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Abstract—Distributed computation plays an essential role in
cloud and edge computing. Data such as images, audio, and text
can be represented as matrices to facilitate efficient computation,
especially in the domains of distributed machine learning, com-
puter vision, and signal processing. Many coded computation
algorithms have been proposed for big data applications to
securely partition and distribute matrices to parallel worker
devices. However, these proposals have yet to be adapted for
mobile platforms beyond theoretical means. Mobile IoT networks
can greatly benefit from secure distributed computing, however,
commercial devices such as smartphones and tablets are much
more limited in resources compared to platforms in data centers,
requiring special design considerations. We investigate existing
distribution schemes from an operational complexity and secu-
rity viewpoint and study their performance in several mobile
IoT networks, identifying performance bottlenecks in regards
to communication and computation costs. From our findings,
we propose new, scalable algorithms optimized to handle the
unique constraints of mobile IoT. Extensive evaluations of our
proposals on publicly available image classification datasets show
how distributed learning can be specially optimized to enhance
runtime and battery performance on mobile IoT by over 10×.

Index Terms—Distributed computing, coded computations,
edge device, mobile IoT

I. INTRODUCTION

Distributed learning plays an essential role in advanced edge

computing, particularly in areas such as image processing [1]–

[3], healthcare monitoring [4], [5], smart cities [6], [7], and ve-

hicular networks [8]–[10]. Recently, there has been a growing

interest in applying coding-theoretic techniques to speed-up

distributed computing algorithms and increase their resiliency

and security in what is now referred to as coded computation

[11]–[14]. These studies were able to produce fast and secure

algorithms for distributed computing and have already had

theoretical performance analysis and practical demonstrations,

mainly in controlled settings featuring large-scale clusters, data

centers, and cloud computing facilities. However, adapting

such schemes to mobile IoT devices, such as smartphones,

wearable devices, home and personal assistants, smart cars,

and security systems, has yet to be fully explored and validated

beyond simulations [15]–[17].

Deploying existing distributed computation algorithms on

mobile IoT is non-trivial and presents many practical chal-

lenges [18]. For instance, mobile IoT devices are designed to

be small, portable, and convenient, meaning they typically lack

high-end computing resources available to most stationary,
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Figure 1. Use case scenarios for secure distributed learning in the mobile IoT,
where user data is securely distributed to various IoT devices for computation.

continuously-powered facilities. Moreover, security poses a

more pronounced challenge given the open environment of

mobile networks and the vulnerability to threats such as denial-

of-service (DOS), eavesdropping, and man-in-the-middle at-

tacks [19], [20]. As shown in Figure 1, the incentive to

overcome these challenges is very high, as many applications

scenarios can benefit from efficient distributed computing

algorithms, including GPS tracking, local traffic prediction,

mobile gaming, and crowd sensing. As an answer to the

challenges of limited computational resources, battery life,

and data privacy, we perform the first study of secure coded

computation for distributed learning in mobile IoT using real

world commercial hardware.

To achieve effective distributed computation algorithms

on mobile IoT, we aim to develop simple and lightweight

secure distributed algorithms. We envision that cryptographic

solutions, especially fully homomorphic encryption, can be

computationally heavy on mobile IoT devices and quickly

exhaust the very limited battery capacity [21]. To address

this challenge, we propose efficient algorithms that ensure

information-theoretic security to protect outsourced data and

parameters from passive eavesdropping attacks on leveraged

devices. Many distributed computation tasks are based on

statistical and learning-based algorithms (e.g., logistic regres-

sion), which can be implemented through a series of matrix

multiplication operations. We specifically focus on the scope

of secure distributed matrix multiplication (SDMM), which is

an ideal candidate for optimization due to its intensive compu-

tational complexity. Existing studies that analyze performance

of SDMM algorithms are mostly performed through theoreti-

cal analysis or on cloud platforms, such as Amazon EC2 [12],978-1-6654-4108-7/21/$31.00 ©2021 IEEE



[22]. However, the heterogeneous mobile IoT networks are

significantly different from cloud facilities in terms of hard-

ware, computational capability, and power constraints. Recent

works implemented coded computation on edge devices [14]

but are evaluated as simulations that do not fully account for

real-world challenges, such as communication overhead and

battery consumption. To demonstrate this issue, we conduct

preliminary studies on existing SDMM algorithms [12], [13]

in real-world mobile IoT environments. We observe that these

algorithms can be highly taxing on resources such as CPU,

memory, and battery that must be shared with other everyday

mobile applications. Notably, we find that insertion of more

resources (i.e., additional devices) into the mobile IoT network

does not necessarily improve computational performance. To

this end, we propose lightweight secure coded distributed

learning algorithms specifically optimized for high energy

efficiency and low computational complexity.

We focus on matrix multiplication as the bottleneck of

many of the now well-celebrated deep learning algorithms

[23], [24]. We consider the practical condition that an IoT

device must find the product of matrices as part of a bigger

learning algorithm, but may be unable or unwilling to perform

the computation on the local device due to limited resources.

The local device may, however, have access to N number

of associate devices within the mobile IoT network, which

can share their own resources to assist with the learning task.

We propose a novel algorithmic approach to coordinate the

partitioning, encoding, distribution, and decoding of the ma-

trices between the local device (i.e. user) and associate devices

(i.e. workers) such that information-theoretic security is pre-

served without sacrificing battery or low latency. Specifically,

we consider information-theoretic security based on Shamir’s

secret sharing theory [25] by dividing the encoded data into

multiple parts before sharing. To reconstruct the original data

will require knowledge of all encoded parts. We develop a

prototype implementation that can perform secure distributed

learning, using logistic regression as an example, on heteroge-

neous mobile devices and conduct extensive evaluations under

real-world conditions. Moreover, our approach is scalable in

order to support dynamically changing IoT networks, where

devices may be added or removed freely, as well as adaptable

to support more complex learning problems beyond linear

regression. Mobile applications leveraging computer vision

(e.g. geotagging, gaming, etc.) can greatly benefit from our

prototype, as images are easily convertible into 2D pixel-based

matrix representations. As such, we evaluate the performance

of the proposed algorithms using publicly available EM-

NIST [26] and CIFAR [27] image datasets, providing a proof-

of-concept study on the feasibility of distributed computing

algorithms on commercially accessible hardware in real-world

settings. Our prototype is lightweight (i.e. designed with min-

imal memory footprint) and has been optimized to accelerate

the computation speed of classification tasks. While these

optimizations were designed to address mobile IoT constraints,

our algorithms can also be deployed in traditional data centers

to provide similar benefits. We view this work as the first step

to bringing secure coded computation algorithms to mobile

IoT devices and application scenarios. Our contributions are

summarized as follows:

• We propose a secure coded distributed computation

framework for mobile IoT with guaranteed information-

theoretic security, which can facilitate reliable and secure

distributed computing on mobile IoT devices.

• Compared to existing works that consider distributed

computations for big data centers or evaluate distributed

computing algorithms for edge devices via simulations,

we focus on SDMM and secure coded computations in

real-world, heterogeneous mobile IoT environments.

• We identify performance bottlenecks in communication

and computation operations when performing large scale

classification tasks on mobile IoT and propose lightweight

codes for SDMM algorithms optimized towards high

energy efficiency and low computational complexity.

• We develop a secure coded distributed learning prototype

for Android platforms deployable on commercial mobile

IoT devices to solve practical classification problems

through secure distributed logistic regression.

• Extensive evaluations of our algorithms on binary image

classification tasks using multiple public datasets and

mobile devices show average runtime speed up by 13×
and average battery consumption reduced by 10×.

II. RELATED WORKS

Distributed learning is connected to several closely related

areas, including federated learning, collaborative learning, and

secure-multiparty computation, all with vested interests in pre-

serving data privacy and minimizing communication overhead

[28]. Many algorithms draw inspiration from strategies such as

Shamir’s secret sharing [25]. Secure partitioning, distribution,

and reconstruction of matrix information has been applied to

many areas such as visual cryptography [29], [30], audio shar-

ing [31], and electronic voting [32]. Major contributions often

include optimizations in data compression, faster performance,

or stronger data protection. Ensuring privacy of distributed

information is a primary concern for many systems, leading

to many investigations on how secrecy can be improved, such

as by addressing straggler mitigation [33], defending colluding

workers [34], and information-theoretic security [35].

Information-theoretic security protects data such that adver-

saries cannot brute force the solution, even with hypothetically

unlimited computing power. Some examples of SDMM al-

gorithms incorporating information-theoretic security include

[12], [13], [31], [36]. Previous evaluations of SDMM have

considered properties such as the uplink/downlink trade-off

[22], download rates [37], and communication and computa-

tion times [38]. Operation complexity has also been considered

[39], [40], but not for information-theoretic secure systems.

While thorough in many regards, existing literature omits

consideration for hardware constraints and implementation

challenges. Secure distribution schemes for mobile platforms

have been examined from a theoretic standpoint only [15].

Studies with real-world deployments typically feature data
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clusters or commercial services such as Amazon EC2 [12],

[22], which merely offloads hardware burdens to third parties.

Our work is the first to study performance of SDMM algo-

rithms on commercial hardware with real-world data.

III. PRELIMINARY STUDY

We first conduct preliminary studies to investigate the

feasibility of deploying existing secure distributed learning

algorithms on mobile IoT devices. Specifically, we identify

implementation challenges and verify existing algorithm per-

formance using mobile platforms. We implement two exist-

ing SDMM algorithms that are initially designed for cloud

facilities on smart IoT devices: GASP [13] and CodedPri-

vateML [12]. We consider an example mobile IoT network

consisting of five smart devices, with one device serving as the

user and the rest as workers. Details on hardware are provided

in Section VII. GASP is supports collaboration with three or

four workers whereas CodedPrivateML requires a minimum of

four workers. Therefore, we evaluate both the 3-worker and

4-worker schemes for GASP to compare with the 4-worker

scheme of CodedPrivateML. On top of the existing SDMM

schemes, we developed a logistic regression-based learning

model for Android platforms to examine the performance of

matrix computation towards practical distributed learning use

cases. We employ the publicly availble EMNIST [26] dataset

for secure distributed image classification, using 1200 training

images and 2000 testing images at a 28× 28px resolution.

The computational bottleneck lies in the matrix multipli-

cation, particularly the product of the matrix with its own

transpose. We denote the matrix as W ∈ F
r×s
q in the finite

field Fq with a size of r × s. The multiplication of WTW

exhibits complexity of O(rs2). We measure average elapsed

runtime and battery consumption for 10 trials of logistic

regression-based binary image classification to quantify ex-

isting SDMM algorithm performance, comparing GASP and

CodedPrivateML in Figures 2 and 3 as an example. For a

typical binary image classification task, the average runtime

necessary to reach at least 95% classification accuracy using

GASP-based logistic regression takes more than 200s with

the help of 3 workers (i.e., W1, W2, W3). Interestingly, we

find that adding a fourth worker W4 (i.e., adding resources

to the IoT network) more than doubles runtime to over 400s.

Our studies using CodedPrivateML and battery consumption

produce similar trends. These results suggest that coordinating
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Figure 4. Average runtime breakdown by communication time and compu-
tation time for four worker devices using existing algorithms.

multiple actors in the IoT network is especially expensive,

undermining computational optimizations by prior literature.

To further understand which components of distributed com-

puting stand to benefit the most from optimization, we examine

runtime more closely, differentiating between time spent on

communication (i.e. transmitting or receiving data) and com-

putation (i.e. calculating numerical operations). Figure 4 shows

our initial findings, revealing that the overwhelming majority

of runtime, over 90% for all workers and all algorithms, is

spent on computation, illustrating a need for more effective

distribution and lower complexity operations

Our preliminary study identifies key limitations for de-

ploying existing SDMM algorithms on IoT devices: 1) The

CPUs of smart IoT devices are optimized for energy-efficiency

and lightweight computing tasks, due to the restricted battery

capacity. Thus traditional SDMM algorithms, which can be

computationally expensive and power-intensive, are difficult to

deploy on mobile devices. 2) Heterogeneity within the mobile

IoT means different participating mobile devices have varying

computational capabilities. Therefore, a straggler device that

has the lowest performance could drastically slow down the

overall efficiency of the secure distributed learning algorithm.

To address these challenges, we propose optimized secure

distributed learning algorithms for mobile IoT in Section V.

IV. CHALLENGES AND SYSTEM OVERVIEW

A. Challenges

Preservation of data privacy in untrustworthy networks.

Mobile IoT networks are especially vulnerable to various mali-

cious attacks (e.g., DOS, eavesdropping, etc.) due to emphasis

on convenience and ease of access. Therefore, data encoding

and partitioning algorithms must be carefully designed to pre-

vent data leakage when outsourcing to untrustworthy devices.

Optimizing matrix multiplication energy efficiency. Ma-

trix multiplication is an intensive computational task for

large dimensions. Deploying SDMM algorithms on mobile

IoT devices is especially challenging because of constrained

resources, such as CPU, RAM, and battery. Therefore, adap-

tations must consider time complexity of operations in the

context of energy efficiency and latency on mobile devices.

Scalability for heterogeneous mobile IoT devices. Devices

connected to the mobile IoT network are often frequently

changing. Thus, the proposed algorithms should be generaliz-

able to support different numbers of connected worker devices

with various computational capabilities.
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B. System Overview

The proposed secure distributed learning framework com-

prises four phases: (1) data partitioning, (2) data encoding, (3)

distributed computing, and (4) data decoding. We illustrate

an overview of the proposal in Figure 5. We consider a

typical distributed learning task based on logistic regression,

where the privacy for both outsourced dataset and parameters

(i.e., gradient vector) should be protected. We first perform

stochastic data quantization on the user device following the

method described in [12] to convert any given information

in the real domain R into an independent and uniform finite

field Fq , where q is a sufficiently large number to prevent

wraparound computation.

During data partitioning, the user first divides the data into

multiple parts based on the number of available worker devices

in the connected mobile IoT network. In data encoding, the

user generates a random matrix with all entries subject to Fq .

The random matrix is used to mask the partitioned data in

order to preserve data privacy. The masked data partitions will

then be transmitted to a group of N workers following the

SDMM algorithms introduced in Section V. We note that the

design of our secure encoding algorithms guarantees that for

any individual worker, deriving the original data is impossible

on a information-theoretic security basis

During distributed computation, the worker device performs

matrix multiplication on the received data partitions using its

own local resources before transmitting back to the user. Once

sufficient responses from the worker devices are received, the

user reconstructs the computation results in the data decoding

phase, detailed in Section V. By employing the gradient

descent method as in [12], the decoding process reveals the

computed gradients on the weights. Iterative weight updates

via efficient distribution of matrix multiplication-based gra-

dient computation enables faster and less energy-demanding

distributed logistic regression.

Additionally, the proposed secure coded distributed learning

framework should be able to accommodate heterogeneous

mobile IoT devices varying significantly in computational

capabilities (i.e., CPU clock frequency, number of CPU cores,

RAM size, RAM frequency, and even software-level battery

optimization algorithms). To tackle this issue, we design

variants of the SDMM algorithms based on our observations

on real-world experimental results. The devised algorithms

are specifically optimized for mobile IoT devices to flexibly

coordinate with different numbers of workers.

V. MATRIX ENCODING AND PARTITIONING

We present our proposed SDMM coding scheme to be used

within the distributed logistic regression algorithm. In order

to update the learning model for each iteration, the algorithm

must solve the following computationally intensive problem;

given a data matrix X ∈ F
r×s
q and a model vector ωt ∈ F

s×1
q

at iteration t, distributively compute the model update

ωt+1 = XTXωt, (1)

without leaking any information about X or ωt to any of the

workers. Here, XT denotes the transpose of the matrix X .

In principle, this can be performed by any of the many

known secure distributed matrix multiplication schemes. How-

ever, our objective is to design coding schemes with fast and

lightweight encoding and decoding to better suit mobile IoT

applications. We first present our secure lightweight codes for

SDMM and then describe the secure model update to be used

within the iterative learning algorithm.

A. Lightweight Codes for SDMM

To distribute the update model of Eq. (1), we propose

new lightweight codes for SDMM that securely distribute the

two-matrix product AB to a number of workers. We assume

that the user has two matrices A ∈ F
r×s
q and B ∈ F

s×t
q

and wishes to compute their product AB ∈ F
r×t
q with the

assistance of N non-colluding workers without leaking any

information about A or B. This is typically solved in literature

by partitioning the matrices and using a polynomial code to

protect the information. However, the resulting encoding and

decoding processes involves dense linear combinations, which

can be taxing on computing resources. Since our end goal is

to apply this to matrix-vector multiplication, we consider the

following inner product partitioning.

(

A1 . . . AL

)







B1

...

BL






= A1B1 + . . .+ALBL. (2)

We propose Algorithm 1 as a general code for SDMM on

N = 2L workers. The main idea is to mix the data parts with

noise and to divide the workers into L pairs, where each pair is

responsible for computing the term AiBi in (2). Algorithm 1

is lightweight as both encoding and decoding phases are sparse

and each coded sub-matrix involves a single matrix addition.

B. Updating the Model

We now address the problem of updating the model via the

computation ωt+1 = XTXωt. The model must be updated

in each iteration t. However, data is assigned only once at

the beginning of the learning algorithm does not change.

Algorithm 2 describes our secure data assignment scheme.

Algorithm 3 gives how the model is updated at each iteration

t via ωt+1 = XTXωt. At a high level, it does this by

implementing Algorithm 1 twice: once to compute D = Xωt,

and then to compute ωt+1 = XTD. Note that the order

in which we multiply ωt+1 = XTXωt matters. Indeed,



Algorithm 1 Lightweight SDMM Code

Input: A ∈ F
r×s
q , B ∈ F

s×t
q and L ∈ N.

Output: AB ∈ F
r×t
q .

1: Random matrix generation: The user generates two

random matrices R ∈ F
r× s

L

q and S ∈ F
s

L
×t

q .

2: Matrix Partitioning: The user partitions A, B, R, and S

into L parts each as in (2).

3: User Encoding: For i = 1, . . . , L−1, the user computes:
W2i−1 = Ai +R, V2i−1 = Bi + S

W2i = Ai −R, V2i = Bi − S

W2L−1 = AL +R, V2L−1 = BL + (L− 1)S
W2L = AL −R, V2L = BL − (L− 1)S.

4: User Upload: User sends Wi and Vi to each Worker i.

5: Worker Computation: Each Worker i computes:

Yi =
1
2WiVi.

6: User Download: User downloads Yi from Worker i.

7: User Decoding: User decodes: AB =
∑2L

i=1 Yi.

performing (XTX)ω(t) takes O(rs2) operations as opposed

to XT(Xω(t)) which takes O(rs) operations. Our assumption

on the attack model is that workers do not collude. Therefore,

perfect privacy is ensured in Algorithms 1, 2, and 3 since

all the data received by the workers is mixed with uniformly

distributed random noise having the same entropy as the data.

Algorithm 2 Secure Data Assignment

Input: Data matrix X ∈ F
r×s
q and number of workers

N = 2L.

Output: For i = 1, . . . , N , Worker i stores coded versions

of X and XT.

1: Random matrix generation: User generates a random

matrix R ∈ F
r× s

L

q .

2: Matrix Partitioning: User partitions X into L columns.

3: User Encoding: For i = 1, . . . , L, the user computes:

W2i−1 = Xi +R, W2i = Xi −R.

4: User Upload: The user sends Wi to each Worker i.

5: Worker Storage: Each Worker i stores Wi and WT

i .

Security Model: We assume the workers are honest but

curious, in that they perform all operations correctly, but

store all the information and try to decode the data. We also

assume that no two workers collude. Under this assumption,

we guarantee information-theoretic security, i.e. the scheme

leaks no information, even statistical, about the data, even if

the adversary has unlimited computing power.

Our proposal is provably secure because data is padded by

a uniformly random key before being sent to a worker. In Al-

gorithm 1, for example, Worker 1 receives the matrices W1 =
A1+R and V1 = B1+S. Then, H(A,B|W1, V1) = H(A,B),
since W1 and V1 are uniformly random and independent from

A and B. A formal proof can be found in Eq. 26 of [41].

Quantization: In order to guarantee information-theoretic

privacy, it is necessary that the random keys being used to

pad the information be uniformly distributed. As their is no

Algorithm 3 Secure Model Update

Input: Model ωt ∈ F
s×1
q , number of workers N = 2L,

data matrix X assigned to workers according to Alg. 2

Output: ωt+1 = XTXωt.

1: Random matrix generation: The user generates a ran-

dom vector s1 ∈ F
s

L
×1

q .

2: Vector Partitioning: The user partitions ωt into L rows.

3: User Encoding: For i = 1, . . . , L−1, the user computes:

b2i−1 = ωt,2i−1 + s1,

b2i = ωt,2i − s1,

b2L−1 = ωt,2L−1 + (L− 1)s1,

b2L−1 = ωt,2L − (L− 1)s1.

4: User Upload: The user sends bi to each Worker i.

5: Worker Computation: Each Worker i computes:

yi =
1
2Wibi.

6: User Download: User downloads yi from each Worker i.

7: User Decoding: User decodes: y =
∑2L

i=1 yi = Xωt.

8: Random matrix generation: User generates a random

vector s2 ∈ F
r×1
q .

9: User Encoding: For i = 1, . . . , L, the user computes:

c2i−1 = y + s2, c2i = y − s2.

10: User Upload: User sends ci to each Worker i.

11: Worker Computation: Each Worker i computes:

zi =
1
2W

T

i ci.

12: User Download: User downloads zi from each Worker i.

13: User Computation (can be precomputed locally, parti-

tioned and uploaded to workers, or outsourced to an

extra N + 1th worker): The user computes: RTs2.

14: User Decoding: The user decodes:

(XTXωt)i = z2i−1 + z2i −RTs2.

uniform distribution over the real numbers R, we quantize our

data to elements of some finite field Fq . We can then obtain

our random keys by uniformly sampling over Fq . To avoid

biases, we perform stochastic quantization similar to existing

techniques such as in [12].

VI. SECURE DISTRIBUTED LEARNING ON MOBILE IOT

We introduce the implementation of our proposed algo-

rithms of Section V, designed to maintain the accuracy of

existing distributed learning algorithms while simultaneously

minimizing time spent on computing and communicating in

the IoT network.

A. Android Implementation Framework

We develop software prototypes of our proposed algorithms

for Android and perform evaluations using commercial smart-

phones and tablets as example target devices. Particularly, we

develop two Android applications for user and worker devices

using Java with JDK version 11.0.3 based on the Android

Studio 4.0 platform. We use Android SDK version 28, with

backward compatibility support for version 17 and later.

The communication model between the user and workers

follows the standard server-client model, where a mobile

server is established on the user device, with multiple worker



devices acting as clients that download encoded data, perform

computations, then transmit back the computed results. Our

design constructs the communication module between the

user and worker devices through Java Socket API. The user

device creates a server socket, listening on a designated port

to connect with eligible devices. For simplicity, we assume

workers are aware of the IP address and communication port

of the user device. As a result, each worker device holds a

dedicated communication link with the user. This mechanism

is especially important in the rapidly changing mobile IoT net-

work environment, as it allows the user to flexibly add or drop

new connections. Hotspot-based communication, as one of the

most common real-world mobile IoT network environments,

is utilized in our framework, however our implementation can

be easily extended to other systems, such as peer-to-peer.

B. Android Implementation for User Device

We first load the dataset from the user device’s local flash

storage onto RAM using the RandomAccessFile API. In order

to quantize the data matrix X̂ into the finite field Fq , we

require a sufficiently large prime divisor to ensure stochas-

tic distribution. In particular, we leverage the quantization

algorithm as in [12], where the largest 24-bit prime number

q = 15485863 is determined to be a suitable quantization

threshold to avoid wraparound computation. Therefore, for any

given data point X̂i,j in the real domain, i.e., X̂i,j ∈ R, where

i stands for the row in the matrix and j is the column, we

quantize X̂i,j using the following rule:

Xi,j =

{

⌊2lX̂i,j⌋ mod q, X̂i,j − ⌊2lX̂i,j⌋ < 0.5,

⌊2lX̂i,j + 1⌋ mod q, X̂i,j − ⌊2lX̂i,j⌋ ≥ 0.5,
(3)

where Xi,j ∈ Fq is the quantized data, l = 2 is empirically

selected to control quantization level. Similarly, we quantize

the initial weight vector ŵ ∈ R into the finite field w ∈ Fq .

Next, the user device partitions the quantized dataset X

and weight vector w into X = [X1, X2, ..., Xi], wT =
[w1, w2, ..., wi], where i is the number of workers. The user

then generates random matrix Ri ∈ Fq and si ∈ Fq to encode

the partitioned data Xi ∈ Fq and weight vector wi ∈ Fq .

The naive approach is to sequentially encode and upload data

for each worker one at a time, however this leaves workers

unnecessarily idle. To minimize wait time, we parallelize the

data encoding and distribution process through multithreading.

Specifically, we create a thread pool of i threads at the user

device using the Java ExecutorService API, where each thread

prepares data for the Nth worker to enable simultaneous

data preparation. Workers must then solve the model update

challenge posed in of Eq. 1 through logistic regression. Algo-

rithm 3 optimizes this computation such that partitions cannot

be used to deduce the pre-partitioned dataset, reducing time

complexity and guaranteeing user privacy. After downloading

results from the workers, the user performs decoding to restore

the gradient vector to optimize the logistic regression model

through gradient descent as in [12].

C. Android Implementation for Worker Device

Unlike the user device implementation, which is knowledge-

able of all information shared in the mobile IoT network,

worker devices must operate in relative isolation. Thereby,

any sensitive information from the user side, such as the

quantization method, encoding schemes, or number of partici-

pating devices, will be hidden from the workers to protect data

privacy. To participate in a distributed learning task, eligible

worker devices can connect to the user’s socket server based on

IP address and port number. After receiving the encoded data

partitions through byte streams, the worker device can then

compute the matrix operations using our schemes introduced

in Section V. The computation results will be sent back to the

user through the maintained socket connection for decoding.

VII. EVALUATION

We extend our preliminary study from Section III using

binary image classification for a conventional demonstration

of distributed machine learning and for its relevance to daily

mobile device usage (e.g., mobile gaming, tagging photos).

A. Experimental Setup

Hardware Specifications. Our primary mobile IoT config-

uration consists of commercially available devices to act as our

user (Nexus 5) and workers (Galaxy Note 5, Nexus 6, Lenovo

Tab 4 8, and Galaxy Tab A). Other configurations were also

studied, including homogeneous networks (i.e. using duplicate

models), elaborated on in Section VIII. For our experiments,

no special considerations are made when assigning roles to

different devices. While the theoretical optimal solution is

to assign the most powerful devices to worker roles, device

specifications are not necessarily predictable by the user.

Algorithm Configurations. Several parameters of our pro-

posed algorithms, particularly Algorithm 3, are freely ad-

justable and may have considerable impact on the overall

classification performance. Thus, we study three specific con-

figurations to provide a more comprehensive analysis. In

Configuration 1, we consider the case of L = 1, dividing

the data and assigning it to workers according to Algorithm 1

with N=2. We enlist a third worker to handle the computation

of the random matrix product RS, making this configuration a

3-worker scheme with relatively asymmetric worker responsi-

bilities. For Configuration 2 and Configuration 3, we consider

L = 2 utilizing four workers and handle the random matrix

product via precomputation or via partition and distribution,

respectively.

Data Collection. Similar to our preliminary study, we

leverage publicly available datasets to evaluate the perfor-

mance of our algorithms. In addition to the previously men-

tioned EMNIST dataset, we also leverage the CIFAR dataset,

utilizing 10000 images for training and 2000 for testing.

Image resolution is 32 × 32px, making the CIFAR dataset

significantly larger in both scale and sample size than the

EMNIST dataset. We conduct 10 trials of the classification

task for Configurations 1-3. In total, our evaluation contains

over 60 real-world trials.
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Figure 6. Performance using the EMNIST dataset.

Evaluation Metrics. We measure the efficacy of our

proposal by considering classification runtime and battery

consumption in the mobile IoT. Specifically, we define our

evaluation metrics as: 1) runtime, the time spent on one clas-

sification trial, including both the training and testing stages;

2) communication time, the overhead or indirect amount of

time needed to coordinate transmissions between devices; 3)

computation time, the amount of time spent on performing

matrix operations for the classification output; 4) battery con-

sumption, the milliamp hours expended for the trial. Runtime,

communication time, and computation time are recorded by

timestamps as devices progress through the classification task.

Battery consumption is calculated from the percentage battery

loss during execution multiplied by the total battery capacity

of the device. To reduce other sources of battery drainage, we

disable non-essential applications during the experiment.

B. Experimental Results

Overall Performance. The average runtime and battery

consumption for our EMNIST trials are provided in Figures

6(a) and 6(b), respectively. In contrast to the performance

of existing algorithms observed in Figure 2, where runtime

ranged from 200 to 500 seconds, we find that our proposed

algorithms are capable of completing the same task within

15 to 25 seconds, showing speedup over 13×. A proportional

effect on battery consumption is also observed, showing an

average 10× reduction in milliamp hours expended. We ob-

serve an average classification accuracy of 95%, however we

note that accuracy does not quantify efficiency in this study.

Impact of problem size. We find the performance enhance-

ments are more apparent when evaluating on the larger CIFAR

dataset. As part of our preliminary experiments, we also

evaluated performance of the existing CodedPrivateML and

GASP algorithms with the CIFAR dataset, however, we found

that even a single classification trial could exceed 90 minutes

and deplete over 10% of a given device’s battery, making

collection of a sample size equivalent to our EMNIST studies

significantly more challenging. We believe this illustrates a

compelling need for distributed learning algorithms optimized

for mobile hardware. Results for the CIFAR dataset, shown

in Figure 7, suggest that our proposed algorithms are able to

reduce runtime down to under 12 minutes using Configuration

3, or even under 3 minutes in the case of Configuration 1 and

2, equivalent to a speedup of 7× and 30×, respectively. The

drastic difference in performance observed for Configuration

3 relative to Configuration 1 or 2 is likely due to the absence
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Figure 7. Performance using the CIFAR dataset.

of precomputation, elaborated further in Section VIII. The

relative battery consumption for each individual device is

unchanged (i.e. worker 3 consistently consumes the most, user

device consumes the least), suggesting that energy costs are

fixed to hardware specifications and scale based on problem

size. Battery costs for all devices are more stable for the

CIFAR dataset as computational resources are under steady

demand over a longer duration.

Impact of number of workers. When using Configuration

2 or 3, the user enlists the computing capabilities of 4 mobile

devices as workers, whereas Configuration 1 uses only 3. We

find 3-worker schemes to require less battery consumption,

particularly for the user device. This can be partially attributed

to the user device overseeing a smaller IoT network, and

thus wasting less energy due to overhead. Leveraging the

computational resources of a 4th device incurs a minimum

fixed battery cost, regardless of problem size, meaning a user

interested in conserving power for all devices, not just the

local device, may prefer using 3 workers. However, a smaller

network may also be more susceptible to outside threats as

every worker has a comparatively large partition of the original

data, which adversaries may wish to interfere with through

eavesdropping, stalling, etc. We discuss robustness to these

factors in Section VIII. Furthermore, it is possible for 4-worker

schemes to match or surpass 3-worker schemes in terms of

runtime via precomputation.

Impact of precomputation. As described in Section V,

security is provided in part by the computation of two random

matrices, R and S, which functions effectively as a key.

Because the product of RS does not depend on any input

data (and vice versa), it is not mandatory for workers to

receive this information, thus the user is free to compute this

locally. Precomputation contributes to considerable improve-

ments in performance for large problem sizes, based on our

evaluation of the CIFAR dataset in Figure 7. Configuration

2 with precomputation is over 5× faster and exhausts half

as much battery compared to Configuration 3, completing the

classification task in 139.15s on average. The reduction in

battery consumption is likely due to a much shorter overall

runtime rather than an indication of less exertion by the

devices, based on experiments using the EMNIST dataset,

shown in Figure 6(a). Although Configuration 2 is still 32%
faster than Configuration 3, average battery consumption is

nearly 50% higher. This illustrates a trade-off dilemma for

precomputation, where battery expended to achieve speedup

must not exceed battery saved by reducing runtime. We note



Figure 8. Comparison of average communication and computation time for
worker devices using our proposed algorithms.

that precomputation was repeated for each trial of Configura-

tion 2, however this is only needed if secrecy of the key is at

risk. For most use cases, periodic precomputation is sufficient,

similar to periodically updating passwords. In other words, our

results represent worst-case scenario battery consumption.

Impact on communication and computation time. Our

preliminary experiments in Section III show an overwhelming

majority of runtime is spent on computation over communi-

cation, however our proposed algorithms are able to reverse

this effect under most circumstances as shown in Figure 8.

Compared to existing works, our proposed algorithms intro-

duce more iterations of user uploads and downloads to facili-

tate matrix multiplication reordering, reducing computational

complexity at the cost of increasing communication time.

However, the magnitude of computational speedup signifi-

cantly outweighs the communication cost as a linear increase

in number of transmissions can yield exponential reduction

in runtime and multiplication complexity (i.e. from O(rs2)
to O(rs)). We find that conditions where the computation-

communication time ratio does not change as significantly

are mostly tied to specific devices (i.e. worker 2), suggesting

that computational speedup is partially dependent on hardware

specifications. The long communication time for worker 4

under Configuration 2 is a notable outlier, possibly due to

a weak Wi-Fi connection during experimentation. Optimizing

device connectivity is itself a large research area, however

some works [42] suggest access point selection assisted by

machine learning can further reduce communication times.

VIII. DISCUSSION

Worker scalability. Our experiments used 3-worker and 4-

worker setups as examples, however, our approach is scalable

to serve any number of workers based on the number of

partitions desired and devices available. Algorithm 3, for

example, is designed based on the preservation of data privacy

for even-numbered partitions. However, odd-numbered worker

configurations are possible by tasking the odd worker (i.e.

the [2L + 1]th device) with computing the product RS. In

all other cases, RS can be partitioned like the input data or

precomputed locally by the user. 2-worker configurations are

also possible by considering the same experimental setup as

Configuration 1, L = 1 (i.e. no partitioning), without enlisting

a third device for computing RS.

Worker robustness. Overall performance is constrained by

capabilities of the least-powerful worker (i.e., the straggler

device). While devices can generally operate asynchronously,

the user must wait for at least i workers to reply before

starting a new iteration. For a simple network, i must equal N

if every worker is considered necessary for the computation

process. However, it is possible to introduce redundancy in the

system such that i < N . One possibility is to leverage more

workers than partitions, assigning duplicate data to extraneous

devices. This scheme is more robust as it can tolerate the

worst-case response (i.e., worker never replies). Alternatively,

faster workers can volunteer to accept additional partitions if

they are able to compute the initial assignment quickly enough.

We note that such schemes may adversely affect tolerance to

collusion, or the cooperation of workers to deduce the original

input data without the user’s knowledge. If we suppose that

T workers are curious and attempt to uncover the identities

of matrix A or B, the solution is only possible if T = N ,

assuming N = i. If multiple copies of a partition Wi exist,

or worker i is able to obtain a copy of partition wj where

j 6= i, then the minimum T workers needed to uncover A or

B decreases. We leave these scenarios for future work.

Hardware robustness. We also perform additional evalua-

tions using the same procedure in Section VII with a secondary

set of homogeneous (i.e. featuring duplicate models) mobile

IoT devices. For the EMNIST dataset, the average runtimes for

Configurations 1-3 are 22.64s, 34.73s, and 53.42s, showing

speedup of 10×, 13×, and 11× respectively. This reinforces

our previous observations, where our algorithms outperform

existing secure coded distributed algorithms by 7 ∼ 10×.

Meanwhile, we are able to reduce battery consumption by

4 ∼ 17× across all configurations, with 4-worker schemes

showing the most improvement. These results suggest our

proposed algorithms can efficiently accomplish distributed

learning tasks while agnostic to hardware models.

IX. CONCLUSION

We present the first step towards bringing secure coded

distributed computation algorithms onto mobile IoT, proposing

lightweight secure coding algorithms specifically optimized

for commercial hardware. We develop an Android-based

framework to evaluate SDMM algorithms under diverse real-

world settings and studied performance of existing propos-

als to identify limitations to improve upon. Experiments on

multiple commercial mobile IoT networks show our proposed

algorithms can protect the privacy of outsourced data while

reducing both runtime and battery consumption by over 10×.
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