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From stadium covers to solar sails, we rely on deployability for the design of
large-scale structures that can quickly compress to a fraction of their size'™.
Historically, two main strategies have been used to design deployable systems. The

firstand most frequently used approach involves mechanisms comprising
interconnected bar elements, which can synchronously expand and retract®”,
occasionally locking in place through bistable elements®®. The second strategy makes
use of inflatable membranes that morphinto target shapes by means of a single
pressure input'®'2, Neither strategy, however, can be readily used to provide an
enclosed domain that is able to lock in place after deployment: the integration of a
protective covering in linkage-based constructions is challenging and pneumatic
systems require a constant applied pressure to keep their expanded shape® ™. Here
we draw inspiration from origami—the Japanese art of paper folding—to design
rigid-walled deployable structures that are multistable and inflatable. Guided by
geometric analyses and experiments, we create a library of bistable origami shapes
that canbe deployed through a single fluidic pressure input. We then combine these
units to build functional structures at the metre scale, such as arches and emergency
shelters, providing adirect route for building large-scale inflatable systems that lock
in place after deployment and offer a robust enclosure through their stiff faces.

Large, deployable structures should ideally (1) occupy the minimum
possible volume whenfolded, (2) be autonomous when deploying, (3)
lock in place after deployment, and (4) provide a structurally robust
shell (if they are designed to define a closed environment). To satisfy
all these requirements, here we present an approach with roots in
theJapanese art of paper folding: origami. Extensively used in robot-
ics'* %, metamaterials™ * and structures®*°, origami principles have
the potential to lead to efficient large-scale deployable structures as
they offer (1) a versatile crease-based approach to shape design® %,
(2) an easy actuation throughinflation, if enclosed**, (3) self-locking
capabilities when designed to support multiple energy wells* *, and
(4) the possibility to create a protective environment through their
faces. While previous origami systems have explored inflatability and
multistability separately****, here we show that these two properties
can co-exist, unlocking an unprecedented design space of metre-scale
inflatable structures that harness multistability to maintain their
deployed shape without the need for continuous actuation (see sche-
matics in Fig. 1a).

Triangular facets as a platform for bistable and
inflatable structures

To create inflatable and bistable origami structures, we start by con-
sidering a triangular building block ABC and denote with a and  the

internalangles enclosed by the edges AB-AC and AB-BC, respectively
(Fig.1b). The triangleinitially lies in the x-y plane and is subsequently
deployed through arotation around its edge BC. As shown in Fig. 1b,
thisdeployment resultsinthe displacement w, of vertex Aalong the z
direction and a volume V,;c under the triangle
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where ||AB|| indicates the length of AB. By focusing on the x-y plane,
through simple geometrical considerations, one can see that if
B € [n/4-a/2,1/2 - al, the projection of vertex A during the deploy-
ment intersects the circle circumscribed to the initial configuration
(Fig. 1b) for a displacement w$ defined as
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It follows from the inscribed angle theorem™* that for w, = w$, the angle
ais recovered on the x-y plane (see Supplementary Information sec-
tion1for details). As such, if triangles of this type are used as building
blockstoformorigamipolyhedra, the assembled systems will have two
distinct compatible configurations: one flat (identified by w, = 0) and
one expanded (identified by w, = w$). By contrast, any configuration
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Fig.1| Triangular facets as building blocks for large-scaleinflatable and
bistable origamistructures. a, Schematicsillustrating the deployment via
inflation of alarge-scale origami structure comprising triangular facets.

b, Deployment of two triangular building blocks ABC with angles (", %) and
(@?, B?). ¢, Projected view of the deployment showing the two intersection
points with the circle centredin O.d, Evolution of incompatibility, 4 ,5c, and
underlying volume, V5, asafunction of the deployment height, w,. e,
Evolution ofincompatibility, 4 ,5c, as a function of the underlying volume, V5.
f-h, Contour maps of the compatible deployment height, w(f), maximum
incompatibility, ARg¢ (g) and inflation constraint, h,pc (h).
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withO < w, < w§ willbe geometrically frustrated, with incompatibility,
A e, that can be estimated as

Appc =lIAC, | sin(a,, - @), (3)

where AC,, and a,, are the projection on the x-y plane of edge AC and
angle a, respectively (note that a,, = a only for w, = 0 and w§; see the
insetin Fig.1c).

Therefore, toaccommodate geometric frustration and realize closed
origamishapes (thatis, shapes forminga closed inflatable cavity) capa-
ble of switching between two compatible configurations, we connect
stiff triangular building blocks to stretchable hinges. Importantly,
whereas polyhedra composed of rigid triangular faces connected
by perfect rotational hinges are known to be either rigid*® or volume
invariant during deployment**8, we anticipate our closed origami
with stiff facets and flexible hinges to be bistable. Indeed, for hinges
with low enough bending stiffness, we expect the energy profile of
the closed origamito show two local minima corresponding to the flat
and expanded compatible states (where the energy in the system can
only be attributed to hinge bending), separated by an energy barrier
caused by the deformation of the facets and the hinges required to
accommodate geometric incompatibility.

To gain more insights into the behaviour of our building blocks, we
focus on the deployment of two triangles with (a®, %) = (30°,50°) and
(a?,B?)=(30°,33°).InFig.1d, we report the evolution of the incompat-
ibility, A5, and the underlying volume, V,, as a function of the deploy-
ment height, w,, for both triangles. We find that the triangle with
B® =50°is characterized by both larger w§ and maximum incom-
patibility, AYSE = max(d,5c). However, for this triangle, the expanded
compatible state is located after the configuration corresponding to
the maximumunderlying volume (w$® > wK;{‘gga)) and, therefore, cannot
bereached when V. is controlled. As such, whereas we expecta closed
origami structure realized using these triangles to have two stable
states with very different internal volume, we cannot use inflation to
switchbetween the two of them. By contrast, the triangle with 2 =33°
exhibits much smaller A}5¢ and w§, but canbe deployed when control-
ling the volume as w$® < wKT‘%(Z) . This suggests that closed origami
realized using this triangle can be deployed using inflation, but have
an expanded configuration very similar to the flat one. Further, we
expectsuch structures to be only marginally bistable, as small pertur-
bations are enough to overcome the energy barrier associated with
the small ATX2),

Whereas in Fig. 1b—d we focus on two geometries, we next consider
all deployable triangles (that is, triangles with /4 —a/2 < f<m/2 - a)
and look for those that can potentially lead to deployable structures
that are simultaneously bistable and inflatable. Towards this end, we
use w¢ to estimate the change in shape between the compatible states
and At to evaluate bistability (thatis, to estimate the energy required
to snap back from the expanded to the flat state). Furthermore, we
introduce aninflation constraint

ViR
hpgc= %' )
where ' %¢and I are the arc lengths measured on the 4 yyc—Vigc CUTVE
between the flat stable state and the state of maximum volume and
between the flat and expanded stable configurations, respectively
(Fig. 1e). It follows from equation (4) that only geometries with
log h,pc =0 canbe deployed through fluidic actuation as those are the
only ones for which the expanded compatible configurationis reached
before the one with maximum volume during inflation (note that
log hypc=-1.46 and log h,;-=0.322 for the two triangles consideredin
Fig.1b, c).

InFig. 1f-h, we report w§, ARg¢ and h,gc for all deployable triangles.
We find that both w§ and AREY are maximized in the region close
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Fig.2|Bistable andinflatable origamishapes.a-f,Examples of Designs|I(a,b),
Designsll(c,d) and Designs|ll (e, f) geometriesinboth the flat and deployed
stable configurations (a, ¢, e) along with theregionsin the a-f space leading to
inflatable structures (b, d, f). The bright and dark shaded regionsin the plots
represent the triangles with angles (a, %) and (a?, %), respectively. The
contour lines represent the maximum incompatibility of the triangular
building blocks, AYEE, the dashed line separates the region with positive and
negative h,;c. The solid circles and triangles indicate the triangular building

tothe upper boundary of the domain (thatis, when > /2 - a). By con-
trast, the triangles deployable through inflation (for which log A,z > 0)
are all close to the lower boundary of the domain (that is, when
B~ 1/4-a/2) and show small values of w§ and ARE¢. Assuch, theseresults
indicate that we cannot realize closed origami structures that are at the

sametime bistable and inflatable using a single triangle building block.

Extending the design space to enable deployment via
inflation

Inanattempttorealize inflatable closed origami structures with stable
flatand expanded configurations, we turn our focus to systems realized
by assembling two different triangles with internal angles (a®, %)
and (a®, ). To begin with, we arrange 2n triangles of each type to
form two identical layers with n-fold symmetry and connect them at
their outer boundaries (Fig. 2a, c). The resulting star-like structures
(reminiscent of an origami waterbomb base***’) define an internal
volume V=2n(VQ .+ V@), exhibit geometric incompatibility

ABC ABC
A= Zn(AQI3C AQ,) and are inflatable only iflogh=log(r’ " /r9 >0,
where ™" and I are the arc lengths measured on the A-V curve

between the states with V=0 and V= V"> =max(V) and between the
two stable configurations, respectively. However, it is important to
note that to realize these star-like structures, the pair of triangles

blocks used to make the designs shownintheinsets. g, Deployment ofa
triangular building block that has beeninitially rotated around its edge BC to
haveaheightw’,. h, Contour map of angle ﬁfv required to obtain Designs 1V that
arebothinflatable and bistable. i, Maximum incompatibility, A™, versus the
inflation constraint, 4, for 500,000 random geometries of Designs I-1V.

j, Pressure-volume curves recorded when testing our centimetre-scale
prototypes. See Supplementary Information for the rationale behind geometry
and material selection.

cannotbearbitrarily chosen. This isbecause geometric compatibility
isguaranteed only if the two triangles have (1) identical deployed com-
patible height (that is, wS® = w$®), (2) connecting deployed edges
(either ABor AC) of equal length, and (3) angles that satisfy a” + a® =/n.

AsshowninFig. 2a, we first connect the two triangles via their long-
est edge (||ABY|| = [[AB@|) and refer to these structures as Designs I.
Weidentify all possible geometries by enforcing requirements1-3 and
find that designs deployable through inflation (for which log 7 > 0) not
only have a deployed shape almost indistinguishable from the initial
flat one (see insets of structures in Fig. 2b) but also are made of two
triangles with very low AREE (see area highlighted in magentain Fig. 2b).
Assuch, theinflatable Designs | exhibit very low maximum incompat-
ibility A™™ = max(4) (see magenta markers in Fig. 2i for 500,000 ran-
domly chosen geometries). To investigate the performance of these
inflatable designs, we fabricate and test the geometry withlog h>0
and the highest 4™ (Design I-A with (af}, (l)) (22°,35°) and

fz)\,ﬁ(z)) (68°,14°) for which A™/||AB|| = 2.67 x 10‘ ; see magenta
cnrcular marker in Fig. 2i). A centimetre-scale prototype with
[IAB®|| = ||]AB®?|| = 60 mm is constructed by connecting three-
dimensional-printed stifftriangular facets with compliant hinges made
of thin polyester sheets and an inflatable cavity is formed by coating
itwitha 0.5-mm-thicklayer of silicone rubber (see insetsin Fig. 2j, Sup-
plementary Information section 2, Supplementary Video 1for details).
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Fig.3|Metre-scaleinflatable archway. a, The two Design Ill units used to
constructthearch. b, Schematicsillustrating aninflatable archway comprising
six Design IlI-C and seven Design I1I-C” units. ¢, To facilitate inflation, we create
asingle cavity by cutting all units through their x-zmirror plane, separating the
tworesulting parts by adistance ¢, and connecting themwith rectangular
facets.d, Fabricated metre-scaleinflatable archinits flatand deployed stable
configurations.

The sample is then deployed by supplying water at a constant rate of
10 mImin™withasyringe pump, while monitoring the pressure with a
pressure sensor (see Supplementary Information section 3 for details).
We find that the pressure, p, increases monotonically with V until the
maximum volume for the cavity is reached (Fig. 2j, Supplementary
Video 2). Assuch, our test reveals that the A™* of this designis not large
enough to make the fabricated structure bistable.

Next, with the goal of increasing the geometric incompatibility of
theinflatable designs, weinvestigate the response of star-like structures
in which the longest edge of one triangle, AB?, is connected to the
shortest edge of the other one, AC? (we refer to these designs as
Designs II; Fig. 2c). Again, we impose requirements 1-3 to identify all
possible geometries and find that those deployable through inflation
comprise two very distinct triangles: a first one with low A3ZE but
logh%c >0 (see area highlighted in dark red in Fig. 2d) and a second
one with substantially larger 472X but logh'3. < O (see area highlighted
inbright red in Fig. 2d). Remarkably, we find that the combination of
these different triangles resultsininflatable designs with higher max-
imum incompatibility compared with Designs I (see red markers in
Fig.2ifor 500,000 randomly chosen geometries). As aresult, when we
fabricate andtest theinflatable geometry that maximizes A™* (Design

I1-B with (af’s, B) = (43.6', 25.2") and (ay, BY,) = (46.4, 33.5) for
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which A™/||AB|| = 8.58 x 10"%; see red marker in Fig. 2i), we observe a
negative pressure region (see red curve in Fig. 2j, Supplementary
Video 2). This confirms the presence of an expanded stable configura-
tionthat canbereached through fluidic actuation (see Supplementary
Fig. 23 for details) and indicates the existence of a threshold value of
A™/||AB|| (dependent on materials and fabrication process) that marks
the transition from monostable to bistable behaviour.

Whereas the connection of two different triangles side by side ena-
bles us to design inflatable and bistable structures, it limits us to
star-like shapes. To expand the range of shapes, we next arrange the
two triangles on top of each other in the flat configuration and mirror
themtwice to formaninflatable cavity (we refer to these structures as
Designs IlI; Fig. 2e). Thisleads to geometries comprising eight triangles
thatareinitially flat and transforminto wedge-like shapes upon deploy-
ment. As for Designs | and Designs I, geometric compatibility for
Designs Ill requires a pair of triangles with w$"=w$? and
IAB?|| = IAC)||, but the closure of the cavity is only possibleif a{l) = a{?.
By imposing these constraints and log h > 0, we find that inflatable
Designslllcanberealized by combining two triangles with log /1,5 <0
and, therefore, substantially larger AAEC (see areas highlighted in yellow
inFig. 2f). This is because the internal volume of Designs Illis defined
by the difference between V{}y - and V@ (thatis, V=4(V Q- V&)
instead of their sum, as for Designs I and Designs II. Importantly, by
plotting A™ versus h for 500,000 randomly chosen Designs IlI,
we find that these geometries are characterized by much larger maxi-
mum incompatibility in the inflatable domain. As a result, when
we fabricate and test Design IlI-C with (a{l) ., ﬁfﬁc) =(37., 30.0°)
and (ac, B ) =(37.1, 40.6)), (for which 4™ /[|AB||=9.93 x102),
werecord even larger values of negative pressure (thatis, larger energy
barrier preventing the snap back) compared with the previous bistable
Design II-B (Fig. 2j, Supplementary Video 2).

Sofar, allidentified designs (that is, Designs I-1II) have beenrealized
by assembling triangles that initially lie in the x-y plane and recover
their angle « on such a plane for w, = wS. However, the triangle in the
x-yplane can also be seen as the projection of a triangle with internal
angles a and Sthat has beeninitially rotated around its edge BC to have
aheight wh, and projecteq angles aixy and ﬁixy (Fig. 2g). In this case, if
ﬁ'xy € [1/4 - a,,/2, /2 - a’, ) theangle ais preserved for two distinct
deployment heights, w), and w (see inset in Fig. 2g, Supplementary
Information section 1 for details). As such, we can use these triangles
asbuilding blocks to realize star-like origami shapes with two expanded
stable configurations corresponding to w', and w$. Aninteresting fea-
ture of this family of structures (which we refer to as Designs V) is that
ifweselecta,=m/n(n=3,4,..)and

By =By, =tan"' (-2 tanﬁixy), O

B), denoting a critical threshold value, the resulting origami are
bistable and inflatable, evenif made out of asingle triangular building
block (see Supplementary Information section 1 for details). This is
because, for g, 2/}?‘\/, Vasc monotonically decreases when deploying
the triangle from w', to w$, so the compatible state corresponding to
w4 can always be reached by deflation. To demonstrate the concept,
in Fig. 2i, we consider 500,000 different geometries of Designs IV for
whicha!, = /4, B, € [W/4-ay/2,1/2-ay] and B € [B ,m/2[,and
find thatallgeometries with g, = B, areinflatable. Furthermore, as g,
is not affected by a;, (see map ofﬁrv in Fig. 2h), aninflatable origami
structure can berealized by assembling highly incompatible triangles
lying near the upper bound of their design space. This results ininflat-
able designs with amaximum incompatibility, 4™, much higher than
Designs I-llland with aflat stable statein the x-zplane (asfor f=m/2-a
the compatible deployment height is such that the deployed triangle
lies in the orthogonal x-z plane with wS = ||AC||; see Supplementary
Informationsection 1for details). In full agreement with these findings,
when we fabricate and test DesignIV-D with (ayy_p, B, ) = (29", 56")and
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Fig.4|Metre-scaleinflatable shelter. a, A tent-like design canbe created by
mergingonelayer of aDesignlwith another one ofaDesignIV.Noteinthatthe
initial, zero-volume configuration of the tent, both layers are in their
compatible expanded state, whereasin the finalinflated configuration of the
tent, both layers arein their initial state (flat for Design I and initially rotated for
DesignlV).b, Theinitial volume canbe further decreased by truncating the
triangular facets into quadrilaterals and arranging successive layers of Design
IV.c, Schematicsillustrating the deployment process. d, The fabricated
metre-scaleinflatable shelter canbeinflated from acompactstate toafully
deployed state. Owing to multistability, the door canbe opened, making the
internal spaceaccessible. e, Flat-folded and deployed state of the metre-scale
inflatable shelter.

(a"xy, ﬁ"xy) =(45°,33")(for which 4™ /||AB|| = 2.05 x 10™%), we record the
largest negative pressure and energy barrier in the deployed stable
state (see green curve in Fig. 2j, Supplementary Video 2).

Metre-scale functional structures

Asanextstep, we use the simple geometries presented in Fig. 2 as a basis
to design functional and easily deployable structures for real-world
applications and build them at the metre scale.

First, we use the expanded wedge-like shapes of Designs Il as build-
ing blocks to realize an inflatable archway. Focusing on Design I1I-C,
we find that in the expanded stable state it has an opening angle
6,.c =40° (Fig. 3a). To design a deployable arch, we couple this unit
withadifferent geometry of the same design family (which we referred
toas DesignIlI-C’) that (1) is bistable and deployable through inflation,
(2) has an edge AB of equal length, (3) has an opening angle 6, such
that whenwe alternate m +1units of Design IlI-C’ with m units of Design
II-C, we span an angle of 180° in the expanded configuration, and (4)
has the larger triangle (referred to as triangle 1in Fig. 2) identical to
that of Design llI-C but mirrored (thatis, af) .= 8 . and 8 .=a{l) c;
Fig.3b) to ensure compactnessin the flat state. By inspecting the data-
base of Fig. 2j, we find that for m=6, all above requirements are satisfied
when Design II-C’is characterized by (a{f) . 5 o @, B o) = (30°,
37°,30°, 51°). However, as the resulting archway comprises 13 inflat-
able cavities, multiple pressure inputs would be needed to inflate it.
To simplify the deployment process, we modify the structure by cutting
it through the x-zmirror plane, separating the two resulting parts by
adistance ¢, and connecting them with rectangular facets (see insets
inFig. 3c). As this procedure does not affect the geometric deployment
of the triangles, we expect the additional facets to have a negligible
impactonthestructure’s multistability, but to facilitateits inflatability
by creating asingle cavity. InFig. 3d, we show a metre-scale version of
this archway with ||AB|| =30 cm and ¢ =10 cm constructed out of cor-
rugated plastic sheets (clear 8 ft x 4 ft, 4-mm-thick sheets). To build
this structure, we use a digital cutting system to cut two parts (each
comprising both triangular building blocks and rectangular facets;
Supplementary Fig. 20) and pattern the hinges by scoring the sheets
to locally reduce the thickness of the material. We then connect the
two digitally cut parts using adhesive tape to form an airtight cavity
(see Supplementary Information section 2 for details). In the folded
configuration, the structure has a height of 20 cmand a width of 30 cm.
Upon pressurization, itinflatesinto a 60-cm-talland 150-cm-wide arch-
way that, because of its multistability, preserves its shape even when
the pressureis suddenly released (Supplementary Video 3). Finally, it
can be folded back to the initial flat state by applying vacuum to over-
come the energy barrier (Supplementary Video 3).

Anotherstrategy torealize functional shapesis to merge components
of different design families together to form asingle cavity. As an exam-
ple, we can create an inflatable tent-like geometry by combining one
layer of a Design I with another one of a Design IV (Fig. 4a). To ensure
successful merging, the two layers must have (1) outer edges BC of
equal length, and (2) the same x-y projection in the two compatible
states (thatis, a{’ = a{? = a\, and " = g¥' = B.)-Furthermore, toreal-
izestructures withafully flat compatible state, we choose the triangles
tolieonthe upperboundary of the deployable domain (that s, triangles
with 8" =11/2 - af’ and B = 11/2 - a?). By imposing these constraints,
we can design tent-like structures that can be folded flat and expanded
viainflation (see Supplementary Fig. 24 for acentimetre-scale version),
but their compactnessis limited by the long AB edge of the Design IV.
To further decrease the occupied volume in the compact state, we
truncate the triangular building blocks of the Design IV layer into quad-
rilaterals and add additional layers of Design IV, some of which can be
folded inwardly. Asshownin Fig.4b, these operations not only reduce
the initial volume but also result in a more liveable sheltered space in
the deployed state. To demonstrate this strategy, we fabricate the
structure shown in Fig. 4b at the metre scale, applying the same con-
struction process used for the inflatable archway (see Supplemen-
tary Information section 2, Supplementary Video 4 for details). As
shown in Fig. 4c, d, the structure can be folded completely flat (with
the ceiling folded inward) to occupy a space 0of 1.0 2.0 x 0.25m. When
aninput pressure is provided, the structure first expands to a stable
configuration with the roof folded inward. Upon further pressurization,
theroof snapsoutwards and the final deployed shape 0f 2.5x2.6 x2.6 m
isreached. Importantly, because of the multistability, at this point the
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door can be opened without impacting structural integrity, making
the internal space accessible. Finally, using a vacuum, the shelter can
be folded back to the flat configuration (Supplementary Video 3).

Conclusion

In summary, we have demonstrated how geometry can be efficiently
exploited torealize pressure-deployable origami structures character-
ized by two stable configurations—one compact and one expanded. The
design methodology presented in this work could be extended both
to larger and smaller scales if properly accounting for loading condi-
tions and fabrication challenges*'®""?°, As our functional structures are
multistable, they can also be designed to achieve target deployment
sequences (Supplementary Fig.25). Inaddition, by introducing building
blocks comprising more than two different facets, we expect to further
expand the range of achievable shapes (Supplementary Fig. 26). To
thatend, complementary to our geometric model and experiments, a
mechanical model capable of predicting the full energy landscape®**°
could provide a useful tool to guide such exploration. Finally, building
onourresults, deployable structures able to switch between targeted
stable states could be efficiently identified by generalizing our design
rules to arbitrary origami polyhedra and, combining them with sto-
chastic optimization algorithms, solve the inverse design problem.
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Methods

The details of the design, materials and fabrication methods are sum-
marized in Supplementary Information sections1,2. The experimental
procedure of the inflation with water to measure the pressure-volume
curve is described in Supplementary Information section 3. Finally,
additional information about extending our methodology to more
complex designsis provided in Supplementary Information section 4.
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