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ABSTRACT 

Automatic defect detection and classification from images is becoming increasingly 
important for bridge deterioration prediction and maintenance decision making. The majority of 
existing defect detection efforts have developed their datasets for training a machine-learning 
algorithm for detection/classification. However, the majority of these datasets suffer from two 
main limitations. First, most of the datasets are relatively small in size, which is not sufficient to 
build a well-trained, accurate image classifier. Second, most of the datasets lack the needed 
variety in scenes, angles, and backgrounds, which is not adaptable to different application 
contexts and environments. To address these limitations, this paper proposes a semantic image 
retrieval and clustering method to collect a large size of relevant images with various scenes, 
angles, and backgrounds from the Web and cluster these images for supporting domain-specific 
bridge component and defect detection. The proposed method includes three primary steps: 
query formation and image search and retrieval, image representation, and image clustering. 
First, a set of domain-specific words were extracted from bridge inspection documents and used 
as queries for retrieving a large number of images from the Web. Second, a transfer learning 
technique was used to transfer knowledge in a pre-trained model for general image classification 
to the bridge component and defect-related image clustering task. A deep convolutional neural 
network (CNN) with pre-trained weights was used to extract the visual features of the images for 
image representation. Third, a clustering technique was used to cluster the images based on the 
extracted features. The performance of the proposed method was evaluated using the silhouette 
coefficient. The evaluation results show that the proposed method is promising. 

INTRODUCTION 

According to the American Society of Civil Engineers, America’s bridges received a C+ 
grade in 2017 nationwide report card (ASCE 2017). The report shows that over 9 percent of the 
nation’s bridges, 54,000 bridges, are structurally deficient. Visual inspection is still the primary 
technique used for bridge inspection. For example, the Long-Term Bridge Performance (LTBP) 
program lists several visual inspection methods for assessing bridge condition and bridge 
performance, such as steel and concrete elements (Hooks and Weidner 2016). However, manual 
inspection poses serious safety risks. For example, in 2017, transportation incidents caused more 
than 2,000 fatal occupational injuries. Moreover, more than 800 workers fell, slipped, and/or 
tripped during their duties on the jobsites (Bureau of Labor Statistics 2019). Besides, the current 
inspection practices are costly. The average cost for bridge inspection ranges from $1,000 to 
$10,000 per bridge (Hong et al. 2012). Hence, automatic visual bridge maintenance approaches 
are needed to reduce safety risks and inspection costs. 

The state-of-the-art automatic visual recognition approaches use supervised deep 

 Construction Research Congress 2020 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

N
or

a 
El

-G
oh

ar
y 

on
 0

9/
22

/2
1.

 C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.



Construction Research Congress 2020 810 

© ASCE 

convolutional neural networks (CNN). Despite the good performance results of these approaches, 
they require large-scale annotated training datasets. For example, the ImageNet (Russakovsky et 
al. 2015), a CNN trained by a fully-annotated dataset, has achieved the best performance in the 
ImageNet Large Scale Visual Recognition Competition (Russakovsky et al. 2015) since 2014 
(Krizhevsky et al. 2012). However, the currently available bridge component and defect-related 
image datasets are neither large nor labeled. 

Recent research efforts (e.g., Sharif Razavian et al. 2014; Yosinski et al. 2014) tried to solve 
such training data limitations by transfer learning. Transfer learning is a machine-learning 
technique that aims to reuse the knowledge (weights or features) gained from solving a problem 
and apply it to a different one. Existing research efforts (e.g., Sharif Razavian et al. 2014; 
Yosinski et al. 2014) showed that CNN approaches could outperform other approaches, even 
with a relatively small number of labels, by transferring the model weights learned to the other 
large datasets. 

In addition to the aforementioned limitations of data size and labeling, two gaps exist in the 
available bridge component and defect-related image datasets. First, existing datasets lack a 
sufficient number of object classes. Most of the available datasets were used in detecting or 
classifying less than ten types of bridge components or defects (Koch et al. 2015; Narazaki et al. 
2018). Sufficient bridge component and defect categories are required to train a robust classifier. 
Second, existing datasets lack variety in scenes, angles, and backgrounds, because of the fixed 
current image acquisition platforms (e.g., camera poses). Training images should cover enough 
variability, so the trained methods could be adapted to various unseen environments. 

To address these limitations, this paper proposes a content-based image retrieval and 
clustering approach to retrieve a large size of relevant images, cluster similar images, and 
remove non-related images. The proposed approach includes four primary steps: query formation 
and image search and retrieval, feature extraction and image representation using transfer 
learning, image clustering and outlier removal, and evaluation. First, a set of domain-specific 
words were extracted from bridge inspection documents and used as queries for retrieving a large 
number of images from the Web. Second, a deep CNN model pre-trained with a large-scale 
annotated dataset, the ImageNet, was used to transfer the visual knowledge and extract feature 
vectors for image representation. Third, the images were clustered, based on their feature vectors, 
using a clustering algorithm. Fourth, the silhouette coefficient was used to evaluate the clustering 
performance. 

LITERATURE REVIEW 

Deep CNN Methods 

Recently, deep CNN approaches showed noticeable results on several computer vision tasks. 
For object classification problems, the Visual Geometry Group (VGG) networks (Simonyan and 
Zisserman 2014) designed simple convolutional blocks and improved the classification accuracy 
by building a deeper CNN architecture. The following methods achieved state-of-the-art 
performances by modifying the CNN architectures (He et al. 2016 and Szegedy et al. 2016): 
Visual Geometry Group (VGG 16 and VGG 19), Residual Network (ResNet 50) (He et al. 2016), 
and Inception Network (Inspection v3) (Szegedy et al. 2016). 

VGG16 and VGG19: The VGG networks introduce simple convolutional blocks to show that 
the accuracy could dramatically increase by making the CNN architectures deeper. A 
convolutional block uses 3x3 convolutional filters for each layer and stacks layers on top of each 
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other to increase depth. Each block ends up with a max-pooling layer to reduce volume size. The 
CNNs use fully-connected layers at the end of the networks for classification. The difference 
between the VGG16 and the VGG19 is that the VGG16 has 13 convolutional layers, whereas the 
VGG19 has 16 convolutional layers. 

ResNet50: The residual network aims to solve the degradation problem in deep CNN 
learning. Contrary to intuition, the experiments showed worse performance results when CNN 
architectures stack “deeper” to 56 layers compared to 20 layers (He et al. 2016). The ResNet 
solves the problem by learning the residual of a function instead of the function itself. Learning 
the residuals is easier, because the residuals of a function have less content than the function 
itself. The architecture is similar to the VGG networks, but it adds a short connection within each 
block for residual learning. Traditionally, given an input, x, CNN models try to learn the 
objective function, F(x). The residual learning, on the other hand, tries to learn the residual 
function, g(x), by adding input to the end of the residual block. The objective function becomes: 
        .F x g x x    

Inception V3: the goal of the inception network is to reduce the redundant learning in a deep 
CNN network. The inception network can achieve similar performance compared to previous 
networks with fewer computations by introducing the inception block, a multi-level feature 
extractor. The inception blocks are composed of 1x1, 3x3, and 5x5 convolution filters. The 
outputs of these filters are concatenated together and then sent to the next layer. 

Deep CNN Datasets and Transfer Learning 

An essential requirement for deep CNN approaches is large-scale annotated training datasets. 
Outside of the civil infrastructure domain, the ImageNet dataset (Russakovsky et al. 2015) 
contains more than 14 million images with 1,000 classes labeled for classification problems; and 
the COCO dataset (Lin et al. 2014) provides more than 330 thousand images with 1.5 million 
object instances, 80 object categories, and 91 stuff categories labeled for object detection and 
segmentation tasks. The insufficiency of datasets in several applications led to the adoption of 
transfer learning to leverage the features, which were learned from deep CNN models trained on 
large-scale annotated datasets, for image representation (Yosinski et al. 2014). Deep CNN 
models trained with large-scale annotated datasets could be directly used as feature extractors 
(Sharif Razavian et al. 2014) or used for fine-tuning the networks (Girshick et al. 2014). Also, 
previous research efforts showed high performance results for unsupervised learning by 
transferring the knowledge learned from solving one task, using one large-scale annotated 
dataset, to another task (Guérin et al. 2017). 

Civil Infrastructure Component and Defect Detection 

Civil infrastructure component and defect detection using vision-based methods has attracted 
a lot of research attention in the past decades. Most computer vision approaches focused on crack 
detection (Koch et al. 2015). Traditional image processing techniques tended to use hand-
engineered visual features, such as edge detectors (Abdel-Qader et al. 2003). However, the 
performances of hand-engineered features were not reliable when dealing with noise in the 
images, such as brightness. More recently, deep machine learning-based approaches for 
extracting visual features showed significant performance improvement (Zhang et al. 2016). 
Crack detection was also extended to other types of defects, such as pop-outs, spalling, and 
exposed rebars (Koch et al. 2015). On the other hand, bridge component detection has been 
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studied (Narazaki et al. 2018) but with less attention. In most of these efforts, deep supervised 
machine learning-based approaches were used to reach stable performance levels. 

Several large-size annotated datasets for civil infrastructure defect detection tasks exist. For 
example, the German Asphalt Pavement Distress Dataset (Eisenbach et al. 2017) includes 1,969 
pavement images with full labeling with six pavement distress types. Also, the Road Damage 
Dataset (Maeda et al. 2018) contains 9,053 road damage images with 15,435 instances of road 
surface damage annotations. However, the majority of existing datasets have insufficient 
variability in terms of including various backgrounds and different camera poses, because the 
images were taken in a fixed-setting or from a close look at the surface. In addition, overall, there 
is a lack of bridge-specific component and defect datasets. 

METHODOLOGY 

A semantic image retrieval and clustering method for supporting domain-specific bridge 
component and defect detection is proposed. The proposed method aims to collect and classify a 
large size of relevant images with various scenes, angles, and backgrounds from the Web. The 
retrieved and clustered images aim to serve as pseudo training data for supporting machine 
learning-based bridge component and defect detection. The proposed method includes four 
primary steps (as per Figure 1): (1) query formation and image search and retrieval: a set of 
domain-specific words was extracted from bridge inspection documents, the LTBP Program 
Protocols, and used as queries for retrieving a large number of images from the Web; (2) image 
representation: using a transfer learning approach, a deep CNN model pre-trained on a large-
scale annotated dataset, the ImageNet (Russakovsky et al. 2015), was adapted and used to extract 
the features of the retrieved images, generating feature vectors for image representation; (3) 
image clustering: the images were clustered, based on their feature vectors, using clustering 
algorithms; and (4) evaluation. 

 
Figure 1. Proposed image retrieval and clustering method 

Query Formation and Image Search and Retrieval 

The most frequent bridge component and defect-related words were extracted from a set of 
domain-specific documents, the LTBP Program Protocols, to formulate queries for retrieving 
bridge component and defect-related images from the Web. A corpus of 3,706 unique words with 
their frequency counts was collected from the protocols after stop-word removal. By analyzing 
word frequency, the top 20 bridge component and top 20 bridge defect words were extracted 
(examples are shown in Table 1). In order to retrieve more relevant results, the domain-specific 
words were concatenated to the word, “bridge”, forming the search queries. The queries were 
then used to retrieve the images from the Web, using the Google Image search. A set of 50 
images per query were retrieved, resulting in a total of 1,848 images. 
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Table 1. Top 5 Bridge Component and Top 5 Bridge Defect Words. 
Bridge Component 

Word 
Frequency 

Count 
Bridge Defect Word Frequency 

Count 
Bridge 777 Defect 281 
Deck 341 Crack 164 

Girder 157 Corrosion 102 
Bearing 132 Delamination 54 
Surface 131 Deterioration 28 

Feature Extraction and Image Representation Using Transfer Learning 

Using a transfer learning approach, a pre-trained deep CNN model was adapted and used to 
extract the visual features of the retrieved images for image representation. The model was pre-
trained on an existing large-scale annotated dataset, the ImageNet (Russakovsky et al. 2015). The 
model is composed of three parts: convolutional blocks, fully-connected layers, and a softmax 
layer. To transfer the knowledge (i.e., features, weights) from the pre-trained model to the new 
domain-specific model, the pre-trained weights were used to initialize the convolutional blocks 
and fully-connected layers. Since the softmax layer was designed for classification not 
clustering, it was discarded in this study. The adapted model generates two layers of 
features/vectors from the retrieved (domain-specific) images for image representation. Four 
types of deep CNN models were tested and evaluated: the VGG16 and VGG19, Inception v3, 
and ResNet 50. These four models were selected because they show state-of-the-art performance 
in several computer-vision tasks. The sizes of the layers are shown in Table 2. For 
implementation, Keras (Chollet 2015) 2.2.0 with Tensorflow 1.9.0 (Abadi et al. 2015) libraries 
were used. 

Table 2. Length for Each CNN Layer. 
 VGG16 VGG19 ResNet50 Inception v3 

Last Layer of Convolutional 
Blocks 

25,088 25,088 51,200 100,352 

Last Fully-connected Layer 1,000 1,000 1,000 1,000 

Image Clustering and Outlier Removal 

Image clustering aimed to identify and classify images that have the same bridge components 
and parts, and remove non-related images. Two clustering algorithms, K-means and 
agglomerative hierarchical clustering, were tested and evaluated. These two algorithms were 
selected because they have been commonly used in the existing literature for image clustering 
(Radford et al. 2015). For selecting the number of clusters, a set of cluster numbers were chosen 
to initialize the algorithm, as further discussed in the Experimental Results and Discussion 
Section. The cluster numbers, ranging from 2 to 50, were designed to cover bridge component 
and defect classes and non-related image classes. The cluster centers, c, were calculated by 
averaging the image features, if , within the clusters, where i is the order of features within a 

cluster. The Euclidean distance, i id c f  , from each feature point to its cluster center was 
then calculated and ranked within each cluster. The outliers were determined as the feature 
points that their distance ranking is larger than the ranking order, r. A set of experiments were 
conducted to identify the relationship between the ranking order, r, and the clustering 
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performance. To examine the quality of the dataset, the silhouette coefficients were calculated 
after removing outliers on different ranking orders. The total number of images were then 
counted to examine the quantity of the dataset after removing outliers on different ranking 
orders. 

Table 3. Silhouette Coefficient Results on Two Clustering Algorithms, (1) K-Means And (2) 
Agglomerative Hierarchical Clustering Using Different CNN Models as Image 

Representation. 
Cluster Feature 

Layer 
VGG16 VGG19 ResNet50 Inception v3 

  (1) (2) (1) (2) (1) (2) (1) (2) 

10 conv. 0.044 0.040 0.037 0.035 0.010 0.014 0.003 0.004 
fully 0.134 0.118 0.141 0.142 0.184 0.158 0.207 0.291 

15 conv. 0.028 0.060 0.034 0.044 0.017 0.014 0.020 0.004 
fully 0.164 0.144 0.164 0.165 0.182 0.185 0.294 0.286 

20 conv. 0.040 0.046 0.039 0.034 0.014 0.011 0.019 0.012 
fully 0.123 0.150 0.166 0.182 0.185 0.186 0.266 0.259 

25 conv. 0.046 0.037 0.032 0.066 0.018 0.017 0.008 0.013 
fully 0.162 0.164 0.166 0.161 0.198 0.214 0.277 0.287 

30 conv. 0.042 0.042 0.058 0.035 0.025 0.009 0.020 0.019 
fully 0.173 0.202 0.181 0.191 0.219 0.205 0.298 0.296 

35 conv. 0.039 0.044 0.035 0.039 0.031 0.017 0.017 0.013 
fully 0.157 0.175 0.177 0.183 0.206 0.194 0.318 0.317 

40 conv. 0.102 0.041 0.073 0.029 0.019 0.022 0.018 0.015 
fully 0.172 0.173 0.163 0.199 0.215 0.214 0.303 0.320 

45 conv. 0.084 0.087 0.048 0.063 0.025 0.017 0.020 0.019 
fully 0.202 0.172 0.184 0.185 0.214 0.213 0.337 0.287 

50 conv. 0.059 0.039 0.071 0.037 0.024 0.017 0.023 0.020 
fully 0.179 0.171 0.190 0.183 0.215 0.189 0.321 0.330 

Evaluation 

The clustering performance was evaluated based on the average silhouette coefficient 
(Rousseeuw 1987). The average silhouette coefficient is the average of the silhouette coefficients 
of all the data in a dataset. The silhouette coefficient for a sample is defined as per Eq. 1, where a 
is the mean intra-cluster distance, which refers to the average distance of the sample with all 
other data in the same cluster, and b is the mean nearest-cluster distance, which refers to the 
average distance of the sample with all other data in the closest cluster. The silhouette coefficient 
ranges from -1 to 1. A value near 1 indicates a good clustering performance, i.e., that the samples 
are far from their closest neighboring clusters and close to each other within their clusters. 

 
 

 
max ,

b as
a b


   (1) 

EXPERIMENTAL RESULTS AND DISCUSSION 

The silhouette coefficient of the retrieved dataset is 0.63, which indicates that the pre-trained 
CNN models, as feature extractors, are suitable for clustering unlabeled bridge component and 
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defect-related Web images. A series of experiments were conducted to test the performances of 
different feature extraction models, different image representation layers, and different clustering 
techniques. The experimental results also indicate that the proposed method could increase the 
clustering quality after removing outliers while maintaining the quantity of the dataset. 

Feature Extraction, Image Representation, and Clustering Results 

The clustering results, using the four adapted CNN models, are summarized in Table 3. The 
K-means clustering algorithm showed the highest silhouette coefficient using the last fully-
connected layer of Inception v3 as features. Overall, using the last fully-connected layer as 
features outperformed using the last layer of convolutional blocks. The reason might be that the 
last fully-connected layer captures higher-level features, such as objects; whereas, the last layer 
of convolutional blocks contains lower-level features. These results indicate that complex 
architectures, Inception v3 and ResNet50, extracted better features for clustering bridge 
component and defect-related images than simple sequential CNNs, the VGGs. The results also 
indicate that the proposed image representation is suitable for clustering multiple classes with 
more clusters. 

 
Figure 2. Clustering results after removing outliers on different ranking orders 

 
Figure 3: Number of images after removing outliers on different ranking orders 

Outlier Removal Analysis 

The results of outlier removal analysis are illustrated in Figures 2 and 3, using a ranking 
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order of 10, 50, 100, and 200. The results show that removing outliers out of the top 10 image 
features could achieve 0.63 silhouette coefficient. The performances were boosted with 
silhouette coefficients achieving 0.5 in most of the outlier removal conditions. After removing 
the outliers, the proposed method was able to collect a large number of images while increasing 
the quality of clustering. More than 800 images were collected using a ranking order of 50, and 
more than 1,200 images were collected using a ranking order of 200. 

CONCLUSION AND FUTURE WORK 

In this paper, the authors proposed a domain-specific image retrieval and clustering method 
to retrieve and cluster a large set of bridge component and defect-related images from the Web. 
The dataset aims to serve as pseudo training data for supporting machine learning-based bridge 
component and defect detection tasks. A set of bridge component and defect-related words, 40 
words, were extracted and used as queries for retrieving a large number of images from the Web. 
A transfer learning technique was used to transfer visual knowledge from an existing large-scale 
annotated dataset, ImageNet, to the domain-specific image clustering problem. A CNN model 
was pre-trained with the ImageNet, and the pre-trained models then extracted feature vectors for 
image representation. Clustering techniques were tested and evaluated for clustering images 
based on the extracted feature vectors. Outliers were removed after analysis. Several experiments 
were conducted, which indicated that the proposed image representation and clustering method is 
able to cluster similar domain-specific images and remove non-related images. The results show 
a good clustering performance, with a silhouette coefficient of 0.63. 

Two main limitations of this work are acknowledged. First, the scope of the proposed image 
retrieval and clustering method is limited to collecting sufficient images and creating training 
datasets for supporting domain-specific bridge component and defect detection. A component 
and defect detector that would utilize such datasets could be developed in future work. Second, 
the evaluation effort in this paper was limited to the verification of the proposed method, by 
evaluating the clustering performance based on the average silhouette coefficient. Further 
validation of the proposed method will be conducted in future work to evaluate the performance 
of the created dataset in its intended application, namely component and defect detection. 

Additional directions will be pursued in future work to further improve the proposed image 
retrieval and clustering method. First, further efforts on data cleaning and image annotation will 
be conducted to develop a ready-to-use training dataset for supporting semi-supervised or 
unsupervised machine learning-based defect detectors. Second, this work only focused on the 
visual features for image clustering. In future work, the authors plan to extract features from 
heterogeneous sources, such as text related to the images, to better support fully automatic 
annotation of images. 
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