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Abstract—Along with increasingly popular virtual reality ap-
plications, the three-dimensional (3D) point cloud has become a
fundamental data structure to characterize 3D objects and sur-
roundings. To process 3D point clouds efficiently, a suitable model
for the underlying structure and outlier noises is always critical.
In this work, we propose a hypergraph-based new point cloud
model that is amenable to efficient analysis and processing. We
introduce tensor-based methods to estimate hypergraph spectrum
components and frequency coefficients of point clouds in both
ideal and noisy settings. We establish an analytical connection
between hypergraph frequencies and structural features. We
further evaluate the efficacy of hypergraph spectrum estimation
in two common applications of sampling and denoising of point
clouds for which we provide specific hypergraph filter design
and spectral properties. Experimental results demonstrate the
strength of hypergraph signal processing as a tool in character-
izing the underlying properties of 3D point clouds.

Index Terms—3D point clouds, hypergraph signal processing,
hypergraph construction, denoising, sampling.

I. INTRODUCTION

Recent developments in depth sensors and softwares make
it easier to capture the features and create a three-dimensional
(3D) model for an object and its surroundings [1]. In par-
ticular, with low-cost scanners such as light detection and
ranging (LIDAR) and Kinect, a new data structure known as
the point cloud has achieved significant successes in many
areas, including virtual reality, geographic information system,
reconstruction of art document and high-precision 3D maps for
self-driving cars [2]. A point cloud consists of 3D coordinates
with attributes such as color, temperature, texture, and depth
[3]. Owing to the easy access to scanning sensors and the huge
need in describing the 3D features, the use of point clouds
has attracted significant attentions in areas of computer vision,
virtual reality, and medical science. How to process the point
clouds efficiently becomes an important topic of research in
many 3D imaging and vision systems.

To analyze the features of point cloud, the first step is to
construct an analytical model to represent the 3D structures.
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The literature provides several different models. In [4], the
3D space is partitioned into several boxes or voxels, and the
point clouds are then discretized therein. One disadvantage of
voxels is that a dense grid is required to achieve fine resolution,
leading to spatial inefficiency [3]. A spatially efficient ap-
proach [5], [6] is the octree representation of point clouds. An
octree is a tree data structure in which each node has exactly
eight children. It can partition a 3D space recursively, and
represent the point clouds with partitioned boxes. Although
efficient, octree suffers from discretization errors [3]. The bd-
tree is another spatial decomposition technique and is robust
in highly cluttered point cloud dataset. However, compared to
octree structures, bd-trees are more difficult to update.

Recently, graphs and graph signal processing (GSP) have
found applications in modeling point clouds. For example,
the authors of [3] construct a graph based on pairwise point
distances. Some other works, such as [8], [9], construct graphs
based on the k-nearest neighbors, where each vertex (point)
has an edge connection to its & nearest neighbors. There are
several clear connections between graph features and point
cloud characteristics. For example, the smoothness over a
graph can describe the flatness of surfaces in point clouds.
GSP-based tools such as filters and graph learning methods
can process the point clouds and have shown great success
because of the graph model’s ability to capture the underlying
geometric structures. However, graph-based methods still face
some challenges, such as limited orders and measurement
inefficiency. In a traditional graph, each edge can only connect
two nodes, constraining graph-based models to describe only
pairwise relationships. However, a multilateral relationship
among multiple nodes is far more informative in a point cloud
model. For example, points (i.e., nodes) on the same surface of
a point cloud exhibit a strong multilateral relationship, which
cannot be easily captured by an edge of a traditional graph.
In fact, construction of an efficient graph for a given dataset
is always an open question. Thus, studies on point clouds can
benefit from more general and efficient models.

To develop an efficient model for point clouds, we explore
a high-dimensional graph model, known as hypergraph [10].
Hypergraph can be a useful model in processing 3D point
clouds. A hypergraph H = {V,E} consists of a set of nodes
V = {vi,...,vk} and a set of hyperedges £ = {e1,...,ex}.
Each hyperedge in a hypergraph can connect more than two
nodes. Obviously, a normal graph is a special case of a
hypergraph, where each hyperedge degrades to connect two
nodes exactly. The hyperedge in a hypergraph can character-
ize the multilateral relationship among several related nodes
(e.g., on a surface), thereby making hypergraph a natural



(a) A 3D Shape with (b)
Eight Nodes: Green in the Graph
Top, Red in the Side, Blue
in the Bottom.

Fig. 1. Examples of Geometric Models of Point Clouds.

and intuitive model for point clouds. For example, a 3D
shape together with its geometric models are shown as Fig.
1. Since each edge only connects two nodes as nodes are
treated equivalently in a traditional graph as Fig. 1(b), it is
hard to distinguish from the graph structure which surface
a node belongs to. However, from the hypergraph model in
Fig. 1(c), we can easily identify surfaces of nodes according
to high-dimensional hyperedges. Furthermore, advances in
hypergraph signal processing (HGSP) [10] are providing more
hypergraph tools to process high-dimensional cross-features
and multilateral interactions among nodes, such as HGSP-
based filters and spectral analysis, for effective point cloud
processing.

However, processing the point clouds based on hypergraphs
still poses several challenges. Similar to GSP, the first problem
lies in the construction of hypergraph for point clouds. The tra-
ditional hypergraph construction method for a general dataset
relies on data structure. For example, in [12], a hypergraph
model is constructed according to the sentence structure in
natural language processing. The k-nearest neighbor model is
another method to construct the hypergraph. In [10], a hyper-
graph can be formed from the feature distances for an animal
dataset to achieve clustering. However, such distance-based
or structure-based model may be rather lossy in information
preservation. For example, the structure-based method may not
preserve the correlation of some irregular structures, whereas
the k-nearest neighbor method may narrowly emphasize the
distance information. In addition to hypergraph construction,
another issue in analyzing point cloud with hypergraph tools
is the computation complexity of the spectrum space. In the
HGSP framework, spectrum-based analysis plays an important
role but needs to compute the spectral space. Usually, the
computation of hypergraph spectrum is based on orthogonal-
CP decomposition [16], which incurs high-complexity when
there are many nodes. Another challenge in point cloud pro-
cessing is the effect of noise and outliers. Since a hypergraph
model is constructed from observed data, noise can distort
the hypergraph and degrade the performances of HGSP. Thus,
mitigating noise effect and robustly estimating the hypergraph
model for point clouds pose a significant challenge.

This work addresses the aforementioned problems. We pro-
pose novel spectrum-based hypergraph construction methods
for both clean and noisy point clouds. For clean point clouds,

Distance-based
Model
Eight Edges.

%}

‘
(c) Hypergraph Model

with with Three Hyperedges.

we first estimate their spectrum components based on the
hypergraph stationary process and optimally determine their
frequency coefficients based on smoothness to recover the
original hypergraph structure. For noisy point clouds, we
introduce a method for joint hypergraph structure estimation
and data denoising. We shall illustrate the effectiveness of the
proposed hypergraph construction and spectrum estimation in
two point cloud applications: sampling and denoising. Our
experimental results clearly establish a connection between
hypergraph frequencies and point cloud features. The per-
formance improvement in both applications demonstrates the
strength and power of hypergraph in point cloud processing
and the practical value of our estimation methods.

We organize the rest of the paper as follows. In Section I,
we lay the foundation with respect to the preliminaries and
notations of point clouds, tensor basics and hypergraph signal
processing. Next, we propose means in estimating hypergraph
spectrum for basic point clouds in Section III and further
develop means for hypergraph structure estimation of noisy
point clouds in Section IV. With the proposed estimation
methods, we study two important application scenarios and
establish the effectiveness of hypergraph signal processing
in Section V. Finally, we present the conclusion and future
directions in Section VI.

[I. PRELIMINARIES AND NOTATIONS

In this section, we cover basic background with respect to
point cloud, tensor basics and hypergraph signal processing.

A. Point Clouds

A point cloud is a set of 3D points obtained from sensors
or generated synthetically, where each point is attributed with
coordinates and other features, such as color [11]. Since the
3D coordinates are basic features of a point cloud, in this
work, we primarily focus on point clouds characterized by
their coordinates. We consider a matrix representation of the
point clouds, where a point cloud with N nodes is denoted by
a location matrix

s=[X; Xz Xs3]= e RV, (1)



where X, denotes a vector of the ith coordinates of all the
points, and s; is the three coordinates of ¢th point. With the
information of coordinates, different models, such as graphs
[3] and octrees [5], can be constructed to analyze the point
clouds, for which we will discuss more in Section V.

B. Tensor Basics

Tensor is a high-dimensional generalization of matrix. A
tensor can be interpreted as multi-dimensional arrays. The
order of tensor is the number of indices to label the com-
ponents of arrays [14]. For example, a scalar is a zeroth-order
tensor; a vector is a first-order tensor; a matrix is a second-
order tensor; and an M -dimensional array is an M th-order
tensor [15]. In this work, an Mth-order tensor is denoted by
A € RExIxxInm \whose entry in position (1,42, ,iar)
is labeled as aj,...;,,. Here, Ij, is the dimension of kth order.

Tensor outer product is a widely used operation to con-
struct a higher-order tensor from lower-order tensors. The
tensor outer product between an Mth-order tensor U €
RItxI2x...xIn yith entries u;,. ;,, and an Nth-order tensor

TixJa X XN . :
V € R/1*/2X-XJIN with entries vj, _;, is denoted by

W=UoV, )

where the result W € RIv¢I2xxlaxJixJax...xIn g an
(M + N)th-order tensor with entries

Wiy inggr g = Wireoing * Vjioogn - 3)

C. Hypergraph Signal Processing

Hypergraph signal processing (HGSP) is a tensor-based
framework [10]. In the HGSP framework, a hypergraph with
N nodes and longest hyperedge connecting M nodes, is
represented by an M-th order N-dimension representing
tensor A = (ajipip) € RY " Note that, the integer
M 1is the maximal cardinality and each hyperedge can only
connect at most M nodes. For those hyperedges with fewer
than M nodes, a normalization scheme is applied based on
permutation and combination. Interested readers are referred
to [13] for more discussions on hyperedge normalization
and weight calculation. The representing tensor can be an
adjacency tensor or Laplacian tensor in different purposes [13].
In this paper, we refer the adjacency tensor as the representing
tensor, in which each entry a;,;,...;,, indicates whether nodes
{v1,Vva, -+ ,vpr} are connected in the normalized hyper-
edges.

With the orthogonal CANDECOMP/PARAFAC (CP) de-
composition [16] - [18], the representing tensor can be de-
composed via

N
AzZ)\T~fro...ofr, 4)
r=1 M times

where f,.’s are orthonormal basis vectors called spectrum com-
ponents and \,. are frequency coefficients related to the hyper-
graph frequency. All the spectrum components {fy, -, fy}
construct the hypergraph spectral space. Each pair (f., \,.) is
called the spectral pair of the hypergraph, which is also the
E-eigenpair of the representing tensor [10].

Given an original signal s = [s; s sn|Y, the
hypergraph signal is defined as the (M — 1) times tensor outer
product of s, i.e.,

sM-11=go..0s. (5)
—
M — 1 times

The hypergraph frequencies are ordered by the total varia-
tion of the spectrum component, which is defined as

1

TV(f,) = ||f. — X A=) (6)

max
where AfT[M_l] is the contraction between representing tensor
A and the hypergraph signal.

A spectrum component with larger total variation is a
higher-frequency component, which indicates a faster prop-
agation over the given hypergraph. Moreover, a supporting
matrix

M £T

] .

Anv| |£F

can be defined to capture the overall spectral information of
the hypergraph.

Instead of reviewing many properties of HGSP here, other
aspects such as hypergraph Fourier transform, hypergraph filter
design and sampling theory can be found in [10].

III. HYPERGRAPH SPECTRUM ESTIMATION FOR POINT
CLOUDS

To process the 3D point clouds, the first step is to construct
an optimal hypergraph to model the point clouds. As we
mentioned in the Section I, it is time-comsuming and inef-
ficient to first construct a hypergraph structure before tensor
decomposition to obtain the hypergraph spectrum. Instead,
we propose to directly estimate the hypergraph spectral pairs
based on the observed data, and then recover the original
representing tensor with Eq. (4). In this section, we first
estimate the hypergraph spectrum components f,.’s based on
the hypergraph stationary process, and optimize the frequency
coefficients A,’s based on the smoothness for original point
clouds.

A. Estimation of Hypergraph Spectrum Components

In this part, we propose a method to estimate the hypergraph
spectral components based on the hypergraph stationary pro-
cess.

1) Hypergraph Stationary Process: Before providing de-
tails of the estimation, let us first introduce some new defini-
tions and properties necessary for spectrum estimation.

Stationarity is a cornerstone property that facilities the
analysis of random signals and observations in traditional
signal processing [19]. It has equal importance in graph and
hypergraph signal processing. Based on graph shifting intro-
duced in [23], a definition of graph stationary process proposed
in [19] can analyze the properties of the different observations
of nodes, or the random signals over the graphs. Furthermore,
[22] introduces a method to estimate the graph spectrum space



and graph diffusion for multiple observations based on the
graph stationary process. Similarly, the hypergraph stationary
process can be defined to estimate hypergraph spectrum.

Now, let us introduce the definition of the hypergraph
stationary process. In [10], a polynomial hypergraph filter
based on supporting matrix is defined as

s’ = ZakPks, (®)
k=1

where P = \,,,0:Ps.

Similarly, based on the supporting matrix, a 7-step shift-
ing operation is defined as P, = P7. Then, similar to
the definition of the stationary process in traditional digital
signal processing and graph signal processing, a strict-sense
stationary process in HGSP can be defined as follows.

Definition 1. (Strict-Sense Stationary Process) A stochastic
signal x € RYN is strict-sense stationary over the hypergraph
with P if and only if

P.x )
holds for any T.

Since the strict-sense stationary is hard to achieve and
analyze in the real datasets, we introduce the weak-sense sta-
tionary process similar to traditional digital signal processing.

Definition 2. (Weak-Sense Stationary Process) A stochastic
signal x € RYN is weak-sense stationary over the hypergraph
with P if and only if

E[x] = E[P,x] (10)

and
E[(an)((PH)‘er)H] = ]E[(PTlJrTX)((PH)TszX)H] 1D

hold for any T, where () refers to the mean of observations
and (-)¥ is the Hermitian transpose.

From the definition of the weak-sense stationary process
(WSS), Eq. (10) implies that the mean function of the signal
must be constant, which is the same condition as in traditional
digital signal processing (DSP) [24]. From the definition of
supporting matrix, the (4,7)-th entry of P is the same as
the (j,i)-th entry of P, which indicates that P is the
shifting in the opposite direction of P. Then, the condition
in Eq. (11) indicates that the hypergraph covariance function
Kyx(11,—7T2) = Kax(T14+7,7—T2) = Kxx(71+72,0), which
is also consistent with the definition in traditional DSP.

With the definition of the hypergraph stationary process,
we have the following properties regarding the relationship
between signals and hypergraph spectrum.

Theorem 1. A stochastic signal x is WSS if and only if it has
zero-mean and its covariance matrix has the same eigenvectors
as the hypergraph spectrum basis, i.e.,

12)

and

13)

where V. = [f1, £y, . fx] € RY*N are the hypergraph
spectrum.

Proof. Since the hypergraph spectrum basis are orthonormal,
we have VVT = I. Then, the 7-step shifting based on
supporting matrix can be calculated as

P, = VApVIVARVT ... VARpVT (14)

T  times
= VARVT. (15)

Now, the Eq. (10) can be written as
E[x] = VALVTE[x]. (16)

Since VALV does not always equal to I, Eq. (10) holds for
arbitrary supporting matrix and 7 if and only if E[x] = 0.
Next we show the sufficiency and necessity of the condition
in Eq. (13). The condition in Eq. (11) can be written as
P E[xx"]((P)7)"

T2

=P, ExxT((P)7_ ).

T2—T

a7)

Considering Eq. (15) and the fact that hypergraph spectrum is
real [10], Eq. (11) is equivalent to

VAR VARXx"IVARVH = VAR T VHE[xxT VAR TTVH
(18)
which can be written as

(VAE[xx" V)AL = AR (VIE[xxT V). (19)

If Eq. (19) holds for arbitrary P, (VEE[xx]V) should be
diagonal, which indicates E[xx] = VX, V. Thus, the
sufficiency of the condition is proved.

Similarly, we can apply Eq. (13) on both sides of Eq. (11),
we can establish the necessity of the condition in Eq. (13). O

This theorem can be used to estimate the hypergraph
spectrum, given multiple observations of several signal points.
2) Estimation of Spectrum Components for Point Clouds:
Now, we can use the property of stationary process to estimate
the hypergraph spectrum of point clouds. The three coordinates
of a point can be interpreted as three observations of the
point from different angles, which describe the underlying
multilateral relationship. Thus, we can assume that the point
cloud signals follow the stationary process over the estimated
underlying hypergraph structure. If the point cloud signals s
follow the hypergraph stationarity, it should satisfy Eq. (12)
and Eq. (13). Thus, a spectrum estimation method can be
based on hypergraph stationarity. The details of the algorithm

is described as follows in Algorithm 1.

Algorithm 1 Estimation of Hypergraph Spectrum

1: Input: Point cloud dataset s = [X; Xz Xgz] € RV*3,

2: Calculate the mean of each row in s, i.e.,
§= (X1 + X2 +X3)/3;

3: Normalize the original point cloud data as zero-mean in
each row, i.e., s’ = [X; —§,X2 —§5,X3 —§|;

4: Calculate the eigenvectors {f;, - , £y} for Ry = s'(s'")
via SVD;

5. Output: Hypergraph spectrum V = [f1,--- , fy].




With Theorem 1, we can directly obtain an estimation of
the hypergraph spectrum based on the hypergraph stationarity.
Note that, here, we assume all the observations are from a
clean point cloud without noise. The case of noisy point clouds
will be discussed later in Section I'V.

Different from the traditional column-wise mean of the
coordinates in Eq. (1), we use a row-wise mean of the
coordinates to calculate the spectrum. Traditional column-
wise mean methods [25] is based on principal component
analysis (PCA) in a local region for dimension reduction and
visualization of the data structure with a covariance matrix
in R3*3, Typical applications of such PCA-based methods
include points classification and region growing in segmenta-
tion [26], [27]. However, our objective is different. Since our
goal is to estimate a hypergraph spectrum matrix in RV*Y
based on hypergraph stationary process rather than to reduce
the data structure dimensions, the three coordinates represent
three observations (or hypergraph signals) of the N nodes.
Consequently, we apply the row-wise mean instead, unlike
column-wise means used in the PCA-based methods.

B. Estimation of Frequency Coefficients

Next, we discuss how we estimate the hypergraph frequency
coefficients with the spectrum components based on the hy-
pergraph smoothness.

In real applications, the large-scale networks are usually
sparse, which makes it meaningful to infer that most entries
of the hypergraph representing tensor for real datasets are zero
[28]. In addition, the smoothness of signals is a widely-used
assumption when estimating the underlying structure of graphs
and hypergraphs [29]. Thus, the estimation of the hypergraph
representing tensor with known spectrum components for a
given dataset s can be generally formulated as

min aSmooth(s, A, f.) + B||A| |5 (20)
N

st. A= A fro. of,.. 21
Z 0..0 21

r=1 M times
Ac A (22)

N
||A‘HT = Z azzlig-“’iju‘ (23)
11,02, i =1

The constraint set A in (22) includes the prior information
of the representing tensor. For example, if the representing ten-
sor is the adjacency tensor, its entries should be non-negative.
In the constraint of (23), ||A||r is the tensor norm which
controls the sparsity of the hypergraph structure. Here, we
consider the Frobenius-like norm [15] since we aim to build a
connection between spectra and hypergraph structures. The use
of other tensor norms hypergraph applications can be exploited
in future works. The smoothness function Smooth(s, A, f,.) can
be designed for specific problems. Typical functions can be
hypergraph Laplacian regularization, label ranking, and total
variation [10].

Here, the HGSP-based total variation is used to measure the
smoothness of signals over estimated hypergraph. In Eq. (6),
we have

N
A =N (ET )M = A f (24)

i=1

With the supporting matrix defined in Eq. (7), we also have

N

1 Ar

>\ma:c

P.f, = N (£ ) = f,. (25)

max
i=1

Consequently, the total variation can be written with the
supporting matrix as follows:

TV(s) = [[s = Pss|[x, (26)
where k Is application dependent.

For convenience, we use the quadratic-form total variation
based on the supporting matrix to describe the hypergraph
smoothness, i.e.,

TV(s) = ||s — (1/Amas) Ps|[3- (27)
This form of smoothness function suggested in [10] can cap-
ture the differences between one node and its neighbors over

hypergraph. Since the signals are smooth over the estimated
hypergraph, observations are also smooth. Thus, the final

smoothness function for point cloud s = [X; X, Xj]is
3
Smooth(s, X, f,) = > |IX; — PX;|[3
i=1

3
=D IXi =Y o (BT X0 |3
i=1 T

3
= [IXi - Wial[3,
i=1
where WZ = [(fiTX,L)fl (fQTXZ)fQ
Ar/Amaz and o = [0 - on]T.
Moreover, the tensor norm of a given hypergraph has the
following property with the frequency coefficients.

(28)

(fﬁXi)fN], Oy =

Theorem 2. Given a representing tensor A = ZN A

r=1"r"
2 _ WV 2
f.o...of, thetensornorm ||All7 =37, i 1855 iy
M times . .
can be written in the form of frequency coefficients as

N
IAJI7 =D A7 = A", (29)
r=1
where X =[\1 A An|T.
Proof. Since A = 27]};1 A -f.0..0f., we have
N ——
M times
N
Qiyig-ipng = Z /\'r'fT,il f’r,iz t f’r,in (30)
r=1



Algorithm 2 Estimation of Frequency Coefficient

1: Input: Point cloud dataset s = [X1, X2, X3] € RV*3,
hypergraph spectrum V = [f1, - fx].
for i=1,2,....iter do:
Set 0; = 1 as the maximal normalized eigenvalue.
Solve the optimization problem in Eq. (32).
end for
Find the optimal ¢ to minimize the target function.
The optimal coefficients o is the solution of Eq. (32)
correlated to the optimal :.
8: Output: Frequency coefficients o.

A o

where f,; is the ith element of f,.. Then, the tensor norm is

N
||AH% = Z (Z)‘Tfr,ilfr,iz "'fr,iM)Q
iy ,00, e ying T=1
N N
= > O Mt Frind) O Mfrin - fring)
il,i2,~<- ,’L’]M r=1 t=1

- ¥

> NN vy Fring Frin e Frin

11,82, ,0M Tt
N
=S 0N Y (Frifei) (Frin frin)
r,t 11,29, ip=1
= AN(E )M (31)
r,t
Since f,. is orthonormal, £/ f; = 1 holds if r = ¢; otherwise,
f7f, = 0. Thus, we obtain ||A[|2 = SN | A2, O

This property can help us build a connection from the tensor
norm to the frequency coefficients directly.

Now, if we consider the representing tensor as the adjacency
tensor and each hyperedge consists of three nodes since at
least three nodes are required to construct a surface, we

optimize the normalized frequency coefficients o = 5 L \=

max

[o1 02 on] via
3
min  « Z I|IX; — W,ol||3+ B’ a (32)
7 i=1
s.t. 0< o0, <maxo; =1, (33)

N
> Orfrisfrisfris =0, dnyigyiz =1,2,--- [ N. (34)
r=1

The constraint (34) limits the estimated representing tensor
as the adjacency tensor. The constraint (33) is the nonneg-
ative constraint on weight and the factor [16]. Clearly, the
optimization is non-convex with the constraint max; o; = 1.
However, if the position of the maximal frequency is known,
the optimization problem can be solved by tools such as cvx
[30], [31]. Thus, we can develop the following algorithm to
estimate the frequency coefficients.

Note that, since we consider clean point cloud without
noise, we usually set parameter < (. Then, from the
estimated spectrum pair (f,, 0,.) under normalization, we can
recover the original adjacency tensor as Eq. (21). Hence, the

Step 1: Estimate the spectrum

components f,.

* Calculate the normalized
covariance matrix of observations.

* Decompose the covariance matrix.

Prior
Knowledge
*  Smoothness
* Tensor type

Step 2: Estimate the frequency

coefficients o,

¢ Optimize the frequency
coefficients based on smoothness
and sparsity

\ 4
[ Step 3: Recover the representing ]

tensor A

Fig. 2. Estimation of Hypergraph Spectral Pairs for Original Point Clouds

hypergraph construction process for a clean point cloud can
be summarized as Fig. 2. The recovery of original adjacency
tensor is not always necessary in practical applications since
storing the representing tensor is less efficient than storing the
spectrum pairs.

IV. JOINT SPECTRUM ESTIMATION AND DENOISING

In practical 3D imaging, perturbations such as noises and
outliers often exist when generating a point cloud of an
unknown object. These noises may significantly affect the
performance of point cloud processing since many existing
algorithms require quality datasets [30]. Thus, denoising re-
mains a vital issue in practical point cloud applications.

Usually, to denoise point sets with sharp features is difficult,
especially when the noise is large, as such features are hard
to distinguish from noise effect. Generally, smoothness-based
methods are common. In [32], a method based on Ly norm of
differences between k-nearest neighbors is introduced. In [33],
Laplacian regularization is used to describe smoothness and to
denoise noisy point sets. Other works, such as [8], [34], min-
imize the total variation over graphs to denoise the point sets.
Although smoothness-based methods have achieved notable
successes, how to interpret and define an effective smoothness
function for a general point set remains open. Furthermore, for
graph-based smoothness methods, the construction of graph
model remains a critical problem, since traditional methods
based on distance suffers from the imprecise location measure-
ment. To this end, a more general definition of smoothness and
a more efficient denoising method for arbitrary point clouds
are highly desirable.

In this section, we introduce a joint method to simulta-
neously estimate the hypergraph structure and denoise noisy
point clouds. In Section III, we already introduce an estimation
method of spectral pair (f.,o,) for clean point clouds. A
similar construction process can be developed for the noisy
point clouds. As the estimation of spectrum components only
depends on the observed data, we need to denoise the noisy
observations while optimizing the frequency coefficients. As
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Prior
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Output:
« Spectral pairs
nough| * Denoised

Fig. 3. Joint Hypergraph Estimation and Denoising for Noisy Point Cloud.

already discussed, the problem of denoising a signal on a
hypergraph can be written as a convex minimization problem
with the constraints that denoised signals should be smooth
over the hypergraph. Accordingly, the general process of
hypergraph denoising and estimation can be summarized as
the following steps:

o Step 1: Estimate the approximated hypergraph spectrum
components from the observed noisy point clouds;

o Step 2: Jointly estimate frequency coefficients and de-
noise the noisy observations;

o Step 3: Update the noisy observations as denoised data
and repeat Step 1 until enough iterations.

To estimate hypergraph spectral components of noisy data,
the process is the same as Algorithm 1 based on hyper-
graph stationary process. To jointly estimate the frequency
coefficients to recover the original underlying structure and
to denoise the noisy point clouds, we propose the following

objective. Given N noisy points s = [X; Xao Xg], the
joint estimation task can be formulated as
3
. V2 W12 2
min ;[llxz Yillz + al|X; = Wial[3] + Bl|All7
(35
N
st. A= Arf.o..0f. € A,
Sa o
r=1 M times
0 <o, <maxo; =1,
7
W, = [(ff X)fi (£ X)) (FYX)En].
The resulting Y =[Y; Y2 Yg| is the denoised point

clouds, and («, ) are two positive regularization parameters.
The first part in Eq. (35) lets the denoised point cloud
maintain the observed structural features. The second part is
the smoothness function derived from Eq. (28) which adjusts
positions of noisy points. The third part is the tensor norm
regularization to control hypergraph sparsity.

Algorithm 3 Joint Hypergraph Estimation and Point Cloud
Denoising
1: Input: Noisy observations
(X1, X2, X3] € RV*3,
2: Initialization: Calculate the spectrum components f,.’s
from the observed point cloud s as Algorithm 1.
3. for i=1,2,....iter do:
:  Find the optimal o for the first subproblem in Eq. (36)
with Algorithm 2.
5:  Solve the optimization problem in Eq. (37) with Y in
Eq. (38).
6:  Update the observed signals as Y and recalculate the
spectrum components f;.’s.
7: end for
8: Output: Spectral pairs (f.,0,)’s, denoised point clouds
Y.

of point clouds s =

The optimization problem of Eq. (35) is not convex in Y
and o. Therefore, similar to [29], we split the problem into
two subproblems. For each subproblem, we fix one variable
set to solve the other one. Upon convergence, the solution
corresponds to a local minimum and not necessarily a global
minimum.

We first initialize Y as the observed signals X and solve
the following problem similar to that in Section III.

3
: 2 T
n}ymaz | X; — W;o||5+ fo’ o

=1

(36)

s.t. 0 <o, <maxo; =1,
3

N
Zarfr,ilfr,igfr,ig >0, iy,d2,i3=1,2,--- aN-
r=1
This problem can be solved similarly to the solution of clean
point cloud with Algorithm 2.

Once the estimated frequency coefficients are found, we
solve the subproblem of point cloud denoising

3
H%}nzlﬂlxz Yillz + af|X; — Wia[3], (37)
whose close-form solution for each coordinate is
Y, =[I+aI-P)T(I-P,)] 'X,. (38)

Note that Py is the supporting matrix. We then update the
frequency components based on the denoised point clouds,
and repeatedly carry out Step 1 to Step 3 until getting the
final solution. In practice, we generally observe the conver-
gence within only a few iterations. The complete algorithm is
summarized in Algorithm 3 as shown in Fig. 3. Unlike for
clear point clouds, we emphasize more on the smoothness of
signals over the hypergraph. The parameter o can be set larger
than used when dealing with clean point clouds.

V. APPLICATION EXAMPLES

In this section, we examine two application examples to test
the efficacy of the proposed method in estimating hypergraph
structure for both clear and noisy point clouds.
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Fig. 4. View from the Top of Sampled Point Clouds.

A. Sampling

Sampling is an important operation to facilitate analysis of
very large point clouds. In this part, we consider different sam-
pling strategies depending on different kinds of applications.
Some interesting connections are found from the hypergraph
frequency and point cloud features.

1) Resampling using Harr-like Highpass Filtering: Filter-
ing helps extract select features of a given dataset. In some
applications such as boundary detection, accurate extraction of
shape features of point clouds is important. Thus, an efficient
sampling should retain the features of the original point cloud.
In our estimation of hypergraph structure, smoothness is a
significant feature to model point clouds. Ideally, smoothness
over the original surface of a point cloud should correspond
to smoothness over its hypergraph model. Therefore, we can
also design a Harr-like high-pass filter to extract sharp features
over the surfaces.

Let I be an identity matrix of appropriate size. Similar to
that in GSP [3], a Haar-like high-pass filter is designed as

H=1-P, (39)

1—o0y 0 e 0
0 1—0y - 0
v7T.

=V (40)
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The filtered signal is

(Hs); =s; — Z Ps(ij)sj,
J

(41)

which reflects the differences between nodes and their neigh-
bors over the hypergraph. Note that, the frequency coefficients
together with their corresponding spectral components are
ordered decreasingly here, i.e., o; > 0;+1. From the definition
of total variation, more smoothness corresponds to larger
total variation. Thus, we can extract the sharp features over
the point clouds by sampling the nodes with large value of
lIsi — 3=, Psijsill3-

To test this application, we estimate the spectral pairs
for clean point clouds and filter the signals over several
synthetic datasets. We randomly generate multiple points over
the surfaces of basic graphics shown as Fig. 4(a) - 4(c),
and sample the point clouds using the high-pass filter (HPF)
given in Fig. 4(d) - 4(f). From the test results, we can see
that the sampled points of the surfaces in Fig. 4(d) mainly
congregate near the corners and edges, which are the sharp
parts of the point clouds. In addition, the sampled nodes
for a cube shape are also crowded near edges and corners.
On the other hand, the sampled nodes of a cylinder are
mostly at the boundaries of the cylinder. Our test results show
that the Harr-like HPF can extract sharp features from point
cloud surfaces, which correspond to the least smooth parts of
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Fig. 5. Test Datasets of Sampling.
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Fig. 6. Error between Recovered Data and Original Data.

the estimated hypergraph. Moreover, since the total variation
measures the order of frequency, sharp features over the point
cloud correspond to high frequency components. Thus, the
hypergraph model and the estimated spectral pairs are efficient
when extracting features of 3D point clouds.

2) Down-Sampling with Hypergraph Fourier Transform:
Projecting signals into a suitable orthonormal basis is a widely-
used sampling method [35]. The work of [10] develops a
sampling theory based on hypergraph signal processing as
follows:

o Step 1: Order the spectrum components from low fre-
quency to high frequency based on their total variations.
o Step 2: Implement hypergraph Fourier tranform as

Fs) = [(f9)M ™1 (fs)M ! (FXs) M7
(42)
e Step 3: Use C transformed signal components in the
hypergraph frequency domain to represent N signals in
the original vertex domain.

More specifically, for a K-bandlimitted hypergraph signal,
a perfect recovery is available with K samples in hypergraph
frequency domain. Similarly, we can sample the point clouds
based on the hypergraph Fourier transform. To test the per-
formance of the sampled signals, we implement hypergraph

Ratio of Samples

(e) Error for rocket dataset.

0.2

0.6 0.8 1 0.2 0.4 0.6 0.8 1
Ratio of Samples

(f) Error for chair dataset.

Fourier transform (HGFT) on each coordinates of the point
clouds, ie., F(X;) for all i. Then, we take the first C
transformed signals in all coordinates. Finally, we implement
the inverse hypergraph Fourier transform (iHGFT) to obtain
the sampled shapes of the original point clouds. Note that,
perfect recovery happens with C' samples, if (F(X;));+c =0
fori,j e ZT.

We test the recovered point clouds for animal point datasets
[36]-[39] and the ShapeNet datasets of objects [44], [45]
with the GSP-based methods. For the GSP-based method, we
construct a graph adjacency matrix W with Gaussian model,
ie.,

[Isi — ;13 2
exp | — , S;i —Sil|la £t
W, = p< 5 lIsi —s;ll2 43)

0, otherwise,

where s; is the coordinates of the ¢th node. Then, we sample
the point clouds using the signals after the graph Fourier
transform (GFT). The test point cloud is shown as Fig. 5.
We first compare the error defined as

_ 21X = X5

Errory = (44)
> Xl
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Fig. 8. Visualization of the Original and Denoised Bunny Point Clouds.
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Fig. 9. Comparison between Different Methods.

between the recovered point clouds and original point clouds
with sampling ratio 0.1 ~ 1 shown as Fig. 6. From the
experimental results, we can see that the HGSP-based method
has smaller error than the GSP downsampling method, clearly
indicating hypergraph to be a better model. However, some-
times, the recovery error alone cannot tell the true story in
terms of the performance for the recovered point clouds. To
explore more, we compare the recovered point clouds directly
in Fig. 7. From the experimental results, we can see that
HGSP-based method captures the overall structure of the point
clouds with very few samples, whereas the GSP-based method
requires more samples to get sufficient details. The error of
GSP mainly stems from some outliers when taking more than
90 percent of the samples. The experiments show that HGSP-
based method is a better tool for applications which need to
recover an overall shape of point clouds from limited data
storage. Our test shows hypergraph to be a suitable model
for point clouds, and the estimated hypergraph spectral pairs
capture the point cloud characteristics very well.

B. Denoising

From estimated hypergraph spectral pairs from noisy point
clouds, the performance of denoising is an intuitive metric
of how good the estimates are. There are multiple methods
developed to denoise noisy point clouds. The authors of [§]
proposed a graph-based method to denoise based on total
variation (GSP-TV). This method constructs a graph based
on observed coordinates first before solving the denoising
optimization

min ||X = Y3 + aTV(Y, W), (45)
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where X is the observed coordinates, and W is the adjacency
matrix. Here, the graph total variation TV (Y, W) is applied
in describing the smoothness over the graphs. In addition to
total variation, Laplacian regularization (LR) [40] has also
been used in denoising with a basic formulation

min|[X — Y3 + ol Y TLYl3, (46)
where L is the Laplacian matrix. Developed from traditional
Laplacian regularization methods, a mesh Laplacian smooth
(MLS) method is given in [41]. Other graph learning based
methods include graph Laplacian regularization (GLR) [42]
in a low-dimension manifold and feature graph learning (GL)
[43].

1) Overall Performance of Denoising: To validate the per-
formance of our denoising method, we first compare with the
aforementioned traditional methods using the Standford bunny
dataset with 397 points and sampled bunny with 3595 points,
shown as Fig. 8(a) and Fig. 8(b), respectively. For GSP-based
methods, a graph is constructed according to the Gaussian
distance model to encode the local geometry information
through an adjacency matrix in Eq. (43) [3]. For the Laplacian-
based method, we establish the Laplacian matrix L =D — S,
where S is the unweighted adjacency matrix and D is the
diagonal matrix of node degree. We compare different methods
in the sampled bunny dataset adding zero-mean Gaussian noise
with variance o2, and zero-mean Uniform noise with the
interval B — A, respectively. We use the error denoted by

N 3
ETTOT2 = ZZ |Xﬂ - }/ﬂ‘,

i=1 j=1

(47)



TABLE I
COMPARISON IN DIFFERENT DATASETS OF DIFFERENT NOISE.

[ Noisy [ GSP-TV [8] [ LR[39] | MLS [40] [ GLR [41] | GL [42] | HGSP
Uniform~U(-3, 3)
Cat 2.9819 2.3744 2.4649 2.5312 2.2576 22412 2.2209
Horse 3.0377 2.7638 2.8280 2.8615 2.6777 2.6415 2.6216
Wolf 2.9857 2.6009 2.5650 2.6312 2.4391 2.4281 2.4164
Rocket | 3.0587 2.6179 2.5391 2.6346 2.4512 2.3645 2.3052
Plane 2.9638 2.5369 24118 2.5110 2.4374 2.3827 2.3690
Chair 3.0233 2.5532 2.3718 2.5988 2.2855 2.1809 2.2048
Gaussian~N(0, 2)
Cat 4.0218 3.4952 3.2597 3.6202 2.9778 3.0112 3.0026
Horse 4.1020 3.6088 3.8241 3.7268 3.4370 3.3805 3.2996
Wolf 4.0402 3.4154 3.2637 3.4756 3.1616 3.0800 3.0463
Rocket | 4.1527 3.2323 3.4771 3.5967 3.1415 3.1063 3.2471
Plane 3.9544 3.3188 2.9365 3.4101 2.9677 2.9246 2.8868
Chair 4.0119 3.4372 3.0770 3.5044 3.1987 3.0212 3.0208
Impulse (p=0.08)
Cat 8.4066 7.3728 7.6285 7.8024 7.4001 7.3802 7.3844
Horse 35.7202 | 30.0853 29.8711 | 33.2011 28.9012 28.1285 | 27.9143
Wolf 9.4107 8.5086 8.5757 8.6105 8.2024 8.1684 8.1395
Rocket | 1.8312 1.6718 1.6312 1.7354 1.6010 1.5896 1.6619
Plane 0.7759 0.6413 0.6559 0.6678 0.6752 0.6588 0.6386
Chair 1.1175 0.9374 0.9081 0.9661 0.8815 0.8622 0.8598
Average

[ 55335 [ 47318 [ 4.6827 5.0047 [ 45058 [ 44195 T 4.3657

where X;; and Y}; are the jth coordinates of observed and
denoised point 7, respectively, to measure the performance. We
repeat the test on 1000 randomly generated noisy data. The
error between the original dataset and the denoised dataset is
shown in Fig. 9. The error of the noisy point clouds before
denoising is also given as a reference in Fig. 9. From the test
results, we can see that the HGSP-based method can achieve
the lowest error, which demonstrates the effectiveness of the
proposed denoising methods and estimated spectral pairs. In
addition, the denoised bunny with 3595 samples is shown in
Fig. 8(d), using our proposed method to denoise the noisy
bunny in Fig. 8(c). The successful recovery of the bunny point
cloud presents strong evidence that our estimated spectral pairs
and denoising method are powerful tools in processing noisy
point clouds.

To test the performance in a more general experiment setup,
we compare the proposed method with traditional methods
together with graph learning based methods with other types
of noise in both complex animal datasets and the ShapeNet
object datasets in Fig. 5. We normalize the coordinates of
each point cloud to maintain a similar noise level. Using mean
squared error (MSE) to measure the performances of different
methods, the results are shown in Table. I. We can see that the
HGSP-based denoising achieves the best overall performances
in most datasets with different noise types. Generally, GLR is
better than traditional Laplacian regularization owing to its
utilization of self-similarity among surface patches, and GL
exhibits a slight improvement over GLR. The GSP-based total
variation is worse than the HGSP-based total variation since
the graph is constructed from noisy coordinates. Moreover,
these methods perform better under Gaussian and uniform
noises, since impulsive noise has a rescaling effect on the
coordinates according to the coefficient p.

Discussion: Generally speaking, the total variation and the
Laplacian regularization are both effective descriptions for sig-

nal smoothness. Hypergraphs and graphs can be efficient tools
in processing point clouds for specific datasets. For example,
hypergraphs are more efficient in processing complex shape
features and tend to capture the overall shapes well with fewer
samples. It would be interesting to explore a joint framework
including both hypergraphs and graphs in processing different
kinds of features in point clouds. Additionally, future works
should also evaluate the effects of different tensor norms.

2) Impact of Sparsity and Smoothness: In addition to the
overall performance, it is interesting to consider the ablation
effect on smoothness and sparsity. To set up such additional
experiments, we compare the impact of optimization of fre-
quency coefficients with the simple approach of recovering
eigenvalues from SVD of the covariance matrix.

We apply the same strategy to denoise the bunny datasets
with uniform noise U(-0.1, 0.1) for the SVD-based method
and the HGSP optimization based method in Eq. (35). For the
SVD-based method, eigenvalues are directly from step 4 in
Algorithm 1 and only « is used in denoising (smoothness)
as Eq. (38). For the HGSP-based method, we first fix the
parameter o = 0.1 (smoothness) and measure the impact of /3
(sparsity) in Fig. 10(a). Next, we freeze the parameter 8 = 0.1
and test on different o’s to measure the impact of smoothness
in Fig. 10(b).

From Fig. (10), we observe that the optimal HGSP-based
results achieve lower MSE than the SVD-based method in
general, except for very large o. With properly chosen param-
eters for optimization, these results show that the HGSP-based
method is better than the SVD-based method, and demonstrate
the effectiveness of the proposed optimization-based method.

In Fig. 10(a), we can see that the appropriate [ lies in
[0.01,0.03], which is smaller than o = 0.1. In Fig. 10(b), the
optimum « lies near 0.3, larger than S = 0.1. Generally, «
larger than 3 generates reasonably desirable results. Moreover,
we can see from the curves of MSE that denoising is more
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sensitive to smoothness than sparsity.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we develop HGSP tools for effectively pro-
cessing 3D point clouds. We first introduce a novel method to
estimate hypergraph spectral components and present an opti-
mization formulation to optimally select frequency coefficients
to recover the optimal hypergraph structure. We develop a
HGSP algorithm to jointly estimate hypergraph spectrum pairs
and denoise noisy point clouds. To test the practicality and
efficacy of our proposed hypergraph tools, we study two point
cloud application examples. Our results illustrate significant
performance improvements for both sampling and denois-
ing applications. Moreover, we establish a clear connection
between hypergraph frequency components and features on
point-cloud surface that can be exploited in future studies.

Our work establish hypergraph signal processing as an
efficient tool in tackling high-dimensional interactions among
multiple nodes. In addition to sampling and denoising, HGSP
can find good applications in many other aspects of point
clouds through estimation of spectral components and fre-
quency coefficients. One direction is the design of filters to
analyze the spectral properties and surface features of 3D point
clouds. Another interesting problem is the recovery of point
clouds from low dimensional samples. Beyond point clouds,
HGSP can also effectively handle datasets with other complex
underlying structure.
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