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Abstract

While protein-protein interaction is the first step of the SARS-CoV-2 infection, recent
comparative proteomic profiling enabled the identification of over 11,000 protein
dynamics, thus providing a comprehensive reflection of the molecular mechanisms
underlying the cellular system in response to viral infection. Here we summarize and
rationalize the results obtained by various mass spectrometry (MS)-based proteomic
approaches applied to the functional characterization of proteins and pathways asso-
ciated with SARS-CoV-2-mediated infections in humans. Comparative analysis of cell-
lines versus tissue samples indicates that our knowledge in proteome profile alter-
nation in response to SARS-CoV-2 infection is still incomplete and the tissue-specific
response to SARS-CoV-2 infection can probably not be recapitulated efficiently by in
vitro experiments. However, regardless of the viral infection period, sample types, and
experimental strategies, a thorough cross-comparison of the recently published pro-

teome, phosphoproteome, and interactome datasets led to the identification of a com-

Abbreviations: PI3K-Akt, phosphatidylinositol 3-kinase- protein kinase B; EGFR, epidermal growth factor receptor; MAPK, mitogen-activated protein kinase; Rap1, ras-related protein 1; AMPK,
AMP-activated protein kinase; BiolD, proximitydependent biotin identification; DDA, data-dependent acquisition; MEK, mitogen-activated protein kinase kinase’ SRC; protooncogene

tyrosine-protein kinase Src
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1 | INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
induced coronavirus disease 2019 (COVID-19) has claimed over 2.1
million lives globally in 2020. Although initially it was thought that
the respiratory system, particularly the lungs, are the primary target
for the infectious coronavirus, an increasing number of COVID-19
case studies showed a wide range of internal organs, including the
heart and blood vessels, liver, kidneys, intestine, and the brain can
also be severely damaged by this viral infection [1]. The COVID-19
outbreak has not just impacted human health across the world; it
has also resulted in a severe disruption of global daily life, leading
researchers to develop a keen interest in resolving the effects of the
pandemic. Particularly, scientists in biological fields are now exploring
the possibilities of using various biological technologies in order to
acquire more information regarding the pathogenic nature of this
virus in the human body. The rate of new research on COVID-19
produced by the scientific community has been enormous, with more
than 32,000 papers on the subject being published within the last few
months (Figure S1A). In comparison, SARS-CoV and Middle East Respi-
ratory Syndrome (MERS)-CoV outbreaks only led to modest increases
in literature output (Figure S1A). Furthermore, the vast majority of
papers aimed either on the viral infection itself or on the genomic
studies of the virus, while the application of proteomics platforms on
viral research has not yet been fully explored (Figure S1B).

Among the cutting-edge molecular technologies, mass spectrom-
etry (MS)-based proteomics has emerged as a promising biotechno-
logical tool in the post-genomic era particularly in clinical settings
and system biology. The most relevant advantage of using MS-based
technology in clinical proteomics is the ability to obtain a wide range of
proteomic information with high-throughput capability, multiplexity,
and high reproducibility in a dynamic quantitative fashion. Further-
more, unlike traditional biochemical assays for disease biomarkers,
MS-based approaches do not require affinity agents or antibodies
and thus do not demand prior knowledge of the disease to deliver
information regarding biomarkers and clinical indicators. Proteomic
platforms have been utilized successfully for a better understanding of
the infectious mechanisms of SARS-CoV-1 (Table S1) and SARS-CoV-2
(Table 1).

mon set of proteins and kinases associated with PI3K-Akt, EGFR, MAPK, Rap1, and
AMPK signaling pathways. Ephrin receptor A2 (EPHA2) was identified by 11 studies
including all proteomic platforms, suggesting it as a potential future target for SARS-
CoV-2 infection mechanisms and the development of new therapeutic strategies. We
further discuss the potentials of future proteomics strategies for identifying prognostic

SARS-CoV-2 responsive age-, gender-dependent, tissue-specific protein targets.

biomarkers, comparative proteomics, COVID-19, kinase-substrate signaling, post-translational
modifications, targeted proteomics, top-down proteomics

Early reports showed that a traditional gel-based proteomic
approach led to the successful identification and characterization of
the SARS-CoV spike (S), nucleocapsid (N), and membrane (M) proteins,
and is considered one of the first descriptions of the actual proteins in
the then-novel coronavirus and provide a mechanism by which SARS-
CoV could induce host cell apoptosis [38]. Therefore, efforts in dis-
covery and structural proteomics have been particularly important in
the biochemical characterization of SARS-CoV-2. Regarding COVID-
19, there is currently a gold rush of proteomics research focusing on
SARS-CoV-2 (Figure S1B). Recently, the feasibility of MS-based pro-
teomic approaches, including discovery proteomics [2-7, 13,14, 19-26],
immuno-proteomics [6-12, 27] and targeted methods [5, 29-35] have
been employed using COVID-19 patients’ samples and/or infected cell
lines in investigations of the molecular mechanism of viral infection,
potential viral protein targets, and/or the viral proteins in human cell
samples (Figure S1B, Table 1). Post-translational modifications on the
viral proteins and those induced by SARS-CoV-2 infection in human
cells have also been demonstrated [6, 13, 16-18].

Despite early progress in the understanding of the biochemical basis
of SARS-CoV-2 pathology, there is still much work to be done, par-
ticularly in analyzing the tissue-specific proteome, proteoforms, and
post-translational modifications in an age-dependent manner before
a suitable, reliable therapeutic for COVID-19 can be obtained. In the
current review we discuss how various proteomics technologies could
be an essential means to this end, using examples from previous work
in this field. In addition, we performed a comparative analysis of the
SARS-CoV-2 responsive proteins identified by the recent MS-based
proteomics studies which shows proteomics research on COVID-19 is
in early stage. We also point out where further research could be con-
ducted in order to increase the information overlap between cell lines
and tissue-specific based discovery and quantitative proteomics stud-

ies.

2 | COMPARATIVE QUANTITATIVE PROTEOMICS
IN RESPONSE TO SARS-COV-2 INFECTION

Comparative quantitative proteomic analysis is considered as the basic

step of any large-scale systems biology analysis which not only offers
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FIGURE 1

Proteomic platforms utilized for the analysis of SARS-CoV-2 and COVID-19 samples. Datasets collected from 29 published papers

were used in this comparative analysis (see details in Table S2). A, bar diagram of the total proteome, phosphoproteome and/or interactome
datasets; number of differentially abundant proteins (DAP) identified in each study are indicated by red circles. B, Venn diagram analysis of unique
and overlapped number of DAPs reported in five cell lines, nine tissue-specific and three extracellular proteomic datasets showed in panel A. C, the
common (red circle) and unique protein kinases identified in proteome, phosphoproteome and interactome datasets. D, the KEGG pathway
analysis of the 43 kinases shared across the three different proteomic platforms

the global expression pattern of thousands of proteins but also unveils
the potential pathways regulated in the cellular system under certain
conditions. For instance, comparison of proteomes between infected
versus control cells/tissues could lead researchers significantly closer
to atherapeutic target [3, 6, 10, 13, 16, 17].

Proteome profiling dataset obtained from recent studies revealed
proteomic dynamics of >11,000 proteins, which were altered in their
abundance levels, and/or post-translationally modified or interacted
with viral proteins upon SARS-CoV-2 infection (Table 1, Figure 1, Table
S2). However, common set of proteins being identified might be impor-
tant and informative to a wide range of researchers along with the
unique and tissue-specific responsive proteins in SARS-CoV-2 patho-
genesis. While are-analysis or thorough exploration of the MS raw data
of these current proteomic studies is beyond the scope and purpose of
this review article. To compile our list, we have considered all proteins
indicated in the selected studies as significantly changed in abundance
(0.05 p-value with 1.5-fold up-/downregulation), post-translationally
modified in response to SARS-CoV-2 infection or identified as poten-
tial interactor with the viral proteins were used for comparative analy-
sis (Figure 1A, Table S2).

As expected, less than 50% of the differentially abundant proteins
identified in tissue samples were found to be altered in the cell line
samples (Figure 1B). Similarly, 30% of the altered proteins found in cell

lines and extracellular proteome are unique compared to those iden-
tified from tissue samples (Figure 1B). Variability in protein abundance
level among the cell lines/tissues with or without SARS-CoV-2 infection
has been noticed in earlier studies [5, 13, 19]. In addition, proteomic
dynamics even in the same tissue sample (e.g., plasma/serum) collected
from COVID-19 patients’ also show high variability, likely due to dif-
ferences in age and other characteristics of the patients, variation in
sample collection, multiplicity of infection (MOI), processing steps, and
type of data analysis platforms [22]. Therefore, it is not surprising to
observe inconsistency when datasets from different proteomic plat-
forms are analyzed to identify a common set of SARS-CoV-2 respon-
sive proteins (Figure 1B). Notably, the Venn diagram analysis showed
over 78% of SARS-CoV-2 interacting proteins overlap with the differ-
entially abundant proteins (Figure S2); over 44% of these shared pro-
teins were identified as phosphorylated (Figure S2), suggesting a role
of this modification in the molecular mechanism of SARS-CoV-2 patho-
genesis, regardless of the infected tissue.

Recent studies demonstrated that several protein kinases play cen-
tralroleinviral entry and replicationin host cells [39,40,41,42]. There-
fore, we compared data from the SARS-CoV-2 responsive proteome,
phosphoproteome, and interactome dataset against the human kinome
(https://www.uniprot.org/docs/pkinfam). The analysis revealed a total

of 43 kinases shared across the three proteomic platforms (Figure 1C).
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FIGURE 2 Heat map analysis of over 11,000 proteins identified as differentially abundant proteins (DAPs) and/or SARS-CoV-2 interacting
proteins from a total of 29 individual proteomic studies. The right panel shows the list of 23 proteins identified in at least in 10 individual studies.
Red star shows ephrin receptor A2 (EPHA?2), a tyrosine kinase was identified by 11 studies including all three proteomic platforms (comparative,

phosphoproteomics and immunoproteomics). See details in Table S2.

The KEGG pathway analysis further demonstrated the enrichment of
PI3K-Akt signaling, autophagy, Rap1 signaling, MAPK signaling and
EGFR tyrosine kinase inhibitor resistance pathways (Figure 1D). This
supports the direct involvement of these kinases/pathways in SARS-
CoV-2 pathogenesis, as previously reported [13, 17]. Heat map analysis
of the collective SARS-CoV-2 differential proteome (>11,000 proteins)
showed a total of 23 proteins were identified in at least 10 individual
studies (Figure 2). In particular, ephrin receptor A2 (EPHA2), a tyro-
sine kinase, was identified by 11 studies including all proteomic plat-
forms. It is important to note that, EPHA2 has been identified as one
of the key host cell entry receptors for many RNA viruses [39, 40, 41,
42]. Therefore, alternative experimental strategies will be beneficial to
demonstrate the potential role of this tyrosine kinase in the SARS-CoV-
2 infection mechanisms.

2.1 | Feasibility of model cell lines for
identification of SARS-CoV-2 responsive proteins

Model cell lines are the most commonly used tool in biological research
particularly on transcriptomic and proteomics analysis and offer
various advantages including but not limited to being cost effective,
easy to use, continuous supply, and more importantly providing a
pure population of cells, which enables sample consistency and repro-
ducible results. In addition, different cell lines have been successfully

used to determine the efficacy of many drugs/small molecules to

inhibit SARS-CoV-2 replication [3, 5, 6, 16, 17], and development of
mass-spectrometry based COVID-19 diagnostic assay [5, 14, 33]. Addi-
tionally, only low amount of proteins can be typically obtained from
many of the organs/tissues critically impacted by SARS-CoV-2, and this
is an important limitation for the enrichment of post-translationally
modified peptides/proteins. Conversely, cell lines offer higher amounts
of protein within a short time, hence they are preferred for the char-
acterization of various PTMs in translational research. Due to these
advantages, many cell lines have been essential in efforts to analyze
the base line proteome profiles in response to cellular perturbations
including pathogenic responses of SARS-CoV-2 (Table 1). It is also
important to note that, susceptibility of SARS-CoV virus infection
to natural human and non-human model cell lines is highly variable,
which is primarily associated with the expression level of angiotensin-
converting enzyme 2 (ACE2) receptor protein [43, 44, 45]. Therefore,
compatible and permissive cell lines such as CaCo-2, HuH7, Vero E6, or
modified cell lines expressed hACE2 such as A549-hACE2 were often
used in all cell-line-based proteomic experiments to demonstrate the
SARS-CoV-2 infection mechanisms (Table 1).

2.2 | Tissue-specific comparative proteomics offers
potential biomarker

SARS-CoV-2 targets several organs throughout the human body,

requiring researchers to move beyond the cell and consider the
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responses of tissues and organs to infection [1]. Cardiac injury is a
prominent complication in many COVID-19 patients [46]. A compar-
ative proteomic profiling of ACE2 expression in adult human heart tis-
sues helped demonstrate that ACE2 expression is significantly higher
in patients with heart failure, making them more susceptible to SARS-
CoV-2[46].

Certainly, in vitro cell line-based proteomic studies provide valu-
able information for the understanding of the molecular mechanisms
of SARS-CoV-2 pathogenesis. However, in vitro samples may be insuf-
ficient to elucidate the mechanism of multiorgan failure in COVID-19,
indicating that we are far behind in the full understanding of SARS-
CoV-2 induced in vivo mechanisms. Recently, Nie et al. [19] showed
the real-time architecture of the tissue-specific proteome alternation
wherein a total of 144 formalin fixed autopsy samples were collected
from seven organs/tissues including lung, liver, spleen, kidney, heart,
thyroid, and testis from 19 COVID-19 patients. A comparative study
among the tissues showed over 45% of the identified proteins were
significantly dysregulated at least in one organ/time point indicating
the devastating effect of SARS-CoV-2 infection and potential molec-
ular pathogenesis of multi-organ failure in COVID-19 disease [19]. In
addition, for the first time this study described cathepsin L1 (CTSL)
as a new potential SARS-CoV-2 biomarker for lung. The potential role
of CTSL was further supported by using CTSL inhibitor which effec-
tively blocked the virus entry into the host cells [47]. Notably, CTSL was
successfully identified as a differentially abundant protein also in cell
lines-based proteomic studies [3, 5] and as an interactor of SARS-CoV-
2 proteins [11]. However, due to the lack of comparisons with other
tissue-specific proteome datasets, CTSL was not considered as lung
biomarker for COVID-19 in earlier studies [3, 5, 11].

2.3 | Age- and gender-dependent proteome
analysis of COVID-19 patients

The COVID-19 shows a significant age-dependent response in terms
of severity of infection, illness and mortality rate [48] indicating that
an age-specific physiological and immunological response is crucial to
the fight against viral infections. Thus, a proteomics-based strategy was
used to profile the influenza-specific antibodies defining important epi-
tope targets and uncovering the vaccination response in individuals of
different ages against the viral infection. A semiquantitative compara-
tive plasma proteomics workflow provides insight into factors that may
explain age-related differences in the incidence of severe sepsis in a
community-acquired pneumonia in the elderly [49].

Similarly, several epidemiologic reports from different countries
support the fact that gender/sex has great influence on COVID-19 out-
comes. A recent scoping review including data from 59,254 COVID-19
patients also showed the mortality rate was higher in men suggesting
an increased susceptibility of male patients to SARS-CoV-2 pathogen-
esis [50]. While men and women have the same prevalence of coron-
avirus infection, infected men are at a higher risk for worse outcomes
and death regardless of age, whereas women show a higher level of

antibodies [51]. Since gender- and age-specific response and suscep-
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tibility of COVID-19 is apparent, global comparative proteome pro-
filing of COVID-19 male and female patients with a wide range of
age groups could be a prudent choice to demonstrate the molecular
response against SARS-CoV-2 pathogenesis and identify potential new
diagnostic biomarkers.

3 | IDENTIFICATION OF SARS-COV-2
INTERACTING PROTEINS BY MASS
SPECTROMETRY-BASED APPROACHES

An immediate challenge in developing drugs to treat COVID-19 is the
identification and characterization of protein-protein interactions
between SARS-CoV-2 and the human proteome, which drive viral
propagation and infection. Common methods to assess protein-
protein interactions in host-viral systems include yeast two-hybrid
(Y2H) analysis and affinity purification followed by mass spectrometry
(AP-MS). The sudden urgency for high-throughput, discovery-based
research brought on by the COVID-19 pandemic leads us to review
methods used to detail coronavirus-host interaction maps with the
goal of identifying therapeutic strategies. Although Y2H is considered
a valuable tool to discover protein-protein interactions between host
and virus, it is limited because it does not reconstitute a native, cellular
context. This is a critical caveat in identifying druggable, context-
dependent targets which can be addressed using AP-MS [6, 7, 10, 12,
27]. While AP-MS remains the gold standard for studying virus-host
interactomics, application of novel techniques could increase the
analysis throughput. Specially, proximity-dependent biotin labeling,
enabled by expression of a fusion protein between the protein of inter-
est and a catalytically-enhanced biotin ligase (commonly known as
BiolD), followed by MS identification of streptavidin-enriched lysates
[8,9, 11]. A recent study extensively reviewed the potential challenges
and limitations of the current methods used for identification of
SARS-CoV-2 proteins interactome [52]. Despite the variability in the
methods applied to the study of interactome and related findings, the
identification of a common set of SARS-CoV-2 interacting proteins
could be used to identify the potential targets, for further analysis and
future development of therapeutic agents.

As several kinase inhibitors have proven to inhibit viral replication
in cells [6, 13, 16, 17], we compared current SARS-CoV-2 interactome
datasets against the entire human kinome (Figure S4A). BiolD-based
studies covered over 22% of the total human kinome (correspond-
ing to 115 kinases), while 8% (44 kinases) was identified by AP-MS.
Among the 44 kinases identified by AP-MS based method, 50% of
them (22 kinases) were also identified by BiolD based method indi-
cating as potential interactors of SARS-CoV-2 proteins (Figure S4).
Cellular mechanisms involving these 22 kinases includes axon guid-
ance (EPHA2, EPHB2, EPHB4, MET, BMPR1B, BMPR2), EGFR tyrosine
kinase inhibitor resistance (ERBB2, JAK1, MET, AXL), PI3K-Akt signal-
ing pathway (EPHA2, ERBB2, JAK1, MET), cytokine-cytokine recep-
tor interaction (BMPR1B, BMPR2, TGFBR1, ACVR1B), and Epstein-
Barr virus, immunodeficiency virus 1 and cytomegalovirus infection
response (TBK1, JAK1, RIPK1).
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Furthermore, the 22 kinases were compared against the SARS-
CoV-2 responsive proteome and phosphoproteome datasets (Figure
S4B). Interestingly, EPHA2, ERBB2, JAK1, MARK2, PRKDC, and TBK1
kinases were identified in at least seven studies indicating further stud-
ies suggesting a relevant role in SARS-CoV-2 pathogenesis. Notably,
the BiolD method let to identification not only of many of the cross-
validated kinases (e.g., EGFR, AKT1, AKT2, GSK3B, SRC, and MAPKs)
but also to that multiple downstream kinases associated to the same
signaling pathways (Figure S5). For instance, five kinases associated
with axon guidance were identified by both AP-MS and BiolD based
methods; however, 13 additional kinases belonging to this pathway
were exclusively by BiolD (Figure S5). Collectively, this compara-
tive analysis suggests that complementary methods are essential for
expanding our understanding of SARS-CoV-2 interacting protein net-

works.

4 | POST-TRANSLATIONAL MODIFICATIONS
(PTMS) OF SARS-COV-2 PROTEINS AND HOST CELL
PROTEOME

Post-translational modifications (PTMs) have been implicated in the
regulation of viral proteins and can have numerous effects on viral
activity [53, 54, 55]. Importantly, a comparative global phosphopro-
teomic analysis of SARS-CoV-2 infected samples not only offers the
exploration the phosphoproteome expression pattern of the host cells
but can also determine the phosphorylation state of many viral pro-
teins (Figure 3).

A total of 34 unique phosphorylation sites were identified in nucle-
oprotein N (PODTC9) by multiple phosphoproteomic analyses, indicat-
ing that N protein is one of the hyperphosphorylated protein among
the SARS-CoV-2 proteins (Figure 3). Several phosphorylation sites of
N protein such as $23, S79, S206, T198, and T417 were identified by
all five phosphoproteomic studies suggesting these sites are main reg-
ulators of N protein bioactivity and particularly its interaction with
RNA to modulate gene transcription [13, 56]. Collectively, these stud-
ies successfully identified many novel phosphorylation sites of viral
proteins that could be considered as drug targets[57]. However, each
phosphoproteomic study also identified a number of unique phospho-
rylation sites for many of the viral proteins (Figure 3) indicating that
host cell lines physiology, infection period, phosphopeptides enrich-
ment method and downstream analytic process could be associated
with the alternation and identification of the viral protein phospho-
sites. The general consensus is that viral proteins utilize a dynamic mix
of functionally important PTMs (Figure 4) that can efficiently altered
their structures and binding with other proteins [54, 56, 58], with rele-
vant effects on COVID-19 pathogenesis.

For example, the glycosylation on the surface of the S protein shields
epitopes from detection by the immune system [55, 60, 63]. Other
modifications, such as the palmitoylation in the transmembrane region,
are common to keep membrane proteins, anchored to the membrane
[64]. In addition, proteolytic cleavages of viral proteins by both viral and

host were also found to be important [65]. Furthermore, Meyer et al.
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to pS, pT and pY modifications, respectively. Gray indicates sites were
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[66], employed the N-terminomics based proteomic approach to deter-
mine the proteolysis and the resulting proteolytic proteoforms dur-
ing SARS-CoV-2 infection which led to the identification of many novel
cleavage sites in multiple viral proteins including S and N proteins, and
potential host-cell substrates of the main and papain-like proteases.
Further validation with in vitro assay, siRNA depletion, and drugs tar-
geting of these proteins showed a significant reduction of SARS-COV-
2 replication in cells, suggesting potential therapeutic strategies to
develop to inhibit SARS-CoV-2 infection [66].

The combined analysis of various phosphoproteome studies based
on the use of different cell lines infected with SARS-CoV-2 provides
a deep understanding of the multi-level signaling pathways altered
during the infection. These include the activation/inactivation of many
kinases associated with cell cycle arrest, stress and DNA damage
response, regulation of transcription and cell junction organization
[6, 13, 16, 17]. Identification of many differentially abundant tyrosine
phosphorylation sites (0.2% of the total phosphoproteome) sug-
gests that tyrosine kinases may play a potential role in SARS-CoV-2
pathogenesis [66, 67]. In accordance, tyrosine kinase inhibitors have

been identified as a potential drug to prevent viral replication in cells
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FIGURE 4 Post-translational modifications on the surface of two SARS-CoV-2 proteins. (A) The N-terminal domain (NTD) and C-terminal
domain (CTD) of the N protein; and (B) The S protein are depicted without and with posttranslational modifications (gray). Glycans are shown in
red, phosphorylation in orange, palmitoylation in green, and methylation in yellow. Methylation and phosphorylation are represented as spheres.
The domains of the N protein are built from two structures, PDB ID: 6Y13 and 6ZCO, and glycosylation sites were modeled after Supekar et al. [59].
The NTD and CTD contain 3 and 2 glycans, respectively; the NTD contains a total of 8 modeled phosphorylation sites. The CTD exists as a dimer,
which are depicted with different shades of gray. The non-glycosylated structure of the S protein based on PDB-ID 6VXX is available through
CHARMM-GUI [60] and Jo et al. [61], and methylation was modeled based on Sun et al.[62]. The S protein contains 23 glycosylation sites, 2
palmitoylation sites, and 5 methylation sites on each chain of the trimer. The phosphate heads of the membrane that the spike is embedded in are

shown as spheres

[16, 66, 68] and could be used a potential therapeutic strategy in
severe COVID-19[16, 66, 67, 68].

Previous studies demonstrated substantial differences in protein
abundance levels among cell lines and related tissues [5, 69, 70]. In
accordance, here we showed a number of kinases including EPHA2,
CDK13,ERBB2,BUB1B, and PKMYT1 were identified as differentially
abundant proteins and/or phosphoproteins in only cell lines-based pro-
teomic studies (Figure S3). This result suggests that abundance level
of these kinases in tissue samples could be very low or these kinases
were mostly regulated by post-translational level. Notably, phospho-
proteome profiling of COVID-19 tissue samples remains unknown, as
there are no publications at the time of this comparative analysis. Sim-
ilarly, several metabolism related proteins including but not limited
to LDHB, GNS, LRG1, TMX1, STOML2, NDUFS3, FLOT1, and TBK1
were primarily identified in tissue-specific proteomic studies or inter-
actomic analyses (Figure S3). Taken together, these comparative anal-
yses indicate that our knowledge in proteome profile alternation in
response to SARS-CoV-2 infection is still incomplete and the tissue-
specific response to SARS-CoV-2 infection can probably not be reca-
pitulated efficiently by in vitro experiments [19].

Stukalov et al. [6] further demonstrated that together with the
changes in phosphorylation, also several hundreds of ubiquitination
sites (884) were altered in SARS-CoV-2 infected A549 cells. This large-
scale systematic multiple PTMs profiling of SARS-CoV-2 responsive
proteins further revealed an interplay between phosphorylation and
ubiquitination on both host and viral proteins [6]. Thus, mapping of
these regulatory modifications on viral and host proteins could favor
the identification of both potential therapeutic targets and diagnostic
biomarkers, as well as help the elucidation of SARS-CoV-2 infection and

proliferation mechanisms [6].

5 | MS-BASED TARGETED PROTEOMIC
METHODS OFFERS HIGHLY REPRODUCIBLE
MULTIPLEXED DIAGNOSTIC TOOLS FOR COVID-19

Currently, nucleic acid-based assays (e.g., PCR) are being used as a
gold standard for diagnostic testing of SARS-CoV-2 and other viruses
in clinical platforms. However, many recent studies showed MS-based
assay has the potential to supplement the diagnostic testing of COVID-
19 [5,14, 28-35]. Therefore, the development of rapid, sensitive, and
multiplexed LC-MS/MS methods could be an attractive alternative in
the COVID-19 testing field. Recently, many studies applied targeted
MS-based methods for detection of SARS-CoV-2 proteins (Table 1).
One of the earliest reports by the Armengaud group [14] identified the
ideal set of viral peptides to use in subsequent assay by employing the
discovery proteomic platform to detect SARS-CoV-2 peptides in com-
plex biological samples. The efficacy of those viral peptides was further
validated by developing a 3-min MS-based targeted assay using clinical
samples [33]. Another study used parallel reaction monitoring (PRM),
which employs a high-resolution Orbitrap mass analyzer for peptide
detection instead of a quadrupole analyzer like in multiple-reaction
monitoring (MRM), to detect SARS-CoV-2 proteins from virus-infected
Vero cells [5]. This study led to the identification of SARS-CoV-2 nucle-
ocapsid protein in the attomolar range, which corresponds to the
signal roughly 10,000 SARS-CoV-2 particles. This finding is significant,
as clinical samples are often dilute and have a low viral load. More
recently, multiple MS-based targeted protocols have been developed
and successfully applied to detect SARS-CoV-2 proteins including N,
S, and M proteins from various clinical samples [28-35]. Despite these
successful pilot studies, potential challenges and technical limitations

of virus diagnostics using MS-based method from clinical samples
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FIGURE 5

Potential bottom-up proteomics platforms for elucidation of the molecular mechanisms of SARS-CoV-2 infection. A, cell-line based

phosphoproteomic approach with or without potential drugs treatments to SARS-CoV-2 and mutant variants. B, study of non-human primate
models infected by SARS-CoV-2 and mutant variants with or without drug response for large-scale tissue-specific proteome and
phosphoproteome analysis. C, tissue-specific proteomic analysis of COVID-19 patient samples from diverse cohorts. D, identification of
SARS-CoV-2 mutant proteins interacting partners using complementary methodologies. E, identification and verification of kinase-specific targets
and modification sites using kinase substrate assay followed by mass spectrometry analysis. This figure is created using BioRender.com

exist and have been recently discussed in a review by Grossegesse
etal. [71].

Collectively, these emerging studies demonstrate promising alter-
native methods for SARS-CoV-2 diagnostic testing using targeted MS.
Moreover, targeted LC-MS/MS not only display greater sensitivity than
some nucleic acid-based tests, but also requires shorter time (~30 min
compared to ~4 h).

6 | SUMMARY AND FUTURE STRATEGIES

Despite the proteomic investigations that have already been con-
ducted on COVID-19 patient samples and SARS-CoV-2 infected cell
lines, it is obvious that a great deal of research (Figure 5), still needs to
be performed in order to develop a more complete picture of how the
human proteome responds to COVID-19.

It is our notion that the proposed following strategies will improve
our understanding of the molecular mechanisms of SARS-CoV-2 patho-
genesis and will help to develop efficient, multiplexed tissue-specific

diagnostic assays and potential therapeutics.

a. Tissue-Specific global phosphoproteomics analysis:

Results from recent proteomics dataset confirmed that several
tissue-specific mechanisms functioned in various organs/tissues of
COVID-19 patients [19]. However, very limited information is avail-
able on phosphoproteome profiling of COVID-19 patient tissue sam-
ples. Furthermore, comparison of the differentially abundant proteins
so far identified among the cell lines and tissues revealed both unique
and overlapping sets of proteins dysregulated by SARS-CoV-2 patho-
genesis (Figure 1B), indicating the importance of global phosphopro-

teome analysis of SARS-CoV-2 infected tissue samples (Figure 5C).

b. Enrichment of phospho tyrosine (pY) proteome of SARS-CoV-2

infected samples:

Gene expression analysis of CD4+ T-cells from moderate and
severe COVID-19 patients showed differential expression of T-Cell
receptor (TCR), EGFR, and P53 signaling pathways genes [17, 26]. It
is well documented that TCR, EGFR, P53, and many other proteins

involved in these signaling pathways are regulated by tyrosine phos-
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phorylation (pY). More importantly, it has been shown that many
compounds including receptor tyrosine kinase inhibitor successfully
inhibit the phosphorylation of the downstream target proteins of these
pathways, thus preventing the viral replication in the host cells [16,
17, 66, 67, 68]. Therefore, together with the global phosphoproteome,
a specific enrichment of phosphotyrosine proteome of SARS-CoV-2
infected samples would be of great interest (Figure 5A). Due to the
low abundance of pY sites, enrichment of pY peptides/proteins by
using global phosphoproteomics methods (e.g., TiO2-based) is always
challenging. However, this issue could be resolved by several optimized
MS-based pY enrichment protocols [72-76].

c. Feasibility of SARS-CoV-2 infected non-human primate models:

Several studies have shown non-human primate models could
develop mild to moderate respiratory disease, with clinical and hema-
tologic findings consistent with those documented for COVID-19 [77,
78]. Thus, non-human models have successfully been used to evaluate
the efficacy of potential drugs and/or vaccines and therapies to many
other RNA viruses [79-81]. We posit that model animals could be a
great resource for large-scale tissue-specific proteomic analysis. For
instance, tissue-specific pY proteomics analysis in response to differ-
ent MOl stages of COVID-19 requires high amount of materials which
is difficult to obtain from patient’s biopsies.

A recent study revealed that naturally occurring mutations on viral
spike protein can reduce or enhance viral cell entry via ACE2 and
TMPRSS2 proteins [82]. This study provides a great clue of SARS-CoV-
2 genetic variations associated with the infection mechanism; however,
host genetic factors remain elusive. In this regard, systematic tissue-
specific proteome analysis of non-human models infected by SARS-
CoV-2 spike protein variants could enhance our understanding of the
pathogenesis of the mutants (Figure 5B).

d. Interactome analysis of SARS-CoV-2 mutant proteins:

While mutations and post-translational modifications frequently
occur throughout the SARS-CoV-2 proteins, further studies showed
these mutations also lead to alterations in secondary/tertiary protein
structure that might contribute to remodeling protein functions [83].
AP and proximity-based interactome analysis successfully identified
thousands of interacting partners of SARS-CoV-2 proteins (Table 1).
However, how PTMs and mutations of these viral proteins affect their
interacting partners remains unclear. Therefore, further, interactome
analyses of these mutants and post-translationally modified versions
of SARS-CoV-2 proteins will improve our understanding of how these
sources of structural variation could alter the host cellular mechanisms
(Figure 5D).

e. ldentification upstream kinases responsible for phosphorylation of
SARS-CoV-2 proteins:

Host cell kinases often regulate phosphorylation of coronavirus pro-

teins playing an essential in viral replication [53]. Like other coron-
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aviruses, most of the SARS-CoV-2 proteins are also phosphorylated at
multiple positions. However, the responsible kinases remain unknown
[17]. Although, a bioinformatic analysis of immuno proteomic dataset
could predict some potential target kinases such as those of the CMGC
family kinases (including casein kinase Il, CK2), their actual role needs
to be experimentally validated [17]. On the other hand, it has been
demonstrated that inhibitors and drugs targeting many kinases such as
phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), SRC and
MEK are capable to arrest viral replication in host cell lines [16, 17, 66,
68] suggesting that these kinases could also be a potential upstream
target for phosphorylation of viral proteins responsible for replication.

Together with the above-mentioned kinases, our comparative study
showed a total of six additional kinases identified by both AP-MS and
BiOID-based studies also altered their abundance level at proteome or
phosphoproteome in response to SARS-CoV-2 infection (Figure S4B).
In this regard, the in vitro kinase assay with the potential kinases
and recombinant SARS-CoV-2 proteins followed by MS analysis could
potentially represent an alternative strategy (Figure 5E) for the iden-
tification of kinase-specific phosphosites of SARS-CoV-2 proteins
[13].

f. Feasibility of top-down proteomics:

Intact protein analysis, also known as “top-down” strategy, could
complement bottom-up proteomics results. The gas-phase analysis of
proteoforms and their complexes could take two routes: (1) the most
common is a structural biology application in the form of targeted
studies performed under native-like ionization conditions, focused on
either whole viral particles [84] or (2) protein-protein and protein-
nucleic acid complexes between biomolecules of SARS-CoV-2 and host
(i.e., an application typically referred to as native top-down MS) [85].
While the study of large intact proteins (and particularly membrane
proteins) is still challenging, we believe that such structural investiga-
tions could play an important role in deciphering differences between
SARS-CoV-2 strains (some of which have already been reported) in
interacting with the host, and elucidate the mechanisms of viral infec-
tion and replication with great molecular detail. A pioneering study
from the Robinson research group has investigated the interaction
of SARS-CoV-2 nucleocapsid protein with RNA and antibodies at the
proteoform level, underlying the role played by proteolysis in modu-
lating these interactions [86]. Additionally, native top-down MS could
also be applied to the study of viral capsid assembly, determining dif-
ferences in capsid’s stability among SARS-CoV-2 strains [87]. As an
alternative to native MS, scientists could also perform large-scale top-
down analyses of host proteoforms under denaturing conditions to
identify those altered in their abundances [88] and/or modification
patterns upon SARS-CoV-2 infection [89]. A proteoform-level inves-
tigation could identify potential PTMs required for certain viral-host
protein-protein interactions and could provide insight on the complex
PTM dynamics that help mediate viral entry and host response. Top-
down proteomics could also elucidate PTM crosstalk [90] and with that
facilitate the understanding of the fine molecular mechanisms of viral

infection.
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g. Single cell proteomics in understanding of COVID-19 biology:

As an emerging direction, proteomic studies of single cells, the most
basic components of life, become increasingly popular. Despite the
success of conventional LC-MS platforms, data acquired from these
studies are regarded as the average results from populations of cells;
however, molecular information representing the cell-to-cell differ-
ence (i.e,, cell heterogeneity) is lost. Although a number of MS-based
single cell proteomics methods, such as nanoPOTs (nanodroplet pro-
cessing in one pot for trace samples) [91] and SCoPE (Single-Cell Pro-
tEomics) [92], have been developed for studies of broad ranges of pro-
teins, research focusing on COVID-19 has not yet been reported to this
date. While, mass cytometry, which is one of the popular single cell MS
proteomics methods [93], has been successfully used for characteriz-
ing immune cell responses to COVID-19 [94-99]. It is expected that
other single cell proteomic platforms can be developed and applied to
understand the underlying mechanisms operated by immune cells in

response to SARS-CoV-2 infection.
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