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Abstract—Distributed computation plays an essential role in
cloud and edge computing. Data such as images, audio, and text
can be represented as matrices to facilitate efficient computation,
especially in the domains of distributed machine learning, com-
puter vision, and signal processing. Many coded computation
algorithms have been proposed for big data applications to
securely partition and distribute matrices to parallel worker
devices. However, these proposals have yet to be adapted for
mobile platforms beyond theoretical means. Mobile IoT networks
can greatly benefit from secure distributed computing, however,
commercial devices such as smartphones and tablets are much
more limited in resources compared to platforms in data centers,
requiring special design considerations. We investigate existing
distribution schemes from an operational complexity and secu-
rity viewpoint and study their performance in several mobile
IoT networks, identifying performance bottlenecks in regards
to communication and computation costs. From our findings,
we propose new, scalable algorithms optimized to handle the
unique constraints of mobile IoT. Extensive evaluations of our
proposals on publicly available image classification datasets show
how distributed learning can be specially optimized to enhance
runtime and battery performance on mobile IoT by over 10x.

Index Terms—Distributed computing, coded computations,
edge device, mobile IoT

I. INTRODUCTION

Distributed learning plays an essential role in advanced edge
computing, particularly in areas such as image processing [1]-
[3], healthcare monitoring [4], [5], smart cities [6], [7], and ve-
hicular networks [8]-[10]. Recently, there has been a growing
interest in applying coding-theoretic techniques to speed-up
distributed computing algorithms and increase their resiliency
and security in what is now referred to as coded computation
[11]-[14]. These studies were able to produce fast and secure
algorithms for distributed computing and have already had
theoretical performance analysis and practical demonstrations,
mainly in controlled settings featuring large-scale clusters, data
centers, and cloud computing facilities. However, adapting
such schemes to mobile IoT devices, such as smartphones,
wearable devices, home and personal assistants, smart cars,
and security systems, has yet to be fully explored and validated
beyond simulations [15]-[17].

Deploying existing distributed computation algorithms on
mobile IoT is non-trivial and presents many practical chal-
lenges [18]. For instance, mobile [oT devices are designed to
be small, portable, and convenient, meaning they typically lack
high-end computing resources available to most stationary,
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Figure 1. Use case scenarios for secure distributed learning in the mobile 10T,
where user data is securely distributed to various IoT devices for computation.

continuously-powered facilities. Moreover, security poses a
more pronounced challenge given the open environment of
mobile networks and the vulnerability to threats such as denial-
of-service (DOS), eavesdropping, and man-in-the-middle at-
tacks [19], [20]. As shown in Figure 1, the incentive to
overcome these challenges is very high, as many applications
scenarios can benefit from efficient distributed computing
algorithms, including GPS tracking, local traffic prediction,
mobile gaming, and crowd sensing. As an answer to the
challenges of limited computational resources, battery life,
and data privacy, we perform the first study of secure coded
computation for distributed learning in mobile IoT using real
world commercial hardware.

To achieve effective distributed computation algorithms
on mobile IoT, we aim to develop simple and lightweight
secure distributed algorithms. We envision that cryptographic
solutions, especially fully homomorphic encryption, can be
computationally heavy on mobile IoT devices and quickly
exhaust the very limited battery capacity [21]. To address
this challenge, we propose efficient algorithms that ensure
information-theoretic security to protect outsourced data and
parameters from passive eavesdropping attacks on leveraged
devices. Many distributed computation tasks are based on
statistical and learning-based algorithms (e.g., logistic regres-
sion), which can be implemented through a series of matrix
multiplication operations. We specifically focus on the scope
of secure distributed matrix multiplication (SDMM), which is
an ideal candidate for optimization due to its intensive compu-
tational complexity. Existing studies that analyze performance
of SDMM algorithms are mostly performed through theoreti-
cal analysis or on cloud platforms, such as Amazon EC2 [12],



[22]. However, the heterogeneous mobile IoT networks are
significantly different from cloud facilities in terms of hard-
ware, computational capability, and power constraints. Recent
works implemented coded computation on edge devices [14]
but are evaluated as simulations that do not fully account for
real-world challenges, such as communication overhead and
battery consumption. To demonstrate this issue, we conduct
preliminary studies on existing SDMM algorithms [12], [13]
in real-world mobile IoT environments. We observe that these
algorithms can be highly taxing on resources such as CPU,
memory, and battery that must be shared with other everyday
mobile applications. Notably, we find that insertion of more
resources (i.e., additional devices) into the mobile IoT network
does not necessarily improve computational performance. To
this end, we propose lightweight secure coded distributed
learning algorithms specifically optimized for high energy
efficiency and low computational complexity.

We focus on matrix multiplication as the bottleneck of
many of the now well-celebrated deep learning algorithms
[23], [24]. We consider the practical condition that an IoT
device must find the product of matrices as part of a bigger
learning algorithm, but may be unable or unwilling to perform
the computation on the local device due to limited resources.
The local device may, however, have access to N number
of associate devices within the mobile IoT network, which
can share their own resources to assist with the learning task.
We propose a novel algorithmic approach to coordinate the
partitioning, encoding, distribution, and decoding of the ma-
trices between the local device (i.e. user) and associate devices
(i.e. workers) such that information-theoretic security is pre-
served without sacrificing battery or low latency. Specifically,
we consider information-theoretic security based on Shamir’s
secret sharing theory [25] by dividing the encoded data into
multiple parts before sharing. To reconstruct the original data
will require knowledge of all encoded parts. We develop a
prototype implementation that can perform secure distributed
learning, using logistic regression as an example, on heteroge-
neous mobile devices and conduct extensive evaluations under
real-world conditions. Moreover, our approach is scalable in
order to support dynamically changing IoT networks, where
devices may be added or removed freely, as well as adaptable
to support more complex learning problems beyond linear
regression. Mobile applications leveraging computer vision
(e.g. geotagging, gaming, etc.) can greatly benefit from our
prototype, as images are easily convertible into 2D pixel-based
matrix representations. As such, we evaluate the performance
of the proposed algorithms using publicly available EM-
NIST [26] and CIFAR [27] image datasets, providing a proof-
of-concept study on the feasibility of distributed computing
algorithms on commercially accessible hardware in real-world
settings. Our prototype is lightweight (i.e. designed with min-
imal memory footprint) and has been optimized to accelerate
the computation speed of classification tasks. While these
optimizations were designed to address mobile IoT constraints,
our algorithms can also be deployed in traditional data centers
to provide similar benefits. We view this work as the first step

to bringing secure coded computation algorithms to mobile
IoT devices and application scenarios. Our contributions are
summarized as follows:

e We propose a secure coded distributed computation
framework for mobile IoT with guaranteed information-
theoretic security, which can facilitate reliable and secure
distributed computing on mobile IoT devices.

o Compared to existing works that consider distributed
computations for big data centers or evaluate distributed
computing algorithms for edge devices via simulations,
we focus on SDMM and secure coded computations in
real-world, heterogeneous mobile IoT environments.

o We identify performance bottlenecks in communication
and computation operations when performing large scale
classification tasks on mobile IoT and propose lightweight
codes for SDMM algorithms optimized towards high
energy efficiency and low computational complexity.

o We develop a secure coded distributed learning prototype
for Android platforms deployable on commercial mobile
IoT devices to solve practical classification problems
through secure distributed logistic regression.

« Extensive evaluations of our algorithms on binary image
classification tasks using multiple public datasets and
mobile devices show average runtime speed up by 13x
and average battery consumption reduced by 10x.

II. RELATED WORKS

Distributed learning is connected to several closely related
areas, including federated learning, collaborative learning, and
secure-multiparty computation, all with vested interests in pre-
serving data privacy and minimizing communication overhead
[28]. Many algorithms draw inspiration from strategies such as
Shamir’s secret sharing [25]. Secure partitioning, distribution,
and reconstruction of matrix information has been applied to
many areas such as visual cryptography [29], [30], audio shar-
ing [31], and electronic voting [32]. Major contributions often
include optimizations in data compression, faster performance,
or stronger data protection. Ensuring privacy of distributed
information is a primary concern for many systems, leading
to many investigations on how secrecy can be improved, such
as by addressing straggler mitigation [33], defending colluding
workers [34], and information-theoretic security [35].

Information-theoretic security protects data such that adver-
saries cannot brute force the solution, even with hypothetically
unlimited computing power. Some examples of SDMM al-
gorithms incorporating information-theoretic security include
[12], [13], [31], [36]. Previous evaluations of SDMM have
considered properties such as the uplink/downlink trade-off
[22], download rates [37], and communication and computa-
tion times [38]. Operation complexity has also been considered
[39], [40], but not for information-theoretic secure systems.

While thorough in many regards, existing literature omits
consideration for hardware constraints and implementation
challenges. Secure distribution schemes for mobile platforms
have been examined from a theoretic standpoint only [15].
Studies with real-world deployments typically feature data
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Figure 2. Runtime of existing distri-
bution schemes using EMNIST.

clusters or commercial services such as Amazon EC2 [12],
[22], which merely offloads hardware burdens to third parties.
Our work is the first to study performance of SDMM algo-
rithms on commercial hardware with real-world data.

III. PRELIMINARY STUDY

We first conduct preliminary studies to investigate the
feasibility of deploying existing secure distributed learning
algorithms on mobile IoT devices. Specifically, we identify
implementation challenges and verify existing algorithm per-
formance using mobile platforms. We implement two exist-
ing SDMM algorithms that are initially designed for cloud
facilities on smart IoT devices: GASP [13] and CodedPri-
vateML [12]. We consider an example mobile IoT network
consisting of five smart devices, with one device serving as the
user and the rest as workers. Details on hardware are provided
in Section VII. GASP is supports collaboration with three or
four workers whereas CodedPrivateML requires a minimum of
four workers. Therefore, we evaluate both the 3-worker and
4-worker schemes for GASP to compare with the 4-worker
scheme of CodedPrivateML. On top of the existing SDMM
schemes, we developed a logistic regression-based learning
model for Android platforms to examine the performance of
matrix computation towards practical distributed learning use
cases. We employ the publicly availble EMNIST [26] dataset
for secure distributed image classification, using 1200 training
images and 2000 testing images at a 28 X 28px resolution.

The computational bottleneck lies in the matrix multipli-
cation, particularly the product of the matrix with its own
transpose. We denote the matrix as W € F{*® in the finite
field F, with a size of 7 x s. The multiplication of WTW
exhibits complexity of O(rs?). We measure average elapsed
runtime and battery consumption for 10 trials of logistic
regression-based binary image classification to quantify ex-
isting SDMM algorithm performance, comparing GASP and
CodedPrivateML in Figures 2 and 3 as an example. For a
typical binary image classification task, the average runtime
necessary to reach at least 95% classification accuracy using
GASP-based logistic regression takes more than 200s with
the help of 3 workers (i.e., W1, W2, W3). Interestingly, we
find that adding a fourth worker W4 (i.e., adding resources
to the IoT network) more than doubles runtime to over 400s.
Our studies using CodedPrivateML and battery consumption
produce similar trends. These results suggest that coordinating
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Figure 4. Average runtime breakdown by communication time and compu-
tation time for four worker devices using existing algorithms.

multiple actors in the IoT network is especially expensive,
undermining computational optimizations by prior literature.

To further understand which components of distributed com-
puting stand to benefit the most from optimization, we examine
runtime more closely, differentiating between time spent on
communication (i.e. transmitting or receiving data) and com-
putation (i.e. calculating numerical operations). Figure 4 shows
our initial findings, revealing that the overwhelming majority
of runtime, over 90% for all workers and all algorithms, is
spent on computation, illustrating a need for more effective
distribution and lower complexity operations

Our preliminary study identifies key limitations for de-
ploying existing SDMM algorithms on IoT devices: 1) The
CPUs of smart IoT devices are optimized for energy-efficiency
and lightweight computing tasks, due to the restricted battery
capacity. Thus traditional SDMM algorithms, which can be
computationally expensive and power-intensive, are difficult to
deploy on mobile devices. 2) Heterogeneity within the mobile
IoT means different participating mobile devices have varying
computational capabilities. Therefore, a straggler device that
has the lowest performance could drastically slow down the
overall efficiency of the secure distributed learning algorithm.
To address these challenges, we propose optimized secure
distributed learning algorithms for mobile IoT in Section V.

IV. CHALLENGES AND SYSTEM OVERVIEW

A. Challenges

Preservation of data privacy in untrustworthy networks.
Mobile IoT networks are especially vulnerable to various mali-
cious attacks (e.g., DOS, eavesdropping, etc.) due to emphasis
on convenience and ease of access. Therefore, data encoding
and partitioning algorithms must be carefully designed to pre-
vent data leakage when outsourcing to untrustworthy devices.

Optimizing matrix multiplication energy efficiency. Ma-
trix multiplication is an intensive computational task for
large dimensions. Deploying SDMM algorithms on mobile
IoT devices is especially challenging because of constrained
resources, such as CPU, RAM, and battery. Therefore, adap-
tations must consider time complexity of operations in the
context of energy efficiency and latency on mobile devices.

Scalability for heterogeneous mobile IoT devices. Devices
connected to the mobile IoT network are often frequently
changing. Thus, the proposed algorithms should be generaliz-
able to support different numbers of connected worker devices
with various computational capabilities.
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Figure 5. Interaction between the user and worker devices in the mobile IoT
network using our proposed secure coded distributed learning framework.

B. System Overview

The proposed secure distributed learning framework com-
prises four phases: (1) data partitioning, (2) data encoding, (3)
distributed computing, and (4) data decoding. We illustrate
an overview of the proposal in Figure 5. We consider a
typical distributed learning task based on logistic regression,
where the privacy for both outsourced dataset and parameters
(i.e., gradient vector) should be protected. We first perform
stochastic data quantization on the user device following the
method described in [12] to convert any given information
in the real domain R into an independent and uniform finite
field F,, where ¢ is a sufficiently large number to prevent
wraparound computation.

During data partitioning, the user first divides the data into
multiple parts based on the number of available worker devices
in the connected mobile IoT network. In data encoding, the
user generates a random matrix with all entries subject to IF,.
The random matrix is used to mask the partitioned data in
order to preserve data privacy. The masked data partitions will
then be transmitted to a group of N workers following the
SDMM algorithms introduced in Section V. We note that the
design of our secure encoding algorithms guarantees that for
any individual worker, deriving the original data is impossible
on a information-theoretic security basis

During distributed computation, the worker device performs
matrix multiplication on the received data partitions using its
own local resources before transmitting back to the user. Once
sufficient responses from the worker devices are received, the
user reconstructs the computation results in the data decoding
phase, detailed in Section V. By employing the gradient
descent method as in [12], the decoding process reveals the
computed gradients on the weights. Iterative weight updates
via efficient distribution of matrix multiplication-based gra-
dient computation enables faster and less energy-demanding
distributed logistic regression.

Additionally, the proposed secure coded distributed learning
framework should be able to accommodate heterogeneous
mobile IoT devices varying significantly in computational
capabilities (i.e., CPU clock frequency, number of CPU cores,
RAM size, RAM frequency, and even software-level battery
optimization algorithms). To tackle this issue, we design
variants of the SDMM algorithms based on our observations
on real-world experimental results. The devised algorithms
are specifically optimized for mobile IoT devices to flexibly
coordinate with different numbers of workers.

V. MATRIX ENCODING AND PARTITIONING

We present our proposed SDMM coding scheme to be used
within the distributed logistic regression algorithm. In order
to update the learning model for each iteration, the algorithm
must solve the following computationally intensive problem;
given a data matrix X € Fy** and a model vector w; € FfIXl
at iteration ¢, distributively compute the model update

wt+1 :XTth, (1)

without leaking any information about X or w; to any of the
workers. Here, X' denotes the transpose of the matrix X.

In principle, this can be performed by any of the many
known secure distributed matrix multiplication schemes. How-
ever, our objective is to design coding schemes with fast and
lightweight encoding and decoding to better suit mobile IoT
applications. We first present our secure lightweight codes for
SDMM and then describe the secure model update to be used
within the iterative learning algorithm.

A. Lightweight Codes for SDMM

To distribute the update model of Eq. (1), we propose
new lightweight codes for SDMM that securely distribute the
two-matrix product AB to a number of workers. We assume
that the user has two matrices A € F;** and B € FZ”
and wishes to compute their product AB € F;Xt with the
assistance of N non-colluding workers without leaking any
information about A or B. This is typically solved in literature
by partitioning the matrices and using a polynomial code to
protect the information. However, the resulting encoding and
decoding processes involves dense linear combinations, which
can be taxing on computing resources. Since our end goal is
to apply this to matrix-vector multiplication, we consider the
following inner product partitioning.

By

(A AL) | ¢+ | =AiBi+...+ALBr. (2
By,

We propose Algorithm 1 as a general code for SDMM on
N = 2L workers. The main idea is to mix the data parts with
noise and to divide the workers into L pairs, where each pair is
responsible for computing the term A;B; in (2). Algorithm 1
is lightweight as both encoding and decoding phases are sparse

and each coded sub-matrix involves a single matrix addition.

B. Updating the Model

We now address the problem of updating the model via the
computation w;;1 = X' Xw;. The model must be updated
in each iteration . However, data is assigned only once at
the beginning of the learning algorithm does not change.
Algorithm 2 describes our secure data assignment scheme.
Algorithm 3 gives how the model is updated at each iteration
t via w1 = XTXw,. At a high level, it does this by
implementing Algorithm 1 twice: once to compute D = Xwy,
and then to compute wyy; = XTD. Note that the order
in which we multiply w;y; = X'Xw; matters. Indeed,



Algorithm 1 Lightweight SDMM Code

Algorithm 3 Secure Model Update

Input: A € F;*°, B € ]FZXt and L € N.
Output: AB € F**,

1: Random matrix generation: The user generates two
random matrices R € Fy T and S € FE ™",

2: Matrix Partitioning: The user partitions A, B, R, and .S
into L parts each as in (2).

3: User Encoding: For i = 1,..., L —1, the user computes:
Way_1=A+R, Voy_1=DB;+5
Wo=A;—R,  Voy=B;—S

Wor1=ApL+R, Vo1 =B+ (L-1)S
Wor = Ap — R, Vor = B, — (L —1)S.
4: User Upload: User sends W; and V; to each Worker +.
5: Worker Computation: Each Worker ¢ computes:
Yi = wivi.
6: User Download: User downloads Y; from Worker i.
7. User Decoding: User decodes: AB = Y21, Y;.

performing (X7 X)w(® takes O(rs?) operations as opposed
to XT(Xw®) which takes O(rs) operations. Our assumption
on the attack model is that workers do not collude. Therefore,
perfect privacy is ensured in Algorithms 1, 2, and 3 since
all the data received by the workers is mixed with uniformly
distributed random noise having the same entropy as the data.

Algorithm 2 Secure Data Assignment

Input: Data matrix X € F;** and number of workers

N =2L.
Output: Fori =1,..., N, Worker i stores coded versions
of X and XT.

1: Random matrix generation: User generates a random

s
XL

matrix R € Fy~ *.
2: Matrix Partitioning: User partitions X into L columns.
3: User Encoding: For : = 1,..., L, the user computes:
W2i71 = Xi + R, W2i = Xi — R.
4: User Upload: The user sends W; to each Worker .
5: Worker Storage: Each Worker i stores W; and W, .

Security Model: We assume the workers are honest but
curious, in that they perform all operations correctly, but
store all the information and try to decode the data. We also
assume that no two workers collude. Under this assumption,
we guarantee information-theoretic security, i.e. the scheme
leaks no information, even statistical, about the data, even if
the adversary has unlimited computing power.

Our proposal is provably secure because data is padded by
a uniformly random key before being sent to a worker. In Al-
gorithm 1, for example, Worker 1 receives the matrices W; =
Ai1+Rand Vy = B1+S. Then, H(A, B|W1, Vi) = H(A, B),
since W; and V; are uniformly random and independent from
A and B. A formal proof can be found in Eq. 26 of [41].

Quantization: In order to guarantee information-theoretic
privacy, it is necessary that the random keys being used to
pad the information be uniformly distributed. As their is no

Input: Model w; € F;Xl, number of workers N = 2L,
data matrix X assigned to workers according to Alg. 2
Output: w; 1 = X" Xw;.
1: Random matrix generation: The user generates a ran-
dom vector s; € IquXl.
2: Vector Partitioning: The user partitions w; into L rows.
3: User Encoding: For i = 1,..., L — 1, the user computes:
boi—1 = wi 2i—1 + 51,
boi = w25 — S1,
bar—1 =wior—1+ (L —1)sq,
bar—1 =wior, — (L —1)s1.
4: User Upload: The user sends b; to each Worker .
5: Worker Computation: Each Worker ¢ computes:
yi = sWib;.
6: User Download: User downloads y; from each Worker 1.
7: User Decoding: User decodes: y = Zfil yi = Xwy.
8: Random matrix generation: User generates a random
vector s; € Fp*1.
9: User Encoding: For ¢ = 1,..., L, the user computes:
C2i—1 =Y+ S2, C2; =Y — S2.
10: User Upload: User sends c; to each Worker 3.
11: Worker Computation: Each Worker ¢ computes:
12: User Download: User downloads z; from each Worker i.
13: User Computation (can be precomputed locally, parti-
tioned and uploaded to workers, or outsourced to an
extra N + 1th worker): The user computes: RTss.
14: User Decoding: The user decodes:
(XTXwy); = 22i-1 + 22; — R's0.

uniform distribution over the real numbers R, we quantize our
data to elements of some finite field F,. We can then obtain
our random keys by uniformly sampling over F,. To avoid
biases, we perform stochastic quantization similar to existing
techniques such as in [12].

VI. SECURE DISTRIBUTED LEARNING ON MOBILE 10T

We introduce the implementation of our proposed algo-
rithms of Section V, designed to maintain the accuracy of
existing distributed learning algorithms while simultaneously
minimizing time spent on computing and communicating in
the IoT network.

A. Android Implementation Framework

We develop software prototypes of our proposed algorithms
for Android and perform evaluations using commercial smart-
phones and tablets as example target devices. Particularly, we
develop two Android applications for user and worker devices
using Java with JDK version 11.0.3 based on the Android
Studio 4.0 platform. We use Android SDK version 28, with
backward compatibility support for version 17 and later.

The communication model between the user and workers
follows the standard server-client model, where a mobile
server is established on the user device, with multiple worker



devices acting as clients that download encoded data, perform
computations, then transmit back the computed results. Our
design constructs the communication module between the
user and worker devices through Java Socket API. The user
device creates a server socket, listening on a designated port
to connect with eligible devices. For simplicity, we assume
workers are aware of the IP address and communication port
of the user device. As a result, each worker device holds a
dedicated communication link with the user. This mechanism
is especially important in the rapidly changing mobile IoT net-
work environment, as it allows the user to flexibly add or drop
new connections. Hotspot-based communication, as one of the
most common real-world mobile IoT network environments,
is utilized in our framework, however our implementation can
be easily extended to other systems, such as peer-to-peer.

B. Android Implementation for User Device

We first load the dataset from the user device’s local flash
storage onto RAM using the RandomAccessFile API. In order
to quantize the data matrix X into the finite field Fq, we
require a sufficiently large prime divisor to ensure stochas-
tic distribution. In particular, we leverage the quantization
algorithm as in [12], where the largest 24-bit prime number
q = 15485863 is determined to be a suitable quantization
threshold to avoid wraparound computation. Therefore, for any
given data point Xl ; in the real domain, i.e., X} ; € R, where
i stands for the row in the matrix and j is the column, we
quantize Xi,j using the following rule:

Xij _ {Lzl)fi,jj mod q,XiJ' — I_QZXi,jJA< 0.5,
’ 12'X; 5 + 1] 12'X; ;] > 0.5,

3)
where X; ; € F, is the quantized data, [ = 2 is empirically
selected to control quantization level. Similarly, we quantize
the initial weight vector @ € R into the finite field w € F,.

Next, the user device partitions the quantized dataset X
and weight vector w into X = [X1, Xy, ..., X;], w' =
[wy, w3, ..., w;], where 4 is the number of workers. The user
then generates random matrix I?; € F, and s; € ¥, to encode
the partitioned data X; € F, and weight vector w; € IFy.
The naive approach is to sequentially encode and upload data
for each worker one at a time, however this leaves workers
unnecessarily idle. To minimize wait time, we parallelize the
data encoding and distribution process through multithreading.
Specifically, we create a thread pool of 7 threads at the user
device using the Java ExecutorService API, where each thread
prepares data for the Nth worker to enable simultaneous
data preparation. Workers must then solve the model update
challenge posed in of Eq. 1 through logistic regression. Algo-
rithm 3 optimizes this computation such that partitions cannot
be used to deduce the pre-partitioned dataset, reducing time
complexity and guaranteeing user privacy. After downloading
results from the workers, the user performs decoding to restore
the gradient vector to optimize the logistic regression model
through gradient descent as in [12].

mod q, X’i,j -

C. Android Implementation for Worker Device

Unlike the user device implementation, which is knowledge-
able of all information shared in the mobile IoT network,
worker devices must operate in relative isolation. Thereby,
any sensitive information from the user side, such as the
quantization method, encoding schemes, or number of partici-
pating devices, will be hidden from the workers to protect data
privacy. To participate in a distributed learning task, eligible
worker devices can connect to the user’s socket server based on
IP address and port number. After receiving the encoded data
partitions through byte streams, the worker device can then
compute the matrix operations using our schemes introduced
in Section V. The computation results will be sent back to the
user through the maintained socket connection for decoding.

VII. EVALUATION

We extend our preliminary study from Section III using
binary image classification for a conventional demonstration
of distributed machine learning and for its relevance to daily
mobile device usage (e.g., mobile gaming, tagging photos).

A. Experimental Setup

Hardware Specifications. Our primary mobile IoT config-
uration consists of commercially available devices to act as our
user (Nexus 5) and workers (Galaxy Note 5, Nexus 6, Lenovo
Tab 4 8, and Galaxy Tab A). Other configurations were also
studied, including homogeneous networks (i.e. using duplicate
models), elaborated on in Section VIII. For our experiments,
no special considerations are made when assigning roles to
different devices. While the theoretical optimal solution is
to assign the most powerful devices to worker roles, device
specifications are not necessarily predictable by the user.

Algorithm Configurations. Several parameters of our pro-
posed algorithms, particularly Algorithm 3, are freely ad-
justable and may have considerable impact on the overall
classification performance. Thus, we study three specific con-
figurations to provide a more comprehensive analysis. In
Configuration 1, we consider the case of L = 1, dividing
the data and assigning it to workers according to Algorithm 1
with N=2. We enlist a third worker to handle the computation
of the random matrix product R.S, making this configuration a
3-worker scheme with relatively asymmetric worker responsi-
bilities. For Configuration 2 and Configuration 3, we consider
L = 2 utilizing four workers and handle the random matrix
product via precomputation or via partition and distribution,
respectively.

Data Collection. Similar to our preliminary study, we
leverage publicly available datasets to evaluate the perfor-
mance of our algorithms. In addition to the previously men-
tioned EMNIST dataset, we also leverage the CIFAR dataset,
utilizing 10000 images for training and 2000 for testing.
Image resolution is 32 x 32pz, making the CIFAR dataset
significantly larger in both scale and sample size than the
EMNIST dataset. We conduct 10 trials of the classification
task for Configurations 1-3. In total, our evaluation contains
over 60 real-world trials.
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Figure 6. Performance using the EMNIST dataset.

Evaluation Metrics. We measure the efficacy of our
proposal by considering classification runtime and battery
consumption in the mobile IoT. Specifically, we define our
evaluation metrics as: 1) runtime, the time spent on one clas-
sification trial, including both the training and testing stages;
2) communication time, the overhead or indirect amount of
time needed to coordinate transmissions between devices; 3)
computation time, the amount of time spent on performing
matrix operations for the classification output; 4) battery con-
sumption, the milliamp hours expended for the trial. Runtime,
communication time, and computation time are recorded by
timestamps as devices progress through the classification task.
Battery consumption is calculated from the percentage battery
loss during execution multiplied by the total battery capacity
of the device. To reduce other sources of battery drainage, we
disable non-essential applications during the experiment.

B. Experimental Results

Overall Performance. The average runtime and battery
consumption for our EMNIST trials are provided in Figures
6(a) and 6(b), respectively. In contrast to the performance
of existing algorithms observed in Figure 2, where runtime
ranged from 200 to 500 seconds, we find that our proposed
algorithms are capable of completing the same task within
15 to 25 seconds, showing speedup over 13x. A proportional
effect on battery consumption is also observed, showing an
average 10x reduction in milliamp hours expended. We ob-
serve an average classification accuracy of 95%, however we
note that accuracy does not quantify efficiency in this study.

Impact of problem size. We find the performance enhance-
ments are more apparent when evaluating on the larger CIFAR
dataset. As part of our preliminary experiments, we also
evaluated performance of the existing CodedPrivateML and
GASP algorithms with the CIFAR dataset, however, we found
that even a single classification trial could exceed 90 minutes
and deplete over 10% of a given device’s battery, making
collection of a sample size equivalent to our EMNIST studies
significantly more challenging. We believe this illustrates a
compelling need for distributed learning algorithms optimized
for mobile hardware. Results for the CIFAR dataset, shown
in Figure 7, suggest that our proposed algorithms are able to
reduce runtime down to under 12 minutes using Configuration
3, or even under 3 minutes in the case of Configuration 1 and
2, equivalent to a speedup of 7x and 30x, respectively. The
drastic difference in performance observed for Configuration
3 relative to Configuration 1 or 2 is likely due to the absence
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Figure 7. Performance using the CIFAR dataset.

of precomputation, elaborated further in Section VIII. The
relative battery consumption for each individual device is
unchanged (i.e. worker 3 consistently consumes the most, user
device consumes the least), suggesting that energy costs are
fixed to hardware specifications and scale based on problem
size. Battery costs for all devices are more stable for the
CIFAR dataset as computational resources are under steady
demand over a longer duration.

Impact of number of workers. When using Configuration
2 or 3, the user enlists the computing capabilities of 4 mobile
devices as workers, whereas Configuration 1 uses only 3. We
find 3-worker schemes to require less battery consumption,
particularly for the user device. This can be partially attributed
to the user device overseeing a smaller IoT network, and
thus wasting less energy due to overhead. Leveraging the
computational resources of a 4th device incurs a minimum
fixed battery cost, regardless of problem size, meaning a user
interested in conserving power for all devices, not just the
local device, may prefer using 3 workers. However, a smaller
network may also be more susceptible to outside threats as
every worker has a comparatively large partition of the original
data, which adversaries may wish to interfere with through
eavesdropping, stalling, etc. We discuss robustness to these
factors in Section VIII. Furthermore, it is possible for 4-worker
schemes to match or surpass 3-worker schemes in terms of
runtime via precomputation.

Impact of precomputation. As described in Section V,
security is provided in part by the computation of two random
matrices, R and S, which functions effectively as a key.
Because the product of RS does not depend on any input
data (and vice versa), it is not mandatory for workers to
receive this information, thus the user is free to compute this
locally. Precomputation contributes to considerable improve-
ments in performance for large problem sizes, based on our
evaluation of the CIFAR dataset in Figure 7. Configuration
2 with precomputation is over 5x faster and exhausts half
as much battery compared to Configuration 3, completing the
classification task in 139.15s on average. The reduction in
battery consumption is likely due to a much shorter overall
runtime rather than an indication of less exertion by the
devices, based on experiments using the EMNIST dataset,
shown in Figure 6(a). Although Configuration 2 is still 32%
faster than Configuration 3, average battery consumption is
nearly 50% higher. This illustrates a trade-off dilemma for
precomputation, where battery expended to achieve speedup
must not exceed battery saved by reducing runtime. We note
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Figure 8. Comparison of average communication and computation time for
worker devices using our proposed algorithms.

that precomputation was repeated for each trial of Configura-
tion 2, however this is only needed if secrecy of the key is at
risk. For most use cases, periodic precomputation is sufficient,
similar to periodically updating passwords. In other words, our
results represent worst-case scenario battery consumption.
Impact on communication and computation time. Our
preliminary experiments in Section III show an overwhelming
majority of runtime is spent on computation over communi-
cation, however our proposed algorithms are able to reverse
this effect under most circumstances as shown in Figure 8.
Compared to existing works, our proposed algorithms intro-
duce more iterations of user uploads and downloads to facili-
tate matrix multiplication reordering, reducing computational
complexity at the cost of increasing communication time.
However, the magnitude of computational speedup signifi-
cantly outweighs the communication cost as a linear increase
in number of transmissions can yield exponential reduction
in runtime and multiplication complexity (i.e. from O(rs?)
to O(rs)). We find that conditions where the computation-
communication time ratio does not change as significantly
are mostly tied to specific devices (i.e. worker 2), suggesting
that computational speedup is partially dependent on hardware
specifications. The long communication time for worker 4
under Configuration 2 is a notable outlier, possibly due to
a weak Wi-Fi connection during experimentation. Optimizing
device connectivity is itself a large research area, however
some works [42] suggest access point selection assisted by
machine learning can further reduce communication times.

VIII. DISCUSSION

Worker scalability. Our experiments used 3-worker and 4-
worker setups as examples, however, our approach is scalable
to serve any number of workers based on the number of
partitions desired and devices available. Algorithm 3, for
example, is designed based on the preservation of data privacy
for even-numbered partitions. However, odd-numbered worker
configurations are possible by tasking the odd worker (i.e.
the [2L + 1]th device) with computing the product RS. In
all other cases, RS can be partitioned like the input data or
precomputed locally by the user. 2-worker configurations are

also possible by considering the same experimental setup as
Configuration 1, L = 1 (i.e. no partitioning), without enlisting
a third device for computing R.S.

Worker robustness. Overall performance is constrained by
capabilities of the least-powerful worker (i.e., the straggler
device). While devices can generally operate asynchronously,
the user must wait for at least 7 workers to reply before
starting a new iteration. For a simple network, ¢ must equal N
if every worker is considered necessary for the computation
process. However, it is possible to introduce redundancy in the
system such that ¢ < N. One possibility is to leverage more
workers than partitions, assigning duplicate data to extraneous
devices. This scheme is more robust as it can tolerate the
worst-case response (i.e., worker never replies). Alternatively,
faster workers can volunteer to accept additional partitions if
they are able to compute the initial assignment quickly enough.
We note that such schemes may adversely affect tolerance to
collusion, or the cooperation of workers to deduce the original
input data without the user’s knowledge. If we suppose that
T workers are curious and attempt to uncover the identities
of matrix A or B, the solution is only possible if 7' = N,
assuming N = i. If multiple copies of a partition W; exist,
or worker ¢ is able to obtain a copy of partition w; where
j # i, then the minimum 7" workers needed to uncover A or
B decreases. We leave these scenarios for future work.

Hardware robustness. We also perform additional evalua-
tions using the same procedure in Section VII with a secondary
set of homogeneous (i.e. featuring duplicate models) mobile
IoT devices. For the EMNIST dataset, the average runtimes for
Configurations 1-3 are 22.64s, 34.73s, and 53.42s, showing
speedup of 10x, 13x, and 11x respectively. This reinforces
our previous observations, where our algorithms outperform
existing secure coded distributed algorithms by 7 ~ 10x.
Meanwhile, we are able to reduce battery consumption by
4 ~ 17x across all configurations, with 4-worker schemes
showing the most improvement. These results suggest our
proposed algorithms can efficiently accomplish distributed
learning tasks while agnostic to hardware models.

IX. CONCLUSION

We present the first step towards bringing secure coded
distributed computation algorithms onto mobile IoT, proposing
lightweight secure coding algorithms specifically optimized
for commercial hardware. We develop an Android-based
framework to evaluate SDMM algorithms under diverse real-
world settings and studied performance of existing propos-
als to identify limitations to improve upon. Experiments on
multiple commercial mobile IoT networks show our proposed
algorithms can protect the privacy of outsourced data while
reducing both runtime and battery consumption by over 10x.
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