the
distortion method. In this method, we reveal the progressions in stages, and
define a sequence of probability measures, each of which depends only on the
progressions revealed up to that point. These measures concentrate on the
set of uncovered points, and allow us to maintain a constant lower bound on
the measure of this set (which may be very small in the uniform measure).

The purpose of this note is to give a gentle introduction to a simpler
and more powerful variant of Hough’s method, which was introduced by the
authors in two recent papers [1,2]. We will illustrate this method by giving
a simple proof of Hough’s theorem in the case of square-free moduli.1 Our
aim is to make this method more widely known amongst the combinatorial
community, in the hope that further applications will be discovered.

2. A geometric setting

For the purposes of exposition, it will be convenient to work in a (slightly
more general) geometric setting. Let S1, . . . , Sn be finite sets with at least
two elements, and set

Q = S1 × · · · × Sn.

A hyperplane in Q is a set A = Y1 × · · · × Yn ⊂ Q, with each Yi either equal
to Si or a singleton element of Si, and the set of fixed coordinates of A is

F (A) :=
{

k : Yk �= Sk

}

.

We say that two hyperplanes A and A′ are parallel if F (A) = F (A′).
The following theorem was proved in [2]; we will give the proof in Sec-

tions 3–5, below.

1We emphasize that this proof can be extended to prove Theorem 1.1 without much difficulty
(see [1]), but this requires some tedious calculations that, for the sake of clarity, we wish to avoid.
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To Endre Szemerédi, a truly extraordinary mathematician,
a wonderful friend, and a great inspiration, on his 80th birthday

Abstract. A covering system is a finite collection of arithmetic progressions
whose union is the set of integers. The study of these objects was initiated by
Erdős in 1950, and over the following decades he asked many questions about
them. Most famously, he asked whether there exist covering systems with distinct
moduli whose minimum modulus is arbitrarily large. This problem was resolved
in 2015 by Hough, who showed that in any such system the minimum modulus is
at most 1016.

The purpose of this note is to give a gentle exposition of a simpler and stronger
variant of Hough’s method, which was recently used to answer several other ques-
tions about covering systems. We hope that this technique, which we call the
distortion method, will have many further applications in other combinatorial set-
tings.

1. Introduction

We say that a finite collection {A1, . . . ,Ak} of arithmetic progressions is

a covering system if
⋃k

i=1 Ai = Z, that is, if their union covers the integers.
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The study of covering systems with distinct moduli (common differences)
was initiated almost 70 years ago by Erdős [3], who posed many problems
about these systems over the following decades. The most famous of these
was his so-called ‘minimum modulus problem’, which asked whether there
exist such systems with arbitrarily large minimum modulus. This problem
was resolved by Hough [5] in 2015, following important work by Filaseta,
Ford, Konyagin, Pomerance and Yu [4].

Theorem 1.1 (Hough [5]). In any covering system of the integers with

distinct moduli, the minimum modulus is at most 1016.

Hough’s paper moreover introduced a new method, which we call the
distortion method. In this method, we reveal the progressions in stages, and
define a sequence of probability measures, each of which depends only on the
progressions revealed up to that point. These measures concentrate on the
set of uncovered points, and allow us to maintain a constant lower bound on
the measure of this set (which may be very small in the uniform measure).

The purpose of this note is to give a gentle introduction to a simpler
and more powerful variant of Hough’s method, which was introduced by the
authors in two recent papers [1,2]. We will illustrate this method by giving
a simple proof of Hough’s theorem in the case of square-free moduli.1 Our
aim is to make this method more widely known amongst the combinatorial
community, in the hope that further applications will be discovered.

2. A geometric setting

For the purposes of exposition, it will be convenient to work in a (slightly
more general) geometric setting. Let S1, . . . , Sn be finite sets with at least
two elements, and set

Q = S1 × · · · × Sn.

A hyperplane in Q is a set A = Y1 × · · · × Yn ⊂ Q, with each Yi either equal
to Si or a singleton element of Si, and the set of fixed coordinates of A is

F (A) :=
{

k : Yk �= Sk

}

.

We say that two hyperplanes A and A′ are parallel if F (A) = F (A′).
The following theorem was proved in [2]; we will give the proof in Sec-

tions 3–5, below.

1We emphasize that this proof can be extended to prove Theorem 1.1 without much difficulty
(see [1]), but this requires some tedious calculations that, for the sake of clarity, we wish to avoid.
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Theorem 2.1. For every sequence of finite sets (Sk)k�1 such that |Sk|
� 2 for each k ∈ N and

(1) lim inf
k→∞

|Sk|

k
> 3,

there exists a constant C such that the following holds. Let A be a collection
of hyperplanes that cover Q := S1 × · · · × Sn for some n ∈ N. Then either
two of the hyperplanes are parallel, or there exists a hyperplane A ∈ A with
F (A) ⊂ {1, . . . , C}.

Before continuing, let us note that Theorem 2.1 implies Hough’s theorem
for covering systems with square-free moduli.

Corollary 2.2. In any covering system of the integers with distinct
square-free moduli, the minimum modulus is bounded by an absolute con-
stant.

Proof. Simply apply Theorem 2.1 with Sk = {1, . . . , pk} for each k ∈ N,
where p1 < p2 < · · · are the prime numbers, listed in increasing order. To
spell out the details, let A be a covering system of the integers with distinct
square-free moduli, let pn be the largest prime that divides one of the mod-
uli, and set Q := S1 × · · · × Sn. Now, by the Chinese Remainder Theorem,
each arithmetic progression A = a+ dZ ∈ A corresponds to the hyperplane
Y1×· · ·×Yn ⊂ Q, where Yk = {a (mod pk)} if pk divides d, and Yk = Sk oth-
erwise. We may therefore map A into a finite collection H of hyperplanes
that covers Q, and since the moduli of A are distinct, the hyperplanes in H
are non-parallel.

Now, by Theorem 2.1, there exists an arithmetic progression A = a+ dZ
∈ A such that the set of fixed coordinates of the corresponding hyperplane
is contained in {1, . . . , C} (where C is the constant given by the theorem).
But this means that d divides (and hence at most) p1 · · · pC , which is an
absolute constant, as required. �

Note that pk ∼ k log k, whereas in Theorem 2.1 we allow the size of the
sets Sk to grow only linearly. We showed in [2] that Theorem 2.1 is close
to best possible, since there exists a sequence with |Sk| ∼ k for which the
conclusion of the theorem fails.

In the next section we will give an overview of the distortion method,
and prove a general lemma regarding covering. In Section 4 we will perform
a simple moment calculation, and in Section 5 we will deduce Theorem 2.1.

3. The distortion method

In this section we will give an outline of the proof of Theorem 2.1. We
will work in the following general setting: let S1, . . . , Sn be finite sets with
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at least two elements, set

Q := S1 × · · · × Sn,

and let A be a collection of hyperplanes in Q. Our task is to show that if
|Sk| grows sufficiently quickly, and A does not contain parallel hyperplanes,
then A cannot cover Q.

To do so, we will reveal the elements of A in n rounds, corresponding
to the n sets S1, . . . , Sn, and define a sequence of probability measures P0,
. . . , Pn on Q that gradually distort the space. The measure Pk will depend
on the elements of A that were revealed in the first k rounds, and will be
chosen so that the Pk-measure of the set covered in the kth round is small.
However, it will be important that we do not change the measure of the set
of points that were covered earlier, and we do not increase the measure of
any set too much.

In order to define these measures, recall that F (A) is the set of fixed
coordinates of a hyperplane A, and define

Ak :=
{

A ∈ A : max(F (A)) = k
}

to be the set of hyperplanes that we reveal in round k, and

Bk :=
⋃

A∈Ak

A

to be the set that is covered by those hyperplanes. Note that, since F (A)
⊂ [k] = {1, . . . , k} for every A ∈ Ak, we can consider Bk to be a subset of

Qk := S1 × · · · × Sk

by identifying X ⊂ Qk with X × Sk+1 × · · · × Sn. We call a set of this form
Qk-measurable.

Let P0 be the uniform probability measure on Q, and let us think of this
as being the trivial measure on Q0, the empty product. Let 1 � k � n, and
suppose that we have already defined a probability measure Pk−1 on Qk−1

(which we extend uniformly to a measure on Q). A natural way (cf. [5])
to define the measure Pk on Qk would be to set Pk(Bk) = 0, and redis-
tribute the removed measure over the remaining elements (taking care not
to change the measure of any Qk−1-measurable set). However, it turns out
to be helpful to define the measure Pk in the following, slightly more subtle
way.

Recall that Qk = Qk−1 × Sk, so the elements of Qk can be written as
pairs (x, y), where x ∈ Qk−1 and y ∈ Sk. Now, for each x ∈ Qk−1, define

(2) αk(x) :=

∣

∣

{

y ∈ Sk : (x, y) ∈ Bk

}
∣

∣

|Sk|
,
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Q := S1 × · · · × Sn,

and let A be a collection of hyperplanes in Q. Our task is to show that if
|Sk| grows sufficiently quickly, and A does not contain parallel hyperplanes,
then A cannot cover Q.
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any set too much.

In order to define these measures, recall that F (A) is the set of fixed
coordinates of a hyperplane A, and define

Ak :=
{

A ∈ A : max(F (A)) = k
}

to be the set of hyperplanes that we reveal in round k, and

Bk :=
⋃

A∈Ak

A

to be the set that is covered by those hyperplanes. Note that, since F (A)
⊂ [k] = {1, . . . , k} for every A ∈ Ak, we can consider Bk to be a subset of

Qk := S1 × · · · × Sk

by identifying X ⊂ Qk with X × Sk+1 × · · · × Sn. We call a set of this form
Qk-measurable.

Let P0 be the uniform probability measure on Q, and let us think of this
as being the trivial measure on Q0, the empty product. Let 1 � k � n, and
suppose that we have already defined a probability measure Pk−1 on Qk−1

(which we extend uniformly to a measure on Q). A natural way (cf. [5])
to define the measure Pk on Qk would be to set Pk(Bk) = 0, and redis-
tribute the removed measure over the remaining elements (taking care not
to change the measure of any Qk−1-measurable set). However, it turns out
to be helpful to define the measure Pk in the following, slightly more subtle
way.

Recall that Qk = Qk−1 × Sk, so the elements of Qk can be written as
pairs (x, y), where x ∈ Qk−1 and y ∈ Sk. Now, for each x ∈ Qk−1, define

(2) αk(x) :=

∣

∣

{

y ∈ Sk : (x, y) ∈ Bk

}
∣

∣

|Sk|
,
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that is, the proportion of the ‘fibre’ Fx := {(x, y) : y ∈ Sk} ⊂ Qk that is cov-
ered in round k. Now, for some δ ∈ [0, 1/2], we do one of two things on the
fibre Fx, depending on whether or not αk(x) � δ:

• If αk(x) � δ, then we set Pk(x, y) = 0 for every element of Fx ∩Bk,
and increase the measure proportionally on the rest of Fx;

• If αk(x) > δ, then we ‘cap’ the distortion by increasing the measure
at each point of Fx \Bk by a factor of 1/(1− δ), and decreasing the measure
on points of Fx ∩Bk by a corresponding factor.

To be precise, the probability measure Pk is defined as follows.

Definition 3.1. For each (x, y) ∈ Qk, define

Pk(x, y) :=



















max
�

0,
αk(x)− δ

αk(x)(1− δ)

�

·
Pk−1(x)

|Sk|
, if (x, y) ∈ Bk;

min
� 1

1− αk(x)
,

1

1− δ

�

·
Pk−1(x)

|Sk|
, if (x, y) �∈ Bk.

Note that
�

y∈Sk
Pk(x, y) = Pk−1(x) for every x ∈ Qk−1, and hence

Pk(X) = Pk−1(X) for any Qk−1-measurable set X . We can now easily prove
the following key lemma, which (despite its simplicity) is the main step in
the proof of Theorem 2.1.

Lemma 3.2. Let A be a collection of hyperplanes in Q = S1×· · ·×Sn. If

(3)
1

4δ(1− δ)

n
�

k=1

Ek−1

�

αk(x)
2
�

< 1,

then A does not cover Q.

Proof. Recall from (2) that |Fx ∩Bk| = αk(x) · |Sk|. By Definition 3.1,
it follows that

Pk(Bk) =
�

x∈Qk−1

|Fx ∩ Bk| ·max
�

0,
αk(x)− δ

αk(x)(1− δ)

�

·
Pk−1(x)

|Sk|

=
1

1− δ

�

x∈Qk−1

max
�

0, αk(x)− δ
�

· Pk−1(x)

�
1

1− δ

�

x∈Qk−1

αk(x)
2

4δ
· Pk−1(x) =

Ek−1

�

αk(x)
2
�

4δ(1− δ)
.

Indeed, max{a− b, 0} � a2/4b follows from (a− 2b)2 � 0, and holds for all
a, b > 0.
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Now, since Pn(Bk) = Pk(Bk) for every 1 � k � n, it follows that the set
R ⊂ Q of points not covered by A satisfies

Pn(R) � 1−
n
∑

k=1

Pn(Bk) � 1−
1

4δ(1− δ)

n
∑

k=1

Ek−1

[

αk(x)
2
]

> 0,

by (3), and hence A does not cover Q, as claimed. �

4. Bounding the moments of αk(x)

In order to use Lemma 3.2 to prove Theorem 2.1, we need to bound, for
each 1 � k � n, the second moment of αk(x) with respect to the measure
Pk−1. The following lemma provides the bound we need.

Lemma 4.1. Let A be a collection of hyperplanes in Q = S1 × · · · × Sn,
no two of which are parallel. Then, for each 1 � k � n,

(4) Ek−1

[

αk(x)
2
]

�
1

|Sk|2

k−1
∏

j=1

(

1 +
3

(1− δ)|Sj|

)

.

The first step in the proof of Lemma 4.1 is the following straightforward
bound on the Pk­measure of a Qk­measurable hyperplane.

Lemma 4.2. Let A be a hyperplane, and let 0 � k � n. If F (A) ⊂ [k],
then

(5) Pk(A) �
∏

j∈F (A)

1

(1− δ)|Sj|
.

In the proof of Lemma 4.2 we will use the following simple properties of
the measures Pk. Recall from Section 3 that

(6) Pk(X) = Pk−1(X)

for any Qk−1­measurable set X , and observe that

(7) Pk(X) �
1

1− δ
· Pk−1(X)

for any set X ⊂ Q, by Definition 3.1. We will find it useful to define

ν(J) :=
∏

j∈J

1

(1− δ)|Sj |
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1
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n
∑

k=1

Ek−1

[

αk(x)
2
]

> 0,

by (3), and hence A does not cover Q, as claimed. �

4. Bounding the moments of αk(x)

In order to use Lemma 3.2 to prove Theorem 2.1, we need to bound, for
each 1 � k � n, the second moment of αk(x) with respect to the measure
Pk−1. The following lemma provides the bound we need.

Lemma 4.1. Let A be a collection of hyperplanes in Q = S1 × · · · × Sn,
no two of which are parallel. Then, for each 1 � k � n,

(4) Ek−1

[

αk(x)
2
]

�
1

|Sk|2

k−1
∏

j=1

(

1 +
3

(1− δ)|Sj|

)

.

The first step in the proof of Lemma 4.1 is the following straightforward
bound on the Pk­measure of a Qk­measurable hyperplane.

Lemma 4.2. Let A be a hyperplane, and let 0 � k � n. If F (A) ⊂ [k],
then

(5) Pk(A) �
∏

j∈F (A)

1

(1− δ)|Sj|
.

In the proof of Lemma 4.2 we will use the following simple properties of
the measures Pk. Recall from Section 3 that

(6) Pk(X) = Pk−1(X)

for any Qk−1­measurable set X , and observe that

(7) Pk(X) �
1

1− δ
· Pk−1(X)

for any set X ⊂ Q, by Definition 3.1. We will find it useful to define

ν(J) :=
∏

j∈J

1

(1− δ)|Sj |

Acta Mathematica Hungarica
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ERDŐS COVERING SYSTEMS 7

for each J ⊂ [n] and, given a hyperplane A = Y1×· · ·×Yn and a set U ⊂ [n],
to define AU := Y U

1 × · · · Y U
n to be the hyperplane with Y U

i := Yi if i ∈ U ,
and Y U

i := Si otherwise.

Proof of Lemma 4.2. We will prove, by induction on k, that Pk(A)
� ν(J) for all 0 � k � n, every set J ⊂ [k], and every hyperplane A with
F (A) = J . For k = 0 this follows because ν(∅) = 1, so let 1 � k � n, and
assume that the induction hypothesis holds for Pk−1.

Suppose first that k �∈ F (A). Then A is Qk−1-measurable and J ⊂
[k − 1], and it follows by (6) and the induction hypothesis that Pk(A) =
Pk−1(A) � ν(J), as required.

On the other hand, if k ∈ F (A), then it follows from (7) that

Pk(A) �
1

1− δ
· Pk−1(A) =

1

(1− δ)|Sk|
· Pk−1

(

A[k−1]
)

,

since the probability measure Pk−1 is extended uniformly on each fibre. Since
F (A[k−1]) = J \ {k} ⊂ [k − 1], it follows from the induction hypothesis that

Pk−1

(

A[k−1]
)

� ν(J \ {k}).

Hence, by the definition of ν, we obtain Pk(A) � ν(J), as claimed. �

Using Lemma 4.2, we can now prove the following bound on the second
moment of αk(x).

Lemma 4.3. Let A be a collection of hyperplanes in Q = S1 × · · · × Sn,
no two of which are parallel. Then, for each 1 � k � n,

Ek−1

[

αk(x)
2
]

�
1

|Sk|2

∑

F1,F2⊂[k−1]

ν
(

F1 ∪ F2

)

.

Proof. Recalling the definitions of αk and Bk, and using the union
bound, we obtain

αk(x) =
1

|Sk|

∑

y∈Sk

[

(x, y) ∈ Bk

]

�
1

|Sk|

∑

y∈Sk

∑

A∈Ak

[

(x, y) ∈ A
]

for each x ∈ Qk−1, and therefore

αk(x) �
1

|Sk|

∑

A∈Ak

[

x ∈ A[k−1]
]

,
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since for each x ∈ Qk−1 and A ∈ Ak, there exists y ∈ Sk with (x, y) ∈ A if
and only if x ∈ A[k−1], and moreover such a y (if it exists) is unique, since
k ∈ F (A). It follows that

Ek−1

[

αk(x)
2
]

�
1

|Sk|2

∑

A1,A2∈Ak

Pk−1

(

A
[k−1]
1 ∩ A

[k−1]
2

)

.

Now, if A
[k−1]
1 ∩A

[k−1]
2 is non-empty, then it is a hyperplane whose set

of fixed coordinates is F1 ∪ F2, where F1 = F (A1) ∩ [k − 1] and F2 = F (A2)
∩ [k− 1]. Moreover, the sets Fi determine the hyperplanes Ai ∈ Ak uniquely,
since no two of the hyperplanes of A are parallel. Hence, applying Lemma 4.2
and recalling the definition of ν, it follows that

Ek−1

[

αk(x)
2
]

�
1

|Sk|2

∑

F1,F2⊂[k−1]

ν
(

F1 ∪ F2

)

,

as required. �

The claimed bound on Ek−1

[

αk(x)
2
]

now follows easily.

Proof of Lemma 4.1. Observe that
∑

F1,F2⊂[k−1]

ν
(

F1 ∪ F2

)

=
∑

J⊂[k−1]

∑

F1,F2⊂[k−1]
F1∪F2=J

ν(J) =
∑

J⊂[k−1]

3|J |ν(J).

Hence, by Lemma 4.3, and recalling again the definition of ν, we have

Ek−1

[

αk(x)
2
]

�
1

|Sk|2

∑

J⊂[k−1]

3|J |ν(J) =
1

|Sk|2

k−1
∏

j=1

(

1 +
3

(1− δ)|Sj|

)

,

as required. �

5. The proof of Theorem 2.1

Theorem 2.1 is a straightforward consequence of Lemmas 3.2 and 4.1; we
just need to choose C and δ so that if F (A) �⊂ {1, . . . , C} for every A ∈ A,
then the bound given by Lemma 4.1 is strong enough to imply that (3) holds.

Proof of Theorem 2.1. Let (Sk)k�1 be a sequence of sets as in the
statement of the theorem, so there exist N ∈ N and 0 < ε � 1 such that |Sk|
� (3+ ε)k for all k � N , and moreover |Sk| � 2 for each k ∈ N. We will show
that if C = C(N, ε) is sufficiently large, then the conclusion of the theorem
holds. Let A be a collection of hyperplanes in Q = S1 × · · · × Sn, no two of
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since for each x ∈ Qk−1 and A ∈ Ak, there exists y ∈ Sk with (x, y) ∈ A if
and only if x ∈ A[k−1], and moreover such a y (if it exists) is unique, since
k ∈ F (A). It follows that

Ek−1

[

αk(x)
2
]

�
1

|Sk|2

∑

A1,A2∈Ak

Pk−1

(

A
[k−1]
1 ∩ A

[k−1]
2

)

.

Now, if A
[k−1]
1 ∩A

[k−1]
2 is non-empty, then it is a hyperplane whose set

of fixed coordinates is F1 ∪ F2, where F1 = F (A1) ∩ [k − 1] and F2 = F (A2)
∩ [k− 1]. Moreover, the sets Fi determine the hyperplanes Ai ∈ Ak uniquely,
since no two of the hyperplanes of A are parallel. Hence, applying Lemma 4.2
and recalling the definition of ν, it follows that

Ek−1

[

αk(x)
2
]

�
1

|Sk|2

∑

F1,F2⊂[k−1]

ν
(

F1 ∪ F2

)

,

as required. �

The claimed bound on Ek−1

[

αk(x)
2
]

now follows easily.

Proof of Lemma 4.1. Observe that
∑

F1,F2⊂[k−1]

ν
(

F1 ∪ F2

)

=
∑

J⊂[k−1]

∑

F1,F2⊂[k−1]
F1∪F2=J

ν(J) =
∑

J⊂[k−1]

3|J |ν(J).

Hence, by Lemma 4.3, and recalling again the definition of ν, we have

Ek−1

[

αk(x)
2
]

�
1

|Sk|2

∑

J⊂[k−1]

3|J |ν(J) =
1

|Sk|2

k−1
∏

j=1

(

1 +
3

(1− δ)|Sj|

)

,

as required. �

5. The proof of Theorem 2.1

Theorem 2.1 is a straightforward consequence of Lemmas 3.2 and 4.1; we
just need to choose C and δ so that if F (A) �⊂ {1, . . . , C} for every A ∈ A,
then the bound given by Lemma 4.1 is strong enough to imply that (3) holds.

Proof of Theorem 2.1. Let (Sk)k�1 be a sequence of sets as in the
statement of the theorem, so there exist N ∈ N and 0 < ε � 1 such that |Sk|
� (3+ ε)k for all k � N , and moreover |Sk| � 2 for each k ∈ N. We will show
that if C = C(N, ε) is sufficiently large, then the conclusion of the theorem
holds. Let A be a collection of hyperplanes in Q = S1 × · · · × Sn, no two of
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which are parallel, and with F (A)  ⊂ {1, . . . , C} for every A ∈ A. To prove
the theorem it will suffice to show that A does not cover Q.

Set δ := ε/6 ∈ (0, 1/2], and observe that αk(x) = 0 for every 1 � k � C
and x ∈ Qk−1, since F (A)  ⊂ {1, . . . , C} for every A ∈ A. Moreover, by
Lemma 4.1,

Ek−1

[

αk(x)
2
]

�
1

|Sk|2

k−1
∏

j=1

(

1 +
3

(1− δ)|Sj |

)

for each C < k � n. Now, note that (1− δ)|Sj| � 1 for every j ∈ N, and that
if j � N then (1− δ)|Sj| � (1− ε/6)(3 + ε) · j. Thus

k−1
∏

j=1

(

1 +
3

(1− δ)|Sj|

)

� 4N exp

(

3

(1− ε/6)(3 + ε)

k−1
∑

j=N

1

j

)

� 4N · k1−ε/10,

where the final inequality holds since

k−1
∑

j=N

1/j � log k and (1− ε/6)(3 + ε)(1− ε/10) � 3.

It follows that

Ek−1

[

αk(x)
2
]

�
4N

|Sk|2
· k1−ε/10

�
4N

9 · k1+ε/10

for every C < k � n (as long as we chose C � N , so that |Sk| � 3k), and
hence

1

4δ(1− δ)

n
∑

k=1

Ek−1

[

αk(x)
2
]

�
4N

ε

n
∑

k=C

1

k1+ε/10
< 1

if C = C(N,ε) is sufficiently large. By Lemma 3.2 it follows that A does not
cover Q, as required. �

Remark 5.1. When |Sk| = pk, the kth prime, for each k ∈ N, we can
choose ε = 1 and N = 31, in which case the final inequality in the proof
above holds as long as C � 10200. By the proof of Corollary 2.2, this gives
a (fairly terrible) bound of roughly exp(10200) for the minimum modulus in
a covering system with distinct square-free moduli. However, it is clear that
one could do rather better with a little more effort, and in [1] we used a
variant of the proof above to reduce the bound in Hough’s theorem to less
than 106.
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ering problem: the density of the uncovered set (submitted), arXiv:1811.03547.

[2] P. Balister, B. Bollobás, R. Morris, J. Sahasrabudhe and M. Tiba, The Erdős–Selfridge
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