
Semantic Neural Network Ensemble for Automated
Dependency Relation Extraction from Bridge

Inspection Reports
Kaijian Liu, Ph.D., A.M.ASCE1; and Nora El-Gohary, Ph.D., A.M.ASCE2

Abstract: Bridge inspection reports are important sources of technically detailed data/information about bridge conditions and maintenance
history, yet remain untapped for bridge deterioration prediction. To capitalize on these reports for improved bridge deterioration prediction,
there is a need for dependency parsing methods, in order to extract dependency relations from the reports for linking the isolated words into
concepts and representing the semantically low concepts in a semantically rich structured way. To address this need, this paper proposes a
novel semantic neural network ensemble (NNE)–based dependency parsing methodology. It uses a similarity-based method to sample sim-
ilarly distributed configurations into the same clusters, a set of constituent neural network (NN) classifiers to learn from both the syntactic and
semantic text features of the similarly distributed and therefore more easily separable configurations, and a combiner classifier to capture the
classification patterns of the NN classifiers to make final predictions on the transition types. The proposed dependency parsing methodology
was evaluated in extracting dependency relations from bridge inspection reports for representing information—about bridge conditions and
maintenance actions—in a semantically rich structured way. It achieved a precision, recall, and F-1 measure of 96.6%, 90.4%, and 93.3% with
a margin of error of 3.8%, 4.4%, and 3.8% at the semantic information element level, and 88.2%, 81.5%, and 84.7% with a margin of error of
5.4%, 5.8%, and 5.4% at the semantic information set level, respectively. DOI: 10.1061/(ASCE)CP.1943-5487.0000961. This work is made
available under the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.
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Introduction

According to the ASCE’s Infrastructure Report Card, US bridges
received a grade of C+ (mediocre), with 9.1% and 13.6% of the
nation’s 614,387 bridges being structurally deficient and function-
ally obsolete, respectively (ASCE 2017). A $123 billion investment
in bridge maintenance is needed to eliminate the nation’s deficient
bridge backlog (ASCE 2017). Such critical conditions of bridges
are not exclusive to the US but are faced by many countries across
the world (Estes 2011). Bridge deterioration prediction is therefore
of paramount importance for bridge management to predict defi-
ciencies leading to the degradation of bridge conditions and to ac-
cordingly determine proactive bridge maintenance actions for
improving the conditions of bridges in a cost-effective way.

However, predicting bridge deterioration is challenging due to
the large number of factors that affect the deterioration. Many
mechanics-based prediction models (e.g., Nickless and Atadero
2018; Kameshwar and Padgett 2017; Ramanathan et al. 2015),
which consider specific deterioration-related factors (e.g., corrosion
and natural disaster), have been developed. With the increasing
availability of bridge data that can capture multiple factors, there

have been many demands for data-driven bridge deterioration pre-
diction approaches (FHWA 2016; NASEM 2015). But the state-of-
the-art data-driven prediction methods/models (e.g., Bu et al. 2014;
Liu and Madanat 2014; Huang 2010; Mishalani and McCord 2006)
mostly focus on learning from bridge characteristics and condition
rating data [e.g., National Bridge Inventory (NBI) data] and can
therefore only predict the future condition ratings of bridges. Con-
dition rating data are certainly important, but not sufficient; they do
not contain detailed information such as that found in bridge in-
spection reports. For example, bridge inspection reports include
a large amount of detailed information about the deficiencies that
caused bridge conditions to degrade, the maintenance actions
that were used to mitigate these deficiencies, and their attributes
(e.g., deficiency quantity and severity, maintenance material). This
wealth of information, which is currently buried in the reports with-
out being utilized, could offer unprecedented opportunities to data
analytics for improving our abilities to better predict bridge deterio-
ration, including the prediction of specific deficiencies and their
severity levels and propagations in space and time, not only con-
dition ratings.

To capitalize on this opportunity, the authors propose a novel
smart bridge data analytics framework. The proposed framework
includes three primary components, as per Fig. 1: (1) information
extraction: information about bridge conditions and maintenance
actions is extracted from unstructured textual bridge inspection re-
ports and represented in a semantically rich structured way; (2) data
integration: the extracted information is then integrated (linked and
fused) with other bridge data (e.g., NBI data, environmental data,
bridge inspection images, and bridge health monitoring data) to
consider multiple sources of data/information and multiple factors
affecting bridge deterioration and deficiency propagation; and
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(3) data analytics: the integrated data are analyzed using machine
learning to predict future bridge condition states and specific bridge
deficiencies and learn the most effective maintenance strategies.
This paper focuses on the information extraction component.
The data integration and analytics will be covered in the authors’
future work.

Information extraction from bridge inspection reports is, how-
ever, a challenging task. The words in a sentence are isolated, need-
ing to be linked to form meaningful concepts; and the subsequently
linked concepts are semantically low, needing to be linked to the
associated concepts to form a semantically rich structured represen-
tation of the information. There is therefore a need for dependency
parsing methods to extract dependency relations from the reports,
in order to represent the information in the reports in a semantically
rich structured way that is ready for data analytics. For example,
this sentence comes from a bridge inspection report (MnDOT
2006): “overlay has some minor spalls and patched areas around
the finger joints, and 3,000 LF of transverse cracks.” Dependency
parsing is needed to extract the dependency relations to link the
words patched and areas into the deficiency concept patched_areas;
and then link patched_areas to the bridge element concept overlay,
the categorical severity measure concept minor, and the categorical
quantity measure concept some to represent the sentence in a se-
mantically rich structured way: <overlay, patched_areas, minor,
some>. Without dependency relations, it would be very challenging
(if not impossible) to automatically infer from this unstructured
sentence which bridge element (i.e., overlay or finger_joints) has
which deficiency (i.e., spall, patched_areas, or transverse_crack)
that is minor and some.

Existing dependency parsing methods are, however, not able to
effectively extract dependency relations in such domain-specific
and highly technical text—such as that in bridge inspection
reports—for two main reasons. First, the current state-of-the-art
dependency parsing methods (e.g., Dozat and Manning 2018;

Strubell and McCallum 2017; Dozat and Manning 2017; Chen
and Manning 2014) mostly rely on a single machine learning clas-
sifier to extract dependency relations. A single classifier is not suf-
ficient in capturing the complex configuration distributions of the
text in the bridge reports, because the reports are written by many
different writers/inspectors from various agencies and are therefore
highly variable in terms of text characteristics and patterns. An en-
semble of classifiers usually performs better than a single classifier
(Babbar and Schölkopf 2017; Zhang et al. 2011; Schiele 2002;
Dietterich 2000), especially when dealing with high-dimensional
data (Pes et al. 2017; Yu et al. 2017) and/or data with complex
distributions such as imbalanced distributions (Haixiang et al. 2017;
Bickel et al. 2007; Sun et al. 2006). Second, existing dependency
parsing methods (e.g., Dozat and Manning 2018; Strubell and
McCallum 2017; Dozat and Manning 2017; Chen and Manning
2014) typically only use syntactic features for supporting the extrac-
tion of dependency relations. But semantic text features are also very
important for facilitating dependency parsing, because they provide
semantics on word-to-word interactions that are critical when decid-
ing on how sentences should be parsed. For example, based on the
defined semantics that a categorical severity measure describes a
bridge deficiency, the dependency relation between the concepts
minor (as a modifier) and patched_areas (as a head) can be analyzed
and extracted correctly.

To address this need, this paper proposes a novel semantic neu-
ral network ensemble (NNE)–based dependency parsing method-
ology. The objective of the methodology is to provide a way for
effectively extracting dependency relations from domain-specific
and highly technical text such as that in bridge inspection reports.
The proposed methodology is built on the transition-based depend-
ency parsing model, in which a sentence is represented by a set of
configurations and the transition types of the configurations are
sequentially classified for extracting the dependency relations in
the sentence. The novelty of the NNE-based dependency parsing
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Data
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maintenance actions in unstructured textual format)
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Fig. 1. Proposed smart bridge data analytics framework.
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methodology lies in proposing and using a similarity-based method
to sample similarly distributed configurations into the same clus-
ters, a set of constituent neural network (NN) classifiers to learn
from both the syntactic and semantic text features of the similarly
distributed and therefore more easily separable configurations, and
a combiner support vector machine (SVM) classifier to capture the
classification patterns of the NN classifiers to make final predic-
tions on the transition types.

Background

Transition-Based Dependency Parsing Model

Dependency parsing (DP) performs a grammatical structure analy-
sis of a sentence to extract dependency relations between head
words and their corresponding modifier words (Chen and Zhang
2015; Buchholz and Marsi 2006). Existing DP models can be cat-
egorized into graph-based and transition-based (McDonald and
Nivre 2007). A graph-based model treats DP as a searching task
in which subgraphs are factored, so that the model can search over
the space of valid subgraphs to generate the most likely dependency
graph (i.e., a set of dependency relations for a sentence) (Chen and
Zhang 2015; Nivre and McDonald 2008). A transition-based model
treats DP as a classification task, in which a set of configurations
generated from an initial configuration is sequentially classified
into transition types (indicating word-to-word dependency rela-
tions) for extracting dependency relations in a sentence (Chen
and Manning 2014; Nivre and McDonald 2008). Transition-based
DP models have gained considerable popularity because of their
computational efficiency and accurate performance (Dyer et al.
2015; Weiss et al. 2015; Chen and Manning 2014; Choi and
McCallum 2013).

The transition-based DP approach was introduced by Nivre
(2003). As illustrated in Table 1, in the transition-based DP model,
a configuration, C ¼ ðσ; β;AÞ, is composed of a stack (σ), a buffer
(β), and a set of dependency arcs/relations (A). The stack, σ ¼
½σi; : : : σ2; σ1�, where i ≥ 0, is a data structure that stores partially
parsed words of an input sentence. The buffer, β ¼ ½β1; β2 : : : ; βj�,

where j ≥ 0, is a data structure that stores the words of the sentence
that need to be parsed. The set A is a data structure that stores word
pairs that have been parsed with dependency relations. The initial
configuration of the input sentence is defined as C ¼ ðσ ¼ ½Root�;
β ¼ ½β1; β2 : : : ;βn�;A ¼ ∅Þ, where Root is a dummy node at the
highest level of a dependency graph and β1; β2 : : : ; βn correspond
to the words of the sentence (where n is the length of the sentence).
The terminal configuration of the sentence is defined as C ¼ ðσ ¼
½Root�; β ¼ ∅;AÞ, whereA contains the parsed dependency relations
of the sentence. From the initial configuration, the transition-based
model predicts a transition type for the current configuration and
generates the next configuration based on the current configuration
and the predicted transition type. This process repeats until some
terminal configuration has been reached, which indicates that the
sentence has been completely parsed. Three transition types are de-
fined in the transition-based DP model, including:
• Shift: moving β1 from the buffer β to the stack σ, if jβj ≥ 1.
• Left-arc: adding an arc between σ1 and σ2, where σ1 is a head

word and σ2 is a modifier word, and removing σ2 from the stack
σ, if jσj ≥ 2.

• Right-arc: adding an arc between σ1 and σ2, where σ2 is a head
word and σ1 is a modifier word, and removing σ1 from the stack
σ, if jσj ≥ 2.

Machine Learning–Based Dependency Parsing
Methods

Early DP research efforts (e.g., Oflazer 2003; Elworthy 2000;
Tapanainen and Järvinen 1997) have focused on developing
rule-based DP methods. Rule-based DP methods utilize manually
developed parsing rules to extract dependency relations. More re-
cently, machine learning–based DP methods have been proposed
for automatically classifying configurations into transition types
for dependency relation extraction. Some of these efforts have fo-
cused on developing probabilistic models (e.g., Wang and Harper
2004; Collins 2003; Samuelsson 2000; Eisner 1996), while others
have proposed discriminative approaches with support vector ma-
chines (e.g., Kudo and Matsumoto 2002; Yamada and Matsumoto
2003), beam search–based perceptron (e.g., Zhang and Nivre 2011;

Table 1. Example of a transition-based dependency parsing model

Transition Stack Buffer Arc (head, modifier)

[Root] [The bottom chord connection of truss has severe crevice corrosion]
S [Root The] [bottom chord connection of truss has severe crevice corrosion]
S [Root The bottom] [chord connection of truss has severe crevice corrosion]
S [Root The bottom chord] [connection of truss has severe crevice corrosion]
S [Root The bottom chord connection] [of truss has severe crevice corrosion]
L [Root The bottom connection] [of truss has severe crevice corrosion] (connection, chord)
L [Root The connection] [of truss has severe crevice corrosion] (connection, bottom)
L [Root connection] [of truss has severe crevice corrosion] (connection, The)
S [Root connection of] [truss has severe crevice corrosion]
S [Root connection of truss] [has severe crevice corrosion]
L [Root connection truss] [has severe crevice corrosion] (truss, of)
R [Root connection] [has severe crevice corrosion] (connection, truss)
S [Root connection has] [severe crevice corrosion]
L [Root has] [severe crevice corrosion] (has, connection)
S [Root has severe] [crevice corrosion]
S [Root has severe crevice] [corrosion]
S [Root has severe crevice corrosion] [ ]
L [Root has severe corrosion] [ ] (corrosion, crevice)
L [Root has corrosion] [ ] (corrosion, severe)
R [Root has] [ ] (has, corrosion)
R [Root] [ ] (Root, has)

Note: S = shift; L = left arch; and R = right arch.

© ASCE 04021007-3 J. Comput. Civ. Eng.
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Zhang and Clark 2008), dynamic programming–based perceptron
(e.g., Huang and Sagae 2010), or neural networks (e.g., Mayberry
and Miikkulainen 2005; Henderson 2004).

In recent years, there have been an increasing number of re-
search efforts focusing on NN-based DP methods (e.g., Dozat
and Manning 2018; Strubell and McCallum 2017; Nguyen
et al. 2017; Dozat and Manning 2017; Hashimoto et al. 2017;
Kuncoro et al. 2017; Kiperwasser and Goldberg 2016; Cheng et al.
2016; Yazdani and Henderson 2015; Zhou et al. 2015; Alberti et al.
2015; Weiss et al. 2015; Dyer et al. 2015; Chen and Manning
2014). Neural networks have gained popularity in the area of
DP for two main reasons. First, as opposed to conventional
machine learning–based DP methods (which rely heavily on hand-
crafted indicator features), NN-based DP methods can automati-
cally learn the most useful feature conjunctions and high-order
features, which helps avoid feature sparsity and incompleteness is-
sues (Pei et al. 2015; Chen and Manning 2014). Second, DP can
benefit from neural networks by learning from NN-based distrib-
uted feature representations. Distributed feature representations
(also known as word embedding) transform text features [e.g., words
and part-of-speech (POS) tags] into real-valued, continuous, and
dense vectors, and embed semantically similar features near each
other in the vector space (Mikolov et al. 2013). Such representations
result in a compact dense feature space, which leads to more effi-
cient, compact, and accurate classifier learning (Chen and Manning
2014). Recent efforts (e.g., Guo et al. 2015; Bansal et al. 2014; Chen
and Manning 2014) have demonstrated that, compared to learning
from traditional one-hot feature representations, learning from
NN-based distributed feature representations can improve DP
performance.

The work by Chen and Manning (2014) is one of the first efforts
that incorporated neural networks and deep learning into a
transition-based DP model (Dozat and Manning 2017). They de-
veloped a simple, yet relatively accurate and computationally ef-
ficient, three-layer feedforward NN architecture for supporting
general domain DP applications. Many NN-based DP methods
that used more complex NN architectures have since been devel-
oped to further improve the parsing accuracy, such as the recur-
rent neural network (Kuncoro et al. 2017), the long short-term
memory (LSTM) (Kiperwasser and Goldberg 2016), and the
bi-LSTM with deep biaffine attention (Dozat and Manning
2017). Compared to the three-layer feedforward NN architec-
ture, these complex architectures were able to marginally
improve the parsing accuracy, but at the expense of computa-
tional efficiency (see Dozat and Manning 2017; Chen and
Manning 2014).

Ensemble Machine Learning Methods

Ensemble machine learning is a learning paradigm that utilizes
multiple classifiers to obtain improved performance (reduced vari-
ability and increased generalization) that cannot be obtained by any
of the constituent classifiers alone (Sun 2013; Zhang and Ma 2012).
The most well-established and prominent ensemble learning algo-
rithms include bagging, boosting, stacked generalization, and mix-
ture of experts (Xu et al. 2013; Zhang and Ma 2012). Bagging
trains each of the multiple classifiers with a certain percent of in-
stances that are randomly drawn with replacement from the entire
training set (Breiman 1996). Boosting sequentially trains a set of
classifiers, each of which focuses on learning from the instances
that were misclassified by its preceding classifier (Schapire 1990).
Adaptive boosting, also referred to as AdaBoost, is a widely known
boosting algorithm (Raghavan et al. 2019; Bui et al. 2018). It
sequentially trains a set of classifiers, during which the initial

classifier is trained with instances sampled based on a uniform dis-
tribution and each of the subsequent classifiers is trained with in-
stances sampled according to a weighted distribution, in which the
weight is updated based on the distribution and training errors of its
preceding classifier (Freund and Schapire 1995). Stacked generali-
zation first trains a set of tier-1 classifiers with training instances
sampled using cross-validation partitioning, and then trains a tier-2
combiner classifier using the outputs of the tier-1 classifiers as
input (Wolpert 1992). The combiner classifier aims to learn the
misclassification and/or classification patterns to correct the mis-
classifications generated by the tier-1 classifiers. A mixture of ex-
perts trains a set of classifiers (experts) and a gating network that
allocates an individual instance to one or several classifiers (Jacobs
et al. 1991). The outputs of the selected classifier(s) are then com-
bined through a linear rule to yield a final classification decision for
the instance.

State of the Art and Knowledge Gaps

There is a body of research efforts that have focused on developing
machine learning–based dependency parsing (DP) models—using
different learning techniques and various feature representations—
for extracting dependency relations in text. Despite the importance
of these efforts, they cannot effectively extract dependency rela-
tions in domain-specific and highly technical text such as that in
bridge inspection reports. Three primary knowledge gaps are iden-
tified in this regard.

First, from a machine learning–based DP perspective, there is a
lack of studies in ensemble learning–based DP methods. The ma-
jority of such methods (e.g., Dozat and Manning 2018; Strubell and
McCallum 2017; Nguyen et al. 2017; Dozat and Manning 2017;
Hashimoto et al. 2017; Kuncoro et al. 2017; Kiperwasser and
Goldberg 2016; Cheng et al. 2016; Dyer et al. 2015; Chen and
Manning 2014; Zhang and Nivre 2011; Zhang and Clark 2008;
Yamada and Matsumoto 2003) have focused on learning a single
classifier to parse text for extracting dependency relations.
Although a single classifier trained with advanced learning tech-
niques (e.g., SVM and NN) could perform well on nonlinearly
separable instances/configurations, it is not sufficient to separate
those with even more complex distributions (Haixiang et al. 2017;
Bickel et al. 2007; Sun et al. 2006) such as the configurations of the
text in the bridge reports (especially given that the reports have
highly varying levels of text characteristics and patterns). There
are several efforts (e.g., Hall et al. 2010; Attardi and Dell’Orletta
2009; Sagae and Lavie 2006; Nivre and McDonald 2008) that have
proposed to integrate DP models at the parser level. For example,
Nivre and McDonald (2008) proposed to integrate a graph-based
parser and a transition-based parser by letting one parser generate
features for the other. Such methods are more cotraining-based
rather than ensemble learning–based. To the authors’ best knowl-
edge, there is no ensemble learning–based DP method that utilizes
a set of constituent classifiers to collectively capture the complex
distributions of all the configurations for improved dependency re-
lation extraction performance.

Second, from an ensemble learning perspective, there is a lack
of studies in sampling training instances/configurations in a way
that each constituent classifier is trained only with similarly distrib-
uted and therefore more easily separable configurations. As dis-
cussed in the “Ensemble Machine Learning Methods” section,
existing ensemble learning techniques sample instances based on
simple, presumed distributions, such as the uniform distribution
or weighted uniform distribution. Sampling configurations in this
way cannot capture the configuration distribution characteristics of
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the text in bridge inspection reports, which makes it hard to
generate meaningful configuration clusters and could therefore
make the trained constituent classifiers limited in collectively
and sufficiently capturing the underlying distributions of all the
configurations.

Third, from a feature representation perspective, there is a lack
of studies that utilized semantic text features for facilitating DP.
Existing DP methods (e.g., Dozat and Manning 2018; Guo et al.
2015; Chen and Manning 2014; Bansal et al. 2014) have relied on
using distributed representations of syntactic features (e.g., words
and POS tags). Although distributed feature representations could
reveal the semantic meanings of the features to some extent, they
provide limited semantics about word-to-word interactions that are
important to consider when deciding on how sentences should be
parsed. Such interactions can be better captured by the semantic
features. For example, maintenance material and maintenance ac-
tion are the semantic features for the words concrete and patching,
respectively. Based on the defined semantics—a maintenance
material concept semantically describes a maintenance action
concept—the dependency relation between concrete, as a modifier
word, and patching, as a head word, could be correctly parsed and
extracted.

Proposed Semantic Neural Network
Ensemble–Based Dependency Parsing Methodology

To address the aforementioned knowledge gaps, a semantic neural
network ensemble (NNE)–based dependency parsing (DP) method-
ology is proposed. The proposed methodology is composed of
five primary components, as per Fig. 2: semantic distributed feature
representation, similarity-based sampling, constituent NN classifier
modeling, combiner SVM classifier modeling, and dependency
relation–based information representation. The proposed methodol-
ogy is novel in three primary ways. First, it proposes a new feature
representation for the configurations, which includes both syntactic
(words and POS tags) and semantic (the semantic classes of words)
text features. The semantic features aim to capture the semantics
about the word-to-word interactions for facilitating the extraction
of dependency relations. Second, it proposes and utilizes a new
similarity-based sampling method to capture the distribution charac-
teristics of the configurations and sample the similarly distributed
configurations into the same clusters. Compared to existing sampling
methods used in ensemble learning (see the “Ensemble Machine
Learning Methods” section), the proposed method can better capture
how the configurations distribute. It generates more meaningful con-
figuration clusters that contain the densely and sparsely distributed as
well as the correctly and incorrectly densely distributed configu-
rations, which facilitates the classifier ensembling and the NNE-
based DP. Third, the proposed DP methodology takes an ensemble
learning–based approach. It uses a set of constituent NN classifiers
to collectively capture the complex distributions of all the configu-
rations and utilizes a combiner SVM classifier to capture the clas-
sification and/or misclassification patterns of the NN classifiers for
making final predictions on the transition types. Each of the con-
stituent classifiers only learns from similarly distributed and there-
fore more easily separable configurations. The ensemble of the
classifiers can better capture the complex distributions, which are
challenging for a single classifier to capture (Haixiang et al. 2017;
Bickel et al. 2007; Sun et al. 2006).

Semantic Distributed Feature Representation

A new semantic distributed feature representation is proposed to
represent the configurations. As shown in Fig. 3, it is a multilevel

representation. First, the configurations are represented by the
configuration-based features. These features are defined according
to the positions of the elements (words of a sentence) in a configu-
ration (Zhang and Nivre 2011). The configuration-based features
include 14 features: (1) the top three elements of the stack: σ1,
σ2, σ3; (2) the top three elements of the buffer: β1, β2, β3;
(3) the first and second leftmost/rightmost children of the first
element in the stack: lc1ðσ1Þ, rc1ðσ1Þ, lc2ðσ1Þ, rc2ðσ1Þ; and (4) the
first and second leftmost/rightmost children of the second element
in the stack: lc1ðσ2Þ, rc1ðσ2Þ, lc2ðσ2Þ, rc2ðσ2Þ. The top three
words are used to capture the contextual information of the word
pair to be parsed (i.e., the first word of the stack and the first word
of the buffer) (Zhang and Clark 2008; Zhang and Nivre 2011).

Second, each of the configuration-based features is represented
by syntactic and semantic text features. The syntactic features in-
clude: (1) words: the original lexical forms of the words; and
(2) POS tags: the lexical classes of the words, which are defined
based on the syntactic structures of the sentences. The semantic
features are the semantic classes of the words. In this research, to
capture the semantics about the word-to-word interactions in the
text and the information that needs to be extracted and represented,
the following semantic classes were defined by the authors based
on an analysis of a sample of bridge inspection reports: bridge
element (ET), deficiency (DY), deficiency cause (DC), numerical
measure (NM), numerical measure unit (NU), categorical quantity
measure (QM), categorical severity measure (SM), maintenance ac-
tion (MA), maintenance material (MM), and date (DT).

Third, the text features are further represented using distributed
feature representations. For example, instead of using noun as the
POS tag for the word crack, the NN-based distributed feature
representation utilizes a vector with a user-defined vector size to

C1 = majority cluster; C2 = minority cluster; C3 = correct-majority cluster; C4 
= incorrect-majority cluster; NN = neural network; PT = the probability of a 
transition type (“Shift”, “Right-arc”, or “Left-arc”); SVM = support vector 
machine.

Dependency relation-based information 
representation

Configurations

Similarity-based sampling

Semantic distributed feature representation

C1

PT1 PT2 PT3

C2

PT1 PT2 PT3

C3

PT1 PT2 PT3

C4

PT1 PT2 PT3

NN1 NN2 NN3 NN4

Constituent neural network classifier modeling

SVM

Combiner support vector machine classifier modeling

Fig. 2. Proposed semantic neural network ensemble–based depen-
dency parsing methodology.
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represent it numerically. Therefore, using the proposed feature rep-
resentation, a configuration is represented by a numeric vector of
size 2,100: 14 configuration-based features, 3 text features for each
of the configuration-based features, and a vector of size 50 for each
of the text features (i.e., 14 × 3 × 50 ¼ 2,100).

Similarity-Based Sampling

The configuration distributions of the text exhibit the following
characteristics: (1) a majority of the configurations are distributed
in a dense area; (2) a minority of them are distributed in a sparse
area; and (3) in the dense area, the configurations of a gold standard
transition (GST) type (shift, left-arc, or right-arc) overlap with the
configurations of the other GST types. Because of the overlapping,
some of the configurations distribute relatively far away from the
center of their corresponding GST type and relatively close to one
of the other centers, where a center is the arithmetic mean of all the
configurations that belong to the same GST type. To capture these
characteristics in a way that each constituent NN classifier will be
trained only with the similarly distributed and therefore more easily
separable configurations, the authors propose to sample the con-
figurations into one or two of the following four configuration
clusters:
• C1: This is a majority cluster, which contains the densely dis-

tributed configurations that belong to all the GST types and are
distributed close to one of the centers, where C1 ¼ C3 ∪ C4.

• C2: This a minority cluster, which contains the sparsely distrib-
uted configurations that belong to all the GST types and are dis-
tributed far away from all the centers.

• C3: This a correct-majority cluster, which contains the densely
distributed configurations that belong to all the GST types and
are distributed close to the center of their corresponding correct
GST type, where C3 ∈ C1.

• C4: This an incorrect-majority cluster, which contains the
densely distributed configurations that belong to all the GST
types and are distributed close to the center of another incorrect
GST type, where C4 ∈ C1.
The C1 and C2 clusters aim to differentiate the densely distrib-

uted configurations from the sparsely distributed ones. The C3 and
C4 clusters aim to differentiate the densely distributed configura-
tions in C1—differentiating those that distribute close to the center
of their correct GST type from those that distribute close to the
center of an incorrect GST type. Although C1 ¼ C3 ∪ C4, sam-
pling into C1 besides into C3 or C4 makes a one-to-one correspon-
dence for C1 and C2 as well as for C3 and C4, which helps
explicitly capture the aforementioned distribution characteristics.

To sample all the configurations into the aforementioned clus-
ters, the authors propose a similarity-based sampling method. Simi-
larities between the configurations and their centers are indicative
of the distribution characteristics. For example, if a configuration is
similar to (is close to) the center of a GST type, it is sampled into
the C1 cluster. However, the similarity measured in one feature
space is insufficient to capture the complex distribution character-
istics, because different degrees of similarities (measured distances
for indicating being close or being far away) emerge when some
other features are used for the measurement (Harispe et al. 2015).
To deal with this issue, the authors propose to measure the simi-
larities in seven different feature spaces, and utilize the similarities
measured in these spaces collectively as a criterion to sample the
configurations into the defined clusters. These feature spaces are
defined in Table 2.

The proposed similarity-based sampling method is summarized
as follows. First, the centers of the configurations of the three GST
types are computed in each feature space. A center is computed by
calculating the arithmetic mean of all the configurations (in the pro-
posed feature representation) that belong to the same GST type and
are in the same feature space. As a result, a total of 21 centers (for
three GST types and seven feature spaces) are generated. Second, a
configuration gets associated with a similarity-based transition (ST)
type in each feature space. In a space, the ST type of a configuration
is the GST type of the center that is most similar to the configu-
ration compared to the other two centers, where the similarity de-
gree is computed by the cosine similarity measure. The STand GST
types of a configuration could be same or different, because the
configuration could be closer to the center of a correct or an incor-
rect GST type. As a result, a configuration gets associated with a
total of seven ST types, one per feature space. Third, the configu-
rations are sampled into the aforementioned clusters based on

Semantic distributed feature representation (size = 1 x 42 vectors)

Configuration-based features (number = 14)

Word POS tag Semantic class

Syntactic features Semantic features

Text features (number = 3)

Word POS tag Semantic class

Syntactic features Semantic features

Text features (number = 3)

Note: The symbols for configuration-based features are defined in the “Semantic Distributed Feature Representation” 
Section. POS = part-of-speech. In the experiments of this research, a vector of size 50 was used, and the size of the 
representation is 2100 (i.e., 50 x 3 x 14 = 2100).

VectorVectorVector Vector Vector Vector

Fig. 3. Proposed semantic distributed feature representation.

Table 2. Defined feature spaces

Feature space Featuresa

1 Words
2 POS tags
3 Semantic classes
4 Words + POS tags
5 Words + semantic classes
6 POS tags + semantic classes
7 Words + POS tags + semantic classes

Note: POS = part-of-speech.
aAll the features are in their distributed representations.
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Eq. (1), where CMST is the count of the majority similarity-based
transition, MST is the type of the majority similarity-based transi-
tion, and GST is the gold standard transition type.

For a configuration, Eq. (1) works as follows. First, if the count
of the majority STof the configuration is greater than or equal to the
natural threshold (i.e., four out of seven), the configuration is
sampled into the C1 cluster; otherwise, it is sampled into the
C2 cluster. This is because in the former case the majority of
the STs have reached a consensus, which indicates that the configu-
ration can be confidently associated close to one of the centers;
while in the latter case no consensus has been made, which indi-
cates that the configuration cannot be confidently associated close
to any of the centers. Second, if a C1 configuration happens to have
an MST type that is same as its GST type, it is sampled into the C3
cluster as well; otherwise, it is sampled into the C4 cluster. This is
because in the former case the majority of the STs are indicating a
correct transition type (the GST type of the configuration), while in
the latter case no correct transition type can be decided based on the
MST type

Cluster ¼

8>>>>><
>>>>>:

C1 if CMST ≥ 4;

C2 if CMST < 4;

C3 if CMST ≥ 4 and MST ¼ GST;

C4 if CMST ≥ 4 and MST ≠ GST:

ð1Þ

Constituent Neural Network Classifier Modeling

An NN architecture was modeled and developed for training a set
of constituent NN classifiers. It is a feedforward neural network that
contains an input layer, a hidden layer, and an output layer. This NN
architecture was chosen for two reasons. First, it can automatically
learn the most useful feature conjunctions and high-order features,
which helps avoid feature sparsity and incompleteness issues (Pei
et al. 2015; Chen and Manning 2014). Second, it does not use a
complex neural network topology, which helps balance classifica-
tion accuracy and computational efficiency (Chen and Manning
2014).

The input layer takes the semantic distributed feature represen-
tation of a configuration as input. A unit of the input layer takes a
value from the representation. Based on the size of the semantic
feature representation vectors (see the “Semantic Distributed Fea-
ture Representation” section), the input layer has a size of 2,100.
The hidden layer contains a set of hidden units, each of which is
fully connected to the input layer. A hidden unit takes a value
mapped from the input layer. The mapping is conducted by an ac-
tivation function. For instance, using the logistic sigmoid function
as an example, a hidden unit has an input value of hi that is com-
puted by Eq. (2), whereW1 ∈ RjXj×jHj is a weight matrix, B1 ∈ RjHj
is a bias vector, jXj is the size of the input layer, and jHj is the size
of the hidden layer. In this research, a hidden layer size of 200
(Chen and Manning 2014) was used, and the logistic sigmoid func-
tion was selected and used based on the experimental results (see
the “Hyperparameter Value Selection” section). The output layer is
a softmax layer added upon the hidden layer and is used to model
the multiclass probabilities of a configuration being classified into
the transition types. The probabilities are computed by Eq. (3),
where tj is the jth transition type, W2 ∈ Rj3j×jHj is a weight ma-
trix, and B2 ∈ Rj3j is a bias vector. Based on the number of tran-
sition types in the transition-based DP model, the output layer
has a size of 3. For a data set D ¼ fðck; tkÞgKk¼1, where ck is
the kth configuration and tk is its corresponding GST type, the
training process of the NN architecture aims to minimize the

L2-regularized cross-entropy loss (maximizing the probabilities
of the training configurations being classified into their GST
types). The loss function is defined in Eq. (4), where θ ¼ fW1;
B1;W2;B2g and λ is a regularization parameter

hi ¼
1

1þ expð−W1iX − B1iÞ
; for i ¼ 1; : : : ; jHj ð2Þ

Ptj ¼
expðW2jhþB2jÞP
3
i¼1 expðW2ihþB2iÞ

; for j¼ 1;2;3 ð3Þ

LðθÞ ¼ −X
k

logPtk þ
λ
2
kθk2 ð4Þ

Combiner Support Vector Machine Classifier Modeling

A combiner SVM classifier was modeled and developed. It aims to
capture the misclassification and/or classification patterns of all the
constituent NN classifiers, and to make final configuration classi-
fication decisions for extracting dependency relations from the text.
As shown in Fig. 2, the combiner SVM classifier takes the outputs
of the four constituent NN classifiers (three probabilities per con-
stituent classifier; see the “Constituent Neural Network Classifier
Modeling” section) as input. Therefore, the input of the combiner
classifier is a probability vector of size 12. Training a classifier in
such case is a straightforward learning process, because the input
contains less features and simple patterns, and the resulting learn-
ing process does not involve extensive feature conjunctions and
mappings. SVM has shown high performance in such learning
tasks (e.g., Shibuya et al. 2015; Priya and Aruna 2012), and was
therefore chosen for training the combiner classifier.

Dependency Relation–Based Information
Representation

A dependency relation–based information representation method is
proposed. It aims to decode the extracted word-to-word depend-
ency relations, in order to link the isolated words into semantic in-
formation elements (SIEs) and to represent the unstructured and
semantically low SIEs into semantically rich structured semantic
information sets (SISs). In this research, an SIE is a concept that
describes bridge conditions and maintenance actions, which could
be a bridge element (ET), deficiency (DY), deficiency cause (DC),
numerical measure (NM), numerical measure unit (NU), categori-
cal quantity measure (QM), categorical severity measure (SM),
maintenance action (MA), maintenance material (MM), or date
(DT). An SIS is a semantic information structure that consists
of SIEs. The SIEs in an SIS must follow an SIE-to-SIE dependency
relation type. For example, as illustrated in Fig. 4, the SIEs must
follow one of the three SIE-to-SIE dependency relation types:
(1) the ET-DY dependency relation with the semantics: a bridge
element is affected by a deficiency that is inspected at a date, that
is caused by a deficiency cause and is maintained by a maintenance
action using amaintenance material, and that has a numerical mea-
surewith a numerical measure unit, a categorical severity measure,
and a categorical quantity measure; (2) the ET-DC dependency
relation with the semantics: a bridge element has a deficiency cause
that is inspected at a date; and (3) the ET-MA dependency relation
with the semantics: a bridge element is maintained by a mainte-
nance action using a maintenance material at a date.

The proposed dependency relation–based information represen-
tation method, as illustrated in Fig. 5, contains three main steps.
First, a sentence is represented with a sequence of words, semantic
classes, word numbers, and head word numbers. The word and
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head word numbers indicate the extracted word-to-word depend-
ency relations. For example, in Fig. 5, the head word of chord is
at position 4, which is connection. Second, starting from the left-
hand side of a sentence, the modifiers with the consecutively same
head word numbers and the head word are combined to form SIEs,
and their corresponding semantic classes are combined to form the
semantic classes of the SIEs. For example, in Fig. 5, although the
word truss also has a head word number of 4, it was not combined
with the bottom chord because the consecutively same head word
numbers of 4 are broken by the numbers of 7 and 6. In this step,
only the word and the head word numbers of the original head
words are maintained. For example, in Fig. 5, the modifier words
bottom and chord were combined with the head word connection to
form the SIE (i.e., bottom chord connection) and the semantic class
(i.e., ET) with the word and head word numbers of 4 and 7, respec-
tively. The semantic classes of the SIEs are needed in order to as-
sociate the right SIEs into the right positions of an SIS, and to break
down the SIEs that contain concepts with different semantic
classes. For example, in Fig. 5, the phrase severe crevice corrosion
was further broken down into severe and crevice corrosion SIEs

based on their semantic classes (SM and DY, respectively). Third,
the extracted SIE-to-SIE dependency relations are checked to as-
sess whether they follow the SIE-to-SIE dependency relations as
defined in Fig. 4, so that only valid SIEs are added to an SIS. For
example, in Fig. 5, the SIE pair bottom chord connection and truss
was excluded only because there are no dependency relations de-
fined between the two ET SIEs. ET-ET dependency relation can be
defined and used, if extracting information about bridge elements
and their constituent parts (e.g., a bottom chord connection is a part
of a truss) is desired in one’s application.

Two special cases that include conjunction and negation are also
considered in the proposed information representation method.
First, if one SIE is dependent on the other SIE and they are con-
catenated by a conjunction, they inherit the dependency relations of
each other. For example, in the following sentence from (DRJTBC
2016), abutment and deck have a dependency relation and are
concatenated by a conjunction (i.e., and): “Leaching at corner
of north abutment and bottom of deck.” In this case, deck inherits
the dependency relations of the abutment and gets associated with
leaching as well. Second, if an SIE is concatenated to another SIE

ET-DY dependency relation ET-DC dependency relation ET-MA dependency relation

The beginning of arrow indicates the head semantic information elements (SIEs), and the end of arrow 
indicates the modifier SIEs that describe/modify the head SIEs.

Bridge element
(ET)

Deficiency
(DY)

Numerical measure
(NM)

Numerical measure unit
(NU)

Deficiency cause
(DC)

Categorical quantity 
measure (QM)

Categorical severity 
measure (SM)

Maintenance action
(MA)

Maintenance material 
(MM)

Date
(DT)

Date
(DT)

Date
(DT)

Fig. 4. SIE-to-SIE dependency relations defined in a semantic information set (SIS).

SIS = semantic information set; SIE = semantic information element; HN = head word number; WD = word; SC = semantic class; WN = 
word number; OT = other; ET = bridge element; SM = categorical severity measure; DY = deficiency.

Step 3 SIS
bottom_chord_connection severe crevice_corrosion

ET SM DY

Step 2

HN 7 4 0 10 7
SIE bottom_chord_connection truss has severe crevice_corrosion
SC ET ET OT SM DY
WN 4 6 7 8 10

Step 1

HN 4 4 4 7 6 4 0 10 10 7
WD the bottom chord connection of truss has severe crevice corrosion
SC OT ET ET ET OT ET OT SM DY DY
WN 1 2 3 4 5 6 7 8 9 10

Fig. 5. Example to illustrate proposed dependency relation–based information representation method.
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by a negation, both SIEs (and their associated SIEs) are excluded
from an SIS. For example, in the following sentence from (Caltrans
2012), connections was concatenated with distress by a negation
(i.e., did not): “The connections did not appear to be in distress.”
In this case, these SIEs are excluded from an SIS. To capture con-
junctions and negations, two gazetteer lists were developed and
used. The conjunction gazetteer list includes words/phrases such
as and, as well as, along with, and together with. The negation gaz-
etteer list includes words/phrases such as no, not, doesn’t, and isn’t.

Implementation of the Proposed Methodology

The proposed semantic NNE-based dependency parsing (DP)
methodology was implemented in extracting dependency relations
from bridge inspection reports for linking the isolated words that
describe bridge conditions and maintenance actions into SIEs
and SISs. The implementation included four primary steps: data
set preparation, feature extraction and representation, semantic

NNE-based DP algorithm training, and evaluation. An overview
of the implementation methodology is presented in Fig. 6.

Data Set Preparation

Data set preparation included data set creation, text preprocessing,
and human annotation. A data set, which contains a total of 1,000
sentences that were randomly selected from 10 bridge inspection
reports, was created. As given in Table 3, the selected reports are
from different states, from different reporting years, and for differ-
ent bridge structure types. The sentences were randomly selected to
avoid introducing bias. To further ensure that the sample (the se-
lected sentences) is representative of the population (all the senten-
ces from the 10 reports), the distributions of the sentence lengths
were compared. As shown in Fig. 7, the two distributions are quite
similar. The p-value for the comparison of the distributions is
0.4892 (calculated from the Welch’s unequal variances t-test, as-
suming normal distributions of the sentence lengths), which shows
that there is no significant difference between the two. These results

Feature extraction and representation

Semantic NNE-based dependency 
parsing algorithm training

Configurations in the feature 
representation

Trained dependency parsing model

Model selection

Algorithm 
validation

Predicted
transition types

in
pu

t

Constituent neural 
network classifiers

Combiner support vector 
machine classifier

Dependency parsing models
(from threefold cross-validation) Feature extraction and representation

Predicted transition types

Configurations in the feature 
representation

Semantically-rich structured 
information

Evaluation

Algorithm 
validation

Algorithm 
testing

output

input

output

Training and validation Evaluation

NNE = neural network ensemble. Algorithm testing was conducted only for the proposed algorithm (with the selected 
hyperparameters and feature representation).

Dataset preparation

Threefold cross-validation

Training
sentences 

Validation
sentences 

Testing
sentences 

Fig. 6. Overview of implementation of proposed semantic neural network ensemble–based dependency parsing methodology.

Table 3. List of bridge inspection reports

No. Reported bridge Structure type State Year Ref.

1 Natchaug River Chaplin Bridge Concrete arch bridge Connecticut 2009 ConnDOT (2009)
2 Sherman Minton Bridge Double-deck through arch bridge Indiana 2007 INDOT (2007)
3 Hale Boggs Memorial Bridge Cable-stayed bridge Louisiana 2008 LaDOTD (2008)
4 Heron Truss Bridge Steel deck truss bridge Montana 2011 MDT (2011)
5 Portsmouth Memorial Bridge Vertical-lift bridge New Hampshire 2009 NHDOT (2009)
6 Wellwood Avenue Bridge Concrete arch bridge New York 2015 NYSDOT (2015)
7 Union Street Railroad Bridge Vertical-lift, Pratt through truss bridge Oregon 2005 ODOT (2005)
8 South Park Bridge Scherzer rolling lift double-leaf bascule bridge Washington 2009 WSDOT (2009)
9 Lower Trenton Bridge Through truss bridge New Jersey 2015 DRJTBC (2016)
10 Capitola Crossing Deck Truss Single-span deck truss bridge California 2012 Caltrans (2012)

Note: Ref. = reference.
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indicate that the sample is representative. The sentences were fur-
ther randomly split into three sets at a ratio of 2∶1∶1—a training set
for algorithm training, a validation set for hyperparameter tuning
and algorithm validation, and a testing set for testing the fine-tuned
model. As noted previously, 50% of the data were used for training,
in order to keep the remaining portion of the data for validation and
testing. In the initial method development efforts, the authors also
tested the use of 75% of the data for training, which only margin-
ally changed the parsing performance. This indicates that the in-
crease in the ratio of training data, beyond 50%, does not have
a substantial impact on the performance results. Table 4 provides
a set of sentence examples. Text preprocessing aimed to transform
the raw text (the selected sentences) into the format required for
dependency relation extraction. Tokenization was used to break
down a continuous sentence into a sequence of tokens (e.g., words,
digits, punctuations, and whitespaces). Human annotation aimed to
mark up the entire data set with gold standard dependency rela-
tions. Following the universal dependencies guideline (Marneffe
et al. 2014), the sentences were separately annotated by three an-
notators, with background in both civil engineering and natural lan-
guage processing. The initial interannotator agreement rate was
87.4% in F-1 measure, which indicates the reliability of the gold
standard annotation (Pestian et al. 2012). The discrepancies across
the three annotations were then discussed and resolved [according
to the universal dependencies guideline (Marneffe et al. 2014)] to
reach consensus, thereby achieving a final gold standard annotation
with full interannotator agreement.

Feature Extraction and Representation

The training, validation, and testing configurations were first
generated from the annotated training, validation, and testing
sentences, respectively, using the transition-based DP model.
The configuration-based features were extracted based on the de-
fined element positions at the configurations. Second, the syntactic
and semantic text features were extracted to represent these
configuration-based features. The POS tag set from the Penn Tree-
bank project was used. The tags were analyzed and extracted using
the commonly used natural language tool kit (NLTK) POS tagger

(Bird et al. 2009). The defined semantic classes were analyzed and
extracted using the ontology-based, semisupervised conditional
random fields–based named entity recognition (NER) method
(Liu and El-Gohary 2017). In this method, the bridge deterioration
knowledge ontology (Liu and El-Gohary 2016), which represents
bridge deterioration and maintenance knowledge, is used to facili-
tate the extraction based on content and domain-specific meaning.
The errors in the semantic classes were manually checked and cor-
rected by the authors, for evaluation purpose only. The rationale
was to separate the errors coming from the NER method versus
the errors coming directly from the DP method, in order to sepa-
rately understand the limit of the proposed semantic feature repre-
sentation in improving the performance of the DP method. The
proposed DP method itself is fully automated and does not require
manual interventions in its application. Finally, the extracted text
features—words, POS tags, and semantic classes—were repre-
sented by the distributed feature representations with a commonly
used vector size of 50, using the NN-based hierarchical softmax
skip-gram algorithm (Mikolov et al. 2013). This algorithm was
selected because it achieved the state-of-the-art performance in dis-
tributed feature representation and has been widely applied for sup-
porting many natural language processing tasks inside (e.g., Zhou
and El-Gohary 2015) and outside (e.g., Chen and Manning 2014)
of the civil engineering domain.

Algorithm Training

The algorithm training aimed to learn the weight vectors for the
constituent NN classifiers and the combiner SVM classifier. The
training included three main steps. First, all the training configu-
rations were sampled into the defined configuration clusters based
on Eq. (1). Second, the four constituent NN classifiers were devel-
oped. Each constituent classifier corresponded to a cluster and was
trained using the configurations and their GSTs of the cluster. To
learn the weights for the NN classifiers [as per Eq. (4)], the back-
propagation algorithm (Rumelhart et al. 1986) was used. Third, a
combiner SVM classifier was developed. The combiner classifier
was trained using all the training configurations and their GSTs.
During the training, each of the configurations was represented

0%
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4%

6%

8%

10%

12%

14%

16%

18%

20%

5 (5, 8] (8, 11] (11, 14] (14, 17] (17, 20] (20, 23] (23, 27] (27, 30] (30, 33] (33, 36] (36, 39] (39, 42] (42, 45] >45
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P
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e
secnetnes
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Population Sample

Fig. 7. Distributions of sentence lengths for selected sentences (sample) and for all sentences in 10 bridge inspection reports (population).
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with the probability vector (as per Fig. 2). To learn the weight vec-
tor of the combiner SVM classifier, the stochastic gradient descent
algorithm was used.

Evaluation

The evaluation included algorithm validation and testing. Algorithm
validation was conducted, using the configurations, to: (1) select
the hyperparameter values for the classifiers, (2) select the feature
representation, and (3) compare the performance of the proposed
DP algorithm to those of the three baselines—semantic single clas-
sifier–based algorithms that used an NN or SVM classifier and a
semantic stacked generalization–based algorithm that used cross-
validation partitioning for sampling the configurations. The selec-
tion and comparison were conducted based on configuration-based
accuracy, which is the ratio of the number of correctly classified
configurations to the total number of configurations, as per Eq. (5).
Algorithm testing was conducted, using the testing sentences, to
evaluate the performance of the proposed DP algorithm (with
the selected hyperparameters and feature representation) in
extracting dependency relations from bridge inspection reports
for representing the information about bridge conditions and main-
tenance actions in a semantically rich structured way. The perfor-
mance was measured in terms of precision, recall, and F-1 measure,
at both the SIE and SIS levels. Precision, as per Eq. (6), is the ratio
of the number of correctly extracted SIEs/SISs to the total number
of extracted SIEs/SISs. Recall, as per Eq. (7), is the ratio of the
number of correctly extracted SIEs/SISs to the total number of
SIEs/SISs that should be extracted. F-1 measure, as per Eq. (8), is
the weighted harmonic mean of precision and recall.

Threefold cross-validations were performed, during the algo-
rithm validation and testing, to better evaluate the performances of
the algorithms. For the cross-validations, the entire data set was
randomly split three times, each time into three sets (50% training,
25% validation, and 25% testing). Same as studies for similar ap-
plications (e.g., Dhillon et al. 2012; Adriani et al. 2020), the num-
ber of folds in this research was set to three to keep more data for
testing in each fold. The confidence intervals of the mean values for
the evaluation measures were also calculated to evaluate the sensi-
tivity of the performance results. The confidence intervals were
calculated using Eq. (9), where x̄ is the mean, σ is the standard
deviation, n is the number of sentences or configurations in the
validation or testing set, z� is the critical value, and z� σffiffi

n
p is the

margin of error. At 95% confidence level, z� ¼ 1.96. Because pre-
diction accuracies, precisions, and recalls generally follow a normal
distribution (Mirza et al. 2007; Lu et al. 2005), such a distribution
was assumed and used for calculating the confidence intervals

Configuration-based accuracy

¼ number of correctly classified configurations
number of all the configurations

ð5Þ

Precision ¼ number of correctly extracted SIEs ðor SISsÞ
number of extracted SIEs ðor SISsÞ ð6Þ

Recall ¼ number of correctly extracted SIEs ðor SISsÞ
number of SIEs ðor SISsÞ that should be extracted ð7Þ

F-1measure ¼ 2 × Precision × Recall
Precisionþ Recall

ð8Þ

Table 4. Examples of sentences in the bridge inspection reports

Report
No.a

Sentence
No. Original sentence from bridge inspection report

1 1 The one-half inch thick, oil and stone surface treatment, over two inches of bituminous materials, over a corrugated steel deck,
still shows full width transverse cracking, open a maximum of one inch, mainly in the areas of the deck, adjacent to the pier.

1 2 The outside fascia deck edge plates still show light to moderate rusting, along their edges.
2 3 Several of the anchor bolts for the cross girder bearings on the pier columns exhibit deficiencies that include mis-drilled holes,

bent anchor bolts, improperly installed anchor bolts, and loose nuts.
2 4 The curb faces on the westbound deck have minor widespread spalling.
3 5 Throughout the bridge, the bolted field splices for the deck exhibited isolated instances of loose bolts, missing nuts, and missing

bolts (see photo 15)b.
3 6 Rodents, rodent’s dens, and moderate rodent debris were noted in tiers 23–25 of both towers.
4 7 The Pier 1 expansion bearing assemblies exhibited approximately 25 percent loss of protective coating with moderate corrosion

and negligible loss of section on the exposed areas.
4 8 The timber deck members were coated with creosote and tar.
5 9 Truss bottom chord members typically have deterioration with section loss at the gusset plates and some surface rust throughout

webs and top flanges.
5 10 Minor corrosion and section loss of bottom flange angles.
6 11 The underside of the cap beam between columns C1 and C2 exhibits 3′ × 20″ × 3″ deep spall with two main rebars exposed and

one stirrup exposed, 32″ × 16″ × 2″ deep spall and hollow sounding concrete areas 12″ × 18″.
6 12 The joint seal has detached from the joint.
7 13 The paint system of this section appears to be in fair condition overall, with failure on approximately 20 percent of the surface area.
7 14 Some of the rivet heads in these locations have also suffered some moderate section loss.
8 15 South abutment settled downward and retaining walls of abutment rotated outward, allowing span between abutment and bent 2 to

settle as well during earthquake.
8 16 Large spall 18″ × 24″ on west wall of north abutment.
9 17 Several anchor bolts and many keeper plates were noted to be missing at the abutment bearings and a steel bolster Girder 2

exhibits section loss.
9 18 The abutment rocker bearings exhibit pack rust between the masonry plate and the rocker.
10 19 At connections there was generally minor crevice corrosion between the eyebar heads and the pin with an average section loss of

approximately 1/8″ around the interior circumference.
10 20 Significant section loss to the bottom lacing was found in spots along the top chord.
aThe report number follows that defined in Table 3.
b“Photo 15” in this sentence refers to the photo indexed as 15 in the report of LaDOTD (2008).
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Confidence interval ðCIÞ ¼
�
x̄ − z�

σffiffiffi
n

p ; x̄þ z�
σffiffiffi
n

p
�

ð9Þ

Experiments, Results, and Discussion

Hyperparameter Value Selection

The hyperparameter values for the NN and SVM classifiers were
selected. Because the activation and the kernel functions are espe-
cially important for the constituent NN and the combiner SVM
classifiers to collectively capture the nonlinearity of the configura-
tions, combinations of the two types of functions were tested. Four
commonly used activation functions (identity, Gaussian, hyperbolic
tan, and logistic sigmoid) and four commonly used kernel functions
(linear, polynomial, radial basis function, and sigmoid) were tested,
resulting in a total of 16 combinations. The selected values are sum-
marized in Table 5.

Feature Representation Selection

Seven text feature representations were tested and compared to in-
vestigate the effectiveness of different types of representations.
These representations include combinations of the three types of
features: words, POS tags, and semantic classes, as shown in
Fig. 8. To study the significance levels of the performance differ-
ences across these representations, a set of Welch’s unequal varian-
ces t-tests was conducted. The probability values (p-values) were
used to interpret the t-test results: if the p-value is greater than 0.05,
there is no significant difference; otherwise the difference is signifi-
cant. Fig. 8 summarizes the mean configuration-based accuracies,
their corresponding confidence intervals, and the p-values for com-
paring the proposed feature representation to the remaining six rep-
resentations. The experimental results show that the proposed
semantic distributed feature representation—which uses words,
POS tags, and semantic classes (FR7 in Fig. 8)—achieved the high-
est configuration-based accuracy of 91.3% on the testing set (the
accuracy might be lower if uncorrected semantic classes were
used). By combining the high and low cooccurrence rate features,
as well as the syntactic and semantic features, it was effective in
capturing the highly variable patterns of the text in the bridge in-
spection reports.

The feature representations (FR1, FR2, FR3, and FR6) that used
words, POS tags, semantic classes, and the combination of POS
tags and semantic classes achieved an accuracy of 87.0%, 83.4%,
63.8%, and 84.0%, which is 4.3%, 7.9%, 27.5%, and 7.3%
lower compared to the highest (FR7), respectively, on the testing
set, with all differences being significant. The lower performance
was caused by two main reasons. First, the representations with a
low cooccurrence rate (such as FR1) generated too many unseen
feature patterns in the testing configurations that have not been
learned from the training configurations. Second, the representa-
tions with a high cooccurrence rate (such as FR2, FR3, and
FR6) caused the configurations that belong to different transition
types to have similar and/or identical feature patterns. The unseen
and similar/identical feature patterns made the dependency parsing
(DP) algorithm limited in effectively distinguishing the configura-
tions of different transition types and therefore resulted in a lower
accuracy.

The feature representations (FR4 and FR5) that used the com-
bination of words and POS tags and the combination of words and
semantic classes achieved an accuracy of 86.8% and 85.8%, which
is 4.5% and 5.5% lower compared to the highest (FR7), respec-
tively, on the testing set, with all differences being significant.

The improved performance of FR7, compared to FR4 and FR5,
was mainly due to the fact that, in addition to combining the low
and high cooccurrence rate features, it also utilized the POS tags
and semantic classes jointly. These two types of features are com-
plementary to each other and therefore led to the optimal DP per-
formance. The semantic class features are effective in capturing the
dependency relations (word-to-word interactions) between the con-
cepts that have defined semantics. For example, the words severe
and corrosion can be classified into a correct transition type based
on their defined semantic meanings: a categorical severity measure
(severe, as a modifier) describes a deficiency (corrosion, as a head).
On the other hand, the POS tag features are effective in capturing
the relations between the concepts that do not have defined seman-
tics (low-content-bearing words, such as of, on, and at). For exam-
ple, the SIEs wearing surface (as a head) and concrete deck (as a
modifier) in the phrase wearing surface on the concrete deck can be
associated with a correct SIE-to-SIE dependency relation based on
the POS tag of the on (i.e., preposition).

Comparison to Baseline Algorithms

Three baseline DP algorithms were developed for comparative
evaluation: a semantic NN-based, a semantic SVM-based, and a
semantic stacked generalization (SG)–based. The first two were
used to evaluate the effectiveness of the proposed ensemble learning–
based approach. The semantic NN-based DP baseline was
selected because it is one of the state-of-the-art NN-based DP meth-
ods (e.g., Chen and Manning 2014) that has been commonly used
as a benchmark (e.g., Weiss et al. 2015 and Alberti et al. 2015). The
semantic SVM-based DP baseline was selected because it is com-
monly used in the literature (e.g., Kudo and Matsumoto 2002;
Yamada and Matsumoto 2003). For these baselines, a single NN
or SVM classifier was used. The hyperparameter values of the clas-
sifiers are given in Table 5. The third baseline was used to evaluate
the effectiveness of the proposed sampling approach. It was se-
lected because it is the most similar to the proposed algorithm—
except that the proposed algorithm used the similarity-based
sampling method rather than cross-validation partitioning. For
the SG-based and the proposed DP algorithms, four constituent
NN classifiers with the logistics sigmoid activation function and
a combiner SVM classifier with the linear kernel functions were
used. These functions were selected based on the results in the
“Hyperparameter Value Selection” section. All the DP algorithms
(for both the proposed and the baseline models) were developed
using the proposed semantic distributed feature representation, as
per Fig. 3.

The performances of the proposed and the baseline algo-
rithms are summarized in Fig. 9, and their confusion matrices
are shown in Fig. 10. As shown in Fig. 9, the proposed semantic
NNE-based DP algorithm (A4) achieved the highest accuracy of
91.3% on the testing set. The semantic NN-based DP baseline
with the hyperbolic tan activation function (A2-4) achieved an
accuracy of 77.8%. The semantic SVM-based DP baseline with
the radial basis function kernel (A1-3) achieved an accuracy of
63.0%. And the semantic SG-based DP algorithm (A3) achieved
an accuracy of 76.4%. As shown in Fig. 10, the proposed algo-
rithm achieved improved precisions and recalls across all tran-
sition types.

These results indicate that the proposed ensemble learning–
based DP approach is effective in dealing with domain-specific
and highly technical text (such as that in the bridge inspection
reports) for extracting dependency relations. It significantly
improved the accuracy by 13.5% and 28.3%, compared to the
NN- and SVM-based DP baselines, respectively. This is because,
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Table 5. Hyperparameter values of the proposed and the baseline dependency parsing algorithms

Classifier type Hyperparameter Value Explanation

Neural network classifier Number of network layersa 3 This value was selected based on Chen and Manning (2014), because it balances classification accuracy and
computational efficiency.

Hidden layer sizea 200 —b

Regularization parametera 10−8 —b

Activation function Logistic sigmoid function
or hyperbolic tan function

The combination that used the logistic sigmoid activation function and the linear kernel function achieved
the highest configuration-based accuracy on both the validation and testing sets, compared to the other
combinations. The logistic sigmoid function was therefore selected for the constituent neural network
classifiers.
Four commonly used activation functions, including the logistic sigmoid, identity, Gaussian, and hyperbolic
tan functions, were tested. The hyperbolic tan function was selected over the other three for the single neural
network classifier, because it achieved the highest configuration-based accuracy on both the validation and
testing sets.

Support vector machine
classifier

Soft margin constant 200 or 1 A set of values, including 1 and those ranging from 20 to 300 with a step size of 20, were tested. A value of
200 for the combiner classifier and a value of 1 for the single classifier were selected to control the margin of
the decision boundaries, because they achieved the highest configuration-based accuracy, on the respective
validation and testing sets.

Kernel function Linear kernel or radial
basis function kernel

The combination that used the logistic sigmoid activation function and the linear kernel function achieved
the highest configuration-based accuracy on both the validation and testing sets, compared to the other
combinations. The linear kernel function was therefore selected for the combiner support vector machine
classifier.
Four commonly used kernels, including the linear, polynomial, radial basis function, and sigmoid kernels,
were tested. The radial basis function kernel was selected over the other three for the single support vector
machine classifier, because it achieved the highest configuration-based accuracy on both the validation and
testing sets.

Degree of the polynomial kernelc 2 This value was selected because it is enough to capture the nonlinear relationships between features (Ben-
Hur and Weston 2010).

Coefficient of the polynomial and
sigmoid kernelsc

1 This value was selected, because it balances the influence of higher-order terms and that of lower-order
terms in the polynomial and sigmoid functions and is commonly used in practice (Ben-Hur et al. 2008).

Gamma of the radial basis function,
polynomial, and sigmoid kernelsc

1=n This value was set to the inverse of the number of features (i.e., n), which is the commonly used value in
SVM (Chang and Lin 2011) to control the curvature of the decision boundaries for preventing overfitting.

aThe constituent and the single neural network classifiers used the same value.
bThe explanation is the same as that in the first row of the table.
cThe combiner and the single support vector machine classifiers used the same value.
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by using the constituent and combiner classifiers, the proposed
ensemble learning–based DP approach was able to sufficiently
capture the distributions of all the configurations, which were
too complex to be captured by a single classifier. The results also
indicate that the proposed similarity-based sampling method is
effective in capturing the complex configuration distributions of
the text. It significantly improved the accuracy by 14.9% com-
pared to the SG-based DP baseline. This is because the sampling

method used the similarities measured in multiple feature spaces
as a collective criterion to sample the configurations into mean-
ingful clusters (see the “Similarity-Based Sampling” section).
Conversely, the SG-based algorithm simply clustered the con-
figurations using cross-validation partitioning. Only learning
from the similarly distributed and more easily separable configu-
rations allowed each constituent classifier to sufficiently capture
the local distributions of the configurations, which resulted in

FR1 FR2 FR3 FR4 FR5 FR6 FR7
Validation set 88.6% 85.4% 65.6% 88.7% 87.1% 86.9% 92.8%
Testing set 87.0% 83.4% 63.8% 86.8% 85.8% 84.0% 91.3%

40%

50%

60%

70%

80%

90%

100%

noitarugifnoc nae
M

-
ycarucca desab

Feature representations

• FR1 = words; FR2 = POS tags; FR3 = semantic classes; FR4 = words + POS tags; FR5 = words + semantic classes; FR6 = 
POS tags + semantic classes; FR7 = words + POS tags + semantic classes.

• The “I-shape” bar indicates the confidence interval calculated from the corresponding mean configuration-based accuracy.
• The p-values were calculated from the Welch’s unequal variances t-tests (using the testing set) and are significant at 0.05 level 

(2-tailed).

Comparison group P-value
FR1 vs. FR7 0.0000
FR2 vs. FR7 0.0000
FR3 vs. FR7 0.0011
FR4 vs. FR7 0.0000
FR5 vs. FR7 0.0000
FR6 vs. FR7 0.0001
FR7 vs. FR7 1.0000

P-values

proposed

Fig. 8. Performance results for feature representation selection.

• A1-1, A1-2, A1-3, and A1-4 are semantic support vector machine-based DP algorithms with linear, polynomial, radial basis 
function (RBF), and sigmoid kernel functions, respectively.

• A2-1, A2-2, A2-3, and A2-4 are semantic neural network-based DP algorithms with Gaussian, identity, logistic sigmoid, and 
hyperbolic tan activation functions, respectively.

• A3 is the semantic stacked generalization-based DP algorithm; A4 is the proposed semantic neural network ensemble-based DP 
algorithm.

• The “I-shape” bar indicates the confidence interval calculated from the corresponding mean configuration-based accuracy.
• The p-values were calculated from the Welch’s unequal variances t-tests (using the testing set) and are significant at 0.05 level (2-

tailed).

A1-1 A1-2 A1-3 A1-4 A2-1 A2-2 A2-3 A2-4 A3 A4
Validation set 50.9% 54.1% 61.5% 62.3% 53.4% 71.9% 78.5% 79.1% 77.4% 92.8%
Testing set 51.0% 54.5% 63.0% 62.9% 53.5% 72.7% 76.0% 77.8% 76.4% 91.3%

40%

50%

60%

70%

80%

90%

100%

noitarugifnoc
nae

M
-

ycarucca
desab

Dependency parsing (DP) algorithms

Comparison group P-value
A1-1 vs. A4 0.0014
A1-2 vs. A4 0.0000
A1-3 vs. A4 0.0310
A1-4 vs. A4 0.0071
A2-1 vs. A4 0.0025
A2-2 vs. A4 0.0006
A2-3 vs. A4 0.0000
A2-4 vs. A4 0.0019
A3 vs. A4 0.0000
A4 vs. A4 1.0000

P-values

proposed

Fig. 9. Performance results for proposed and baseline dependency parsing algorithms.

© ASCE 04021007-14 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2021, 35(4): 04021007 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

73
.3

6.
14

4.
25

4 
on

 0
9/

22
/2

1.
 C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.



more effective ensembling—improved ability to capture the
global distributions of all the configurations.

Performance of the Proposed Dependency Parsing
Algorithm

The performance of the proposed semantic NNE-based DP algo-
rithm was evaluated in extracting dependency relations from bridge
inspection reports for representing the information about bridge
conditions and maintenance actions into SIEs and SISs. The SIE-
level measures evaluated how well the individual SIEs can be
correctly represented, while the SIS-level measures evaluated
how well the SISs can be correctly represented (an SIS represen-
tation is correct if and only if all its constituent SIEs are represented
correctly). The SIS-level measures are therefore more stringent

compared to the SIE-level measures. The experimental results are
summarized in Fig. 11. Examples of the extracted information are
provided in Fig. 12.

Performance at the Semantic Information Element Level
At the SIE level, on average, the proposed semantic NNE-based DP
algorithm achieved a precision, recall, and F-1 measure of 96.6%,
90.4%, and 93.3%, respectively. For some SIE types (e.g., ET, DY,
DC, and SM), the algorithm achieved results lower than these aver-
ages. For the ET and DY SIEs, it achieved an SIE-level precision,
recall, and F-1 measure of 90.5%, 83.6%, and 86.9%, and 93.5%,
87.3%, and 90.3%, which are 6.1%, 6.8%, and 6.4%, and 3.1%,
3.1%, and 3.0% lower compared to the averages, respectively. Two
main sources of errors that contributed to these results were iden-
tified. First, the large number of the ET and DY SIEs negatively

Shift Left-arc Right-arc Precision

Shift 3433 370 300 83.7%

Left-arc 423 1754 129 76.1%

Right-arc 436 169 1208 66.6%

Recall 80.0% 76.5% 73.8% 77.8%

Shift Left-arc Right-arc Precision

Shift 2497 1283 323 60.9%

Left-arc 374 1787 145 77.5%

Right-arc 240 676 897 49.5%

Recall 80.3% 47.7% 65.7% 63.0%

Shift Left-arc Right-arc Precision

Shift 3391 458 262 82.6%

Left-arc 369 1823 115 79.1%

Right-arc 560 175 1069 59.0%

Recall 78.4% 74.2% 74.1% 76.4%

Shift Left-arc Right-arc Precision

Shift 3819 153 131 93.1%

Left-arc 112 2132 62 92.5%

Right-arc 165 93 1555 85.8%

Recall 93.2% 89.7% 89.0% 91.3%

• The bold font indicates the mean configuration-based accuracy.
• The precisions, recalls, and accuracies were calculated using the testing set.
• SVM = support vector machine; NN = neural network; SG = stacked generalization; NNE = neural network 

ensemble.

Gold standard transition type
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Fig. 10. Confusion matrices for proposed and baseline dependency parsing algorithms: (a) confusion matrix for semantic SVM-based dependency
parsing algorithm; (b) confusion matrix for semantic NN-based dependency parsing algorithm; (c) confusion matrix for semantic SG-based depen-
dency parsing algorithm; and (d) confusion matrix for semantic NNE-based dependency parsing algorithm (proposed).
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affected the performance of the algorithm. Bridge inspection re-
ports tend to have more descriptions about bridge elements and
their deficiencies. For example, in the used data set, 50.2% and
22.1% of the concepts are ET and DY SIEs, respectively. These
SIEs are the main sources of the ambiguities in the dependency
relations (i.e., associating the right DY elements to the right ET

elements is challenging, given the existences of multiple such SIEs
in a sentence). Second, the errors generated during the POS tagging
process negatively affected the performance of the algorithm. For
example, in the following sentence, the words shows and cut were
incorrectly tagged as noun and verb, respectively: “The salvaged
stringer superstructure, shows flame cut holes for various stringer

40%

50%

60%

70%

80%

90%

100%

110%

ET DY DC NM NU QM SM MA MM DT Avg. SIS
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ET DY DC NM NU QM SM MA MM DT Avg. SIS

F
-
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Prec. (%) 90.5 93.5 97.2 95.2 96.9 100.0 92.3 100.0 100.0 100.0 96.6 88.2

MOE (%) ±5.1 ±4.4 ±5.2 ±3.2 ±3.1 ±3.1 ±5.6 ±0.0 ±0.0 ±0.0 ±3.8 ±5.4

Rec. (%) 83.6 87.3 77.4 95.2 93.9 91.3 75.7 100.0 100.0 100.0 90.4 81.5

MOE (%) ±5.5 ±5.0 ±6.3 ±3.2 ±3.6 ±4.2 ±6.4 ±0.0 ±0.0 ±0.0 ±4.4 ±5.8

F-1 (%) 86.9 90.3 86.1 95.2 95.4 95.5 83.1 100.0 100.0 100.0 93.3 84.7

MOE (%) ±5.1 ±4.4 ±5.2 ±3.2 ±3.1 ±3.1 ±5.6 ±0.0 ±0.0 ±0.0 ±3.8 ±5.4

Semantic information element and set

Semantic information element and set

Semantic information element and set

• ET = bridge element; DY = deficiency; DC = deficiency cause; NM = numerical measure; NU = numerical 
measure unit; QM = categorical quantity measure; SM = categorical severity measure; MA = maintenance 
action; MM = maintenance material; DT = date.

• Avg. = average semantic information element level performance; SIS = semantic information set level 
performance.

• Prec. = precision; Rec. = Recall; F-1 = F-1 measure; MOE = margin of error, where a confidence interval = 
(mean - MOE, mean + MOE).

Fig. 11. Performance results for proposed semantic neural network ensemble–based dependency parsing algorithm at semantic information element
(SIE) and semantic information set (SIS) level.
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ends, over the east abutment, and along the fascia stringer ends,
over each side, of the pier.” (ConnDOT 2009). This resulted in in-
correctly associating the DY element (flame cut holes) to the other
ET elements (e.g., east abutment, fascia stringer ends, and pier),
instead of correctly associating it to stringer superstructure.

For the DC and SM SIEs, the algorithm achieved an SIE-level
precision, recall, and F-1 measure of 97.2%, 77.4%, and 86.1%;
and 92.3%, 75.7%, and 83.1%, respectively. The recalls of these
two SIEs are much lower than the average (13.0% and 14.7% lower
for DC and SM, respectively). Two main sources of errors that
caused the lower recalls were identified. First, when combining
words into SIEs, the information representation method (as per
Fig. 5, step 2) sometimes combined multiple DC SIEs into one sin-
gle element, and therefore led to the low recall for the DC SIEs
(multiple DC SIEs should be extracted, while only the single
DC element was incorrectly extracted). For example, in the follow-
ing sentence, the DC SIEs rodent droppings and debris were com-
bined into one DC element rodent droppings debris, which is
incorrect: “The interior of the longitudinal box girders exhibited
heavy rodent droppings, debris, and nests : : : .” (LaDOTD 2008).
For a correct extraction and representation, the three DC SIEs
rodent droppings, debris, and nests should all be extracted and rep-
resented as separate SIEs. A further analysis revealed the root
source of such mistakes: ignoring punctuation during the parsing,
which is the default practice according to the universal dependen-
cies guideline (Marneffe et al. 2014) and is commonly applied in
other DP methods. Punctuations are in some cases indicative of
correct dependency relations. So, when the comma between rodent

droppings and debris was not considered, they were associated
with an incorrect dependency relation. Second, the proposed
SIE-to-SIE dependency relation types (as per Fig. 4) sometimes
limited the information representation, and therefore led to the
lower recall of the SM SIEs. For example, in the aforementioned
example sentence, the SM SIE heavy and the DC SIE rodent drop-
pings should be extracted and represented. Although the DP algo-
rithm correctly associated a dependency relation between these two
elements, the SM SIE was not represented in an SIS because no
semantics (SIE-to-SIE dependency relation types) were defined be-
tween the SM and DC SIEs.

Performance at the Semantic Information Set Level
At the SIS level, the proposed semantic NNE-based DP algorithm
achieved a precision, recall, and F-1 measure of 88.2%, 81.5%, and
84.7%, respectively. Compared to the average SIE-level measures,
the SIS-level precision, recall, and F-1 measure are 8.4%, 8.9%,
and 8.6% lower, respectively. This is because (as discussed) the
SIS-level measures are naturally more stringent than those at the
SIE level. The results also show that the performance in extracting/
representing the bridge elements (at the SIE level) sets an upper
bound for the entire SIS-level performance. This is because the
bridge elements are the root of the extraction and representation,
so when a bridge element is extracted and represented incorrectly,
its whole SIS becomes incorrect.

Sensitivity Analysis Results
The sensitivity of the accuracy of the proposed semantic NNE-
based DP algorithm to different sets of training configurations is

Sentence
#1

The underside of cap beam between columns C1 and C2, exhibits hollow sounding concrete areas up to 44 " x 36 " hollow sounding 
concrete, 18 '' x 12 '' x 3 '' deep spall and 2 ' x 8 '' x 3 '' deep spall with exposed rebars.

Extraction

Semantic information set (SIS)

ET DY DC NM NU QM SM MA MM DT

cap_beam hollow_sounding_concrete – 44_36 "_" – – – – –

cap_beam hollow_sounding_concrete – – – – – – – –

cap_beam spall – 18_12_3 "_"_" – deep – – –

cap_beam spall – 2_8_3 '_"_" – deep – – –

cap_beam exposed_rebars – 2_8_3 '_"_" – deep – – –

Sentence
#2 The timber deck members were coated with creosote and tar. 

Extraction

Semantic information set (SIS)

ET DY DC NM NU QM SM MA MM DT

timber_deck – – – – – – coated creosote –

timber_deck – – – – – – coated tar –

Sentence
#3 Truss diagonals and verticals typically have corrosion and section loss at the lower gusset connections.   

Extraction

Semantic information set (SIS)

ET DY DC NM NU QM SM MA MM DT

truss_diagonals – corrosion – – – – – – –

truss_diagonals – section_loss – – – – – – –

truss_verticals – corrosion – – – – – – –

truss_verticals – section_loss – – – – – – –

ET = bridge element; DY = deficiency; DC = deficiency cause; NM = numerical measure; NU = numerical measure unit; QM = categorical quantity measure; 
SM = categorical severity measure; MA = maintenance action; MM = maintenance material; DT = date.

Fig. 12. Examples of extracted information represented in a semantically rich structured way.
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low, which indicates that the algorithm generalizes well in classi-
fying the configurations. As shown in Fig. 9, the margin of error is
only 0.61%. The sensitivity of the precision and recall of the algo-
rithm to different sets of training sentences is acceptable, which
demonstrates the generalizability of the algorithm in representing
the information in a semantically rich structured way. As shown in
Fig. 11, at the SIE level, on average, the margins of error for the
precision, recall, and F-1 measure are 3.8%, 4.4%, and 3.8%, re-
spectively. At the SIS level, the margins of error for the precision,
recall, and F-1 measure are 5.4%, 5.8%, and 5.4%, respectively.
These margins of error are acceptable. In general, a margin of error
within 10% is considered acceptable (Bowles et al. 2001; Zorzi
et al. 1998). The errors could be attributed to the challenging char-
acteristics of the text in the bridge inspection reports. Compared to
other types of text in the construction domain, such as that in build-
ing codes (e.g., Zhou and El-Gohary 2017; Zhang and El-Gohary
2013), the text in the bridge reports is highly nonstandardized and
variable, because it is typically written by many different writers/
inspectors, who come from various local, state, and federal agen-
cies and have different writing styles. Compared to text from social
media, such as Tweets, the text in the reports is highly technical,
requiring complex concept identification and relationship associ-
ation. These unique characteristics add extra challenges to the
information extraction and affect the sensitivity of the proposed
algorithm. Overall, the proposed semantic NNE-based DP algo-
rithm performed well: it achieved a precision, recall, and F-1 mea-
sure of 96.6%, 90.4%, and 93.3% with a margin of error of 3.8%,
4.4%, and 3.8% at the SIE level, and 88.2%, 81.5%, and 84.7%
with a margin of error of 5.4%, 5.8%, and 5.4% at the SIS level,
respectively.

Limitations

Three limitations of this research are acknowledged. First, the
aforementioned error analysis has shown that the errors in the POS
tags have negatively affected the performance of the proposed
dependency parsing methodology. One main reason for the POS
tagging errors is that the NLTK POS tagger, as for all other taggers,
was trained using general domain text [e.g., the Wall Street Journal
(WSJ) data set]. In their future research, the authors plan to develop
a domain-specific POS tagger, and test its impact on the perfor-
mance of dependency relation extraction. Second, in this research,
three types of SIE-to-SIE dependency relations that cover 10 types
of SIEs were defined to support the representation of the text. These
relation and SIE types were chosen because they are representative
of the information needed for better predicting bridge deterioration,
yet they are not too abundant or complex to the extent of causing
extra errors in the extraction. The experimental results and error
analysis, however, revealed that they are sometimes not enough to
capture all the needed information. In their future work, the authors
plan to explore the use of additional SIEs (e.g., the location of a
deficiency) and SIE-to-SIE dependency relations (e.g., ET-DC-SM
and ET-DY-Location relations) to identify the optimal number and
types of dependency relations. Third, the proposed methodology is
limited in dealing with the imbalance in the transition types/classes.
As a result, the precision and recall of the majority class (i.e., shift)
were higher than those of the minority classes (i.e., left-arc and
right-arc). Therefore, for the confusion matrices (Fig. 10), the pre-
cision and recall of each individual class and the average accuracy
should be interpreted jointly. In their future work, the authors plan
to explore the use of data sampling methods (e.g., random oversam-
pling method and synthetic minority oversampling technique), in
order to balance the number of configurations in different transition

classes for further improving the performance of dependency
parsing.

Conclusions, Contributions, and Future Work

In this paper, a novel semantic neural network ensemble (NNE)–
based dependency parsing methodology was proposed to extract
dependency relations from bridge inspection reports. It automati-
cally links the isolated words into concepts and represents the un-
structured and semantically low concepts in a semantically rich
structured way that is ready for bridge data analytics. A set of ex-
periments was conducted to evaluate the performance of the pro-
posed dependency parsing algorithm. The experimental results
showed that the proposed algorithm achieved an average SIE-level
precision, recall, and F-1 measure of 96.6%, 90.4%, and 93.3%
with a margin of error of 3.8%, 4.4%, and 3.8%, and an SIS-level
precision, recall, and F-1 measure of 88.2%, 81.5%, and 84.7%
with a margin of error of 5.4%, 5.8%, and 5.4%, respectively. The
experimental results also showed that the proposed semantic NNE-
based dependency parsing algorithm was effective. First, the pro-
posed semantic distributed feature representation improved the
accuracy by 7.3%, compared to the representation without using
the semantic features. Second, the proposed similarity-based sam-
pling method improved the accuracy by 14.9%, compared to the
method using cross-validation partitioning. Third, by taking an en-
semble learning–based approach, the proposed algorithm improved
the accuracy by 20.9%, on average, compared to the baselines us-
ing a single classifier.

This research contributes to the body of knowledge in four main
ways. First, it offers a way of leveraging domain-specific semantics—
as captured by the semantic features—for better supporting the
analysis of highly technical and domain-specific text for improved
extraction of dependency relations. Second, this research offers a
new sampling method that utilizes similarities measured in multiple
feature spaces as a collective criterion to sample data into meaningful
clusters for better supporting ensemble learning. The proposed
method allows for generating meaningful clusters that contain the
densely and sparsely distributed as well as the correctly and incor-
rectly densely distributed data. Third, this research provides a novel
parsing approach that is semantic, NN-based, and ensemble learning–
based. It uses a set of constituent NN classifiers and a combiner
SVM classifier to collectively capture the complex distributions
of data instances. It was therefore able to provide better parsing
performance than that achieved by conventional dependency pars-
ing methods, which only rely on a single classifier. Although the
experimental results focused on dependency parsing, the appli-
cability of the method is not limited to this case. Rather, it is a
generic machine learning approach, which has the potential to sup-
port many other data-driven applications, such as text classification
and sentiment analysis. When applying the proposed method to a
different knowledge domain or application, one can choose to use
another type of constituent or combiner classifier and test if the
classifier of choice can improve the performance for the application
at hand. Fourth, and most importantly, this research offers an auto-
mated method to extract word-to-word dependency relations from
bridge inspection reports. It automatically links isolated words into
concepts and represents the unstructured and semantically low con-
cepts in a semantically rich structured way that is ready to be used in
data analytics for predicting bridge deterioration. The proposed
method would therefore allow the use of untapped wealth of data
in the unstructured reports for improved bridge deterioration predic-
tion and enhanced maintenance decision making.

© ASCE 04021007-18 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2021, 35(4): 04021007 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

73
.3

6.
14

4.
25

4 
on

 0
9/

22
/2

1.
 C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.



In their future work, the authors will explore additional ways to
improve dependency parsing methods to further support relation
extraction in the domain, with a focus on three main directions.
First, further validating the proposed semantic NNE-based depend-
ency parsing method on a larger collection of bridge inspection
reports, as well as on other types of reports such as bridge main-
tenance reports and bridge accident reports. Second, investigating
different types of neural network architectures (e.g., LSTM) and
different types of transition-based approaches (e.g., top-down and
bottom-up predictions). Third, conducting further error analysis to
study the error propagation and see which NER errors propagate
into DP errors and which do not. These efforts could further ad-
vance our knowledge of how to automatically extract information
from highly technical and domain-specific text, thereby offering
more avenues to learn from the big data that we possess and leading
to more opportunities for improved data-driven decision making.

Data Availability Statement

Some or all data, models, or code generated or used during the
study are available in a repository or online in accordance with
funder data retention policies (the bridge inspection reports as per
Table 3). Some or all data, models, or code that support the findings
of this study are available from the corresponding author upon rea-
sonable request (the Python code developed for the implementation
and the experimental testing of the proposed semantic neural net-
work ensemble–based dependency parsing method).
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