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ABSTRACT

Ubiquitous finger motion tracking enables a number of exciting
applications in augmented reality, sports analytics, rehabilitation-
healthcare etc. While finger motion tracking with cameras is very
mature, largely due to availability of massive training datasets,
there is a dearth of training data for developing robust machine
learning (ML) models for wearable IoT devices with Inertial Mea-
surement Unit (IMU) sensors. Towards addressing this problem,
this paper presents ZeroNet, a system that shows the feasibility of
developing ML models for IMU sensors with zero training over-
head. ZeroNet harvests training data from publicly available videos
for performing inferences on IMU. The difference in data among
video and IMU domains introduces a number of challenges due
to differences in sensor-camera coordinate systems, body sizes of
users, speed/orientation changes during gesturing, sensor position
variations etc. ZeroNet addresses these challenges by systematically
extracting motion data from videos and transforming them into
acceleration and orientation information measured by IMU sensors.
Furthermore, data-augmentation techniques are exploited that cre-
ate synthetic variations in the harvested training data to enhance
the generalizability and robustness of the ML models to user di-
versity. Evaluation with 10 users demonstrates a top-1 accuracy of
82.4% and a top-3 accuracy of 94.8% for recognition of 50 finger
gestures thus indicating promise. While we have only scratched the
surface, we outline a number of interesting possibilities for extend-
ing this work in the cross-disciplinary areas of computer vision,
machine learning, and wearable IoT for enabling novel applications
in finger motion tracking.
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1 INTRODUCTION

Finger motion tracking enables exciting IoT applications in sports
analytics [2], healthcare and rehabilitation [28, 65], sign languages
[13], augmented reality (AR), virtual reality (VR), etc. Analysis of
finger motion of aspiring players can be compared to experts to
provide automated coaching support. In the context of healthcare,
finger motion stability patterns are known to be bio-markers for
predicting motor neuron diseases [12, 22]. AR/VR gaming as well as
precise control of robotic prosthetic devices are some of the other
applications that benefit from finger gesture tracking [11, 43].

Motivated by the above applications and coupled by recent innova-
tions in machine learning (ML) and the availability of large scale
training data, there is a surge of recent research [18, 31, 42] in
computer vision that track accurate finger poses from monocular
videos. Given that they do not require depth cameras, the range of
applications enabled is far reaching. However, such vision based
techniques are affected by issues such as occlusions and the need
for good lighting conditions to capture intricate finger motions.

In contrast to vision, the main advantage of wearable IoT devices
lies in enabling ubiquitous tracking without external infrastructure
while being robust to lighting and occlusions. However, unlike
vision, there is a dearth of large scale training data to develop robust
ML models for wearable devices. Towards overcoming this gap,
this paper presents a system called ZeroNet. This system requires
zero training overhead for developing robust ML models for finger
motion analytics using smart-ring based Inertial Measurement Unit
(IMU) sensors. In particular, ZeroNet harvests training data from
public videos of finger motions and develops ML models that can
be used for inferences on smart-rings with IMU sensors.

Such a method of learning from one domain for performing infer-
ences on a different domain has been explored before. Unsupervised
domain adaptation [64, 67] can adapt distributions between source
(video) and target (IMU) domains such that the model learnt on
source domain is used for inference on target domain. However,
such techniques are hard to apply to our problem domain since
this still requires enough real training data (atleast in unlabelled
form) from IMU to achieve sufficient convergence of the domain
adaptation process. Furthermore, each user’s finger motion pattern
as well as natural variations in sensor wearing positions could lead
to different distributions in the sensor data [15, 20] thus entailing
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more training data for each setting. On the other hand, ZeroNet
performs comparable to models developed with semi-supervised
domain adaptation [27, 83] which need partial labelled real IMU
data and even outperforms models fully trained on our own real
IMU dataset (details in Sec. 6). Given lack of large training datasets
under diverse conditions for smart-rings, we believe ZeroNet’s abil-
ity to provide promising accuracy without any training cost is an
important first step to bootstrap applications. With enough appli-
cations, more data can potentially be generated via crowd-sourcing
approaches to further push the accuracy of domain adaptation.

Fig. 1 illustrates the architecture of ZeroNet with the following
sequence of actions. (i) Appropriate sources of publicly available
videos (YouTube, ViMeo, Flickr etc.) are first identified as candi-
dates for training data. (ii) Finger locations are then extracted from
these videos using computer vision techniques [19, 73]. (iii) Appro-
priate motion metrics that can be captured from IMU (acceleration,
orientation etc) are then derived from these finger locations. (iv)
The training data thus extracted from videos is further enlarged
using data augmentation techniques (introducing variants of ro-
tations, speed of gestures, temporal clipping etc) to create a large
and high quality training dataset. (v) Such synthetic datasets are
used for training ML models (vi) Finally, the trained models can
be deployed directly for inferences on wearable devices with zero
training overhead. Inspired by favorable usability reviews of smart-
rings in monitoring activity in gym, sleep etc.,[46-48] we place a
sensor on the finger for gesture inferences (details in Sec. 3).

Although in a similar spirit to recent works [38, 55, 66, 74] showing
the feasibility of harvesting training data from videos for identify-
ing upto ten classes of human activities, ZeroNet differs from the
above works in following ways: (i) Shows the feasibility of harvest-
ing training data from videos for a gesture recognition problem
involving intricate finger motions. (ii) The harvested training data
from videos is combined with data augmentation techniques to
enable better generalizability of ML models. (iii) Shows the ability
of recognition over 50 classes — a five fold higher number of classes
than prior work extracting training data from public videos.

Harvesting training data from videos for performing inferences on
IMU is challenging because: (i) The IMU and camera have differ-
ences in sensing modalities, coordinate systems etc., thus requiring
careful pre-processing to transfer knowledge between the two do-
mains. (ii) The speed/orientation of gesturing, and body sizes can
differ across users. Similarly, the sensor wearing position and orien-
tation can vary due to natural errors in sensor placement. (iii) The
distribution of training data and test data will not match since they
come from different sources. Appropriate techniques are needed to
generalize the model developed from video-based training data to
perform accurate inferences on wearable devices.

In solving the above challenges, ZeroNet exploits a number of op-
portunities. (i) The sensor and camera coordinates can be appropri-
ately aligned by measuring the orientation of the wearable device
to perform coordinate transformations. (ii) ZeroNet approximates
IMU-like sensor data from location estimates extracted from videos
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by performing systematic finite differences of locations to derive ac-
celerometer data. Similarly, the angle between finger joints and the
vertical plane is extracted from videos to approximate a dimension
of the orientation data. (iii) Towards handling body size diversity,
the location data from each video is normalized to a measurement
corresponding to a uniform body size (for example, by scaling the
data by the ratio of the shoulder length of the person in video to a
standard shoulder length). (iv) Towards enhancing the robustness
and generalizability of ML models, we augment the training data
by creating synthetic variants of the data with varying speeds and
magnitudes of acceleration. In addition, variants of data with minor
shifts in rotations is also added to provide robustness to varying
finger orientations or sensor positioning/displacement.

We implement ZeroNet on a wearable platform of a button shaped
off-the-shelf Mbient Sensor[9] worn as a ring on fingers. We extract
training data for 50 gestures of finger motion from a popular public
video source of American Sign Language (ASL) tutorial [8]. We
develop a CNN based model using this data by exploiting the above
enumerated opportunities. Testing results on 10 users achieves
a top-1 accuracy of 82.4% and a top-3 accuracy if 94.8% which
demonstrates the feasibility of our system. An implementation on
Samsung Galaxy S20 smartphones using TensorflowLite validates
the low latency and energy efficiency of the system.

A summary of our contributions in the paper include:

(i) Showing the feasibility of harvesting training data from videos for
performing inferences on IMU for finger gesture tracking.

(ii) A systematic pipeline that fuses data processing and data aug-
mentation techniques for better generalizability of ML models

(iii) Evaluation with 10 users that shows a top-1 accuracy of 82.4%
and a top-3 accuracy of 94.8% over 50 gestures.

The rest of the paper will expand upon this idea. Sec. 2 provides
a background on the nature of data in the domains of videos and
IMU, while Sec. 3 introduces the IMU platform . Sec. 4 will design a
signal processing pipeline for systematically transforming video-
based training data into IMU-based data. Sec. 5 will discuss data
augmentation techniques to handle the domain difference between
training and test data as well as for creating robust model that
is generalizable to any new user. Sec. 6 will provide results from
our experiments. Sec. 7 will survey related research and finally we
conclude with limitations and future directions in Sec. 8.

2 BACKGROUND

The success of human activity recognition in machine learning
depends on the availability of large scale annotated datasets. For ex-
ample Human 3.6m [30] has 3.6 million images of various activities
such as eating, walking, discussing, sitting, providing-directions,
talking on phone, making purchases etc. Similarly, the popular
ImageNet database consists of 14 million images. In contrast, for
wearables, Daphnet [14] gait dataset has 5 hours of walking data
from 10 subjects and PAMP2 dataset[54] has 7.5 hours of sensor
data from 9 subjects. Such datasets are very small in comparison
to vision datasets. Moreover to the best of our knowledge, such
datasets do not exist for finger motion tracking that use the recently
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Figure 1: The flow of operations in ZeroNet. 3D finger pose and locations are first extracted from videos. The location and pose
information is transformed into acceleration and orientation that can be captured by inertial sensors. Data augmentation
techniques are then introduced to create robust synthetic training datasets. The ML models developed on such datasets are
generalizable and directly used for inferences on wearable devices (smart-ring worn on finger) without any training overhead.

emerging platform of smart-rings. Towards overcoming this gap,
this section briefly discusses extracting finger locations from video
data for harvesting training data. We also discuss the nature of IMU
data to be approximated with video data.

2.1 Video Data

Large amounts of video datasets are publicly available. For example,
there are several YouTube videos of sports activities, movie clips of
human activities, sign language news etc. Exploiting such datasets
for harvesting training data can significantly reduce the overhead
of training data generation on wearable devices. In this paper, we
harvest training data from a popular public tutorial of sign language
gestures [8]. We show the feasibility of recognition of 50 most
popular finger gestures without any training data from IMU.

We exploit state-of-the art computer vision techniques for extract-
ing motion data from the videos for training ML models. Fig. 1
shows an example of a frame from our video dataset. We exploit
techniques in [73] that can extract finger joint locations from simple
RGB images, also shown in Fig. 1. In particular, Xiang et al [73] use
an efficient representation called 3D part orientation fields (POF)
to encode 3D orientation of all body parts in a 2D image space. The
POFs are learnt by a CNN trained over a large dataset thus learning
to predict 3D deformable mesh model of the whole body, face, and

fingers. While RGB images do not contain depth information, the
CNN model exploits the known priors of shape and pose models
of human body in addition to applying constraints of temporal
smoothness for extracting 3D motion information. As shown in Fig.
1, the whole body shape is extracted from which we only identify
the finger locations from the red highlighted region. The extracted
finger locations is used by ZeroNet to develop ML models for IMU
data as elaborated in further sections.

2.2 IMU Sensor Data

Inertial Measurement Units (IMU) consists of accelerometer, gyro-
scope, and magnetometer sensors widely embedded in wearable IoT
devices for enabling a number of applications in gesture recognition,
augmented reality, smart health etc. We provide a brief overview
of the 3D orientation of an object since it plays a critical role in
modeling the data captured by these sensors.

Consider a global frame of reference pointed towards "Up", "East",
and "North" directions (Fig. 2). Consider an object (e.g., IMU sensor)
whose local frame of reference is also shown in the figure. While the
two frames are perfectly aligned in Fig. 2(a), there is a misalignment
between the two frames as shown in Fig. 2(b). The 3D orientation of
an object captures this misalignment between the local and global
frames of reference. Consider a vector V whose representation in
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Figure 2: (a) Perfectly aligned local and global frames (b) Mis-
alignment between local and global frames. Orientation cap-
tures the misalignment between local and global frames

Figure 3: Button sized IMU worn as a ring

the local and global frames are V; = [X; Y} Z;], and Vy = [X, Yy Z4]
respectively. The 3D orientation of the object can be mathematically
quantified using a 3 X 3 rotation matrix R which rotates the vector
between the two frames of reference as indicated below.
X0 i ZR=[X; Yy 2]

When an accelerometer sensor is under rest, it measures the pro-
jection of the gravity vector on its three axes [59]. Similarly, the
magnetometer sensor measures the projection of the earth’s mag-
netic field on its three axes. Since the acceleration due to gravity
and the geomagnetic field are globally known vectors, the local
measurements of these values using the sensors can ideally be used
for computing the rotation matrix R described above to quantify the
orientation of an object. However, in reality, the mobility of the sen-
sor can corrupt the measurements of gravity by the accelerometer,
as well as the electromagnetic interference can interfere with the
magnetometer. Therefore, the gyroscope sensor data which mea-
sures the change in orientation (angular velocity) can be fused with
estimates of orientation from accelerometer and magnetometer to
compute accurate 3D orientation estimates of an object [82].

An accelerometer sensor measures the superposition of the gravity
and acceleration due to the linear motion of the wearable device.
The measurement is relative to the sensor’s local frame of reference.
Therefore, the orientation estimates as discussed above is useful not
only in converting the accelerometer measurements to the global
frame of reference but also in subtracting the component of gravity
from the acceleration measurements.

Liu, et al.

3 PLATFORM DESCRIPTION

We begin with a simple platform with a ring-like sensor worn on
the index finger as shown in Fig. 3. Note that all fingers are involved
in gesturing, but we place the sensor only on the index finger. While
we believe this is sufficient to show the feasibility of harvesting
training data from videos, this will cause miss-classifications among
gestures with similar motion of the index finger and different mo-
tion of other fingers. However, surprisingly, the accuracy with just
index-finger data is significant with very few miss-classifications
due to the specific reason noted here (details in Sec. 6). While the
miss-classification rate might increase with number of classes, we
discuss opportunities with additional techniques and sensors in
Sec. 8. The majority of the study places the sensor on the index
finger since it is more frequently involved in gestures in our video
dataset. However, we also conduct experiments to understand the
best placement option among other fingers (Sec. 6).

Smart rings that can pair with phones wirelessly to stream informa-
tion as well a monitor activity are already available on the market
[5, 6]. For example, the Oura ring [6] is popular as a sleep tracking
device and weighs between 4 and 6 grams, which is even lighter
than conventional rings, and packaged in a stylish design. It is low
intrusive with users finding it comfortable for wearing day and
night, gym, pool etc [46], thus receiving favorable online reviews
for usability [46-48]. However, most of these platforms are closed
and do not provide access to raw sensor data. Therefore we use a
button-shaped sensor from MbientLabs [9] snugly fit on the finger
like a ring as shown in Fig. 3. The sensor streams data wirelessly to
a smartphone which runs the ML models for gesture recognition.
The ring generates 9 axis IMU data - 3 axes each for Accelerometer,
Magnetometer, and Gyroscope. This forms the input to ZeroNet.

4 SYNTHETIC TRAINING DATA FROM
VIDEOS

The 3D locations captured from the video will be transformed into
synthetic accelerometer and orientation data for training the ML
models. A natural first step would be to simply double differenti-
ate the index finger location as extracted from the video to obtain
the acceleration of the index finger. However, such a simple dif-
ferentiation will not emulate the accelerometer data because of a
number of differences between IMU and video data. In this sec-
tion, we elaborate these differences together with approaches in
ZeroNet to address these differences. We begin by discussing the
basic pre-processing steps.

4.1 Pre-processing

A number of simple but critical pre-processing steps are needed to
match the distribution of the video and IMU dataset. We enumerate
the main steps here: (i) A low pass filtering with a cutoff frequency
of 10Hz was applied on both video derived acceleration and IMU
acceleration. (ii) The orientation data extracted from videos posses
a characteristic shape mainly because of the noise in the camera
data. Simply using these orientation estimates made the CNN model
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memorize the shape and overfit. Thus, we regularized the orienta-
tion data using a smooth, low parametric function so as to prevent
the CNN model from memorizing the noise in the data.

4.2 Extraction of Acceleration

Coordinate differences: The location data captured by cameras
is relative to the camera’s frame of reference. However, the locations
can be transformed into torso coordinate frame (TCF) as shown in
Fig. 4. We chose our x-axis as the line joining the two ends of the
shoulder when the user is in a stable pose. Similarly, we chose the
z-axis to be in the plane of the torso but perpendicular to x-axis.
The y-axis is perpendicular to these two axes. Since we extract
entire shape of the human body using the work in [73], we identify
the appropriate shoulder and torso joints corresponding to the TCF.
We then project the extracted locations from the camera into TCF.

On the other hand, the acceleration measured by the sensors will be
in the local frame of reference which depends on the instantaneous
orientation of the sensor as depicted in Fig. 4. Therefore, ZeroNet
first converts the acceleration into the global frame of reference. The
difference between the global frame and the user’s facing direction
can be roughly computed when the sensor is in vertical free-fall
position or if the user is walking a few steps [56, 60]. We adopt this
approach in this paper for computing the difference between TCF
and global frame. Thus, the acceleration is first converted to global
frame, and then to TCF by using the orientation estimates of the
sensor. After this transformation, the acceleration due to gravity is
subtracted from the result since the accelerometer measurement
includes the sum of gravity and linear acceleration. The video and
IMU data will now be comparable with each other.

Fig. 5(a) compares the z-axis accelerometer data with double dif-
ferentiated data of video locations before such coordinate transfor-
mations for a hand gesture. Evidently, the two data look dissimilar.
On the other hand, after performing appropriate transformations,
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Figure 5: (a) The acceleration data from camera and video do
not match before coordinate alignment between TCF and LF
(b) The data from the two domains match well after coordi-
nate alignment between TCF and LF

the two sources of data look similar as depicted in Fig. 5(b), which
indicates the z-axis acceleration along TCF.

Double differences: While we considered tools like IMUSim [75]
to convert location data from videos to IMU data (e.g. acceleration),
there is no support for simulating finger joints. Therefore, we per-
form finite double differences as indicated by the equation below,
as also explored in prior work [66, 74].

_ Dt—At T Dr+Ar — 2 Py

- At?

This extracts accelerometer data a; from locations p; extracted
from videos. While the IMU provides instantaneous acceleration,
the finite time double differences is only an approximation. Choos-
ing a smaller At reduces the error in approximation due to finite
differences. However, smaller At also decreases the signal to noise
ratio (SNR) of the generated acceleration signal because the change
in location may be too small over a small time interval whereas
the noise in the data is independent of time. We choose a value of
At as 0.1s which provides a tradeoff that works well in practice.
An example is depicted in Fig. 5(b) where finite differences are
performed after the preprocessing steps such as low pass filtering.

at

Body size normalization and camera parameters: Difference
in body sizes of users can create differences in the recorded sensor
data even for the same gesture. In addition, the primary unit of esti-
mate of locations from images is in pixels. Extraction of location in
units of cms from public videos will need information or estimates
about the camera parameters [42]. Towards handling body size
differences as well as to eliminate the need for camera parameters,
we normalize all location estimates from camera to the size of a
standard human. In particular, we measure the shoulder length in
pixels and scale it with factor such that the shoulder length is 27
cm. Such scaled locations are used for deriving synthetic accelerom-
eter data. During testing, the accelerometer measurements from
a human are similarly scaled depending on how their shoulder
length compares with the standard length (27 cm). Fig. 6 shows an
example of comparison between video and IMU data before and
after normalization. Experimentally validated, the normalization
step enables better similarity in sensor data despite the difference
in body sizes of users and not having the camera parameters.

4.3 Extraction of Finger Orientation

Fig. 7 shows the metacarpophalangeal (MCP) and proximal inter-
phalangeal (PIP) joints of the index finger. The angle made by the
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Figure 6: (a) The data from video and IMU domains can vary
widely in magnitude because of differences in body sizes and
units of measurements (b) Normalization techniques in Ze-
roNet renders the data from the two domains comparable

line joining these two joints with the vertical plane can be extracted
from these videos. The same piece of information can be extracted
from the orientation estimates of the IMU as indicated in the below
equations.

0 0
Yprojxz = Rp xR |1 -0 1 O]Rf*R 1
0 0
0
T
yproj,xz 0

angle = arccos
|yproj,xz |

Here, yproj,xz denotes the projection of the direction of the finger
(line joining MCP and PIP joints) on the XZ plane. The sensor is
roughly aligned such that its local y-axis is along the direction
of the finger, but no careful calibration is needed. R is the 3 X 3
rotation matrix, Ry indicates the misalignmentment between the
user’s facing direction and the magnetic north. We compute this by
adopting ideas from past work [56, 60]. Thus, the angle between
MCP-PIP joints and the vertical axis as indicated above will be used
as a virtual orientation data for training the ML models in ZeroNet.
While the orientation estimates of a IMU sensor is 3 dimensional, we
restrict ourselves to extracting the 1 dimensional angle information
as discussed above mainly because: (i) We can extract it reliably
and compares well with the same information extracted from IMU.
(if) We found that estimating rotation along the axis of the index
finger although possible in theory from the information extracted
from videos, proved to be unreliable and erroneous in practice.

5 GESTURE RECOGNITION MODELS WITH
SYNTHETIC TRAINING DATA

We explore two methods for exploiting the training data extracted
from videos for performing gesture recognition on IMU: (i) A simple
DTW based model (ii) A Convolutional Neural Network based
machine learning model

5.1 Dynamic Time Warping

We begin by using dynamic time warping (DTW) [16] to com-
pare the IMU data from an unknown user gesture to video-based
training dataset for gesture recognition. Briefly, DTW is a pattern
matching technique that inspects the overall shape of two signals
to determine their similarity. For example, Fig. 8(a) shows the z-axis

Liu, et al.
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Figure 7: The angle depicted here can be extracted from
videos and used as a training data for inferences on IMU
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Figure 8: (a) Accelerometer data for "More" extracted from
video of one user in comparison with IMU data of another
user (b) Data from IMU is compressed and stretched to
match with video by DTW

accelerometer data from IMU and the synthetic accelerometer data
extracted from a video of the same gesture. Although the overall
shape is similar, parts of the motion traces happen at a faster rate
or earlier for IMU while other parts happen slower. DTW uses a
dynamic programming optimization to minimally compress and
stretch the two sequences relative to each other such that they pro-
vide the best overlap. Fig. 8(b) shows the two sequences after DTW
optimization. DTW is known to do a good job of matching such
series with similar overall shape. The residual differences between
the two series determines the similarity score among them. The
similarity score of an unknown gesture is compared with all ges-
tures in the training data. The gesture with the best match would
correspond to the correct gesture with high probability. The 3-axis
accelerometer data and the orientation of the index finger is used
for performing the DTW matching as described above.

5.2 Convolutional Neural Networks

Towards increasing the robustness of recognition, we take a data-
driven ML approach in addition to DTW. The architecture of the
model is depicted in Fig. 9. The success of ML models depend on
availability of large scale high quality training datasets. In addition
to extracting the training data from videos, we exploit the following
data augmentation techniques to ensure stability, robustness, and
convergence of the above ML model.
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Figure 10: DTW alignment matrix between two sequences A
and B. Pictures adopted from [1]

DTW based augmentation: The performance of gestures will
vary widely across users. The speed of hand motion is one of the
metrics that can vary across users. Various parts of the gesture
might be performed at a faster or slower pace by different users.
Towards making the ML models robust to such variations, we aug-
ment the training data by injecting such variations into existing
training data. In particular, we stretch and compress different parts
of the training data with different factors to create new training
data from existing samples.

Fig. 10 shows an example where two sequences A and B are aligned
using DTW. Fig. 10 (b) shows the correspondence between samples
in the two sequences, whereas Fig. 10 (a) depicts the same in matrix
form. Given a training data sample A, we generate random matrices
similar to Fig. 10 (a) to create dynamically stretched and compressed
versions of the training data sample. In creating these matrices,
we resample the original time series of the training data with a
stochastic non-uniform sampling such that compression/expansion
ratio varies between 0.25 to 2. Appropriate interpolation strategies
are used since the resampling positions may not coincide exactly
with the positions in the original time series. Fig. 11 shows an
example where two variants of new training data has been created
from an existing training data.

Orientation Variation: Similar to variations in gesturing where
users perform at different speeds, the orientation of the hand can
vary during motion. Such variations can also happen because of

50 class softmax
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Figure 13: Examples of synthetic orientation data

minor changes in the sensor wearing position or orientation across
users. Fig. 12 shows an example where the same gesture is per-
formed by two users with a minor shift in the hand orientation. The
ML model must be robust for adapting to such natural variations.
Therefore we augment training datasets emulating variations in
hand orientation while gesturing. The injected variations range
from 0 to 10 degrees, but they are not random, rather they ensure
smoothness and continuity thus emulating a realistic gesture with
small changes in orientation. Fig. 13 shows examples of augmented
data with varying orientations for a given gesture.

Temporal Clipping: We also hypothesize that the start and end
periods of performance of gestures by several users will vary. Dif-
ferent users might start the gesture from slightly different positions
as well as end the gesture prematurely or continue with extra mo-
tions beyond the gesture. To help the model generalize under such
diversity, we augment training data by introducing versions of the
training data with minor extrapolations or trimming of samples at
the begin and end of the gestures. Fig. 14 shows an example where
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Figure 14: Examples of temporal clipping

two variants of synthetic training data are added with random
clipping at the beginning and end of an original training data.

6 IMPLEMENTATION AND EVALUATION

Implementation: The sensor frontend includes an Mbient sensor
[9] as described in Sec. 3 which is worn on the index finger as a
ring. The 9-axis IMU data including accelerometer, gyroscope, and
magnetometer data is streamed to a smartphone. ZeroNet is imple-
mented on a combination of desktop and smartphone devices. The
machine learning architecture is implemented using TensorFlow
[10] packages and the training is performed on a desktop with Intel
i7-8700K CPU, 16GB RAM memory, and Nvidia GTX 1080 GPU. We
use the Adam optimizer[36] with a learning rate of 1e-3, 1 of 0.9
and S, of 0.999. To avoid over-fitting issues that may happen in
the training process, we apply the L2 regularization[17] on each
CONV layer with a parameter of 0.01 and also add dropouts[70]
with a parameter of 0.1 following each RELU activations. Once a
model is generated from training, the inference is done entirely
on a smartphone device using TensorFlowLite [26] on a Samsung
Galaxy S20 smartphone with Android operating system.

User Study: All reported results in the paper are generated from a
systematic user study campaign. The study evaluates the classifica-
tion accuracy of 50 gestures that represent the top 50 ASL words.
The training data is extracted from the following video source [8].
We recruit 10 users aged 21-32 and weighs between 47 to 96kgs. It
includes 7 males and 3 females. During the data collection process,
the user is first shown the video of a gesture. The user practices
performing the gesture several times. When the user feels comfort-
able performing the gesture correctly, we let the user perform the
gesture 5 more times and we record the sensor data during this
period. After this process, we repeat the procedure for the next
gesture until we finish collection of the data for all 50 gestures. The
entire recorded dataset during the study is solely used as a ’test
data’ since the training data is extracted entirely from videos.

We specifically aim to answer the following questions.

e What is the overall gesture recognition accuracy? (Figs. 15(a),
Figs. 20)

o Is the accuracy consistent across diverse gestures? (Figs. 15(b),
Figs. 15(c))

e How does the accuracy vary across users? (Figs. 15)

Liu, et al.

o In cases of errors in recognition, what is the rank of the correct
gesture among all the 50 gestures? (Figs. 16)

e How does the accuracy vary with the speed of gesturing? (Figs.
17)

e How does the accuracy vary with sensor placement on the
hand? (Figs. 18)

e What is the accuracy of the model transferred to the left hand?
(Figs. 19)

e What is the role of various techniques of data augmentation in
the final accuracy metric? (Figs. 21)

e How does the accuracy vary with the size of the synthetic
dataset? (Figs. 22)

e How does ZeroNet compare with models fine-tuned with real-
data or models fully trained on real data? (Figs. 22, Figs. 23)

e What is energy, latency, and compute profile of executing the
ML models on embedded devices? (Figs. 24)

Robustness to sensor wearing positions and diverse gesture
patterns: Fig. 15(a) depicts the overall accuracy as a function of
users. Evidently, the accuracy is stable across users, body sizes,
motion patterns etc. In addition, the sensors were mounted nat-
urally on the fingers with y-axis roughly along the direction of
the index finger. There was no special calibration and hence the
position/orientation across users would naturally vary. However,
the accuracy is robust to such variations. This is because of the
inbuilt robustness to such natural variations through the data aug-
mentation techniques incorporated in the design of ZeroNet. While
the top-1 accuracy is 82.4%, the top-3 accuracy is around 94.8%
which indicates promise for future improvements.

Accuracy over gestures: Fig. 15(b) shows the confusion matrix
over all 50 gestures in our dictionary. The performance is consistent
across all gestures. However, in certain special cases, such as the
gesture for "mother", and "father”, there can be miss-classifications
because the index finger motion for these two gestures are very
similar. Fig. 15(c) shows the confusion matrix for top-3 accuracy
which shows a higher accuracy because in many cases of miss-
classifications the correct word is occupies the second or third
place in the rank of softmax probabilities.

Rank of incorrect gestures: We provide further breakup of cases
where the top identified gesture is incorrect. Fig. 16 shows the rank
of the correct gesture in case of erroneous detections. Evidently,
majority of the cases are rank-2 and 70.5%, 83.0% of cases are in
top-3 and top-5 ranks respectively. This indicates that appropriate
application specific prior information or context can be exploited
to further imporve the accuracy of ZeroNet.

Accuracy over speed: Fig. 17 provides a breakup of accuracy of
gestures executed at varying speeds. Note that in addition to some
gestures being inherently slow or fast paced, variations in pace can
also occur because of user diversity. Regardless of the reason of
variation, the accuracy is robust at various possible speeds.
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Figure 17: Accuracy over speed of gesturing

Accuracy vs Finger Position: An advantage of harvesting train-
ing data from videos is that optimal sensor placement can be de-
termined for any given application where there is a tradeoff in
number of sensors that can be used due to reasons including usabil-
ity, accuracy, power consumption etc. We conduct a small study to
determine the optimal sensor placement among index, middle, and
ring fingers for the top 20 gestures from our video dataset [8]. The
little finger and thumb were excluded in the study since it is not
comfortable to wear sensors on those fingers. Fig. 18 shows that the
top-1 accuracy values are 93.4%, 88.3%, and 85.1% for index, middle,
and ring fingers respectively. This indicates that the optimal sensor
placement among the three fingers is the index finger for the set of
gestures considered in this application.

Model transfer between right and left hands: Fig. 19 shows the
accuracy when the left hand was used in gesturing. This is useful
when the training data from videos of right-handed users is used
for performing inferences on left-handed users. The training data
captured from the right hand was appropriately mirrored to emulate
a training data for the left hand. This includes making the x-axis
in Fig. 4 negative and projecting the acceleration and orientation
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Figure 18: ZeroNet can generate training data for any finger
position, thus facilitating optimal sensor positioning
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Figure 19: Model transfer from right to left hand

to the new TCF relative to the left hand. The transformed training
data was used to train the ML model in Fig. 9 to perform inferences
when the sensor is worn on the left hand. Evidently, the accuracy
for such inferences is same as the right hand.

Performance comparison across techniques: Fig. 20 provides a
breakup of accuracy across techniques. Basic DTW already achieves
a reasonable accuracy of 59.4%. On the otherhand, the accuracy of
the basic CNN model is slightly lower than DTW because of the
inability to generalize to diversity in user motion patterns. However,
data augmentation techniques in ZeroNet can make the CNN model
robust to speed of gesturing, sensor positions, orientation variation,
noise etc, thus boosting the accuracy to 82.4%.

Breakup of performance gain from data augmentation: DTW
based augmentation, rotation based augmentation and time clip-
ping individually achieve accuracies of 70.7%, 53.4%, and 60.8%
respectively as shown in Fig. 21. DTW-based augmentation per-
forms the best while the other techniques also offer non-trivial gain
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in performance relative to a baseline without data augmentation.
However, combining all of them yields the best performance.

Training with Synthetic vs Real Data The first bar in Fig. 22
shows the performance accuracy of training with real data alone.
Evidently, the small size of the data leads to overfitting and poor
generalization thus leading to overall low accuracy. On the other
hand, the last bar depicts the effect of training with synthetic data
which together with data augmentation techniques leads to better
generalization of the ML models and higher accuracy.

Effect of the size of synthetic data: Fig. 22 depicts the perfor-
mance of the CNN model as a function of the size of the synthetic
data. The x-axis label denotes the size of the synthetic data in mul-
tiples of the size of the real data. Evidently, higher size of synthetic
data creates more robustness in the training examples that the ML
model sees during training. Thus, the overall accuracy improves

Liu, et al.

-

Il w/o transfer learning
[ Jwith transfer learning

o
©

o
™

o
3

o
o

Top-1 Classification Accuracy

o
w»

1 2 83 4 5 6 7 8 9 10
Users

Figure 23: Model fine tuning with real IMU data

Power Consumption per Hour (%)

Idle Screen DTW CNN

Different Techniques
Figure 24: The power consumption profile the CNN model
is better than simple DTW because of builtin optimizations
in TensorFlowLite [26]

with size, ultimately saturating when the size of the synthetic data
is 40 times of the real data.

ML models fine tuned with real IMU data: The CNN model
that was trained in ZeroNet using synthetic IMU data from videos
was fine-tuned [52, 76] with real IMU data. Fig. 23 depicts the per-
formance over users. Leave-one-out cross-validation was adopted

across users. The fine tuning improves the performance only marginally.

We believe this is because the data augmentation techniques suf-
ficiently cover the space of variations thus generalizing the CNN
model to the maximal extent.

Energy, latency, and compute: we use Batterystats and Battery
Historian[7] toolkits for profiling the energy of the TensorflowLite
model for inference using CNN and the DTW-based classification
model. We compare the difference between energy consumption in
two states (i) When the device is idle with screen on. (ii) The device
is making inferences at a rate of 2 gestures per second. The idle
display-screen on discharge rate 4.95% per hour while the discharge
rates for various techniques is depicted in Fig. 24. Evidently, the
power consumption profile of the CNN model is very low. We
believe the CNN model is more efficient than the simple DTW
because of inbuilt optimizations within the TensorFlowLite library
[26]. The latency results are very much correlated with power
consumption results. In particular, each classification takes 2.2ms on
average with CNN whereas it takes 266.4ms with the DTW model.
We believe the overall power consumption and latency profiles of
the CNN model enables energy efficient real time performance.
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7 RELATED WORK

Inertial Sensors: Inertial sensors have been used in many local-
ization and gesture tracking applications. UnLoc [72] fuses infor-
mation from smartphone sensors for extracting characteristic fin-
gerprints in indoor environments for localization. RisQ [49] rec-
ognizes smoking gestures for appropriate intervention measures
using smartwatches. Similarly, smartwatches are used for eating
activity recognition [58] and measuring calorie intakes. Smart rings
are also being used for ASL gesture recognition in recent times
[39, 40]. DUI [41] detects blood alcohol level based on user per-
formance on smartphone activities. Other applications have been
explored in the areas of augmented and virtual reality, sports an-
alytics, smart-health, and security [35, 45, 50, 77]. In contrast to
these works that create training datasets with user studies, crowd-
sensing etc, ZeroNet exploits harvesting training data from publicly
available videos.

Vision: Depth cameras including kinect[4] and leap motion [3] sen-
sors have revolutionized the gaming industry by gesture interfaces.
Use of depth camera is one way to capture finger motion. However,
advances in machine learning, availability of large training datasets
as well as techniques for creation of synthetic datasets have enabled
precise tracking of finger motion even from monocular videos that
do not contain depth information [18, 31, 42]. While such works are
truly transformative in nature, we believe wearable based solutions
have benefits over vision based approaches which are susceptible to
occlusions, lighting, and resolution. In addition, wearable devices
offer ubiquitous solution with continuous tracking without the
need of an externally mounted camera.

Radio Frequency (RF): RF including WiFi, RFID, and mmWave
hardware have been used for a number of human activity recogni-
tion applications. WiSee [51] can detect hand gestures by measuring
doppler shifts from WiFi reflections. 3D pose of the human body has
been detected even behind occlusions such as Walls using wireless
body reflections [33, 81]. Heart rate, breathing, and physiological
signals of interest to healthcare applications have been detected
using RF signals [79, 80]. Google project Soli [63] can detect fine
grained finger gestures using mmWave reflections. While RF based
tracking, like vision, is completely passive, we believe the advan-
tage of wearable device is being completely ubiquitous without the
need for any external infrastructure.

Transfer Learning from Videos: Deep Inertial Poser [29] uses
synthetic data from motion capture videos (from cameras like
ViCONT[69]) instead of public videos for training human pose track-
ing algorithms with 6 on-body IMUs. Such motion capture cam-
eras can provide high quality training data with mm level accuracy.
However, creating such datasets requires 6-8 costly VICON cameras.
We believe using publicly available videos is an easier alternative.
More recently, several innovative works [38, 55, 66, 74, 78] have
explored the use of YouTube-like videos for training human activity
recognition (HAR) on wearable sensors. In contrast to such works
that classify tens of large scale motion activities (running, sitting,
eating etc.), ZeroNet performs recognition of fine grained finger
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motions over a larger class of gestures with potential to applica-
tions in augmented and virtual reality, sign language recognition
etc. In addition, ZeroNet fuses the harvested training data with
data-augmentation techniques for better robustness of ML models.

Data Augmentation: Data augmentation enriches the quality of
datasets to help ML models generalize well and exhibit higher
accuracy and robustness with limited quantity of training data.
Transformation such as rotation, scaling, translation and elastic
distortions on images have been explored to create more training
data from existing datasets. [21, 57, 61, 71]. Similarly, image crop-
ping, flipping, color shifting, and whitening are other techniques to
create new training data from existing datasets [37]. In the area of
automatic speech recognition (ASR), data augmentation techniques
such as frequency axis distortions[34], speech rate variations, vo-
cal tract normalization[32] etc have been explored to improve the
accuracy. In a similar spirit, ZeroNet incorporates ideas in data aug-
mentation for IMU datasets for better accuracy, robustness, and
generalizability of ML models. This is particularly important in the
context of IMU data since there is no large scale public datasets like
computer vision or speech. Data augmentation techniques have
been explored in the context of wearable sensing for parkinson dis-
ease gait monitoring [68] and construction activity monitoring [53].
More recently, data augmentation for human activity recognition
has been extensively studied in [20] for several benefits including
robustness to sensor wearing positions. In contrast to these works,
ZeroNet performs a fusion of data extraction from videos and com-
bines it with data augmentation techniques to enable inferences on
IMU devices without any training overhead.

Transfer Learning, Domain Adaptation, and Zero-shot Learn-
ing: Transfer-learning based domain adaptation is popular in vision
and speech. For example, AlexNet model [37] pretrained on Ima-
geNet database [24] has been fine-tuned for classifying images in
medical domain[83], remote-sensing [27] and breast-cancer [44].
Similarly, a pre-trained BERT language model [25] has been fine-
tuned for tasks in text-summarizing [76], question answering [52]
etc. Adversarial domain adaptation [67] using generative adversar-
ial networks (GAN) is popular. Here, an unsupervised game theo-
retic strategy is used to transform the distribution of the feature
representations from the target-domain into the distribution of the
source-domain on which the model was trained. If successful, the
model trained on the source domain is directly useful for perform-
ing inferences on a target domain. Similarly, other architectures for
learning feature transformations to adapt the feature representa-
tions from a source domain to a target domain have been proposed
[64]. However, such techniques are hard to apply to our problem
domain since this still requires enough real training data (atleast in
unlabelled form) from IMU to achieve sufficient convergence of the
domain adaptation process. Furthermore, each user’s finger motion
pattern as well as natural variations in sensor wearing positions
could lead to different distributions in the sensor data [15, 20] thus
entailing more real training data under each setting. On the other
hand, ZeroNet performs comparable to semi-supervised domain
adaptation techniques [27, 83] which need partial labelled real IMU
data and even outperforms models fully trained on our own real
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IMU dataset. We believe ZeroNet’s ability to provide promising
accuracy without any training overhead is a first step towards gen-
erating data for unsupervised domain adaptation. Our approach is
related to zero-shot learning [62], where a ML model is trained to
predict classes for which no training examples has been observed.
Appropriate representations are learnt for both training examples
and class labels. By learning the mapping between representations
of known training examples and their classes, the mapping between
representations of a new example is made even if it belongs to an
unseen class. One difference between ZeroNet and classical zero-
shot learning is that zero-shot learning needs training data from
the target domain for some classes, whereas ZeroNet does not need
training data for any classes.

8 DISCUSSION AND FUTURE WORK

Exploiting large scale video datasets: ZeroNet only scratches
the surface in harvesting training data from videos. 300 hours of
videos are uploaded to YouTube every minute for human activities
ranging from sports, tutorials, physical exercises, speech, daily
activities (cooking, eating, jogging) etc. Exploiting more videos for
building ML models can enhance the robustness.

Automated data augmentation: In ZeroNet, the amount of per-
turbations introduced in the data for augmentation is fixed. Auto-
mated data augmentation [23] is an active area of research where
the parameters for data augmentation can be modeled as a learning
problem. We plan to incorporate the innovations from this area
into ZeroNet as a part of the future work.

Augmented and Virtual Reality applications: AR and VR ap-
plications benefit from fine grained tracking of hand and finger
locations. Towards pushing the limits of accuracy, ZeroNet will
exploit video-based training data for free form tracking of 3D finger
joint locations. Similar to our analysis on finding the optimal finger
to place the sensor, enough training data can be generated from
videos for analyzing the tradeoff between number and position of
placement of sensors and the expected accuracy.

9 CONCLUSION

Application of ML models for finger gesture recognition can en-
able a number of exciting applications. However, unlike computer
vision and speech, there is a dearth of large scale training data
for developing robust and sophisticated ML models. Towards ad-
dressing this problem, this paper presents ZeroNet that extracts
training data from publicly available videos of annotated finger
gestures. Appropriate data augmentation techniques are exploited
to increase the robustness and generalizability of ML models to
natural patterns in user gesturing. A systematic user study with
10 users over 50 gestures demonstrates a top-1% accuracy of 82.4%
and a top-3% accuracy of 94.8% with zero training overhead. While
the results are promising, we believe we have only scratched the
surface. Exploiting the availability of large scale video datasets that
are publicly available can enhance the start of the art in a number of
applications including augmented reality, virtual reality, healthcare
and rehabilitation etc.

Liu, et al.
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