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technique to explore the cellular metabolism at the single cell level not only appreciates the subtle cell-
to-cell difference (i.e., cell heterogeneity), but also gains biological merits corresponding to individual
cells or small cell subpopulations. In this review article, we first briefly summarize recent advances in
single cell MS experimental techniques, and then emphasize on the single cell metabolomics data
analysis approaches. Through implementation of statistical analysis and more advanced data analysis
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SirJ1,gle cell mass spectrometry methods, single cell metabolomics is expected to find more potential applications in the translational
Vacuum-based and ambient mass and clinical fields in the future.

spectrometry © 2020 Elsevier B.V. All rights reserved.
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1. Introduction becomes an emerging field that explores the nature of biological
entities. Studies in this field include identifying metabolites,
Metabolomics, as a novel branch of current “omics” family, measuring metabolites’ abundances, revealing the dynamics of

biological activities, and ultimately illustrating metabolic mecha-
nisms [1—-3]. To date, metabolomics studies have been conducted
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prevalent platforms: nuclear magnetic resonance (NMR) and mass
spectrometry (MS). In spite of the nondestructive detection and
high reproducibility demonstrated using NMR [4—6], most
metabolomics research relies on MS platforms due to their unique
features, including high detection sensitivity, broad detection
range, and the power of molecular structure identification. In these
regards, MS based metabolomics is gaining popularity, and
numerous articles have been published to elaborate both the
“untargeted” [7,8] and “targeted” [9,10] approaches using liquid
chromatography-MS (LC-MS) to analyze metabolites from differ-
ence sources and further identify and quantify molecules of in-
terests [11—13]. In addition, as a subset of metabolomics, lipidomics
is of great interest in many studies of the structure, function, and
energy of cell, human health, and diseases [14—16]. Similar to
metabolomics, lipidomics studies are predominately performed
using LC-MS analysis for both qualitative and quantitative analysis
[17,18].

Cells are essential components of living organisms. Cellular
metabolome represents the downstream products of genome,
transcriptome, and proteome, and results from these studies carry
valuable biological information [19,20]. Given their intrinsic com-
plex biological nature, cells are commonly used as the model sys-
tems in numerous metabolomics studies [21—23]. Despite the
success of the research based on the conventional LC-MS platforms,
those results are concluded from populations of cells. However,
each cell is an individually functional unit, and subtle cell-to-cell
difference (i.e., cell heterogeneity) has been realized to be respon-
sible for critical biological process such as the development of drug
resistance [24—26], induction of tumor metastasis [27—29], and
determination of cell fate [30,31]. Due to the presence of cell het-
erogeneity in all cell populations, the collectively measured results
in traditional studies cannot represent the characteristics of indi-
vidual cells [32,33]. In addition, rare cell types (e.g., circulating
tumor cells, cancer stem cells, and antigen-specific T cells) exist at
low abundances among homogenous population; however, they
play important roles in disease mechanisms, immune responses,
and angiogenesis [34]. Traditional bulk analysis cannot provide
meaningful results of rare cell types due to their low populations.
Therefore, metabolomic analysis at a higher resolution, the single-
cell level, becomes necessary, and using MS for single cell metab-
olomics studies is an inevitable choice. In general, a typical single
cell MS metabolomics study includes multiple steps such as sample
preparation, MS measurement, and data analysis. In this review, we
intend to cover these aspects based on recent advancement of both
technology development and data analysis.

2. Single cell sampling and ionization techniques

In single cell MS studies, sampling analytes from a single cell is
one of the most challenging steps due to the size of a cell (typically
several tens of micrometer in diameter for a mammalian cell)
[35,36], limited volume of cellular contents [37], intrinsic
complexity of intracellular species [38], and rapid turnover of
cellular metabolites [39,40]. Thus, an effective sampling technique
generally requires high magnification microscope for monitoring
cells, precisely controlled mechanical system for sample motion,
and efficient extraction or desorption method for cellular content
acquisition. The acquired cellular species are then ionized by
different mechanisms for MS analysis.

Up to date, a collection of techniques have been reported to
sample and ionize molecules from individual cells in both vacuum
and ambient conditions. According to their sampling approaches,
these techniques are based on ion beam [41,42], laser [43—45],
probes [46—49], microfluidic devices [50—52], and other methods
(Fig. 1) [53,54]. Sampled cellular molecules are ionized (e.g., by ion
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beam or laser) during the desorption process or after the sampling
step (e.g., by ESI) for qualitative and even quantitative studies. In
addition to the development of sampling and ionization tech-
niques, versatile approaches have been investigated to incorporate
separation processes and chemical reactions of metabolites prior to
MS analysis. More detailed descriptions of the mechanisms of re-
ported methods are summarized in previously published review
articles [36,55—59], and these techniques have been widely applied
to probing the metabolomic profiles of single cells [60,61], visual-
izing cell heterogeneity [62], quantifying compounds of interest
[63,64], localizing cell subpopulations [65], and investigating
certain biological pathways [31,66]. Here, we will cover specific
examples in each category of techniques to demonstrate their
features and recent advancements.

2.1. Vacuum-based methods

Currently, there are two major types of mechanisms (i.e., ion-
beam and laser) for sampling and ionization under vacuum envi-
ronment. The sampling and ionization processes of these tech-
niques simultaneously occur. The ion-beam based techniques, such
as time-of-flight secondary ion mass spectrometry (TOF-SIMS) and
nanoscale SIMS (nanoSIMS), can achieve high spatial resolution
(100 nm—1 pm) [67]. Because these techniques provide high spatial
resolution and excellent sensitivity, they are powerful tools for
single cell imaging and subcellular analysis [68,69]. Utilizing TOF-
SIMS, the Winograd group demonstrated the identification of
neuronal lipids through tandem MS (MS/MS), and further depicted
the distribution of multiple species, including PC (16:0e/18:1),
vitamin E, and cholesterol from single neurons [70]. Furthermore,
recent advancement of TOF-SIMS methods enabled 3D imaging of
single cells with more than 500 nm lateral depth. In a particular
study, the spatial localizations of a drug target, amiodarone, and
other co-localized species in single cells were mapped in a 3D space
by Passarelli et al. [41] However, SIMS-based methods are relatively
more energetic, and large number of fragments are generally pro-
duced, resulting in challenges in data analysis of most bio-
molecules. As a major laser-based technique, matrix-assisted laser
desorption-ionization (MALDI) MS relies on interactions between
laser beam and organic matrix molecules to initiate desorption and
ionization of analytes, and it is commonly used in single cell MS
experiments. This technique has excellent tolerance for salts and
provides high sensitivity and throughput measurements [71,72]. In
addition, combined with flash-freezing sample preparation
method, MALDI-MS can provide high-fidelity results reflecting the
native distribution of cellular analytes [73]. The Sweedler group
employed MALDI-MS to screen over 1500 single cells, and discov-
ered multiple cellular lipids, including phosphatidylcholine (PC),
phosphatidylethanolamine (PE), and sphingomyelin (SM), that are
significantly different between GFAP- and NF-L-positive cells [44].
Another example by the Lee group demonstrated the distribution of
cellular lipid species in individual zebrafish embryos [71]. In recent
advancement, matrix-free laser-based ionization techniques have
been applied to analyze molecular species within single cells.
Siuzdak’s group utilized Nanostructure-initiator MS imaging
(NIMS) to explore change of cellular metabolism by monitoring
xenobiotic metabolites after docetaxel treatment in lymphoma
cells [74], and Vertes’ team successfully applied nanopost array-
laser desorption ionization (NAPA-LDI) to detect over 80 unique
species in lamellipodia, a subcellular compartment of human
hepatocarcinoma cells [75]. In a recent report, Sweedler and co-
workers demonstrated that a MALDI/Cgo-SIMS hybrid Q-TOF in-
strument can achieve 1 pum of spatial resolution to imaging multiple
lipid species in cultured neurons [76]. Despite their mature
instrumentation and broad applications, the vacuum working
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Fig. 1. Examples of single cell MS metabolomics techniques. (A) Secondary ion MS (SIMS). Reproduced from Ref. 42, with permission from The Royal Society of Chemistry. (B)
Matrix-assisted laser desorption/ionization (MALDI) MS. Reproduced from Ref. 43, with permission from American Chemical Society. (C) Laser ablation electrospray ionization

(LAESI) MS. Reproduced from Ref. 45, with permission from Frontiers Media. (D

) MALDI/Cgo-SIMS hybrid Q-TOF platform. Reproduced from Ref. 76, with permission from American

Chemical Society. (E) Single-probe MS. Reproduced from Ref. 63, with permission from American Chemical Society. (F) T-probe MS. Reproduced from Ref. 49, with permission from
American Chemical Society. (G) Dean flow assisted cell ordering system. Reproduced from Ref. 62, with permission from The Royal Society of Chemistry. (H) Major components of
CE-ESI-MS interface. Reproduced from Ref. 31, with permission from The Royal Society of Chemistry.

conditions for SIMS- and MALDI-based methods require complex
sample preparation, which may affect the chemical compositions of
cells compared with those in the native biological environment.

2.2. Ambient methods

In contrast to vacuum-based methods, ambient sampling tech-
niques can largely preserve the cellular microenvironment when
sampling in situ. This unique feature becomes increasingly advan-
tageous for metabolites with rapid turnover rate [36]. Due to the
flexibility in ambient working conditions, a large number of inno-
vative methods have been developed. In general, these techniques
have separate steps of sampling and ionization. Sampling cellular
molecules can be conducted using laser, probes, or microfluidics,
whereas ionization mechanisms are primarily based on nano-
electrospray ionization (nanokESI).

Laser ablation electrospray ionization mass spectrometry
(LAESI-MS), which utilizes IR laser for desorption and ESI for ioni-
zation, represents a well-known laser-based method. The Vertes’
group used LAESI-MS to detect and identify cellular metabolites,
such as monosaccharide, disaccharide and trisaccharide, from
A. Cepa cells [77]. Furthermore, the same group employed LAESI-
MS for subcellular analysis, and significant difference of lipid pro-
files was observed between the animal and vegetal poles of Xen-
opus laevis eggs [78].

Probe-based methods have a more variety of designs. For
example, the Lanekoff group employed nano-desorption electro-
spray ionization (nano-DESI), which utilizes a microscale liquid
junction between two fused silica capillaries for analyte extraction,
to detect lipids and amino acids from single human cheek cells. The
Yang group introduced multiple devices, such as the Single-probe
and T-probe [46,49], to detect intracellular metabolites as well as
drug compounds from single cells in their native microenviron-
ment. Particularly, the Single-probe was recently used to quantify
xenobiotics, such as antitumor drug compound, in the single cells
residing in microwells [63], and the T-probe was modified to
analyzed live non-adherent cells [61].

Microfluidics-based methods take the advantage of micro-
fabrication techniques to design microscale devices that allow for
higher throughout analysis. The Lin group designed a Dean flow
assisted cell ordering system to detect multiple cellular lipids,
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including PC and PE, and further distinguished the difference of
cellular metabolomic profiles between different types of cells [62].
In another example, a drop-on-demand inkjet printing device was
fabricated and applied to analyze single cells from cell suspension,
and the cellular profiles of four different types of cells were
compared [79].

Despite a variety of sampling techniques that directly extract
cellular contents from single cells of interest followed by immedi-
ate analysis, molecular separation or cell sorting has been incor-
porated in a number of studies. For example, -capillary
electrophoresis (CE) has been coupled to microdissection and
microextraction to enable online single cell analysis. The Nemes
group successfully detected and identified more than 80 of unique
metabolites such as amino acids from Xenopus embryos [80]. The
same group further optimized the solvent composition involved in
the microextraction procedure to achieve detections with higher
selectivity of metabolites [66], and utilized dual-polarity to increase
metabolite coverage [31]. Alternately, ion mobility separation (IMS)
can be seamlessly coupled to the sampling process to alleviate the
influence of intrinsic matrix effect, which is caused by the
complexity of cytoplasm, on detection sensitivity as well as differ-
entiate isomers, promoting more sensitive detection and accurate
identification of cellular species. As a result, twice as many species
can be detected from A. thaliana cells through orthogonally coupled
IMS than conventional ESI-MS [81]. It is also worth noting that both
CE-MS and IMS-MS have advantages in identifying detected
cellular species due to a second dimension of information (i.e.,
migration time for CE and collision cross section for IMS) in addi-
tional to merely m/z values. Involving separation in single cell
metabolomics studies becomes advantageous as more data are
being collected to construct larger databases. In addition to the
separation of molecular species, cells can be selected for analysis.
For example, fluorescence-activated cell sorting (FACS) has been
conventionally used to separate certain type of cells according to
their surface protein markers. The Connolly group utilized this
method to measure cellular metabolic profiles of human peripheral
blood mononuclear (PBMC) cells, and compared abundances of
metabolic transporters before and after glycolytic inhibition [82].
However, the process of FACS introduces excessive stress to the
examined cells and alters the metabolomic dynamics in single cells
[83].
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Due to the complex chemical compositions and extremely
limited sample amounts, single cell MS studies are generally
focused on qualitative analysis. With precise control of the sam-
pling process, several ambient techniques have been reported for
quantitative single cell studies. The Laskin group demonstrated
electroosmotic extraction of 2—40 pL of cytoplasm from A. Cepa
cells followed by quantification of glucose (3.2—16 mM) using
nanoESI [47]. In addition, quantification of selected lipid species in
human cheek cells have been measured using nanoDESI, and the
amount of phospholipids can vary between 100 and 300 fmol in a
cell [64]. Also, the anticancer drug uptake in single HeLa and HCT-
116 cells was quantified using the Single-probe, and the results
obtained at the single-cell level were systematically compared with
those obtained from cell lysates prepared using populations of cells
[63].

To further increase detection sensitivity and acquire more
structural information, chemical reactions with single cells can be
conducted prior to MS analysis. The Huang group combined CBT-
Cys click reaction with induced nanoelectrospray ionization
(InESI) to derivatize cellular species in situ with low response, and
therefore enhanced detection sensitivity [84]. Recently, the Yang
group introduced a micropipette needle to initiate Paterno-Biichi
(PB) reaction of unsaturated lipids in non-adherent cells, and
further assigned the carbon-carbon double bond positions [85]. In
another example, the Guo group performed on-probe derivatiza-
tion of fatty alcohol and sterol metabolites extracted from single L-
02 and HepG2 cells, and further induced quaternization reactions
to convert molecules with low ionization efficiencies into pre-
charged species for enhanced detection sensitivities [86].

3. Single cell metabolomics data analysis

For most single cell metabolomics studies, the acquired raw
data, consisting of all detected species and their corresponding ion
intensities, are tremendous in size and complex in nature. There-
fore, a systematic data analysis approach is required to eliminate
redundancy and confusions while retaining the underlying bio-
logical information. Different from conventional LC-MS metab-
olomics, the data analysis methods are not standardized in current
single cell metabolomics studies, and individual research groups
may have their preference of using different data analysis pipelines.
This review will focus on critical steps from reported data analysis
approaches to uncovering the biological information from single
cell metabolomics datasets. Conventionally, LC-MS based metab-
olomics data analysis involves multiple steps, including data con-
version, normalization, scaling and transformation, feature
selection, biomarker determination, and metabolite annotation
[87,88]. Although those concepts and practice still apply to the
single cell metabolomics data analysis, adaptions and custom-
izations are generally needed. Thus, the workflow of current single
cell metabolomics data analysis primarily includes data pre-
processing, univariate analysis, multivariate analysis, and more
advanced data analysis, if applicable. Together, they are integrated
into multiple software packages that have been used by different
labs to promote deeper understanding of cellular metabolism.
However, due to the characteristics of single cells (e.g., extremely
limited amounts of analytes, complex chemical compositions, and
heterogeneous cell populations), ion signals obtained from single
cells generally have relatively low signal-to-noise ratio. Thus, ones
should be cautious when analyzing their data.

3.1. Data pre-processing

Single cell metabolomics data pre-processing is a comprehen-
sive procedure to extract useful metabolomic information from the
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raw data (Fig. 2) [89]. Although different data pre-processing ap-
proaches have been reported, this review will cover essential steps
commonly involved in most studies.

First, noise and background signals need to be removed. Both
random noise and background signal from ambient environment
may interfere with the “true” metabolomic fingerprints of single
cells. To alleviate such interference, the random noise generated by
the instrument can be excluded by filtering all acquired signals
with a set threshold. Because most of current signal cell metab-
olomics studies are conducted using high-resolution MS platforms
(e.g., Orbitrap, Q-TOF, and FT-ICR), this step eliminates a majority of
MS signals not corresponding to cellular metabolites. However,
cautions should be taken when choosing the noise threshold. Un-
necessarily high thresholds may discard useful metabolomic in-
formation. In other words, peaks with ion intensity lower than the
set threshold will be treated as noise and then discarded, resulting
in information loss of metabolites with low abundances or ioniza-
tion efficiencies. On the contrary, excessively low threshold may
include noise and sporadic ion signals, which will lead to data
redundancy. In addition to noise removal, background signals need
to be eliminated. Generally, a “blank” sample (e.g., fresh cell culture
medium or solvents) containing molecules simultaneously detec-
ted along with cellular contents can be analyzed using the same
experimental setup, and the acquired ions are then treated as
background signals and subsequently subtracted from the raw data.
However, one should be aware that molecules present in the cul-
ture medium can be accumulated or metabolized by cells, and
therefore, potential bias may be introduced when completely
eliminating these species and their metabolites when they are of
interest. After noise removal and background reduction, the
dimensionality of the datasets can be tremendously reduced. The
remaining peaks that correspond to cellular metabolites can be
subjected to the second step, normalization and peak alignment.

Second, normalization of ion intensity needs to be conducted,
and the normalized ion intensities can then be correlated to their
relative abundances among different cells. In the current single cell
metabolomics studies, each peak is either normalized to the total
ion counts (TIC) of all detected metabolites or the most abundant
peak detected (the base peak). Similar to LC-MS/MS metabolomic
data analysis, all normalized peaks are then aligned across all
examined cells to reflect both mutual and unique species present.
In addition, internal standard (e.g., isotopically labeled analog) can
be used for normalization to quantify the absolute amounts of
molecules in single cells [47,63,64,90].

Last, to reduce resource demand for data analysis and avoid
misleading results, it is necessary to select metabolites that can be
commonly detected from majority of single cells. Typically, only
those metabolites that present in most of cells are included and
subjected to following statistical analysis. A variety of software
packages, although a majority of them were originally designed to
perform the conventional LC-MS/MS metabolomics, can be adapted
to perform these tasks for the single cell metabolomics datasets.
Examples of popular tools include, but not limited to, MZmine
(http://mzmine.github.io/) [91], MetaboAnalyst (https://www.
metaboanalyst.ca/) [92], Geena2 (http://bioinformatics.
hsanmartino.it/geena2/) [93], NOREVA (http://idrblab.cn/noreva/)
[94], MetAlign (https://www.wur.nl/en/show/MetAlign-1.htm)
[95], mMass (http://www.mmass.org/) [96], and other customized
packages written in R (e.g., MALDIquant [60]) and Python (e.g.,
microMS [97]). After data pre-processing, complex raw data
become simplified data matrices that consist of the detected
cellular metabolites along with their normalized intensities. Addi-
tional data scaling and transformation may be conducted to smooth
the datasets, and potentially reduce the effect from extreme “out-
liers” (i.e., metabolites with extremely high or low abundances).
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Fig. 2. A generalized single cell metabolomics data analysis workflow that consists of raw data pre-processing, univariate analysis and multivariate analysis. Pathway enrichment
analysis may be performed based on significantly altered cellular metabolites (biomarkers) as needed. Reproduced from Ref. 89, with permission from Elsevier.

3.2. Univariate analysis

To reveal the change of cellular metabolites corresponding to
certain biological process (e.g., drug treatment and environmental
stress), statistical analysis that focuses on one variable at a time
(i.e., univariate analysis) is needed. This approach discerns the
difference (i.e., upregulation or downregulation) of metabolites,
and it has been constantly performed in single cell metabolomics
studies to discover potential metabolomic biomarkers, which are
characteristics of groups of cells with certain biological traits.
Similar to conventional LC-MS/MS metabolomic data analysis, t-
test is broadly used to locate those metabolites with significantly
different relative abundances between two groups. The resulting
metabolites with positive test results (i.e., test p-value < 0.05) are
regarded as metabolomic biomarkers. For example, the level of
glutathione (GSH)/oxidized glutathione (GSSG) is significantly
different following two dissection methods of single embryos,
which may further indicate different cellular reaction mechanisms
towards such environmental stress [53]. A collection of lipids in
single algae cells, including phosphatic acid (PA), phosphoetha-
nolamine (PE), phosphatidylglycerol (PG), phosphatidylserine (PS),
phosphatidylinositol (PI) phosphatidylcholine (PC), mono-
glycerides (MG), diglycerides (DG) and triglycerides (TG), have
significantly different abundances in light or dark environment.
Such observation is likely related to the availability of nutrition
[98]. Some lipid species, such as PC 34:1, PC 34:2, PC 36:2, PC 36:3,
possess significantly different abundances in single cells obtained
from different donors, and such differences may be attributed to
different diets [64]. It is worth noting that data distribution needs

128

to be evaluated prior to univariate analysis. Specifically, datasets
having Gaussian or near-Gaussian distribution (determined by data
normality tests) [99] may be subjected to parametric t-test (Stu-
dent’s t-test); whereas those having skewed distribution may be
subjected to non-parametric t-test (Welch's t-test) instead [89].
When exploring complex systems with more than two groups of
single cells, analysis of variance (ANOVA) is the statistical method
of choice to reveal biomarkers among multiple study groups.
Similar to t-test, data normality needs to be thoroughly examined
before conducting either parametric (i.e., One-way) or non-
parametric (i.e., Welch’s) ANOVA. It is worth noting that bio-
markers resulting from ANOVA correspond to all groups of cells
rather than two specific groups of cells.

3.3. Multivariate analysis

Although univariate analysis is a powerful and predominant
approach to discovering metabolomic biomarkers, it inherently
lacks the capability to collectively handle metabolomic profiles
from all cells. Multivariate analysis can handle the overall metab-
olomics profiles of single cells through the analysis of all variables
(i.e., metabolites and their abundances). The principle of any
multivariate analysis method is projecting the high dimensional
raw data into lower dimensional space (e.g., 2D or 3D space) with
preservation of most information using fewer numbers of variables.
Such manner reduces the dimensionality of the raw data, but the
key information reflecting biological functions in cells can be
retained. Additionally, one can visualize the complex cellular
metabolomic profiles in a 2D or 3D space, which enables intuitive
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visualization of cell heterogeneity.

There are two types of multivariate analysis, namely, unsuper-
vised and supervised methods (Fig. 3). Unsupervised methods, such
as k-means clustering, Principal Component Analysis (PCA), and t-
Distributed Stochastic Neighbor Embedding (t-SNE), reduce the
dimensionality of the original data by grouping objects with higher
similarities in the high dimensional space through linear or non-
linear fashion. On the contrary, supervised methods, such as par-
tial least squares discriminant analysis (PLS-DA), orthogonal pro-
jections to latent structures discriminant analysis (OPLS-DA), and
random forest, require prior knowledge of the group attributes of
single cells. The grouping information will be used to properly
assign group labels for all subsequent single cells in the training
data set.

Due to this fundamental difference between these two types of
methods, supervised methods offers more definitive clustering
results, which become critical when the induced change of cellular
metabolism is subtle compared with intrinsic cell heterogeneity
(regarded as “noise”) [100]. However, as bias may be introduced
when constructing supervised models, it is imperative to validate
each supervised model using cross-validation and permutation
tests. A robust supervised model with a small permuted p-value
(e.g., <0.05) may truly suggest significant difference between two
groups of single cells. On the contrary, unsupervised methods
present unbiased group clustering, and additional model validation
is not required.
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Currently, both types of multivariate analysis have been applied
to single cell metabolomics studies as described in the following
examples. PCA was conducted to visualize the metabolomic profiles
of osteosarcoma cells and normal human osteoblasts after mannose
stimulation [101], and it was also used to demonstrate the
metabolomic difference of bacteria infected and uninfected plant
cells [102]. t-SNE was performed to present the discrimination of
four distinct subtypes of breast cancer cells, BT-474, MCF7, MDA-
MB-468, and SK-BR-3 [103]. PLS-DA was applied to distinguish
cancer stem cells (CSCs) and non-stem cancer cells (NSCCs) based
on cellular metabolomic profiles acquired from positive and
negative ion modes [104]. OPLS-DA was conducted and clear
discrimination was observed for two groups of single cells [105].

3.4. Biological variance vs technical variance

Although the statistical methods mentioned above can be used
to compare abundances or overall profiles of metabolites in cells
from different groups, caution needs to be taken when studying
biological variance of cells under the influence of technical variance
at the single-cell level. Similar to other analytical techniques, it is
necessary to investigate the biological variance (e.g., due to cell
type difference, cell heterogeneity, or environment variation) under
the influence of technical variance (e.g., fluctuation of ion signal
due to inconsistent ionization efficiency, variability of the experi-
mental process, and run-to-run instrumental variation) at the
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Fig. 3. Examples of multivariate analysis methods for single cell metabolomics data analysis. (A) PCA to visualize two groups of single cells with or without bacterial infection.
Reproduced from Ref. 102, with permission from American Chemical Society. (B) t-SNE to visualize multiple subtypes of single breast cancer cells. Reproduced from Ref. 103, with
permission from American Chemical Society. (C) PLS-DA to visualize the difference of cellular metabolomic profiles of cancer stem cells and non-stem cancer cells. Reproduced from
Ref. 104, with permission from American Chemical Society. (D) OPLS-DA to visualize the difference of control (untreated) and antitumor drug treated single cells. Reproduced from

Ref. 49, with permission from American Chemical Society.
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single-cell level. However, this becomes more challenging in single
cell studies due to multiple factors, including extremely limited
amount of materials, complex composition of analytes, intrinsic cell
heterogeneity, rapid turnover rate of metabolites, and relatively
larger influence from technical variance. Particularly, repeated ex-
periments using the same cell cannot be performed, as single cell
MS techniques are generally invasive, and results from individual
cells are intrinsically irreproducible. These challenges can be
largely alleviated through carefully designed experiments and
comprehensive data analysis [45,65,106]. First, measurements of all
cells in different groups should be accomplished as closely as
possible to avoid unnecessary biological variance of samples
[89,104,106,107]. Second, the relative standard deviation (RSD) of
cellular species in single cell MS experiments can be utilized to
represent the combined technical and biological variance. Third,
solutions containing standard compounds need to be measured
using the same single cell MS experimental setup, and the calcu-
lated RSD of ion intensities of these compounds can be used to
evaluate technical variance. Last, sizes of these two types of RSD
will be compared, and a significantly larger RSD from the single cell
MS measurement indicates a valid biological variance [45,65,106].

3.5. Molecular identification

The molecular identification in single cell MS experiment is
challenging, primarily due to limited sample amount and complex
composition of contents within single cells. Although mass scan
combined with database searching (e.g., METLIN [108] and HMDB
[109]) can provide potential labels of ions, MS/MS analysis is
necessary to acquire more reliable identifications. Different from
traditional bulk analysis, in which adequate sample amount allows
for detailed MS/MS analysis of a large number of ions, identifying
ions of interest from single cells is nontrivial. A number of ap-
proaches have been developed in previous studies. Online MS/MS
has been applied to directly identify species from single cells,
particularly for those relatively abundant ions such as phospho-
lipids and certain metabolites [49,104]. In addition, reactions can be
carried out for single cells to enhance molecular detection and
identification. For example, dicationic reagents, such as
[C5(bpyr)2]> and [Cs(triprp),]?*, have been introduced to the
sampling solvent to detect and identify negatively charged species
(e.g., AMP and palmitic acid) in positive ion mode with significantly
improved sensitivity [110]. In another example, PB reactions are
induced by UV irradiation to determine the locations of C=C bonds
in unsaturated lipids assisted by R programs [85]. Second, single
cell MS scan can be combined with traditional LC-MS. In this
approach, single cell MS scan results from different groups are
analyzed using statistical methods (e.g., t-test, ANOVA, and multi-
variate statistical models) to generate the list of ions of interest
(e.g., those with significantly different abundances). Cell lysates are
then prepared for LC-MS experiments, and MS/MS analysis is
focused on ions of interest, including those with low intensities in
single cell mass spectra. Third, separation can provide orthogonal
information to assist identification. Molecular separation can be
performed before MS ionization. For example, CE provides excel-
lent separation of small amounts of samples. Coupled with MS, CE-
ESI-MS has been utilized for single cell studies. Both temporal in-
formation (i.e., migration time) and molecular information (i.e., m/z
value) are obtained for the parent ions for more confident identi-
fication. For example, serotonin and acetylcholine were identified
in single MCC and R2 neuron, respectively, using this technique
[111]. Separation can be also achieved after molecular ionization. As
an example of post-ionization separation, ion mobility separation
(IMS) offers a second dimension of molecular information (i.e.,
collision cross-section value). For example, ESI-IMS-MS has been
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successfully utilized to identify over 50 unique species in mitotic
HepG2/C3A cells [65].

3.6. Biomarker and pathway analysis

Metabolic pathways link complex chemical reactions of me-
tabolites within a cell. Discovery of metabolite biomarkers is
extremely useful to further compute the biological pathways
involved in the biological process. Although t-test is widely used as
a common method to locate biomarkers, other statistical methods
have been explored and applied. Among them, the loading score of
multivariate analysis [106,112] and the VIP (variable importance on
projection) obtained from statistical models have been utilized to
determine metabolite biomarkers. In the studies of young and old
algae cells, pigments fucoxanthin, Chl «, carotene, and alloxanthin
were designated as metabolomic biomarkers of age-related bio-
logical process by ranking their VIP scores of a PLS-DA model [60].
In addition, pathway analysis tools, which are originally developed
for classic LC-MS metabolomics studies, can be extended to single
cell metabolomics. For example, by mapping the discovered bio-
markers against known metabolic pathways (e.g., Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) metabolomic database), it was
found that arginine—proline metabolism and glutathione meta-
bolism were enriched in certain regions of Xenopus embryos by
retrieving cellular metabolites with different solvents [66]. In
addition, our previous work indicates biopterin metabolism, glyc-
erophospholipid metabolism, bile acid biosynthesis, de novo fatty
acid biosynthesis were significantly altered after treating single
HCT-116 cells with anti-tumor compounds, paclitaxel and
vinblastine. The pathway enrichment analysis was performed using
Mummichog, which only utilizes measured accurate m/z values
(not identified metabolites) [89].

3.7. Advanced data analysis

Although univariate and multivariate analysis are extensively
used in current single cell metabolomics research, more advanced
data analysis approaches have been recently introduced. For
example, artificial intelligence (Al) has been applied to process
single cell metabolomics data due to its high efficiency. Al relies on
computational resource to “teach” models through a variety of al-
gorithms, and gradually approaches the underlying complex nature
of the studied object, which is usually difficult to explore by human,
during each interaction of “training”. Among all Al methods, ma-
chine learning (ML) has been utilized to analyze single cell
metabolomics data. By incorporating conventional statistical anal-
ysis with advanced algorithms, complex mathematical models can
be established. These models can be generally classified into su-
pervised and unsupervised models. To date, supervised ML
methods have been used in single cell metabolomics studies. In
those models, the acquired datasets are divided into two sets: the
training set and the validation set. The training set is used to
construct different ML models using a variety of strategies,
including random forest (RF), support vector machine (SVM), lo-
gistic regression (LR), and artificial neural network (ANN), through
an iterative fashion. The validation set is used to evaluate the model
performance in predicting the group attribute of foreign objects.
Provided that the training set contains sufficient numbers of single
cells, the ML models could generate high predictive accuracy of the
phenotype of an unknown single cell based on its integral metab-
olomic profile.

In a recent publication, ML models were reported to achieved
high (>80%) classification accuracy between neurons and astro-
cytes, and the models were further evaluated using area under
sensitivity-specificity curve (AUC) [113]. In another study, multiple
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ML models were established and systematically evaluated to pre-
dict single cells with primary drug resistance (Fig. 4). As aresult, the
ANN model, which contains cellular metabolites detected from
more than 40% of all examined cells, achieved high predictive ac-
curacy within relatively short time. This model was further vali-
dated using MS data acquired from other sets of single cells with
comparable performance [107]. Furthermore, ML models were
constructed and applied to predict the degree (i.e., none, low, or
high) of chemotherapy-induced drug resistance based on metab-
olomic profiles [106]. Such multi-group predictive model demon-
strated high predictive accuracy in both the validation set and new
batches of single cells. Interestingly, it is found that ML models
containing more variables (i.e., ions and their intensities) tend to
yield higher predictive accuracy. However, excessive data redun-
dancy should be avoided to save computational time and resource.
For datasets containing metabolites with low abundances, the
Trace framework, developed by Nemes et al, is capable of
extracting trace-level signals from high-resolution mass spectra
using combined ML algorithms and advanced feature categoriza-
tion [114]. As an emerging and powerful technique, ML-based
single cell metabolomics approaches can be adopted to assist de-
cision making or initiation of related mechanistic studies, and they
have the potential towards future translational applications in the
clinical field in the long run.

4. Future perspectives

As an emerging research field, single cell metabolomics is
gaining popularity recently. Despite the success of current studies,
the next generation of single cell analytical techniques are under
development, likely focusing on multiple aspects. First, push the
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limit of detection sensitivity, and therefore broaden the detection
spectrum of the cellular metabolites, especially for those with low
abundances or poor ionization efficiencies. Second, investigate
subcellular compartments and precisely analyze metabolites cor-
responding to specific organelles. Third, sample live single cells in
their native microenvironment representing their living conditions.
In terms of data analysis, statistical and more advanced data anal-
ysis approaches have been utilized to handle complex data matrix
to generate critical biological merits. However, standardized single
cell metabolomics data analysis pipeline is not available at this
stage, hindering the direct comparison of experimental results
between different labs. Therefore, it is necessary to construct the
standardized data analysis methods that integrates essential
functions for data processing. On the other hand, ML methods
tremendously boosted the efficiency of single cell metabolomics
data analysis, and they uncovered the underlying nature of cellular
metabolism that is difficult to explore by human. Although still in
the infancy, more applications of sophisticated ML models are ex-
pected towards future translational and clinical fields. Last, the data
integration of multi-omics, including genomics, transcriptomics,
proteomics, and metabolomics at the single cell level is receiving
increasing interest (Fig. 5) [115,116]. This integration requires not
only novel experimental techniques, but also new bioinformatics
tools. The success of integrated multi-omics studies allows to
explore the inner dynamics of cells from a more comprehensive
perspective, and ultimately promote profound understanding of
the biological nature of cells. As an ultimate goal, some of these
advanced experimental techniques and data analysis methods will
go through iterative development, and eventually become mature
enough for standardization or commercialization. We can expect
that, in the near future, single cell MS metabolomics will be readily
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Reproduced from Ref. 116, with permission from Elsevier.

utilized, particularly by non-expert users, for a broad range of ap-
plications in fundamental studies and clinical applications.
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