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Abstract: Due to the amount of data involved in emerging deep learning and big data applications,
operations related to data movement have quickly become a bottleneck. Data-centric computing
(DCCQ), as enabled by processing-in-memory (PIM) and near-memory processing (NMP) paradigms,
aims to accelerate these types of applications by moving the computation closer to the data. Over the
past few years, researchers have proposed various memory architectures that enable DCC systems,
such as logic layers in 3D-stacked memories or charge-sharing-based bitwise operations in dynamic
random-access memory (DRAM). However, application-specific memory access patterns, power and
thermal concerns, memory technology limitations, and inconsistent performance gains complicate the
offloading of computation in DCC systems. Therefore, designing intelligent resource management
techniques for computation offloading is vital for leveraging the potential offered by this new
paradigm. In this article, we survey the major trends in managing PIM and NMP-based DCC systems
and provide a review of the landscape of resource management techniques employed by system
designers for such systems. Additionally, we discuss the future challenges and opportunities in
DCC management.

Keywords: processing-in-memory; near-memory processing; resource management; code annotation;
compiler optimizations; online heuristics; energy efficiency; 3D-stacked memories; non-volatile memories

1. Introduction

For the past few decades, memory performance improvements have lagged behind compute
performance improvements, creating an increasing mismatch between the time to transfer data and
the time to perform computations on these data (the “memory wall”). The emergence of applications
that focus on processing large amounts of data, such as deep machine learning and bioinformatics,
have further exacerbated this problem. It is evident that the large latencies and energies involved with
moving data to the processor will present an overwhelming bottleneck in future systems. To address
this issue, researchers have proposed to reduce these costly data movements by introducing data-centric
computing (DCC), where some of the computations are moved in proximity to the memory architecture.

Two major paradigms of DCC have emerged in recent years: processing-in-memory (PIM) and
near-memory processing (NMP). In PIM architectures, characteristics of the memory are exploited
and/or small circuits are added to memory cells to perform computations. For example, [1] takes
advantage of dynamic random-access memory’s (DRAM) charge sharing property to perform bitwise
PIM operations (e.g., AND and OR) by activating multiple rows simultaneously. These PIM operations
allow computations to be done on memory where they are stored, thus eliminating most of the data
movement. On the other hand, NMP architectures take advantage of existing compute substrates
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and integrate compute cores near the memory module. For example, modern 3D-stacked DRAM
includes a logic layer where a compute core can be integrated beneath multiple DRAM layers within
the same chip [2,3]. Although the computation is carried out a little further away from memory than
in PIM systems, NMP still significantly improves the latency, bandwidth, and energy consumption
when compared to conventional computing architectures. For example, a commercial NMP chip
called UPMEM implemented a custom core into conventional DRAM memory chips and achieved 25x
better performance for genomic applications and 10x better energy consumption in an Intel x86 server
compared to an Intel x86 server without UPMEM [4].

Both PIM and NMP systems have the potential to speed up application execution by reducing
data movements. However, not all instructions can be simply offloaded onto the memory processor.
Many PIM systems leverage memory characteristics to enable bulk bitwise operations, but other types
of operations cannot be directly mapped onto the in-memory compute fabric. Even in NMP systems
that utilize cores with full instruction set architecture (ISA) support, performing computation in the
3D memory stack can create high power densities and thermal challenges. In addition, if some of the
data have high locality and reuse, the main processor can exploit the traditional cache hierarchies and
outperform PIM/NMP systems for instructions that operate on these data. In this case, the downside
of moving data is offset by the higher performance of the main processor. All of these issues make it
difficult to decide which computations should be offloaded and make use of these PIM/NMP systems.

In this article, we survey the landscape of different resource management techniques that decide
which computations are offloaded onto the PIM/NMP systems. These management techniques broadly
rely on code annotation (programmers select the sections of code to be offloaded), compiler optimization
(compiler analysis of the code), and online heuristics (rule-based online decisions). Before providing a
detailed discussion of resource management for PIM/NMP systems, Section 2 discusses prior surveys
in PIM/NMP. Section 3 discusses various PIM/NMP design considerations. Section 4 discusses the
optimization objectives and knobs, as well as different resource management techniques utilized
to manage the variety of PIM/NMP systems proposed to date. Lastly, Section 5 concludes with a
discussion of challenges and future directions.

2. Prior Surveys and Scope

Different aspects of DCC systems have been covered by other surveys. Siegl et al. [5] focus on the
historical evolution of DCC systems from minimally changed DRAM chips to advanced 3D-stacked chips
with multiple processing elements (PEs). The authors identify the prominent drivers for this change:
firstly, memory, bandwidth, and power limitations in the age of growing big data workloads make
a strong case for utilizing DCC. Secondly, emerging memory technologies enable DCC; for example,
3D stacking technology allows embedding PEs closer to memory chips than ever before. The authors
identify several challenges with both PIM and NMP systems such as programmability, processing speed,
upgradability, and commercial feasibility.

Singh et al. [6] focus on the classification of published work based on the type of memory,
PEs, interoperability, and applications. They divide their discussion into RAM and storage-based
memory. The two categories are further divided based on the type of PE used, such as fixed-function,
reconfigurable, and fully programmable units. The survey identifies cache coherence, virtual memory
support, unified programming model, and efficient data mapping as contemporary challenges.
Similarly, Ghose et al. [7] classify published work based on the level of modifications introduced into
the memory chip. The two categories discussed are 2D DRAM chips with minimal changes and 3D
DRAM with one or more PEs on the logic layer.

Gui et al. [8] focus on DCC in the context of graph accelerators. Apart from a general discussion
on graph accelerators, the survey deals with graph accelerators in memory and compares the benefits
of such systems against traditional graph accelerators that use field programmable gate arrays (FPGA)
or application-specific integrated circuits (ASIC). It argues that memory-based accelerators can achieve
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higher bandwidth and low latency, but the performance of a graph accelerator also relies on other
architectural choices and workloads.

In addition to DRAM, emerging memory technologies have been used to implement DCC
architectures. Umesh et al. [9] survey the use of spintronic memory technology to design basic logic
gates and arithmetic units for use in PIM operations. The literature is classified based on the type
of operations performed, such as Boolean operations, addition, and multiplication. An overview of
application-specific architectures is also included. Lastly, the survey highlights the higher latency
and write energy with respect to static random-access memory (SRAM) and DRAM as the major
challenges in large-scale adoption. Similarly, Mittal et al. [10] discuss resistive RAM (ReRAM)-based
implementations of neuromorphic and PIM logical and arithmetic units.

The surveys discussed above adopt different viewpoints in presenting prominent work in the
DCC domain. However, all of these surveys limit their discussion to the architecture and/or application
of DCC systems and lack a discussion on the management techniques of such systems. With an increase
in the architectural design complexity, we believe that the management techniques for DCC systems
have become an important research area. Understandably, researchers have begun to focus on how to
optimally manage DCC systems. In this survey, unlike prior surveys, we therefore focus on exploring
the landscape of management techniques that control the allocation of resources according to the
optimization objectives and constraints in a DCC system. We hope that this survey provides the
background and the spark needed for innovations in this critical component of DCC systems.

3. Data-Centric Computing Architectures

As many modern big data applications require us to process massive datasets, large volumes of
data are shared between the processor and memory subsystems. The data are too large to fit in on-chip
cache hierarchies; therefore, the resulting off-chip data movement between processors (CPUs, GPUs,
accelerators) and main memory leads to long execution time stalls as main memory is relatively slow
to service large influx of requests. The growing disparity in memory and processor performance is
referred to as the memory wall. Data movement also consumes a significant amount of energy in
the system, driving the system closer to its power wall. As data processing requirements continue
to increase, the cost due to each wall will make conventional computing paradigms incapable of
meeting application quality-of-service goals. To alleviate this bottleneck, PEs near or within memory
have emerged as a means to perform computation and reduce data movement between traditional
processors and main memory. Predominantly, prior work in this domain can be classified depending
on how PEs are integrated with memory.

For DCC architectures, solutions can be divided into two main categories: (1) PIM systems, which
perform computations using special circuitry inside the memory module or by taking advantage of
particular aspects of the memory itself, e.g., simultaneous activation of multiple DRAM rows for
logical operations [1,11-25]; (2) NMP systems, which perform computations on a PE placed close to
the memory module, e.g., CPU or GPU cores placed on the logic layer of 3D-stacked memory [26-42].
For the purposes of this survey, we classify systems that use logic layers in 3D-stacked memories as
NMP systems, as these logic layers are essentially computational cores that are near the memory stack
(directly underneath it).

3.1. Processing-In-Memory (PIM) Designs

PIM solutions proposed to date typically leverage the high internal bandwidth of DRAM dual
in-line memory modules (DIMM) to accelerate computation by modifying the architecture or operation
of DRAM chips to implement computations within the memory. Beyond DRAM, researchers have also
demonstrated similar PIM capabilities by leveraging the unique properties of emerging non-volatile
memory (NVM) technologies such as resistive RAM (ReRAM), spintronic memory, and phase-change
memory (PCM). The specific implementation approaches vary widely depending on the type of
memory technology used; however, the modifications are generally minimal to preserve the original
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function of the memory unit and meet area constraints. For instance, some DRAM-based solutions
minimally change the DRAM cell architecture while relying heavily on altering memory commands
from the memory controller to enable functions such as copying a row of cells to another [16],
logical operations such as AND, OR, and NOT [18,22,24], and arithmetic operations such as addition
and multiplication [1,23,43]. Both DRAM and NVM-based architectures have demonstrated promising
improvements for graph and database workloads [1,18,24,44] by accelerating search and update
operations directly where the data are stored. In the next sections, we will briefly discuss different PIM
architectures that use DRAM and NVM.

3.1.1. PIM Using DRAM

The earliest PIM implementations [11,14,15] integrated logic within DRAM. The computational
capability of these in-memory accelerators can range from simply copying a DRAM row [16] to
performing bulk bitwise logical operations completely inside memory [1,18,23,44]. For example, [1,16,23]
use a technique called charge sharing to enable bulk AND and OR operations completely inside memory.
Charge sharing is performed by the simultaneous activation of three rows called triple row activation
(TRA). Two of the three rows hold the operands while the third row is initialized to zeros for a bulk
AND operation or to ones for a bulk OR operation. Figure 1 shows an example TRA where cells A and
B correspond to the operands (A is zero and B is one) while cell C is initialized to one to perform an OR
operation ®. The wordlines of all three cells are raised simultaneously @, causing the three cells to share
their charge on the bitline. Since two of the three cells are in a charged state, this results in an increase
in voltage on the bitline. The sense amplifier © then drives the bitline to Vpp, which fully charges
all three cells, completing the “A OR B” operation. In practice, this operation is carried out on many
bitlines simultaneously to perform bulk AND or OR operations. In addition, with minimal changes
to the design of the sense amplifier in the DRAM substrate, [1,44] enable NOT operations in memory,
which allows the design of more useful combinational logic for arithmetic operations like addition and
multiplication. Besides bitwise operations, DRAM PIM has been shown to significantly improve neural
network computation inside memory. For example, by performing operations commonly found in
convolutional network networks like the multiply-and-accumulate operation in memory, DRAM PIM
can achieve significant speedup over conventional architectures [45].

Wordline OA 1 ivpp lA 1 iVpp+4 IA 1 Vop
\ =
OB—_E . IB——E - ]Fr w

Voo G 3Vop e 0 o
initial state after charge sharing after sense amplification

Figure 1. An example of an OR operation being performed on DRAM cells A and B using charge-sharing

in triple-row activation [1].

In order to extract even more performance improvements, [12] places single instruction, multiple
data (SIMD) PEs adjacent to the sense amplifiers at the cost of higher area and power per bit of memory.
The inclusion of SIMD PEs inside the memory chip enables DRAM PIM to take advantage of the high
internal DRAM bandwidth and minimizes the need for data to traverse power hungry off-chip links
while enabling more complex computations than those afforded by TRA-based operations.
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While PIM operations have been shown to outperform the host CPU (or GPU) execution,
there are some technical challenges with their implementation. To enable these operations in DRAM,
PIM modifications to DRAM chips are often made at the bank or sub-array level. If the source rows
containing the operands do not share the same sensing circuitry, large amounts of data may need to be
internally copied between banks, increasing latency and energy consumption, necessitating the use
of partitioning and data-mapping techniques. In addition, DRAM PIM operations that use TRA are
normally destructive, requiring several bandwidth consuming row copy operations if the data need
to be maintained [1,16]. Alternative ways to accomplish computation inside DRAM chips include
using a combination of multiplexers and 3T1C (three transistors, one capacitor) DRAM cells [46,47].
While 3T1C cells allow non-destructive reads, these significantly increase the area overhead of the
PIM system compared to the single transistor counterparts [1,16,44]. Moreover, DRAM is typically
designed using a high threshold voltage process, which slows down PIM logic operations when PIM
PEs are fabricated on the same chip [48]. These factors have resulted in relatively simple DRAM PIM
designs that prevent entire applications from running entirely in memory.

3.1.2. PIM Using NVM

Charge-storage-based memory (DRAM) has been encountering challenges in efficiently storing and
accurately reading data as transistor sizes shrink and operating frequencies increase. DRAM performance
and energy consumption have not scaled proportionally with transistor sizes like they did for processors.
Moreover, the charge storage nature of DRAM cells requires that data be periodically refreshed.
Such refresh operations lead to higher memory access latency and energy consumption. Kim et al. [49]
have also demonstrated that contemporary DRAM designs suffer from problems such as susceptibility
to RowHammer attacks [50], which exploit the limitations of charge-based memory to induce bit-flip
errors. Solutions to overcome such attacks can further increase execution time and reduce the energy
efficiency of DRAM PIM designs.

On the other hand, alternative NVM memory technologies such as phase-change memory
(PCM) [51-54], ReRAM [22,24,55-59], and spintronic RAM [60-66] show promise. NVM eliminates
the reliance on charge memory and represents the data as cell resistance values instead. When NVM
cells are read, cell resistances are compared to reference values to ascertain the value of the stored bit,
i.e., if the measured resistance is within a preset range of low resistance values (Rjy,), the cell value
read is a logical “1”, whereas a cell resistance value within the range of high resistance values (Rp;gp) is
read as a logical “0”. Writing data involves driving an electric current through the memory cell to
change its physical properties, i.e., the material phase of the crystal in PCM, the magnetic polarity in
spintronic RAM, and the atomic structure in memristors and ReRAM. The data to be stored in all cases
are embedded in the resultant resistance of the memory cell, which persists even when the power
supply shuts off. Thus, unlike DRAM, such memories store data in a non-volatile manner. In addition
to being non-volatile, the unique properties of these memory technologies provide higher density,
lower read power, and lower read latency compared to DRAM.

PIM using NVM, while based on a fundamentally different memory technology, can resemble its
DRAM counterpart. For example, Li et al. [24] activate multiple rows in a resistive memory sub-array
to enable bitwise logical operations. By activating multiple rows, the sense amplifiers measure the
bitwise parallel resistance of the two rows on the bitlines and compare the resistance with a preset
reference resistance to determine the output. Figure 2a shows how any two cells, R and Ry, on the
same bitline connect in parallel to produce a total resistance R1||Ry, where || refers to the parallel
resistance of two cells. Figure 2b shows how the parallel resistance formed by input resistances (Rjyy
or Rygn) measured at the sense amplifier, together with a reference value (Rrefor/RrefAND), can be used
to perform the logical AND and OR operation in memory [24].
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Figure 2. Example of AND and OR operations in memory that use resistance-based memory cells.
(a) Activating two resistors Ry and R, on the same bitline in a memristive crossbar array (MCA) results
in an effective resistance of Ry||R; on the bitline (figure adapted from [56]). This effective resistance can
be compared against preset reference resistance values (Ref0r, RrefaND) t0 ascertain the result of the
Boolean operation; (b) shows the truth table [24].

Aside from the inherent benefits of NVM technology—e.g., energy efficient reads, persistence,
and latency—NVM-based PIM allows AND/OR operations on multiple rows as opposed to just two in
DRAM. This is because as long as each memory cell has a large range of resistances, resistive memory can
have multiple levels of resultant resistances that can represent multiple states. Another technological
advantage for NVM PIM is that, unlike DRAM, reads are not destructive. This eliminates the need to
copy data to special rows before operating on them, as done in DRAM-based PIM solutions.

Besides conventional logical operations, NVM PIM has also proven particularly useful for
accelerating neural network (NN) computations [9,10]. Cell conductance in the rows of memristive
crossbar arrays (MCA) can be used to represent synaptic weights and the input feature values can be
represented by wordline voltages. Then, the current flowing through each bitline will be related to
the dot product of input values and weights in a column. As this input-weight dot product is a key
operation for NNs, PIM architects have achieved significant acceleration for NN computation [19] by
extending traditional MCA to include in-memory multiply operations. Other applications that have
been shown to benefit from NVM PIM include data search operations [67,68] and graph processing [57].

A significant drawback of using NVM for PIM is area overhead. The analog operation of
NVM requires the use of DAC (digital-to-analog convertor) and ADC (analog-to-digital converter)
interfaces. This results in considerable area overhead. For example, DAC and ADC converters in the
implementation of a 4-layer convolutional neural network can take up to 98% of the total area and
power of the PIM system [69].

In summary, PIM designs typically allow for very high internal data bandwidth, greater energy
efficiency, and low area overhead by utilizing integral memory functions and components. However,
to keep memory functions intact, these designs can only afford minimal modifications to the memory
system, which typically inhibits the programmability and computational capability of the PEs.

3.2. Near-Memory Processing (NMP) Designs

NMP designs utilize more traditional PEs that are placed near the memory. However, as the
computations are not done directly in memory arrays, PEs in NMP do not enjoy the same degree
of high internal memory bandwidth available to PIM designs. NMP designs commonly adopt a
3D-stacked structure such as that provided by hybrid memory cube (HMC) [2] or high bandwidth
memory (HBM) [3]. Such designs have coarser-grained offloading workloads than PIM but can use the
logic layer in 3D stacks to directly perform more complex computations. In the following sections,
we discuss the different PE and memory types that have been explored for NMP systems.
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3.2.1. PE Types

Many different PE types have been proposed for NMP designs. The selection of PEs has a
significant impact on the throughput, power, area, and types of computations that the PE can perform.
For example, Figure 3 compares the throughput of different PE types in an HMC-based NMP system
executing a graph workload (PageRank scatter kernel). The throughput is normalized to the maximum
memory bandwidth, which is indicated by the solid line. This indicates that, while multi-threaded
(MT) and SIMD cores allow flexibility, they cannot take advantage of all the available bandwidth.
On the other hand, ASICs easily saturate the memory bandwidth and become memory-bound. In this
particular situation, reconfigurable logic like FPGA and coarse-grained reconfigurable architecture
(CGRA) may be better to balance performance and flexibility. However, in the end, this tradeoff point
depends on the application, memory architecture, and available PEs. Therefore, the choice of PE is an
important design consideration in NMP systems. We highlight the three types of PEs below.

=48
25 10
e
]
gg 100
—[_-:CQ
- g
g8 10
- O
B2
34 107
Z =

E 2 5 3 9

s 5 O b
= & o Z
» & O

Figure 3. Normalized throughput with respect to maximum memory bandwidth for different PEs

executing the PageRank scatter kernel: multi-threaded (MT) programmable core, SIMD programmable
core, FPGAs, CGRAs, and fixed-function ASICs [41].

Fixed-function accelerators: Fixed-function accelerator PEs are ASICs designed with support
for a reduced set of operations to speed up a particular application or task—for example, graph
processing [8,32,57]. These accelerators are highly specialized in their execution, which allows them
to achieve much greater throughput than general purpose processors for the same area and power
budget. However, it is costly and challenging to customize an accelerator for a target workload. As these
accelerators only execute a limited set of instructions, they cannot be easily retargeted to new (or new
versions of existing) workloads.

Programmable logic: Programmable logic PEs can include general purpose processor cores
such as CPUs [31,40,70-72], GPUs [26,27,38,73,74], and accelerated processing units (APU) [75] that
can execute complex workloads. These cores are usually trimmed down (fewer computation units,
less complex cache hierarchies without L2/L3 caches, or lower operating frequencies) from their
conventional counterparts due to power, area, and thermal constraints. The main advantage of using
these general purpose computing cores is flexibility and programmability. As opposed to fixed function
accelerators, NMP systems with programmable units allow any operation normally executed on the
host processor to potentially be performed near memory. However, this approach is hampered by
several issues such as difficulty in maintaining cache coherence [31], implementing virtual address
translation [76], and meeting power, thermal, and area constraints [29,73,77-79].

Reconfigurable logic: Reconfigurable logic PEs include CGRAs and FPGAs that can be used to
dynamically change the NMP computational unit hardware [21,25,41,80]. In NMP systems, such PEs
act as a compromise between the efficiency of simple fixed-function memory accelerators and the
flexibility of software-programmable complex general purpose cores. However, the reconfiguration of
hardware logic results in runtime overhead and additional system complexity.
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3.2.2. Memory Types

The type of memory to use is an important decision for DCC system designers working with NMP
systems. Different memory technologies have unique advantages that can be leveraged for particular
operations. For example, write-heavy operations are more suited to DRAM than resistive memories due
to the larger write latency of resistive memories. This fact and DRAM'’s widespread adoption has led
to the creation of a commercial DRAM NMP solution UPMEM [4]. UPMEM replaces standard DIMMs,
allowing it to be easily adopted in datacenters. A 3D-stacked DRAM architecture like the HMC [81]
can accelerate atomic operations of the form read-modify-write (RMW) due to the memory level
parallelism supported by the multi-vault, multi-layer structure shown in Figure 4. In fact, NMP designs
prefer 3D-DRAM over 2D-DRAM due to several reasons. Firstly, 3D-DRAM solutions such as HMC
2.0 [81] have native support for executing simple atomic instructions. Secondly, 3D-DRAM allows for
easy integration of a logic die that provides greater area for placing more complex PEs near memory
than 2D counterparts. Thirdly, PEs are connected using high bandwidth through-silicon vias (TSVs) to
memory arrays as opposed to off-chip links, providing much higher memory bandwidth to the PE.
Fourthly, the partitioning of memory arrays into vaults enables superior memory-level parallelism.

/
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Figure 4. The architecture of hybrid memory cube (HMC) [81].
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Resistive memory in its memristive crossbar array (MCA) configuration can significantly accelerate
matrix multiply operations commonly found in neural network, graph, and image processing
workloads [19,82-89]. Figure 5a shows a mathematical abstraction of one such operation for a
single-layer perceptron implementing binary classification, where x are the inputs to the perceptron,
w are the weights to the perceptron, sgn is the signum function, and y is the output of the perceptron [90].
The MCA is formed by non-volatile resistive memory cells placed at each crosspoint of a crossbar
array. Figure 5b shows how the perceptron can be mapped onto an MCA. The synaptic weights of the
perceptron, w, are represented by physical cell conductance values, G. Specifically, each weight value
is represented by a pair of cell conductances, i.e., w; < G; = G:r — G; torepresent both positive and
negative weight values. The inputs, x, are represented by proportional input voltage values, V, applied
to the crossbar columns. For the device shown, V = +0.2 V. In this configuration, the weighted sum of
the inputs and synaptic weights (y = 21‘9:0 w;x;) can be obtained by reading the current at the each
of the two crossbar rows (I = 21‘9:0 G;r Viand I" = 21‘9:0 G; V;). Finally, the sign of the difference in
the current flowing through the two rows (s gn[Z?ZO G;r \ 21‘9:0 G; Vi]) can be determined, which is
equivalent to the original output y. In this manner, MCA is able to perform the matrix multiplication
operation in just one step.
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Figure 5. (a) A mathematical abstraction of a single-layer perceptron used for binary classification. (b) A
memristive crossbar array implementing the weighted sum between inputs x; (mapped to wordline
voltages V;) and weights w; (mapped to cell conductance G;) [90].

While the choice of a PE and memory type are important factors in determining the advantages
of an NMP system over a PIM system, some features are shared by most NMP designs. Due to the
external placement of the PE, NMP can afford a larger area and power budget compared to PIM
designs. However, NMP also has lower maximum data bandwidth available to the PE compared to
PIM systems.

3.3. Data Offloading Granularity

For both PIM and NMP systems, it is important to determine what computation will be sent
(offloaded) to the memory PE. Offloading can be performed at different granularities, e.g., instructions
(including small groups of instructions) [1,13,16,19,24,25,28,32,37,39,40,42,57,91,92], threads [71], Nvidia’s
CUDA blocks/warps [27,29], kernels [26], and applications [38,41,73,74]. Instruction-level offloading is
often used with a fixed-function accelerator and PIM systems [1,13,16,19,24,25,28,29,32,37,39,42,57,92].
For example, [42] offloads atomic instructions at instruction-level granularity to a fixed-function
near-memory graph accelerator. Coarser offloading granularity, such as kernel and full application,
requires more complex memory PEs that can fetch and execute instructions and maintain a program
counter. Consequently, coarse-grained offloading is often used in conjunction with programmable memory
PEs such as CPUs [71,93] and GPUs [26,27,38,73,74].

4. Resource Management of Data-Centric Computing Systems

Although it would be tempting to offload all instructions to the PIM or NMP system and
eliminate most data movements to/from the host processor, there are significant barriers to doing so.
Firstly, memory chips are usually resource constrained and cannot be used to perform unrestricted
computations without running into power/thermal issues. For example, 3D-DRAM NMP systems
often place memory processors in the 3D memory stack that can present significant thermal problems if
not properly managed. Figure 6 [29] demonstrates how the peak temperature of a 3D-stacked DRAM
with a low-power GPU on the logic layer changes with the frequency of offloaded operations (PIM rate).
Consistent operation at 2 op/ns will result in the DRAM module generating a thermal warning at 85 °C.
Depending on the DRAM module, this can lead to a complete shutdown or degraded performance
under high refresh rates. If the PIM rate is unmanaged, the DRAM cannot guarantee reliable operation
due to the high amount of charge leakage under high temperature.
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Figure 6. Peak DRAM temperatures at different workload offloading frequencies (referred to as “PIM
rate” in the original work) in a 3D-DRAM NMP system [29].

Secondly, memory processors are not guaranteed to improve power and performance for all
workloads. For example, workloads that exhibit spatial or temporal locality in their memory accesses
are known to perform worse in PIM/NMP systems [26,28]. When executed on a host processor,
these workloads can avoid excessive DRAM accesses and utilize the faster, more energy efficient on-chip
cache. Only the least cache-friendly portions of an application should be offloaded to the memory
processors while the cache-friendly portions are run on the host processor. Figure 7 [28] compares the
speedup achieved for a “Host-Only” (entire execution on the host), “PIM-Only” (entire execution on
the memory processor), and “Locality-Aware” (offloads low locality instructions) offloading approach
to an NMP system for different input sizes. It should be noted that in [28], PIM refers to an HMC-based
architecture that we classify as NMP. For small input sizes, all except one application suffers from
severe degradation with “PIM-Only”. This is because the working set is small enough to fit in the
host processor’s cache, thus achieving higher performance than memory-side execution. As input
sizes grow from small to medium to large, the performance benefit of offloading is realized. Overall,
the locality aware management policy proves to be the best of the three approaches and demonstrates
the importance of correctly deciding which instructions to offload based on locality. Another useful
metric to consider when making offloading decisions is the expected memory bandwidth-saving from
the offloading [38,42,94].

Lastly, these DCC systems can include different types of PE and/or multiple PEs with different
locations within the memory. This can make it challenging to determine which PE to select when
specific instructions need to be offloaded. For example, NMP systems may have multiple PEs placed
in different locations in the memory hierarchy [94] or in different vaults in 3D-based memory [26].
This will result in PEs with different memory latency and energy depending on the location of the data
accessed by the computation. In these cases, it is vital that the correct instructions are offloaded to the
most suitable candidate PE.

To address and mitigate the above issues in DCC systems, offloading management policies are
necessary to analyze and identify instructions to offload. Like every management policy, the management
of DCC systems can be divided into three main ideas: (1) defining the optimization objectives,
(2) identifying optimization knobs or the parts of the system that the policy can alter to achieve its
goals, and (3) defining a management policy to make the proper decisions. For the optimization
objectives, performance, energy, and thermals have been targeted for PIM and NMP systems. The most
common optimization knobs in DCCs include selecting offloading workloads for memory, selecting
the most suitable PE in/near memory, or the timing of executing selected offloads. To implement the
policy, management techniques have employed code annotation [1,13,16,19,24,25,28,31,32,37,40,57,91,95],
compiler-based code analysis [27,39,40,70,92,96], and online heuristics [27-29,38,71,72,74]. Table 1
classifies prominent works based on these attributes. We further discuss the optimization objectives,
optimization knobs, and management techniques in Sections 4.1—4.3, respectively.
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Figure 7. The speedup achieved by a Host-Only, all offloaded (PIM-Only), and low-locality offload
(Locality-Aware) approaches in a DRAM NMP system for different application input sizes [28].

Table 1. Classification of resource management techniques for DCC systems (E: energy, P: performance,

Pow: power, T: temperature).

Management s . Offload
Method Objectives  Architecture Granularity Work (Year)
E NMP Instruction [91] (2014)
Group of
P NMP instructions [311(2017)
Code otation PIM Instruction [13] (1995); [24] (2016); [25] (2017)
Instruction [28] (2015); [32,37] (2017); [40,57] (2018)
NMP Group of
P/E instructions [75] (2014); [95] (2016)
PIM Instruction [16] (2013); [19] (2016); [1] (2017)
Instruction [42] (2017); [92] (2019)
P NMP Group of
Compiler instructions [96] (2015); [70] (2017)
PIE Instruction [40] (2018); [39] (2019)
NMP
f Thread [27] (2016)
P NMP Thread [71] (2018)
Instruction [28] (2015)
_ Group of [72] (2020)
) o P/E NMP instructions
Online Heuristic Thread [27] (2016); [74] (2019)
Application [26] (2016)
Pow/P/E NMP Application [38] (2020)
T NMP Instruction [29] (2018)
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4.1. Optimization Objectives

An optimization objective is pivotal to the definition of a resource management policy. Although the
direct goal of PIM/NMP systems is to reduce data movement between the host and memory,
the optimization objectives are better expressed as performance improvement [1,13,16,19,22,24,25,31,
32,37-41,57,59,71-73,75,92,96], energy efficiency [38,73,91], and thermal feasibility [29] of the system.

4.1.1. Performance

DCC architectures provide excellent opportunities for improving performance by saving memory
bandwidth, avoiding cache pollution, exploiting memory level parallelism, and using special purpose
accelerators. Management policies are designed to take advantage of these according to the specific
DCC design and workload. For example, locality-aware instruction offloading [26-28,38,42,74] involves
an analysis of the cache behavior of a set of instructions in an application. This analysis is based on
spatial locality (memory locations are more likely to be accessed if neighboring memory locations
have been recently accessed) and temporal locality (memory locations are more likely to be accessed
if recently accessed). If a section of a code’s memory access pattern is found to exhibit little spatial
and temporal locality, then these instructions are considered a good candidate for offloading to a
memory PE. The specific method to assess locality varies across different implementations. Commonly
applied methods include cache profiling [27,28,42], code analysis [26,39,42,70,96], hardware cache-hit
counters [28], and heuristic or machine learning techniques [27-29,38,71,72,74].

Another source of superior performance is the use of fixed-function accelerators. While lacking
programmability, these special purpose accelerators can perform specific operations many times
faster than general purpose host processors. Examples include graph accelerators [8,32-36,57],
stencil computation units [39], texture filtering units [37], vector processing units [92], and neuromorphic
accelerators [25]. When such fixed-function accelerators are used, it is important that the policy offloads
only instructions that the fixed-function accelerator is able to execute.

Finally, in the case of multiple PEs, data placement and workload scheduling become important
to realizing superior performance. For example, the compiler-based offloading policy outlined in [92]
selects the PE which minimizes the resulting inter-PE communication resulting from accessing data
from different memory vaults during execution. Similarly, [97] uses compiler and profiling techniques
to map operations to PEs that minimize data movement between memory vaults in a 3D-stacked HMC.

4.1.2. Energy Efficiency

DCC architectures have demonstrated tremendous potential for energy efficiency due to a
reduction in expensive off-chip data movement, the use of energy-efficient PEs, or by using NVM
instead of leakage-prone DRAM. Off-chip data movement between a host CPU and main memory is
found to consume up to 63% of the total energy spent in some consumer devices [40]. The excessive
energy consumption can be significantly reduced by using locality-aware offloading, as discussed
in the previous section. A related metric used by some policy designs is bandwidth saving. This is
calculated by estimating the change in the total number of packets that traverse the off-chip link due
to an offloading decision about a set of instructions. For example, in [42], the cache-hit ratio and
frequency of occurrence of an instruction is considered along with the memory bandwidth usage to
decide if an instruction should be offloaded.

Another source of energy efficiency is fixed-function accelerators. Since these accelerators are
designed to execute a fixed set of operations, they do not require a program counter, load-store units,
or excessive number of registers and arithmetic logic units (ALU), which significantly reduces both
static and dynamic energy consumption. Using NVM can eliminate the cell refresh energy consumption
in DRAM, due to the inherent non-volatility in NVMs. In addition, NVMs that use an MCA architecture
can better facilitate the matrix multiplication operation, requiring only one step to calculate the product
of two matrices. In contrast, DRAM requires multiple loads/stores and computation steps to perform
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the same operation. This advantage is exploited by management policies which map matrix vector
multiplication to ReRAM crossbar arrays [19,82-89].

4.1.3. Power and Thermal Efficiency

DCC systems require power to be considered as both a constraint and an optimization objective,
motivating a range of different management techniques from researchers. The memory module in
particular is susceptible to adverse effects due to excessive power usage. It can lead to high temperatures,
which may result in reduced performance, unreliable operation, and even thermal shutdown. Therefore,
controlling the execution of offloaded workloads becomes important. Various ways in which power
efficiency/feasibility is achieved using policy design include using low-power fixed-function accelerators,
smart scheduling techniques for multiple PEs, and thermal-aware offloading. For example, when atomic
operations are offloaded to HMC, it reduces the energy per instruction and memory stalls compared to
host execution [28,29,32]. Data mapping and partitioning in irregular workloads like graph processing
reduces peak power and temperature when multiple PEs are used [36]. A more reactive strategy is
to use the memory module’s temperature as a feedback to the offloading management policy [29] to
prevent offloading in the presence of high temperatures.

4.2. Optimization Knobs

There are several knobs available to the resource management policy to achieve the goals defined
in the optimization objective. Typically, the management policy identifies which operations to offload
(we call the operations that end up being offloaded as offloading workloads) from a larger set of
offloading candidates, i.e., all workloads that the policy determined can potentially run on a memory
PE. If multiple PEs are available to execute offloading workloads, a selection must be made between
them. Finally, decisions may involve timing offloads, i.e., when to offload workloads.

4.2.1. Identification of Offloading Workloads

The identification of offloading workloads concerns the selection of single instructions or groups
of instructions which are suitable for execution on a memory-side processor. Depending on the
computation capability of the available processor, the identification of offloading workloads can be
accomplished in many ways. For example, an atomic unit for executing atomic instructions is used as
the PE in [32]; then, the offloading candidates are all atomic instructions. The identification of offloading
workloads is simply identifying which offloaded atomic instructions best optimizes the objectives.
However, the process is not always simple, especially when the memory-side processors offer a range
of computation options, each resulting in different performance and energy costs. This can happen
because of variation in state variables such as available memory bandwidth, locality of memory accesses,
resource contention, and the relative capabilities of memory and host processors. For example, [26] uses
a regression-based predictor for identifying GPU kernels to execute on a near-memory GPU unit.
Their model is trained on kernel-level analysis of memory intensity, kernel parallelism, and shared
memory usage. Therefore, while single instructions for fixed-function accelerators can be easily
identified as offloading workloads by the programmer or compiler, identifying offloading workloads
for more complex processors in a highly dynamic system requires online techniques like heuristic or
machine-learning-based methods.

4.2.2. Selection of Memory PE

A common NMP configuration places a separate PE in each memory vault of a 3D-stacked HMC
module [34,92,97]. This can lead to different PEs encountering different memory latencies when
accessing operand data residing in different memory vaults. In addition, the bandwidth available to
intra-vault communication is much higher (360 GB/s) than that available to inter-vault communication
(120 GB/s) [34]. Ideally, scheduling decisions should aim to utilize the higher intra-vault ban dwidth.
An even greater scheduling challenge is posed by the use of multiple HMC modules connected by
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a network [34,35]. The available bandwidth for communication between different HMC modules is
even lower at 6 GB/s. Therefore, offloading decisions must consider the placement of data and the
selection of PEs together to maximize performance [34,35,98]. Similarly, a reconfigurable unit may
require reconfiguration before execution can begin on the offloaded workload [41].

Finally, the selection of the PE can be motivated by load balancing, especially in graph processing,
where workloads are highly unstructured, e.g., when multiple HMC modules are used for graph
processing acceleration. In this case, the graph is distributed across the different memory modules.
Since graphs are typically irregular, this can cause irregular communication between memory modules
and imbalanced load in the memory PEs [34,35]. If load distribution is not balanced by PE selection,
itcanlead to long waiting times for under-utilized cores. These issues influence offloading management,
often requiring code annotation/analysis and runtime monitoring.

4.2.3. Timing of Offloads

While identifying offloading workloads and selecting the PE for execution are vital first steps,
the actual execution is subject to the availability of adequate resources and power/thermal budget.
Offloading to memory uses off-chip communication from the host processor to the memory as an
essential step to convey the workload for execution. If available off-chip bandwidth is currently
limited, the offloading can be halted, and the host processor can be used to perform the operations
until sufficient bandwidth is available again [26,27,38,42]. Alternatively, computation can be “batched”
to avoid frequent context switching [34]. Moreover, using the memory-side PE for computation incurs
power and thermal cost. If it is predicted that the memory and processor system will violate power or
thermal constraints while the offloading target is executed, offloading may be deferred or reduced
to avoid degrading memory performance or violating thermal constraints [29]. Hence, in a resource
constrained PIM/NMP system, naively offloading all offloading candidates can lead to degraded
performance as well as power/thermal violations. Therefore, a management policy should be able to
control not just what is being offloaded but also when and where it will be offloaded.

4.3. Management Techniques

In order to properly manage what is offloaded onto PIM or NMP systems, where it is offloaded (in
the case of multiple memory PEs), and when it is offloaded, prior work has utilized one of three different
strategies: (1) code annotation: techniques that rely on the programmers to select and determine
the appropriate sections of code to offload; (2) compiler optimization: techniques that attempt to
automatically identify what to offload during compile-time; (3) online heuristics: techniques that use
a set of rules to determine what to offload during run-time. We discuss the existing works in each of
the three categories in the following sections.

4.3.1. Code Annotation Approaches

Code annotation is a simple and cost-effective way to identify offloading workloads with the
programmer’s help. For these techniques to work, the programmer must manually identify offloading
workloads based on their expert knowledge of the underlying execution model while ensuring the
efficient use of the memory module’s processing resources. Although this approach allows for greater
consistency and control over the execution of memory workloads, it burdens the programmer and relies
on the programmer’s ability to annotate the correct instructions. This policy has been demonstrated
to work well with fixed-function units [1,16,24,28,32,37] since the instructions that can be offloaded
are easy to identify and the decision to offload is often guaranteed to improve the overall power
and performance without violating thermal constraints. For example, [16] introduces two simple
instructions for copying and zeroing a row in memory. The in-memory logic implementation of these
operations is shown to be both faster and more energy-efficient, motivating the decision to offload all
such operations. Code annotation has been successfully used in both PIM [1,25,98] and fixed-function
NMP [28,32,40,57].
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Although the most popular use of code annotation is found in PIM or fixed-function NMP,
code annotation’s simplicity also makes it appealing to more general architectures. This is especially
true when the policy focuses more on NMP-specific optimizations such as cache-coherence, address
translation, or logic reconfiguration than the system-wide optimizations outlined in Section 4.1.
For example, code annotation is used in architectures with fully programmable APUs [75], CPUs [31],
and CGRAs [95]. In [31], an in-order CPU core is used as a PE in 3D-stacked memory. The task of
offloading is facilitated by the programmer selecting portions of code by using macros PIM_begin and
PIM_end, where the main goal of the policy is to reduce coherence traffic between the host and memory
PE. For more general purpose PEs and a greater number of PEs, the offloading workload becomes
harder to identify with human expertise.

One major downside of code annotation approaches is that the offline nature of code annotations
prevents it fromadapting to the changes in the system’s state, i.e., the availability of bandwidth, the cache
locality of target instructions, and power and temperature constraints. To address this, code annotation
has been used as a part of other management techniques like compiler-based methods [40] and online
heuristics [28] that incorporate some online elements. Other variations of the technique include an
extension to the C++ library for identifying offloadable operations [24,98], extensions to the host ISA
for uniformity across the system [16,19,57,91], or a new ISA entirely [25]. Extending the software
interface in this manner is particularly useful when the source code is not immediately executable on
memory PEs or requires the programmer to repeatedly modify large sections of code. For example,
a read-modify-write operation, expressed with multiple host instructions, can be condensed into
a single HMC 2.0 atomic instruction by introducing a new instruction to the host processor’s ISA.
Similarly, library extensions provide compact functions for ease of use and readability.

e Case Study 1: Ambit—In-Memory Accelerator for Bulk Bitwise Operations Using Commodity
DRAM Technology

Bulk bitwise operations like AND and OR are increasingly common in modern applications like
database processing but require high memory bandwidth on conventional architectures. Ambit [1]
uses a 2D-DRAM-based PIM architecture for accelerating these operations using the high internal
memory bandwidth in the DRAM chip. To enable AND and OR operations in DRAM, Ambit proposes
triple row activation (TRA). TRA implements bulk AND and OR operations by activating three DRAM
rows simultaneously and taking advantage of DRAM'’s charge sharing nature (discussed in detail in
Section 3.1.1). As these operations destroy the values in the three rows, data must be copied to the
designated TRA rows prior to the Boolean operation if the original data are to be maintained.

To allow more flexible execution, Ambit also implements the NOT operation through a modification
to the sense amplifiers shown in Figure 8. The NOT operation uses a dual-contact DRAM cell added
to the sense amplifier to store the negated value of the cell in a capacitor and store it on the bitline
when required. To perform the NOT operation, the value of a cell is read into the sense amplifier by
activating the desired row and the bitline. Next, the n-wordline, which connects the negated cell value
from the sense amplifier to the dual-contact cell capacitor is activated, which allows the capacitor
to store the negated value. Finally, activating the d-wordline drives the bitline to the value stored
in the dual-contact cell capacitor. AMBIT then uses techniques adapted from [16] to transfer the
result to an operand row for use in computation. By using the memory components with minimal
modifications, Ambit adds only 1% to the memory chip area and allows easy integration using the
traditional DRAM interface.
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Figure 8. Ambit’s implementation of the NOT operation by adding a dual-contact DRAM cell to the
sense amplifier. The grey shaded region highlights the dual-contact cell [1].

To execute the Boolean operations, Ambit adds special bulk bitwise operation (bbop) instructions
of the form shown in Figure 9 to the host CPU’s ISA. These bbop instructions specify the type of
operation (bbop), the two operand rows (srcl and src2), a destination row (dst), and the length of
operation in bytes (size). Since the Ambit operations operate on entire DRAM rows, the size of the
bbop operation must be a multiple of the DRAM row size. Due to Ambit’s small set of operations, it is
relatively easy to identify the specific code segments that can benefit from these operations. However,
the authors expect that the implementers of Ambit would provide API/driver support that allows the
programmer to perform code annotation to specify bitvectors that are likely to be involved in bitwise
operations and have those bitvectors be placed in subarrays such that corresponding portions of each
bitvector are in the same subarray. This is key to enabling TRA-based operations.

bbop dst, srcl, [src2], size

Figure 9. Ambit[1] extends the ISA to include a bulk bitwise operation (bbop) instruction for computation
which will be offloaded to PIM. The format of the instruction is shown.

Applications that use bulk bitwise operations show significant improvement using Ambit.
Ambit accelerates a join and scan application by 6X on average for different data sizes compared
to a baseline CPU execution. Ambit accelerates the Bitweaving (database column scan operations)
application by 7x on average compared to the baseline, with the largest improvement witnessed
for large working sets. A third application uses bitvectors, a technique used to store set data using
bits to represent the presence of an element. Ambit outperforms the baseline for the application by
3x on average, with performance gains increasing with set sizes. Ambit also demonstrates better
energy efficiency compared to traditional CPU execution of applications using bulk bitwise operations.
While raising additional wordlines consumes extra energy, the reduction of off-chip data movement
more than makes up for it, reducing energy consumption by 25.1x to 59.5x.

While the architecture of Ambit shows significant promise, its management policy is not without
issues. The benefits would rely heavily on the programmer’s expertise as the programmer would still
need to identify and specify which bitvectors are likely to be involved in these bitwise operations.
Fortunately, this technique avoids runtime overhead since all offloading decisions are part of the
generated binary. However, as Ambit operates on row-wide data, the programmer is required to ensure
the operand size to be a multiple or row size. Additionally, all dirty cache lines from the operand
rows need to be flushed prior to Ambit operations. Similarly, cache lines from destination rows need
to be invalidated. Both of these operations generate additional coherence traffic, which reduces the
efficiency of this approach.



J. Low Power Electron. Appl. 2020, 10, 30 17 of 31

4.3.2. Compiler-Based Approaches

The main advantage of using compilers for automatic offloading over code annotation is the
minimization of programmer burden. This is because the compiler can automatically identify offloading
workloads [92], optimize data reuse [71], and select the PE to execute the offloading workloads [35,36].
Offloading using compilers also has the potential to outperform manual annotation by better selecting
offloading workloads [30]. Like code annotation, this is an offline mechanism and avoids hardware
and runtime overhead. However, similar to code annotation, this results in a fixed policy of offloads
suited in particular to simple fixed-function memory accelerators which are relatively unconstrained
by power and thermal limits [39,92]. While compilers can be used to predict the performance of an
offloading candidate on both host and memory processors, in the case of more complex PIM and NMP
designs, compiler-based offloading cannot adapt to changing bandwidth availability, memory access
locality, and DRAM temperature, leading to sub-optimal performance while risking the violation of
power and thermal constraints.

Compiler-based techniques have been used with both fixed-function [39,92,96] and
programmable [27,40,70] memory processors. For fixed-function accelerators like vector processors [92]
and stencil processors [39], the compiler’s primary job is to identify instructions that can be offloaded
to the memory PE and configure the operations (e.g., vector size) to match the PE’s architecture.
When the type of instruction is insufficient to ascertain the benefit of offloading, compiler techniques
like CAIRO [42] use analytical methods to quantitatively determine the benefit of offloading by profiling
the bandwidth and cache characteristics of instructions offline, at the cost of adding design (compile)
time overhead.

Another advantage of using compilers is the ability to efficiently utilize NMP hardware by
exploiting parallelism in memory and PEs. For example, [30] achieves 71% better floating-point
utilization than hand-written assembly code using loop and memory access optimizations for some
kernels. While CAIRO relies on offline profilers and [30] requires some OpenMP directives for
annotation, the compiler in PRIMO [92] is designed to eliminate any reliance on third-party profilers
or code annotation. Its goal is to reduce communication within multiple memory processors by the
efficient scheduling of vector instructions. It can be noticed that when the memory processor is capable
of a wider range of operations, compiler-based techniques have to account for aspects like bandwidth
saving, cache-locality, and comparative benefit analysis with the host processor [42] while still working
offline, which is not easy. Further complications arise when multiple general purpose processor options
exist near memory as runtime conditions become a significant factor in exploiting the benefits of
memory-side multi-core processing [27].

e (Case Study 1: CAIRO

CAIRO uses an HMC-based NMP architecture to accelerate graph processing using bandwidth-
and locality-aware offloading of IHIMC 2.0’s atomic instructions using a profiler-based compiler.
To enable high bandwidth and low energy, HMC stacks DRAM dies and a CMOS logic die and connects
the dies using through-silicon vias (ISVs). Starting with HMC 2.0 specification, HMC has supported
18 atomic computation instructions (shown in Figure 10) on the HMC’s logic layer. HMC enables a
high level of memory parallelism by using a multiple vault and bank structure. Several properties
of graph workloads make HMC-based NMP a perfect choice to accelerate execution. For example,
graph computation involves frequent use of read-modify-write operations which can be mapped to
HMC 2.0 supported instructions. When performed in HMC, the computation exploits the higher
memory bandwidth and parallelism supported by HMC'’s architecture.
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Type | Data Size Operation Return
Arithmetic | 8/16-byte  single/dual signed add w/ or w/o

Bitwise | 8/16-byte  swap, bit write w/ or w/o
Boolean | 16-byte AND/NAND w/o
OR/NOR/XOR w/o
Comparison | 8/16-byte  CAS-if equal/zero w/
greater/less w/
compare if equal w/

Figure 10. HMC atomic instructions in HMC 2.0 [81].

Identifying offloading candidates (instructions that can be offloaded) and choosing suitable
memory PEs are important compiler functions for accelerating computation. While this is the main
goal with CAIRO, the authors note that additional benefits can be realized when effective cache size
and bandwidth saving is considered for offloading decisions. By default, all atomic instructions are
considered as offloading candidates and all data for these instructions are marked uncacheable using a
cache-bypassing policy from [32]. This technique provides a simple cache coherence mechanism by
never caching data that offloading candidates can modify. The underlying idea is that offloading an
atomic instruction will inherently save link bandwidth when cache-bypassing is active for all atomic
instructions regardless of host or memory-side execution. This is because offloading the instruction to
HMC uses fewer flits than executing the instruction on the host CPU, which involves the transfer of
operands over the off-chip link. Moreover, if the offloaded segment does not have data access locality,
it avoids cache pollution, making more blocks available for cache-friendly data. Finally, the NMP
architecture allows faster execution of atomic instructions, eliminating long stalls in the host processor.

CAIRO'’s first step is to identify offloading candidates that can be treated as HMC atomic
instructions. Given these instructions, CAIRO then attempts to determine how much speedup can
be obtained from offloading these instructions. One of the major factors in determining the speedup
is the main memory bandwidth savings from offloading. Since offloading instructions frees up
memory bandwidth, it is important to understand how applications can benefit from the higher
available bandwidth to estimate application speedup. For applications that are limited by low
memory bandwidth, increasing the available memory bandwidth leads to performance improvements
(bandwidth-sensitive applications) since these applications exploit memory-level parallelism (MLP).
On the other hand, compute-intensive applications are typically bandwidth-insensitive and
benefit little from the increase in available memory bandwidth. To categorize their applications,
the authors analyze the speedup of their applications after doubling the available bandwidth and
conclude that CPU workloads and GPU workloads naturally divide into bandwidth-insensitive and
bandwidth-sensitive, respectively. The authors do note that, for exceptional cases, CAIRO would need
the programmer/vender to specify the application’s bandwidth sensitivity.

Given the application’s bandwidth sensitivity, CAIRO uses two different analytical models to
estimate the potential speedup of offloading instructions. For bandwidth-insensitive applications,
they model a linear relationship between the candidate instruction’s miss ratio (MR), density of host
atomic instructions per memory region of the application ( pr4), and speedup due to offloading the
candidate instruction (SUjot), as shown in Figure 11a. In other words, the decision to offload an atomic
instruction depends on how often it misses in cache and how much cache is believed to be available to
it. The model incorporates several machine-dependent constants, C;, C;, and C3, shown in Figure 11b,
that are determined using offline micro-benchmarking. When there is positive speedup (SUyy¢ > 0),
CAIRO’s compiler heuristic offloads the instruction to the HMC.
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SUtot = SUpr + SUpa = f(MR) + g(pra)
w
£ =Y = (Ci X MR) + (Cy X ppa) + Cs.
S SU o Total speedup from offloading (bandwidth-insensitive applications)
o E SU pyr: Speedup dependent to the miss ratio of a candidate
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4 --
& e MR, === “ 1 f(x).g(x): Linear relationship functions
w_fo MRy _-- g !
k] T e MR, Pua=0 MR: LLC miss ratio of a candidate
© | _emT e " . o s
o T pHA: Density of host atomic instructions per memory region
E C1.Cz, C3: Machine-dependent constants
Miss Ratio
(a) (b)

Figure 11. CAIRO's performance estimation for bandwidth insensitive applications. (a) Speedup given
the host atomic instructions per memory region (pp4) and its miss ratio. (b) Equation for total speedup,
SUjot, is the sum of speedup due to avoiding inefficient cache use SUpr and speedup due to avoiding
the overhead of executing atomic instructions on the host processor SUp4 [42].

On the other hand, bandwidth-sensitive applications can also experience additional speedup
by utilizing the extra memory bandwidth due to offloading atomic instructions. Therefore,
CAIRO considers bandwidth savings due to offloading in addition to the miss ratio and density of
atomic instructions. As shown in Figure 12, for miss ratios higher than MissRatioy, the instruction will
be offloaded. Similarly, for miss ratios lower than MissRatio, the instruction will not be offloaded.
However, in the region between MissRatioy and MissRatior, additional bandwidth saving analysis
is performed before making the offloading decision. The speedup due to bandwidth saving, SUgw,
is calculated by estimating the bandwidth savings achieved, BW;aving (Equations (1) and (2)). BWyee and
BW,f fload are estimated using hand-tuned equations based on last-level cache (LLC) hit ratios, the packet
size of offloading an instruction, and the number of instructions (more details in [42]). Constants M; and
M, are machine-specific and obtained using micro-benchmarking. Similar to the bandwidth-insensitive
case, CAIRO’s compiler heuristic offloads the instruction when the calculated speedup is greater than 0.

SUgw = (My x BW,

saving

)+ My, (1)

SUgw : Speedup from bandwidth savings (bandwidth-sensitive applications)

BW! : Normalized bandwidth savings

saving

M, M; : Machine-dependent constants

BV . BWreg - BWofﬂoad _ BWsaving
saving BWreg o BWreg !

@

BWieg : Regular bandwidth usage (without offloading)
BWoffload : Bandwidth usage wth offloading

CAIRO’s compiler heuristic allows it to consider the most important factors in offloading decisions
while avoiding runtime overhead. For bandwidth-insensitive applications, the amount of speedup
achieved by CAIRO increases with the cache miss ratio of the application. For a miss ratio of greater
than 80%, CAIRO doubles the performance of bandwidth-insensitive CPU workloads compared to
host execution. For bandwidth-sensitive applications, the amount of speedup increases with the
amount of bandwidth saved by CAIRO. For bandwidth savings of more than 50%, CAIRO doubles the
performance of GPU workloads. In addition, CAIRO derives energy efficiency from the reduction
in data communication inherent to the HMC design. Similar to prior work [28,32], it extends the
HMC instructions and ALU to support floating-point operations without violating power constraints.
Despite CAIRO’s performance and energy improvements, it has its drawbacks. The miss ratio and
bandwidth saving analysis is machine- and application-dependent and involves considerable design
time overhead. Moreover, since the heuristic does not work online, offloading decisions are based on
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analytical assumptions about runtime conditions. For instance, due to its offline design, CAIRO does
not consider the temperature of HMC, which can significantly impact the performance [29].
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Figure 12. CAIRO’s performance estimation for bandwidth insensitive applications: for miss ratios
between MissRatio;, and MissRatioy, additional bandwidth saving analysis is performed before making
the decision to offload [42].

e  Case Study 2: A Compiler for Automatic Selection of Suitable Processing-In-Memory Instructions
(PRIMO)

NMP designs with a single PE like CAIRO can focus on offloading the most suitable sections of
code to reduce off-chip data movement and accelerate execution. However, when the NMP design
uses multiple PEs near memory, designers have to consider the location of data with respect to the PE
executing the offloaded workload. The compiler PRIMO [92] is designed to manage such a system.
It uses a host CPU connected to an 8-layer HMC unit with 32 vaults. Each of the 32 vaults has a
reconfigurable vector unit (RVU) on the logic layer as a PE. The RVU uses fixed-function FUs to
execute native HMC instructions extended with an Advanced Vector Extensions (AVX)-based ISA
while avoiding the area overhead of programmable PEs. Each RVU has wide vector registers available
to facilitate vector operations. They allow a flexible vector width with scalar operands of as little as
4 bytes and vector operands up to 256 bytes. Moreover, multiple RVUs can coordinate to operate on
vector lengths of as high as 4096 bytes.

With this architecture, PRIMO has to identify not only offloading candidate code segments
to convert to special NMP instructions but also which execution unit minimizes data movement
within memory by exploiting internal data locality. Another way by which the compiler improves
performance is the utilization of the vast number of functional units (FUs) by optimizing the vector
length of offloaded instructions for the available hardware. For example, if the RVU architecture can
execute instructions up to a vector size of 256 bytes, the compiler will automatically compile offloading
candidate code sections with vectors larger than 256 bytes into NMP instructions, whereas operations
involving smaller vector sizes are executed by the host CPU. In short, the compiler performs four
functions: (1) identify operations with large vector sizes, (2) set these operations” vector size to a
supported RVU vector size, (3) check for data dependencies with previously executed instructions
and map instructions to the same vector unit as the previous instructions, and (4) create the binary
code for execution on the NMP system. Figure 13a shows the code for a vec-sum kernel. Figure 13b,c
compare the compiled version of the kernel for an x86 AVX-512 capable processor and an NMP
architecture, respectively. The AVX-512 version performs four loads, followed by four more loads
and four adds with a vector length of 64 bytes. Finally, four store operations complete an iteration
of the loop. In comparison, the NMP code uses just two instructions to load the entire operand data
in 256-byte registers, followed by a single 256-byte add and store operation. The NMP instruction
PIM_256B_LOAD_DWORD V_0_2048b_0 [addr] loads 256 bytes of data starting at addr into register 0 of
vault 0. The actual choice of the vault and RVU is made after checking for data dependencies between
instructions. The use of large vector sizes allows PRIMO to exploit greater memory parallelism while
the locality-aware PE minimizes data movements between vaults.
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mov rax, -16384
.LBBO_1:

PIM 256B_LOAD_DWORD V.
PIM 256B_LOAD_DWORD V.
PIM_256B_VADD_DWORD V.
PIM 256B_STORE_DWORD |
add rax, 4096

jne .LBBO_1

++)

for(int i=0; i<N; i
c[i] = a[i] + b[i];

(a) C Code
(c) NMP ASM Code

(b) AVX-512 ASM Code

Figure 13. PRIMO code generation [92].

While identifying vector instructions is common to all compiler-based management techniques,
PRIMO achieves better FU utilization and minimizes internal data movement by optimizing instruction
vector size and selecting PEs considering the location and vector size of the operand data. It also
manages to completely automate the process and eliminate the need to annotate sections of code or
run offline profilers. In addition, PRIMO performs all optimizations at design time, which allows it to
eliminate runtime overhead. PRIMO achieves an average speedup of 11.8x on a set of benchmarks from
the PolyBench Suite [99], performing the best with large operand vector sizes. However, such benefits
come at the cost of a static policy that is unable to react to dynamic system conditions like available
memory bandwidth, variations in power dissipation, and temperature. Additionally, the energy
efficiency of specialized hardware and instructions need to be studied further.

4.3.3. Online Heuristic

Online heuristic-based policies use human expert knowledge of the system to make offloading
decisions at runtime. To this end, additional software or hardware is tasked with monitoring and
predicting the future state of the system at runtime, to inform the offloading workload identification,
determining the memory PE, and timing control. The online nature of heuristic policies enables
the policy to adapt to the runtime state, but it also increases its complexity and runtime overhead.
The quality of decisions depends on the heuristic designer’s assumptions about the system. When the
assumptions are incomplete or incorrect, online heuristics will suffer from unexpected behavior.

Online heuristics are used widely when the goal is to accelerate an entire data-intensive application
on general purpose memory processors [27,38,71,72,74]. In addition, online heuristics may be used in
combination with code annotation and compiler-based methods [27,75]. For example, PIM-enabled
instructions (PEI) [28] extends the host ISA with new PIM-enabled instructions to allow programmers to
specify possible offloading candidates for PIM execution. These instructions are offloaded to PIM only
if a cache hit counter at runtime suggests inefficient cache use; otherwise, the instructions are executed
by the host CPU. Similarly, Transparent Offloading and Mapping (TOM) [27] requires the programmer
to identify sections of CUDA code as candidate offloading blocks. The final offloading decision involves
an online heuristic to determine the benefit of offloading by estimating bandwidth saving and co-locate
data and computation across multiple HMC modules. Different from CAIRO, where the bandwidth
saving analysis is performed entirely before compilation, TOM uses heuristic analysis of bandwidth
saving both before and after compilation. It marks possible offloading candidates during a compiler
pass, but the actual offloading decision is subject to runtime monitoring of dynamic system conditions
like PE utilization and memory bandwidth utilization. Other methods that rely on online heuristics
include [38], which uses a two-tier approach to estimating locality and the energy consumption of
offloading decision, [74], which performs locality-aware data allocation and prefetching, and [29],
which optimizes for thermally feasible NMP operation by throttling the frequency of issuing offloads
and size of CUDA blocks offloaded to an HMC-based accelerator.

e  CaseStudy 1: CoolPIM—Thermal-Aware Source Throttling for Efficient PIM Instruction Offloading
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As noted in Section 4.1.3, 3D-stacked memory is vulnerable to thermal problems due to high power
densities and insufficient cooling, especially at the bottom layers. In fact, with a passive heatsink, HMCs
cannot operate at their maximum bandwidth, even without PIM and NMP (see Figure 14) [29,100].
A particular problem in these systems is that heating exacerbates charge leakage in DRAM memory
cells, which demands more frequent refreshes to maintain reliable operation. Therefore, offloading in
NMP, among other online runtime conditions, requires awareness of the memory system'’s temperature.
CoolPIM [29] attempts to solve this problem by using an online-heuristic-based mechanism to control
the frequency of offloading under the thermal constraints of an NMP system.
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Figure 14. Peak DRAM temperature with various data bandwidth and cooling methods (passive,
low-end, commodity, and high-end) [29].

CoolPIM considers a system that has a host GPU executing graph workloads with an HMC
memory module capable of executing HMC 2.0 atomic instructions. In order to allow the offloading
of atomic operations written in Nvidia’s CUDA to HMC, the compiler is tweaked to generate an
additional executable version for each CUDA block of computation. This alternative HMC-enabled
version has the HMC’s version of atomic instructions to be executed near-memory if the heuristic
decides to offload it. All atomic instructions in HMC-enabled blocks execute on functional units on the
HMC’s logic layer as provided by the HMC 2.0 Specification [81]. It must be noted that the role of the
compiler is not to make offloading decisions but rather to generate a set of offloading candidates that
the online heuristic can select from at runtime.

The main goal of CoolPIM is to keep the HMC unit under an operational maximum temperature.
The HMC module includes a thermal warning in response packets whenever the surface temperature
of the module reaches 85 °C. Whenever the thermal warning is received, CoolPIM throttles the intensity
of offloading by reducing the number of HMC-enabled blocks that execute on the GPU. To this end,
CoolPIM introduces a software-based throttling and hardware-based throttling technique, as illustrated
in Figure 15. The software-based throttling technique controls the number of HMC-enabled blocks that
execute on the GPU using a thermal warning interrupt from the HMC. It implements a token-based
policy where CUDA blocks request a token from the pool before starting execution. If a token is
available, the block acquires it and the offloading manager executes the NMP version of the block.
However, if a thermal warning is encountered, the token pool is decremented, which effectively
decreases the total number of blocks that can be offloaded to the memory PE.
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Software-based Source Throttling } CUDA block £
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Figure 15. Overview of CoolPIM [29].

On the other hand, the hardware-based throttling technique controls the number of warps per
block that are offloaded to the memory PE as a reaction to the thermal warning interrupt. Unlike the



J. Low Power Electron. Appl. 2020, 10, 30 23 of 31

software-based method, which requires that all warps in executing thread blocks finish before the
throttling decisions take effect, the hardware-based mechanism allows the system to react faster to
the temperature warning by changing the number of warps with NMP-enabled instructions during
runtime. The hardware-based control is achieved by adding a hardware component to the system
which can replace NMP-enabled instructions with their CUDA counterparts during the decoding
process. The HMC-disabled warps, with NMP instructions replaced with CUDA instructions, will then
execute entirely on the host GPU to help manage the rising HMC temperature. Figure 15 details the
implementation of the policy.

The use of an online heuristic allows CoolPIM to adapt to system conditions at runtime and
control temperature even when an application goes through different phases. The additional system
awareness not only improves the offloading decisions to better realize the benefits of NMP but also
develops a more proactive approach to management. CoolPIM improves performance by up to 40%
compared to both host execution and naive offloading while effectively managing memory temperature.
While an increase in the heuristic’s complexity is expected to produce better offloading decisions and
performance improvement, it is necessary that runtime overhead remains manageable. While CoolPIM
manages to do this, it does not consider data locality and bandwidth saving while making offloading
decisions. Similarly, it does not consider energy savings except as a byproduct of minimizing the
DRAM refresh rate.

e  Case Study 2: Making Better Use of Processing-In-Memory through Potential-Based Task Offloading

Although works under the code annotation and compiler categories use profiling and analysis to
understand the effects of offloading on key objectives, the generated results may be affected by runtime
conditions related to input data, concurrent workloads, and other dynamic policies. Kim et al. [38]
look at the number of L2 misses, memory stalls, and power in their online heuristic policy to determine
offload decisions to optimize performance, energy, and power. They consider an NMP system with a
host GPU and a trimmed-down GPU as the memory PE in the logic layer of an HBM unit. The GPU
used as a memory PE has a lower number of streaming multiprocessors (SM) to accommodate the
thermal constraints on the logic layer of the HBM. To accomplish their goals, the authors divide the
heuristic into two stages: the first stage determines if the decision meets a time-energy constraint
(OCr-E), and if it passes, the second stage will determine if it passes a time-power constraint (OCr—p).
Offloading is performed only if the conditions in both stages are met. This process is represented in
Figure 16.

Task123...N
1
Test running Performance l
counter
Test running in Host
Host power
monitor
Stage PERPTIT) A
Stagel Models indicating
: . OCy;
difficulty in memory access I ’
PIM de5|g1'1 exploration [¢— Candidate tasks
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Stage2 Models for !
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PIM clock scaling
L
—»  task Offloading tasks

Figure 16. Overview of the offloading policy used in [38]. The offloading decision is separated into
two stages. The first stage checks whether it would pass a time-energy constraint (OCt—g) while the
second stage checks whether it passes a time-power constraint (OCt_p ). If it passes both, the task is
offloaded onto the memory module.
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The first stage starts by profiling the application for the number of L2 misses per instruction
(L2MPI) and the number of cycles L1 was stalled due to a request to L2 (L1S). The reason behind this
choice is that the higher the value of each of these metrics, the slower the task will run on the host GPU
and the better it will perform on the high memory bandwidth near-memory GPU. The two values
are used to determine if the task should be offloaded using a simple linear model derived through
empirical data from profiling (Equation (3)). If the value of this model exceeds a threshold (TH),
then the task is considered as an offloading candidate based on the time-energy constraint.

58 x L2MPI + 0.22x L1S 4+ 0.005 > TH (©))

If a task passes the first stage, the next stage is to determine the impact of the offloading decision
on power consumption. Specifically, power is treated as a constraint with a fixed budget of 55W with a
high-end-server active heat sink. The power model for estimating the task’s power consumption in
NMP execution is based on several assumptions. Idle power is ignored in this work. Static power is
scaled by the ratio of the areas of the host and memory GPU. For the dynamic power estimation, different
components of the host power are scaled down using information from profiling the application.
Equation (4) shows how the relationship is modeled.

PIMgp = a X ((ACtiZJeSMHOSt + L2p0st + ICNTHOSt) +0.25 % (MCHost + DRAMHOSt)) (4)

All dynamic power components are scaled by an experimentally determined parameter a.
These components include the power consumed by the active streaming multiprocessor (SM)
(ActiveSMHyst), the L2 cache in the host processor (L2ppst), and the interconnect network (ICNTHpst).
The DRAM and memory controller (MC) power components (MCrpst and DRAMp,¢) are further scaled
down by 0.25, which is the experimentally determined ratio between DRAM and active SM power.
The value of « is estimated by profiling the application. The L2MPI and percentage of active SMs
to idle SMs is used to infer how much the application would benefit from executing on the memory
side PE. The assumption is that large L2MPI values indicate inefficient use of cache and wastage of
memory bandwidth. Similarly, a low percentage of active cores indicates that the application will not
experience a slow-down due to the lower number of compute units in the memory PE.

Finally, another linear model based on these assumptions of power scaling is used to check if the
use of dynamic voltage and frequency scaling (DVFS) will make some offloading decisions feasible
within the power constraint. If all tests are passed, the task is offloaded to the memory-side GPU.

This technique comprehensively considers the energy, power, and performance aspects of
offloading to power constrained NMP systems. Compared to host-only execution, the proposed
technique achieves a 20.5% increase in instructions per cycle (IPC) and a 67.2% decrease in energy
delay squared product (ED2P). The approach comes with additional design time and runtime
overhead compared to code annotation and compiler-based methods. Additionally, it is based on
strict assumptions about the system dynamics derived from profiling characteristic applications.
Practically, the different system components may interact in a variety of unpredictable ways, breaking
the assumption of stationarity.

5. Conclusions and Future Challenges and Opportunities

PIM and NMP architectures have the potential to significantly reduce the memory wall and
enable future big data applications. However, it has been demonstrated that naive use of these DCC
systems can run into thermal issues and even reduce the performance of the overall system. This has
led many to investigate offloading management techniques that are able to identify low data locality
instructions or react to thermal emergencies. In this paper, we have organized these works based
on the optimization objective, optimization knobs, and the type of technique they utilize. However,
there are several challenges and opportunities for resource management of PIM/NMP substrates related
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to generalizability, multi-objective considerations, reliability, and the application of more intelligent
techniques, e.g., machine learning (ML), as discussed below:

Due to the large variations in DCC architectures proposed to date, the management policies
have been very architecture- and application-specific. For example, a policy for a near-memory
graph accelerator involves the offloading of specific graph atomic operations, a policy for a
stencil accelerator involves the offloading of stencil operations, and so on. This could lead
to technology fragmentation, lower overall adoption, and inconsistent system improvements.
As an example, an NMP system designed to exploit the high density of connections in small
graph areas fails to extract significant speedup when graph connections are more uniform [33].
Future DCC architectures and resource management policies need to explore the generalizability
of these systems.

Nearly all past work has focused on the efficient use of PEs across the system, i.e., they offload tasks
which minimize data movement between the host processor and memory. However, high frequency
of offloading can cause the memory chip to overheat and lead to a complete shutdown. The issue
is addressed reactively in [29] but more proactive and holistic resource management approaches
are needed to consider both thermal- and performance-related objectives together.

Reliability has yet to be considered in the management policies for DCC systems [59]. There is no
analysis of the impact of reliability concerns in emerging NVM substrates or DRAM cells on the
efficacy of PIM/NMP offloading strategies. Due to deep nanometer scaling, DRAM cell charge
retention is becoming increasingly variable and unpredictable. Similarly, the use of unproven and
new NVM technologies that are susceptible to disturbances during non-volatile programming
brings some level of uncertainty at runtime. Resource management techniques need to be designed
in a manner that is robust to these reliability issues in memory substrates when making decisions
to offload to memory PEs.

ML-based applications have exploded in recent years. ML's potential has been demonstrated for
identifying offloading targets [71] using a simple regression-based model with cache performance
metrics as the input. More generally, ML techniques like reinforcement learning have proven
successful in improving performance by intelligently scheduling workloads on heterogenous
systems [101]. As we adopt more general architectural designs, management policies will need
to account for the diversity of applications and variability of processing resources. On the other
hand, Internet of Things (IoT) devices have great potential to use ML for smart operation, but they
lack the resources for training ML models on large datasets. Recent work [102] has shown
that executing ML algorithms using near-data vector processors in IoT devices can significantly
improve performance. Hence, a promising direction is to leverage the DCC approach to empower
IoT devices to process data locally to improve privacy and reduce latency.

Heterogenous manycore architectures running multi-threaded applications result in complex
task mapping, load balancing, and parallelization problems due to the different PEs. Recently,
complex network theory, originally inspired by social networks, has been successfully applied to
the analysis of instruction and data dependency graphs and identification of “clusters” of tasks to
optimally map instructions to PEs [103]. Similarly, complex network theory can be extended to
include the PIM and NMP domain in order to optimize software, data orchestration, and hardware
platform simultaneously.
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