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Multistable inflatable origami structures at 
the metre scale

David Melancon1,7, Benjamin Gorissen1,7, Carlos J. García-Mora1,2, Chuck Hoberman3,4,5 ✉ & 
Katia Bertoldi1,3,6 ✉

From stadium covers to solar sails, we rely on deployability for the design of 
large-scale structures that can quickly compress to a fraction of their size1–4. 
Historically, two main strategies have been used to design deployable systems. The 
first and most frequently used approach involves mechanisms comprising 
interconnected bar elements, which can synchronously expand and retract5–7, 
occasionally locking in place through bistable elements8,9. The second strategy makes 
use of inflatable membranes that morph into target shapes by means of a single 
pressure input10–12. Neither strategy, however, can be readily used to provide an 
enclosed domain that is able to lock in place after deployment: the integration of a 
protective covering in linkage-based constructions is challenging and pneumatic 
systems require a constant applied pressure to keep their expanded shape13–15. Here 
we draw inspiration from origami—the Japanese art of paper folding—to design 
rigid-walled deployable structures that are multistable and inflatable. Guided by 
geometric analyses and experiments, we create a library of bistable origami shapes 
that can be deployed through a single fluidic pressure input. We then combine these 
units to build functional structures at the metre scale, such as arches and emergency 
shelters, providing a direct route for building large-scale inflatable systems that lock 
in place after deployment and offer a robust enclosure through their stiff faces.

Large, deployable structures should ideally (1) occupy the minimum 
possible volume when folded, (2) be autonomous when deploying, (3) 
lock in place after deployment, and (4) provide a structurally robust 
shell (if they are designed to define a closed environment). To satisfy 
all these requirements, here we present an approach with roots in 
the Japanese art of paper folding: origami. Extensively used in robot-
ics16–20, metamaterials21–25 and structures26–30, origami principles have 
the potential to lead to efficient large-scale deployable structures as 
they offer (1) a versatile crease-based approach to shape design31–33, 
(2) an easy actuation through inflation, if enclosed34–36, (3) self-locking 
capabilities when designed to support multiple energy wells37–44, and 
(4) the possibility to create a protective environment through their 
faces. While previous origami systems have explored inflatability and 
multistability separately34–44, here we show that these two properties 
can co-exist, unlocking an unprecedented design space of metre-scale 
inflatable structures that harness multistability to maintain their 
deployed shape without the need for continuous actuation (see sche-
matics in Fig. 1a).

Triangular facets as a platform for bistable and 
inflatable structures
To create inflatable and bistable origami structures, we start by con-
sidering a triangular building block ABC and denote with α and β the 

internal angles enclosed by the edges AB–AC and AB–BC, respectively 
(Fig. 1b). The triangle initially lies in the x–y plane and is subsequently 
deployed through a rotation around its edge BC. As shown in Fig. 1b, 
this deployment results in the displacement wA of vertex A along the z 
direction and a volume VABC under the triangle
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where ||AB|| indicates the length of AB. By focusing on the x–y plane, 
through simple geometrical considerations, one can see that if 
β α α∈ [π/4 − /2, π/2 − ], the projection of vertex A during the deploy-
ment intersects the circle circumscribed to the initial configuration 
(Fig. 1b) for a displacement wA

c  defined as
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It follows from the inscribed angle theorem45 that for w w=A A
c , the angle 

α is recovered on the x–y plane (see Supplementary Information sec-
tion 1 for details). As such, if triangles of this type are used as building 
blocks to form origami polyhedra, the assembled systems will have two  
distinct compatible configurations: one flat (identified by wA = 0) and 
one expanded (identified by w w=A A

c ). By contrast, any configuration 
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with w w0 < <A A

c  will be geometrically frustrated, with incompatibility, 
ΔABC, that can be estimated as

Δ α α= ||AC || sin( − ), (3)xy xyABC

where ACxy and αxy are the projection on the x–y plane of edge AC and 
angle α, respectively (note that αxy = α only for wA = 0 and wA

c ; see the 
inset in Fig. 1c).

Therefore, to accommodate geometric frustration and realize closed 
origami shapes (that is, shapes forming a closed inflatable cavity) capa-
ble of switching between two compatible configurations, we connect 
stiff triangular building blocks to stretchable hinges. Importantly, 
whereas polyhedra composed of rigid triangular faces connected 
by perfect rotational hinges are known to be either rigid46 or volume 
invariant during deployment47,48, we anticipate our closed origami 
with stiff facets and flexible hinges to be bistable. Indeed, for hinges 
with low enough bending stiffness, we expect the energy profile of 
the closed origami to show two local minima corresponding to the flat 
and expanded compatible states (where the energy in the system can 
only be attributed to hinge bending), separated by an energy barrier 
caused by the deformation of the facets and the hinges required to 
accommodate geometric incompatibility.

To gain more insights into the behaviour of our building blocks, we 
focus on the deployment of two triangles with (α(1), β(1)) = (30°, 50°) and 
(α(2), β(2)) = (30°, 33°). In Fig. 1d, we report the evolution of the incompat-
ibility, ΔABC, and the underlying volume, VABC, as a function of the deploy-
ment height, wA, for both triangles. We find that the triangle with 
β(1) = 50° is characterized by both larger wA

c  and maximum incom-
patibility, Δ Δ= max( )ABC

max
ABC . However, for this triangle, the expanded 

compatible state is located after the configuration corresponding to 
the maximum underlying volume (w w> V

A
c(1)

A
(1)ABC

max

) and, therefore, cannot 
be reached when VABC is controlled. As such, whereas we expect a closed 
origami structure realized using these triangles to have two stable 
states with very different internal volume, we cannot use inflation to 
switch between the two of them. By contrast, the triangle with β(2) = 33° 
exhibits much smaller ΔABC

max and wA
c , but can be deployed when control-

ling the volume as w w< V
A
c(2)

A
(2)ABC

max

. This suggests that closed origami 
realized using this triangle can be deployed using inflation, but have 
an expanded configuration very similar to the flat one. Further, we 
expect such structures to be only marginally bistable, as small pertur-
bations are enough to overcome the energy barrier associated with 
the small ΔABC

max(2).
Whereas in Fig. 1b–d we focus on two geometries, we next consider 

all deployable triangles (that is, triangles with π/4 − α/2 ≤ β ≤ π/2 − α) 
and look for those that can potentially lead to deployable structures 
that are simultaneously bistable and inflatable. Towards this end, we 
use wA

c  to estimate the change in shape between the compatible states 
and ΔABC

max to evaluate bistability (that is, to estimate the energy required 
to snap back from the expanded to the flat state). Furthermore, we 
introduce an inflation constraint

h
Γ
Γ

= , (4)
V

ABC c

ABC
max

where ΓV ABC
max

 and Γ c are the arc lengths measured on the ΔABC–VABC curve 
between the flat stable state and the state of maximum volume and 
between the flat and expanded stable configurations, respectively 
(Fig. 1e). It follows from equation (4) that only geometries with 
log hABC ≥ 0 can be deployed through fluidic actuation as those are the 
only ones for which the expanded compatible configuration is reached 
before the one with maximum volume during inflation (note that 
log hABC = −1.46 and log hABC = 0.322 for the two triangles considered in 
Fig. 1b, c).

In Fig. 1f–h, we report wA
c , ΔABC

max and hABC for all deployable triangles. 
We find that both wA

c  and ΔABC
max  are maximized in the region close  

ΔV

y

x

y

x

a

b

c

Deployed compatible

Incomp.

A
ng

le
, 

 (°
)

0

45

90

w
A
/ 

||A
B

|| 
(×

10
–1

)
c

0

2

4

6

8

10
max

d

ABC

VABC

ABC

VABC

Deployment, wA/||AB||

In
co

m
p

at
ib

ili
ty

,  
 A

B
C
/||

A
B

|| 
(×

10
–2

)

Vo
lu

m
e,

 V
A

B
C

 / 
||A

B
||3  

(×
10

–2
)

0

2

4

6

8

0

1

2

3

4

5
(1)

(2)

wA
c(2)

wA
Vmax(2)

wA
Vmax (1)

wA
c(1)

0 0.2 0.4 0.6 0.8

(1)

(2)

Deployment
through
in�ation

Non-deployment
through in�ation

lo
g 

h A
B

C

f

e h

g

Flat compatible

(1)
(1)

(1)

(1)

xy(1)

(2)

(2)

(2)

(2)

(2)

xy

Incomp.

ΔABC

ΔABC

xy

xy

(1) (2)

B B

BB C C

CC CCC

xy
z

xy
z

wA
c(1)

wA
c(2)

wAwA

VABC
(1)

VABC
(2)

min

A
ng

le
, 

 (°
)

0

45

90
max

(1)

(2)
min

A
ng

le
, 

 (°
)

0

45

90
max

(1)

(2)
min

0 45

0 45

90

Angle,  (°)
90

m
ax

A
B

C
/ 

||A
B

|| 
(×

10
–2

)

0

4

8
6

2

10
12
14

–2

–1

0

1

2

A
A

A

A

O O

OO

A
B

C
/||

A
B

|| 
(×

10
–2

)

VABC / ||AB||3 (×10–2)
0 1 2 3

0
1
2
3
4
5
6
7

ΓVABC

max

Γ c

Angle,  (°)

0 45 90
Angle,  (°)

Δ

Δ

Δ

Δ

Δ

Fig. 1 | Triangular facets as building blocks for large-scale inflatable and 
bistable origami structures. a, Schematics illustrating the deployment via 
inflation of a large-scale origami structure comprising triangular facets.  
b, Deployment of two triangular building blocks ABC with angles (α(1), β(1)) and 
(α(2), β(2)). c, Projected view of the deployment showing the two intersection 
points with the circle centred in O. d, Evolution of incompatibility, ΔABC, and 
underlying volume, VABC, as a function of the deployment height, wA. e, 
Evolution of incompatibility, ΔABC, as a function of the underlying volume, VABC. 
f–h, Contour maps of the compatible deployment height, wA

c (f), maximum 
incompatibility, ΔABC

max (g) and inflation constraint, hABC (h).
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to the upper boundary of the domain (that is, when β → π/2 − α). By con-
trast, the triangles deployable through inflation (for which log hABC ≥ 0) 
are all close to the lower boundary of the domain (that is, when 
β → π/4 − α/2) and show small values of wA

c  and ΔABC
max. As such, these results 

indicate that we cannot realize closed origami structures that are at the 
same time bistable and inflatable using a single triangle building block.

Extending the design space to enable deployment via 
inflation
In an attempt to realize inflatable closed origami structures with stable 
flat and expanded configurations, we turn our focus to systems realized 
by assembling two different triangles with internal angles (α(1), β(1))  
and (α(2), β(2)). To begin with, we arrange 2n triangles of each type to 
form two identical layers with n-fold symmetry and connect them at 
their outer boundaries (Fig. 2a, c). The resulting star-like structures 
(reminiscent of an origami waterbomb base38,49) define an internal 
volume V n V V= 2 ( + )ABC

(1)
ABC
(2) , exhibit geometric incompatibility 

Δ n Δ Δ= 2 ( + )ABC
(1)

ABC
(2)  and are inflatable only if h Γ Γlog = log( / ) ≥ 0V cmax

, 
where ΓV max

 and Γ c are the arc lengths measured on the Δ–V curve 
between the states with V = 0 and V = Vmax = max(V) and between the 
two stable configurations, respectively. However, it is important to 
note that to realize these star-like structures, the pair of triangles 

cannot be arbitrarily chosen. This is because geometric compatibility 
is guaranteed only if the two triangles have (1) identical deployed com-
patible height (that is, w w=A

c(1)
A
c(2) ), (2) connecting deployed edges 

(either AB or AC) of equal length, and (3) angles that satisfy α(1) + α(2) = π/n.
As shown in Fig. 2a, we first connect the two triangles via their long-

est edge (||AB(1)|| = ||AB(2)||) and refer to these structures as Designs I. 
We identify all possible geometries by enforcing requirements 1–3 and 
find that designs deployable through inflation (for which log h ≥ 0) not 
only have a deployed shape almost indistinguishable from the initial 
flat one (see insets of structures in Fig. 2b) but also are made of two 
triangles with very low ΔABC

max (see area highlighted in magenta in Fig. 2b). 
As such, the inflatable Designs I exhibit very low maximum incompat-
ibility Δmax = max(Δ) (see magenta markers in Fig. 2i for 500,000 ran-
domly chosen geometries). To investigate the performance of these 
inflatable designs, we fabricate and test the geometry with log h ≥ 0 
and the highest Δmax (Design I-A with α β( , ) = (22 , 35 )I A

(1)
I A
(1)

‐ ‐
∘ ∘  and 

‐ ‐
∘ ∘α β( , ) = (68 , 14 )I A

(2)
I A
(2)  for which Δ /||AB|| = 2.67 × 10max −2 ; see magenta 

circular marker in Fig.  2i). A centimetre-scale prototype with 
||AB(1)||  =  ||AB(2)||  =  60  mm is constructed by connecting three- 
dimensional-printed stiff triangular facets with compliant hinges made 
of thin polyester sheets and an inflatable cavity is formed by coating 
it with a 0.5-mm-thick layer of silicone rubber (see insets in Fig. 2j, Sup-
plementary Information section 2, Supplementary Video 1 for details). 

I
(1)

I
(2)I

(1)

I
(2)

IVIV

IV

0 90

0 6040 50302010

45

Δ

Δ

Δ

x

y

xy z

I-A

90

0

102
a

c

e

b

d

f

h

i

j

g

Non-deployable
through in�ation

Δ

Δ

Designs I

ABC = 0.02

0.04
max

80°

40°
30°

20°

60°

50°

n = 10

IV = 70°*

Flat Deployed

Flat Deployed

Flat Deployed

Design I

Designs II

Designs III

Designs IV

Deployed 1
Deployed 2

90

0
90

0
A

ng
le

, 
 (°

)
A

ng
le

, 
 (°

)
A

ng
le

, 
 (°

)
A

ng
le

, 
i xy

 (°
)

90

0

Angle,  (°)

i
xy

0 90

Volume, V (ml)

45

n = 3

Designs II
Designs III
Designs IV

I-A II-B

III-C IV-D

Deployable
through in�ation

M
ax

im
um

 in
co

m
p

at
ib

ili
ty

,  
  m

ax
/||

A
B

||
Δ

10–4

In�ation constraint, log h
–0.5 0 0.5 1.0 1.5

I-A II-B

III-C IV-DP
re

ss
ur

e,
 p

 (k
P

a)

–4

4

0

2

–2

II-B

III-C

IV-DIV

i
xy

IV

IV

wc
A

wi
A

Angle, i
xy (°)

I
(1)
I

I
(1)
II

I
(2)
I

I
(2)
II

I
(2)
I

I
(2)
II

I
(1)
I

I
(1)
II

i
xy

Fig. 2 | Bistable and inflatable origami shapes. a–f, Examples of Designs I (a, b),  
Designs II (c, d) and Designs III (e, f) geometries in both the flat and deployed 
stable configurations (a, c, e) along with the regions in the α−β space leading to 
inflatable structures (b, d, f). The bright and dark shaded regions in the plots 
represent the triangles with angles (α(1), β(1)) and (α(2), β(2)), respectively. The 
contour lines represent the maximum incompatibility of the triangular 
building blocks, ΔABC

max, the dashed line separates the region with positive and 
negative hABC. The solid circles and triangles indicate the triangular building 

blocks used to make the designs shown in the insets. g, Deployment of a 
triangular building block that has been initially rotated around its edge BC to 
have a height wA

i . h, Contour map of angle β*
IV required to obtain Designs IV that 

are both inflatable and bistable. i, Maximum incompatibility, Δmax, versus the 
inflation constraint, h, for 500,000 random geometries of Designs I–IV.  
j, Pressure–volume curves recorded when testing our centimetre-scale 
prototypes. See Supplementary Information for the rationale behind geometry 
and material selection.
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The sample is then deployed by supplying water at a constant rate of 
10 ml min−1 with a syringe pump, while monitoring the pressure with a 
pressure sensor (see Supplementary Information section 3 for details). 
We find that the pressure, p, increases monotonically with V until the 
maximum volume for the cavity is reached (Fig. 2j, Supplementary 
Video 2). As such, our test reveals that the Δmax of this design is not large 
enough to make the fabricated structure bistable.

Next, with the goal of increasing the geometric incompatibility of 
the inflatable designs, we investigate the response of star-like structures 
in which the longest edge of one triangle, AB(1), is connected to the 
shortest edge of the other one, AC(2) (we refer to these designs as 
Designs II; Fig. 2c). Again, we impose requirements 1–3 to identify all 
possible geometries and find that those deployable through inflation 
comprise two very distinct triangles: a first one with low ΔABC

max  but 
hlog > 0ABC

(1)  (see area highlighted in dark red in Fig. 2d) and a second 
one with substantially larger ΔABC

max but hlog < 0ABC
(2)  (see area highlighted 

in bright red in Fig. 2d). Remarkably, we find that the combination of 
these different triangles results in inflatable designs with higher max-
imum incompatibility compared with Designs I (see red markers in 
Fig. 2i for 500,000 randomly chosen geometries). As a result, when we 
fabricate and test the inflatable geometry that maximizes Δmax (Design 
II-B with ‐ ‐

∘ ∘α β( , ) = (43.6 , 25.2 )II B
(1)

II B
(1)  and α β( , ) = (46.4 , 33.5 )II B

(2)
II B
(2)

‐ ‐
∘ ∘  for 

which Δ /||AB|| = 8.58 × 10max −2; see red marker in Fig. 2i), we observe a 
negative pressure region (see red curve in Fig. 2j, Supplementary 
Video 2). This confirms the presence of an expanded stable configura-
tion that can be reached through fluidic actuation (see Supplementary 
Fig. 23 for details) and indicates the existence of a threshold value of 
Δmax/||AB|| (dependent on materials and fabrication process) that marks 
the transition from monostable to bistable behaviour.

Whereas the connection of two different triangles side by side ena-
bles us to design inflatable and bistable structures, it limits us to 
star-like shapes. To expand the range of shapes, we next arrange the 
two triangles on top of each other in the flat configuration and mirror 
them twice to form an inflatable cavity (we refer to these structures as 
Designs III; Fig. 2e). This leads to geometries comprising eight triangles 
that are initially flat and transform into wedge-like shapes upon deploy-
ment. As for Designs I and Designs II, geometric compatibility for 
Designs III requires a pair of triangles with w w=A

c(1)
A
c(2)  and 

||AB || = ||AC ||(1) (2) , but the closure of the cavity is only possible if α α=III
(1)

III
(2). 

By imposing these constraints and log h ≥ 0, we find that inflatable 
Designs III can be realized by combining two triangles with log hABC < 0 
and, therefore, substantially larger Δmax

ABC (see areas highlighted in yellow 
in Fig. 2f). This is because the internal volume of Designs III is defined 
by the difference between V ABC

(1)  and V ABC
(2)  (that is, V V V= 4( − )ABC

(1)
ABC
(2) ) 

instead of their sum, as for Designs I and Designs II. Importantly, by 
plotting Δmax versus h for 500,000 randomly chosen Designs III,  
we find that these geometries are characterized by much larger maxi-
mum incompatibility in the inflatable domain. As a result, when  
we fabricate and test Design III-C with α β( , ) = (37.1 , 30.0 )III C

(1)
III C
(1)

‐ ‐
∘ ∘   

and ( ‐ ‐
∘ ∘α β, ) = (37.1 , 40.6 )III C

(2)
III C
(2) , (for which Δ /||AB|| = 9.93 × 10max −2 ), 

we record even larger values of negative pressure (that is, larger energy 
barrier preventing the snap back) compared with the previous bistable 
Design II-B (Fig. 2j, Supplementary Video 2).

So far, all identified designs (that is, Designs I–III) have been realized 
by assembling triangles that initially lie in the x–y plane and recover 
their angle α on such a plane for w w=A A

c . However, the triangle in the 
x–y plane can also be seen as the projection of a triangle with internal 
angles α and β that has been initially rotated around its edge BC to have 
a height wA

i  and projected angles αxy
i  and βxy

i  (Fig. 2g). In this case, if 
β α α∈ [π/4 − /2, π/2 − ]xy xy xy

i i i , the angle αxy
i  is preserved for two distinct 

deployment heights, wA
i  and wA

c  (see inset in Fig. 2g, Supplementary 
Information section 1 for details). As such, we can use these triangles 
as building blocks to realize star-like origami shapes with two expanded 
stable configurations corresponding to wA

i  and wA
c . An interesting fea-

ture of this family of structures (which we refer to as Designs IV) is that 
if we select α n= π/xy

i  (n = 3, 4, …) and

β β β≥ * = tan ( 2 tan ), (5)xyIV IV
−1 i

β*
IV denoting a critical threshold value, the resulting origami are  

bistable and inflatable, even if made out of a single triangular building 
block (see Supplementary Information section 1 for details). This is 
because, for β β≥ *

IV IV, VABC monotonically decreases when deploying 
the triangle from wA

i  to wA
c , so the compatible state corresponding to 

wA
c  can always be reached by deflation. To demonstrate the concept, 

in Fig. 2i, we consider 500,000 different geometries of Designs IV for 
which α = π/4xy

i , β α α∈ [π/4 − /2, π/2 − ]xy
i

IV IV    and β β∈ [ , π/2[xyIV
i , and 

find that all geometries with β β≥ *
IV IV are inflatable. Furthermore, as β*

IV 
is not affected by αxy

i  (see map of β*
IV in Fig. 2h), an inflatable origami 

structure can be realized by assembling highly incompatible triangles 
lying near the upper bound of their design space. This results in inflat-
able designs with a maximum incompatibility, Δmax, much higher than 
Designs I–III and with a flat stable state in the x–z plane (as for β = π/2 − α 
the compatible deployment height is such that the deployed triangle 
lies in the orthogonal x–z plane with w = ||AC||A

c ; see Supplementary 
Information section 1 for details). In full agreement with these findings, 
when we fabricate and test Design IV-D with ‐ ‐

∘ ∘α β( , ) = (29 , 56 )IV D IV D  and 
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∘ ∘α β( , ) = (45 , 33 )xy
i

xy
i  (for which Δ /||AB|| = 2.05 × 10max −1), we record the 

largest negative pressure and energy barrier in the deployed stable 
state (see green curve in Fig. 2j, Supplementary Video 2).

Metre-scale functional structures
As a next step, we use the simple geometries presented in Fig. 2 as a basis 
to design functional and easily deployable structures for real-world 
applications and build them at the metre scale.

First, we use the expanded wedge-like shapes of Designs III as build-
ing blocks to realize an inflatable archway. Focusing on Design III-C, 
we find that in the expanded stable state it has an opening angle 
θIII-C = 40° (Fig. 3a). To design a deployable arch, we couple this unit 
with a different geometry of the same design family (which we referred 
to as Design III-C′) that (1) is bistable and deployable through inflation, 
(2) has an edge AB of equal length, (3) has an opening angle θIII-C′ such 
that when we alternate m + 1 units of Design III-C′ with m units of Design 
III-C, we span an angle of 180° in the expanded configuration, and (4) 
has the larger triangle (referred to as triangle 1 in Fig. 2) identical to 
that of Design III-C but mirrored (that is, α β= ′III C

(1)
III C
(1)

‐ ‐  and ‐ ‐β α= ′III C
(1)

III C
(1) ; 

Fig. 3b) to ensure compactness in the flat state. By inspecting the data-
base of Fig. 2j, we find that for m = 6, all above requirements are satisfied 
when Design III-C′ is characterized by (α ′III C

(1)
‐ , β ′III C

(1)
‐ , α ′III C

(2)
‐ , β ′III C

(2)
‐ ) = (30°, 

37°, 30°, 51°). However, as the resulting archway comprises 13 inflat-
able cavities, multiple pressure inputs would be needed to inflate it. 
To simplify the deployment process, we modify the structure by cutting 
it through the x–z mirror plane, separating the two resulting parts by 
a distance t, and connecting them with rectangular facets (see insets 
in Fig. 3c). As this procedure does not affect the geometric deployment 
of the triangles, we expect the additional facets to have a negligible 
impact on the structure’s multistability, but to facilitate its inflatability 
by creating a single cavity. In Fig. 3d, we show a metre-scale version of 
this archway with ||AB|| = 30 cm and t = 10 cm constructed out of cor-
rugated plastic sheets (clear 8 ft × 4 ft, 4-mm-thick sheets). To build 
this structure, we use a digital cutting system to cut two parts (each 
comprising both triangular building blocks and rectangular facets; 
Supplementary Fig. 20) and pattern the hinges by scoring the sheets 
to locally reduce the thickness of the material. We then connect the 
two digitally cut parts using adhesive tape to form an airtight cavity 
(see Supplementary Information section 2 for details). In the folded 
configuration, the structure has a height of 20 cm and a width of 30 cm. 
Upon pressurization, it inflates into a 60-cm-tall and 150-cm-wide arch-
way that, because of its multistability, preserves its shape even when 
the pressure is suddenly released (Supplementary Video 3). Finally, it 
can be folded back to the initial flat state by applying vacuum to over-
come the energy barrier (Supplementary Video 3).

Another strategy to realize functional shapes is to merge components 
of different design families together to form a single cavity. As an exam-
ple, we can create an inflatable tent-like geometry by combining one 
layer of a Design I with another one of a Design IV (Fig. 4a). To ensure 
successful merging, the two layers must have (1) outer edges BC of 
equal length, and (2) the same x–y projection in the two compatible 
states (that is, α α α= = xyI

(1)
I
(2) i  and β β β= = xyI

(1)
I
(2) i ). Furthermore, to real-

ize structures with a fully flat compatible state, we choose the triangles 
to lie on the upper boundary of the deployable domain (that is, triangles 
with β α= π/2 −I

(1)
I
(1) and β α= π/2 −I

(2)
I
(2)). By imposing these constraints, 

we can design tent-like structures that can be folded flat and expanded 
via inflation (see Supplementary Fig. 24 for a centimetre-scale version), 
but their compactness is limited by the long AB edge of the Design IV. 
To further decrease the occupied volume in the compact state, we 
truncate the triangular building blocks of the Design IV layer into quad-
rilaterals and add additional layers of Design IV, some of which can be 
folded inwardly. As shown in Fig. 4b, these operations not only reduce 
the initial volume but also result in a more liveable sheltered space in 
the deployed state. To demonstrate this strategy, we fabricate the 
structure shown in Fig. 4b at the metre scale, applying the same con-
struction process used for the inflatable archway (see Supplemen-
tary Information section 2, Supplementary Video 4 for details). As 
shown in Fig. 4c, d, the structure can be folded completely flat (with 
the ceiling folded inward) to occupy a space of 1.0 × 2.0 × 0.25 m. When 
an input pressure is provided, the structure first expands to a stable 
configuration with the roof folded inward. Upon further pressurization, 
the roof snaps outwards and the final deployed shape of 2.5 × 2.6 × 2.6 m 
is reached. Importantly, because of the multistability, at this point the 

DeployedFlat

1 m

ΔVΔVΔV Open

a

Design IV

Design I b

c

Flat folding Flat folding

d

e

x

z

x

z

Fig. 4 | Metre-scale inflatable shelter. a, A tent-like design can be created by 
merging one layer of a Design I with another one of a Design IV. Note in that the 
initial, zero-volume configuration of the tent, both layers are in their 
compatible expanded state, whereas in the final inflated configuration of the 
tent, both layers are in their initial state (flat for Design I and initially rotated for 
Design IV). b, The initial volume can be further decreased by truncating the 
triangular facets into quadrilaterals and arranging successive layers of Design 
IV. c, Schematics illustrating the deployment process. d, The fabricated 
metre-scale inflatable shelter can be inflated from a compact state to a fully 
deployed state. Owing to multistability, the door can be opened, making the 
internal space accessible. e, Flat-folded and deployed state of the metre-scale 
inflatable shelter.
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door can be opened without impacting structural integrity, making 
the internal space accessible. Finally, using a vacuum, the shelter can 
be folded back to the flat configuration (Supplementary Video 3).

Conclusion
In summary, we have demonstrated how geometry can be efficiently 
exploited to realize pressure-deployable origami structures character-
ized by two stable configurations—one compact and one expanded. The 
design methodology presented in this work could be extended both 
to larger and smaller scales if properly accounting for loading condi-
tions and fabrication challenges4,10,11,20. As our functional structures are 
multistable, they can also be designed to achieve target deployment 
sequences (Supplementary Fig. 25). In addition, by introducing building 
blocks comprising more than two different facets, we expect to further 
expand the range of achievable shapes (Supplementary Fig. 26). To 
that end, complementary to our geometric model and experiments, a 
mechanical model capable of predicting the full energy landscape39,50 
could provide a useful tool to guide such exploration. Finally, building 
on our results, deployable structures able to switch between targeted 
stable states could be efficiently identified by generalizing our design 
rules to arbitrary origami polyhedra and, combining them with sto-
chastic optimization algorithms, solve the inverse design problem.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41586-021-03407-4.
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Methods

The details of the design, materials and fabrication methods are sum-
marized in Supplementary Information sections 1, 2. The experimental 
procedure of the inflation with water to measure the pressure–volume 
curve is described in Supplementary Information section 3. Finally, 
additional information about extending our methodology to more 
complex designs is provided in Supplementary Information section 4.
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