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ABSTRACT

Learning and processing of signals over hypergraph models
have gained substantial traction owing to the ability of hy-
pergraphs in characterizing multilateral interactions. In this
work, we explore hypergraph spectral analysis and provide al-
ternative definitions of frequency domain operations that are
practically useful in image processing. We analyze hyper-
graph spectral properties and present several application ex-
amples, including compression, edge detection and segmen-
tation. Successful experiment results demonstrate the effec-
tiveness and the future prospect of the proposed hypergraph
frequency operations in image processing.

Index Terms— Image processing, hypergraph signal pro-
cessing, convolution, stationary process

1. INTRODUCTION

Graph signal processing (GSP) is a graph-theoretic tool to im-
plement signal processing and data analytic tasks based on
graph models [1]. A dataset of N data points can be mod-
eled as a graph of N vertices, whose internal relationships are
captured by edges. Graph Fourier space and the correspond-
ing spectrum-based methods can be exploited to process sig-
nals, including images, in the GSP framework [2]. With the
development of graph frequency operations and wavelet anal-
ysis [2, 3, 5], graph neural networks (GNN) have been pro-
posed to explore the underlying data structure and complex
data analysis [6, 7]. Although the GSP and GNN defined
over normal graphs have achieved notable successes, they are
constrained by graph edge dimensions since each edge in a
normal graph only connects two nodes. Thus, a graph edge
can only model pairwise relationship among nodes but can-
not describe the often informative multilateral relationships
in practical applications. One simple example is the network
in online social communities called folksonomies, in which
trilateral interactions occur among users, resources, and anno-
tations [8]. As a result, a more general model capable of mod-
eling high-dimensional interactions can provide added value
to problems in image processing and other high-dimensional
multimedia, such as point clouds and videos.

This material is based on works supported by the National Science Foun-
dation Grant No. 1824553.

To develop a more general model for complex data struc-
ture, we venture into the realm of high-dimensional graphs
called hypergraphs. Hypergraphs have found successes by
generalizing normal graphs in image processing, such as clas-
sification [9] and retrieval [10]. Moreover, hypergraph con-
volutional networks (HGCN) [11, 12] have been extended
from GNN to implement learning tasks over images. Dif-
ferent from GNN developed from graph convolution, HGCN
lacks the basic support of hypergraph spectral analysis and
fundamental hypergraph frequency operations. Fortunately,
recent development of hypergraph signal processing (HGSP)
provides theoretical foundation for hypergraph spectral anal-
ysis. For example, the authors of [13] proposed an analytical
tool based on the simplicial complex. Moreover, the authors
of [14] developed a more general HGSP framework to ana-
lyze the multilateral relationship in multimedia datasets, such
as images and point clouds [15, 16]. However, we note that
existing hypergraph tools are incomplete as the definitions of
hypergraph spectral operations useful in image processing,
such as convolution and translation, are still missing.

In this work, we investigate the use of hypergraph spectral
analysis and introduce HGSP as tools in image processing.
Our contributions can be summarized as follows:

• We provide alternative definitions of hypergraph spec-
tral operations within HGSP [14] for data analysis.

• We present guidelines for applying HGSP in image pro-
cessing and introduce several applications, such as edge
detection, compression, and video segmentation.

When presenting test results, we compare our proposed meth-
ods against benchmarks from traditional graph and learning
methods. Our experiments demonstrate the effectiveness of
HGSP and hypergraph spectral analysis in image processing.
Furthermore, we expect the proposed spectral operations to
play important roles in the development of HGCN.

2. PRELIMINARIES

In this section, we will overview fundamentals of the general
hypergraph signal processing (HGSP) [14].

Within the HGSP framework, a hypergraph with N
nodes and longest hyperedge connecting M nodes, is rep-
resented by an M th-order N -dimensional adjacency tensor
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A ∈ R

N×N×···×N︸ ︷︷ ︸
M times which can be also decomposed via or-

thogonal CP decomposition [14], i.e.,

A = (ai1i2···iM ) ≈
N∑
r=1

λr · fr ◦ ... ◦ fr︸ ︷︷ ︸
M times

, (1)

where ◦ is the tensor outer product [14]. Note that the hyper-
edges with fewer nodes than M are normalized with weights
as shown in [14, 17]. In the orthogonal CP decomposition,
fr’s are orthonormal basis called spectrum components and
λr are frequency coefficients related to the hypergraph fre-
quency. All the spectrum components {f1, · · · , fN} form the
hypergraph spectral space.

Similar to GSP, hypergraph signals are attributes of
nodes. Intuitively, the original signal is defined as s =
[s1 s2 ... sN ]T ∈ R

N . Since the adjacency tensor A
describes the signals in the high-dimensional interactions, we
need to define a specific form of the hypergraph signal to
work with the representing tensor, i.e.,

s[M−1] = s ◦ ... ◦ s︸ ︷︷ ︸
M-1 times

. (2)

The resulted hypergraph signal is an (M − 1)th-order N -
dimensional tensor. Hypergraph shifting is defined as the con-
traction of the adjacency tensor and the hypergraph signal:

s′ = As[M−1]. (3)

The insight to interpret hypergraph shifting over the adja-
cency tensor is shown in [14].

Based on the definition of hypergraph spectrum and hy-
pergraph signals, the hypergraph Fourier transform (HGFT)
is defined as

ŝ = FC(s) = [(fT1 s)M−1 · · · (fTNs)M−1]T. (4)

Because of the page limitation, we shall refrain from present-
ing the details on many fundamental aspects of HGSP. Cer-
tain basic ideas, such as the implementation of HGFT, HGSP
filter design, bandlimited signals, and hypergraph frequency
analysis as well as their interpretations can be found in [14].

3. HYPERGRAPH FREQUENCY OPERATIONS

In this section, we introduce important operations for the hy-
pergraph frequency analysis useful in image processing.

3.1. Convolution

Convolution is an essential operation in traditional image pro-
cessing. In DSP and GSP [4, 20], Fourier transform of con-
volution between two signals is equal to the product between

their respective Fourier transforms. Similarly, we generalize
the hypergraph convolution denoted by � as

x � y = F−1
C (FC(x) ∗ FC(y)), (5)

where FC is the HGFT, F−1
C is the iHGFT, and ∗ denotes

Hadamard product [14]. This definition generalizes the prop-
erty that the convolution in the vertex domain is equivalent to
the product in the hypergraph spectral domain.

3.2. Translation

The classic translation in DSP can be written as the convo-
lution between the signal and an impulse function centered
at a certain point. With the definition of hypergraph convolu-
tion, we define the hypergraph translation of an original signal
x ∈ R

N similar to that in GSP [20] as

Tnx =
√
Nx �Δn, (6)

where the nth element of the Kronecker Δn ∈ R
N is 1 and

other elements are 0. Similar to translation in GSP, hyper-
graph translation is not like the time shift of signal in DSP. In-
stead, it represents a hypergraph convolution kernel localizing
the information near the centered node vn [5], which helps
capture topological information among pixels in images.

3.3. Sampling and Interpolation

Sampling is an important operation in image processing,
which selects a subset of individual data points to estimate
the characteristics of the whole population. Similar to sam-
pling signals in time and GSP [21], the HGSP sampling
theory can be developed to sample signals over the vertex
domain. Since the reduction of tensor order may break the
structure of hypergraph and cannot always guarantee perfect
recovery, we adopt the dimension reduction of each order.
The sampling of a hypergraph signal is defined as follows:

Suppose that Q is the dimension of each sampled order.
The sampling operation of a hypergraph signal s[M−1] ∈

R

N×N×...×N︸ ︷︷ ︸
M−1 times is defined as

s
[M−1]
Q = s[M−1] ×1 U×2 U · · · ×M−1 U, (7)

where ×n denotes the n-mode product [14], the sampling op-
erator is U ∈ R

Q×N , and the sampled signal is s
[M−1]
Q ∈

R

Q×Q×...×Q︸ ︷︷ ︸
M−1 times . The interpolation operation is defined by

s[M−1] = s
[M−1]
Q ×1 T×2 T · · · ×M−1 T, (8)

where the interpolation operator is T ∈ R
N×Q.

With the definition of HGSP sampling operations, we
have the following theorem.
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Theorem 1 Define the sampling operator U ∈ R
Q×N ac-

cording to Uji = δ[i − qj ] where 1 ≤ qi ≤ N, i =
1, . . . , Q. By choosing Q ≥ K and the interpolation op-
erator T = FT

[K]Z ∈ R
N×Q with ZUFT

[K] = IK and
FT

[K] = [f1, · · · , fK ], perfect recovery can be achieved, i.e.,
s = TUs for all K-bandlimited original signal s and the
corresponding hypergraph signal s[M−1].

The proof of Theorem 1 is given in [14]. This theorem shows
that perfect recovery is possible for HGSP by choosing suit-
able sampling and interpolation, which can be further applied
in applications, such as image compression.

3.4. Hypergraph Stationary Process

Stationarity is an important property in analyzing observa-
tions of random variables, which can be applied in high-
dimensional data structure with multiple observations, such
as videos or point clouds. In [18], a graph stationary pro-
cess is defined for graph-based observed samples. Within
the HGSP framework of [14], we extend the graph stationar-
ity and define a hypergraph stationary process based on the
supporting matrix to process 3D point clouds [15]. Here, we
revisit a useful property of hypergraph stationarity for image
processing as follows by leaving its proof in [15].

Theorem 2 A stochastic signal x is weak-sense stationary if
and only if it has zero-mean and its covariance matrix has the
same eigenvectors as the hypergraph spectrum basis, i.e.,

E[x] = 0 (9)

E[xxH ] = VΣxV
H , (10)

where V = [f1, f2, · · · , fN ] is the hypergraph spectrum.

This property implies that we can estimate hypergraph spec-
tral components from the eigenspace of the covariance matrix
of observations, which can help estimate the hypergraph spec-
trum for multimedia datasets. We shall give an application
example of this stationarity property in Section 4.3.

4. APPLICATION EXAMPLES

4.1. Image Compression

Efficient compression of signals is important in data analy-
sis and signal processing. Projecting signals onto a suitable
orthonormal basis is very common in compression. Within
the proposed HGSP framework, we can represent N signals
in the original domain with C frequency coefficients in the
hypergraph spectrum domain.

More specifically, according to Theorem 1, we can loss-
lessly compress a K-bandlimited signal of N signal points
with K spectrum coefficients. To test the performance of our
HGSP sampling, we compare the results of image compres-
sion with those from GSP-based compression method [19].

Fig. 1. Test Set of Images.
Table 1. Compression Ratio of Different Methods
image ct lenna mri AVG
IANH-HGSP 1.41 1.57 1.53 1.50
(α, β)-GSP 1.07 1.07 1.11 1.08
4 connected-GSP 1.07 1.04 1.05 1.05

We tested three size-256 × 256 photo images, shown in Fig.
1. We used the Image Adaptive Neighborhood Hypergraph
(IANH) model [22] to construct the hypergraph structure. To
lower complexity, we chose three closest neighbors in each
hyperedge to construct a third-order adjacency tensor. When
applying GSP-based method of [19], we represented images
as graphs with 1) the 4-connected neighbor model [23], and
2) the distance-based model in which an edge exists only if
the spatial distance is below α and the pixel distance is be-
low β. We use the compression ratio CR= N/C to mea-
sure compression efficiency. The results summarized in Table
1 illustrate higher compression ratio (efficiency) achieved by
HGSP-based compression over the GSP-based compression.
We believe HGSP could play an important role in both loss-
less and lossy data compression in the future works.

4.2. Edge Detection

Convolution-based method is widely used in the edge detec-
tion of images in DSP. Similarly, hypergraph convolution-
based operations can also play a role in image edge detection.
Here, we introduce a hypergraph translation-based method for
edge detection. To implement HGSP-based method, we first
design a 9× 9 mask and use it as a hypergraph with 81 nodes
by the IANH model. Next, we implement hypergraph-based
translation at the center of the mask. The summation of the
translated result becomes the new value of the center node.
Hovering the mask over the whole image, this process can be
understood as blurring the hypergraph signals with the infor-
mation of center node. We can design a threshold for the dif-
ference between the translated values and the original pixels
to detect edges. We compared the proposed method with the
Sobel and Prewitt methods [24] on three SIPI image datasets
(http://sipi.usc.edu/database/) as shown in Fig. 2. From the
result, we can see that HGSP-based method detects the de-
tails and the edges more explicitly. With deeper understand-
ing of hypergraph convolution-based kernels, HGSP shows
clear promise in edge detection.

4.3. Hypergraph Convolution Filter for Segmentation

Deep-learning methods, like graph and hypergraph convolu-
tional networks [7, 11, 12] have achieved significant success
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(a) Original (b) Sobel (c) Prewitt (d) HGSP

Fig. 2. Results of Edge Detection.

in data analysis. However, these learning methods do not pro-
vide analysis and interpolation in the hypergraph spectrum
domain. To explore hypergraph convolution operations, we
propose a convolution-based filter for semi-supervised learn-
ing in video segmentation. Define V = [f1 · · · fN ]. Given
the definition of (5), a single-step convolution filter with pa-
rameter y on signal x is defined as

Fy(x) = x � y = Vdiag(fTi y)VTx. (11)

We now explain the use of convolution filter to segment.
We consider a dataset (http://neurofinder.codeneuro.org/) in
a biomedical application. In such datasets, a series of time-
varying images are provided to record the activities of neuron
shown as Fig. 3(a). The task here is to segment neurons from
the background if we know part of labels in the ground truth
shown as Fig. 3(c). Such a video with K = 3024 frames
and N = 5122 pixels in each frame can be modeled as a
hypergraph with N nodes and each node has K observations.

Assume that xi ∈ R
N , i = 1, · · ·K are the pixels in the

ith frame. With the property of hypergraph stationary process
in Theorem 2, we can easily estimate the hypergraph spectrum
V for the time-varying images by applying decomposition on
the normalized covariance matrix from K observations xi’s.
Suppose that � nodes have labels and N−� do not. We can es-
timate the filter parameters y by minimizing the error between
the given labels L ∈ R

� and the � corresponding filtered sig-
nals Fy(x)� ∈ R

�, i.e.,

min
y

||L− Fy(x̃)l||22, (12)

where x̃ = 1
K

∑
xi is the pixel average. More specifically,

this optimization problem has a solution at

y = W−1L, (13)

where each row of W ∈ R
l×N is the corresponding row

of Vdiag(fTi x̃)VT with the same index as the labeled data.

(a) Detection of neurons (b) Comparison with SVM.

(c) Ground Truth of
Segmentation

(d) HGSP-based Seg-
mentation with MF.

(e) SVM-based Seg-
mentation with LPF.

Table 2. Comparison of Computation Time (in Seconds)
HGSP(64× 64) SVM (64× 64) SVM (512× 512)
2413 403 82813

From the estimated parameters y, we obtain the filtered sig-
nals for all the nodes in Fy(x̃) and apply a threshold to de-
termine its label (i.e., {±1}) in the binary classification. To
tackle possible noise amplification, we further apply a 4 × 4
median filter (MF) after the convolution filter.

In the experiment, we cut the original 512 × 512 images
into 64×64 non-overlapping blocks to lower complexity. One
result with � = 40% ·N labeled data achieves 95.06% accu-
racy, as shown in Fig. 3(d) and shows much clearer segmenta-
tion compared to the SVM result after a 4×4 averaging-kernel
lowpass filter (LPF) [25] in Fig. 3(e). Fig. 3(b) further com-
pares our method to SVM with and without LPF in terms of
estimated label accuracy. From the comparison, we can see
that the performances of SVM improves with larger process-
ing blocks at the cost of computation complexity. LPF can
improve the performance of SVM results. Still, the HGSP-
based method achieves the best performance. We measured
the computation time for these methods in Table 2. It is clear
that HGSP-based methods achieves superior accuracy with
moderate computation cost.

5. CONCLUSION

In this work, we introduce several fundamental definitions
and properties of hypergraph frequency operations for im-
age processing. We further present several application ex-
amples based on HGSP operations to illustrate the practical
utility of HGSP in multimedia signal processing. Our goal
is to develop new signal processing methods and analytical
hypergraph tools for effective image processing. Future ap-
plications of HGSP beyond the proposed image processing
problems include those in virtual reality, point clouds, and
audio/video processing. Moreover, HGSP is also expected to
be a useful tool in the development and analysis of HGCN.
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