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ABSTRACT

Automatic defect detection and classification from images is becoming increasingly
important for bridge deterioration prediction and maintenance decision making. The majority of
existing defect detection efforts have developed their datasets for training a machine-learning
algorithm for detection/classification. However, the majority of these datasets suffer from two
main limitations. First, most of the datasets are relatively small in size, which is not sufficient to
build a well-trained, accurate image classifier. Second, most of the datasets lack the needed
variety in scenes, angles, and backgrounds, which is not adaptable to different application
contexts and environments. To address these limitations, this paper proposes a semantic image
retrieval and clustering method to collect a large size of relevant images with various scenes,
angles, and backgrounds from the Web and cluster these images for supporting domain-specific
bridge component and defect detection. The proposed method includes three primary steps:
query formation and image search and retrieval, image representation, and image clustering.
First, a set of domain-specific words were extracted from bridge inspection documents and used
as queries for retrieving a large number of images from the Web. Second, a transfer learning
technique was used to transfer knowledge in a pre-trained model for general image classification
to the bridge component and defect-related image clustering task. A deep convolutional neural
network (CNN) with pre-trained weights was used to extract the visual features of the images for
image representation. Third, a clustering technique was used to cluster the images based on the
extracted features. The performance of the proposed method was evaluated using the silhouette
coefficient. The evaluation results show that the proposed method is promising.

INTRODUCTION

According to the American Society of Civil Engineers, America’s bridges received a C+
grade in 2017 nationwide report card (ASCE 2017). The report shows that over 9 percent of the
nation’s bridges, 54,000 bridges, are structurally deficient. Visual inspection is still the primary
technique used for bridge inspection. For example, the Long-Term Bridge Performance (LTBP)
program lists several visual inspection methods for assessing bridge condition and bridge
performance, such as steel and concrete elements (Hooks and Weidner 2016). However, manual
inspection poses serious safety risks. For example, in 2017, transportation incidents caused more
than 2,000 fatal occupational injuries. Moreover, more than 800 workers fell, slipped, and/or
tripped during their duties on the jobsites (Bureau of Labor Statistics 2019). Besides, the current
inspection practices are costly. The average cost for bridge inspection ranges from $1,000 to
$10,000 per bridge (Hong et al. 2012). Hence, automatic visual bridge maintenance approaches
are needed to reduce safety risks and inspection costs.

The state-of-the-art automatic visual recognition approaches use supervised deep
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convolutional neural networks (CNN). Despite the good performance results of these approaches,
they require large-scale annotated training datasets. For example, the ImageNet (Russakovsky et
al. 2015), a CNN trained by a fully-annotated dataset, has achieved the best performance in the
ImageNet Large Scale Visual Recognition Competition (Russakovsky et al. 2015) since 2014
(Krizhevsky et al. 2012). However, the currently available bridge component and defect-related
image datasets are neither large nor labeled.

Recent research efforts (e.g., Sharif Razavian et al. 2014; Yosinski et al. 2014) tried to solve
such training data limitations by transfer learning. Transfer learning is a machine-learning
technique that aims to reuse the knowledge (weights or features) gained from solving a problem
and apply it to a different one. Existing research efforts (e.g., Sharif Razavian et al. 2014;
Yosinski et al. 2014) showed that CNN approaches could outperform other approaches, even
with a relatively small number of labels, by transferring the model weights learned to the other
large datasets.

In addition to the aforementioned limitations of data size and labeling, two gaps exist in the
available bridge component and defect-related image datasets. First, existing datasets lack a
sufficient number of object classes. Most of the available datasets were used in detecting or
classifying less than ten types of bridge components or defects (Koch et al. 2015; Narazaki et al.
2018). Sufficient bridge component and defect categories are required to train a robust classifier.
Second, existing datasets lack variety in scenes, angles, and backgrounds, because of the fixed
current image acquisition platforms (e.g., camera poses). Training images should cover enough
variability, so the trained methods could be adapted to various unseen environments.

To address these limitations, this paper proposes a content-based image retrieval and
clustering approach to retrieve a large size of relevant images, cluster similar images, and
remove non-related images. The proposed approach includes four primary steps: query formation
and image search and retrieval, feature extraction and image representation using transfer
learning, image clustering and outlier removal, and evaluation. First, a set of domain-specific
words were extracted from bridge inspection documents and used as queries for retrieving a large
number of images from the Web. Second, a deep CNN model pre-trained with a large-scale
annotated dataset, the ImageNet, was used to transfer the visual knowledge and extract feature
vectors for image representation. Third, the images were clustered, based on their feature vectors,
using a clustering algorithm. Fourth, the silhouette coefficient was used to evaluate the clustering
performance.

LITERATURE REVIEW
Deep CNN Methods

Recently, deep CNN approaches showed noticeable results on several computer vision tasks.
For object classification problems, the Visual Geometry Group (VGG) networks (Simonyan and
Zisserman 2014) designed simple convolutional blocks and improved the classification accuracy
by building a deeper CNN architecture. The following methods achieved state-of-the-art
performances by modifying the CNN architectures (He et al. 2016 and Szegedy et al. 2016):
Visual Geometry Group (VGG 16 and VGG 19), Residual Network (ResNet 50) (He et al. 2016),
and Inception Network (Inspection v3) (Szegedy et al. 2016).

VGG16 and VGG19: The VGG networks introduce simple convolutional blocks to show that
the accuracy could dramatically increase by making the CNN architectures deeper. A
convolutional block uses 3x3 convolutional filters for each layer and stacks layers on top of each
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other to increase depth. Each block ends up with a max-pooling layer to reduce volume size. The
CNNs use fully-connected layers at the end of the networks for classification. The difference
between the VGG16 and the VGG19 is that the VGG16 has 13 convolutional layers, whereas the
VGG19 has 16 convolutional layers.

ResNet50: The residual network aims to solve the degradation problem in deep CNN
learning. Contrary to intuition, the experiments showed worse performance results when CNN
architectures stack “deeper” to 56 layers compared to 20 layers (He et al. 2016). The ResNet
solves the problem by learning the residual of a function instead of the function itself. Learning
the residuals is easier, because the residuals of a function have less content than the function
itself. The architecture is similar to the VGG networks, but it adds a short connection within each
block for residual learning. Traditionally, given an input, x, CNN models try to learn the
objective function, F(x). The residual learning, on the other hand, tries to learn the residual
function, g(x), by adding input to the end of the residual block. The objective function becomes:

F(x) = g(x) +x.

Inception V3: the goal of the inception network is to reduce the redundant learning in a deep
CNN network. The inception network can achieve similar performance compared to previous
networks with fewer computations by introducing the inception block, a multi-level feature
extractor. The inception blocks are composed of 1x1, 3x3, and 5x5 convolution filters. The
outputs of these filters are concatenated together and then sent to the next layer.

Deep CNN Datasets and Transfer Learning

An essential requirement for deep CNN approaches is large-scale annotated training datasets.
Outside of the civil infrastructure domain, the ImageNet dataset (Russakovsky et al. 2015)
contains more than 14 million images with 1,000 classes labeled for classification problems; and
the COCO dataset (Lin et al. 2014) provides more than 330 thousand images with 1.5 million
object instances, 80 object categories, and 91 stuff categories labeled for object detection and
segmentation tasks. The insufficiency of datasets in several applications led to the adoption of
transfer learning to leverage the features, which were learned from deep CNN models trained on
large-scale annotated datasets, for image representation (Yosinski et al. 2014). Deep CNN
models trained with large-scale annotated datasets could be directly used as feature extractors
(Sharif Razavian et al. 2014) or used for fine-tuning the networks (Girshick et al. 2014). Also,
previous research efforts showed high performance results for unsupervised learning by
transferring the knowledge learned from solving one task, using one large-scale annotated
dataset, to another task (Guérin et al. 2017).

Civil Infrastructure Component and Defect Detection

Civil infrastructure component and defect detection using vision-based methods has attracted
a lot of research attention in the past decades. Most computer vision approaches focused on crack
detection (Koch et al. 2015). Traditional image processing techniques tended to use hand-
engineered visual features, such as edge detectors (Abdel-Qader et al. 2003). However, the
performances of hand-engineered features were not reliable when dealing with noise in the
images, such as brightness. More recently, deep machine learning-based approaches for
extracting visual features showed significant performance improvement (Zhang et al. 2016).
Crack detection was also extended to other types of defects, such as pop-outs, spalling, and
exposed rebars (Koch et al. 2015). On the other hand, bridge component detection has been
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studied (Narazaki et al. 2018) but with less attention. In most of these efforts, deep supervised
machine learning-based approaches were used to reach stable performance levels.

Several large-size annotated datasets for civil infrastructure defect detection tasks exist. For
example, the German Asphalt Pavement Distress Dataset (Eisenbach et al. 2017) includes 1,969
pavement images with full labeling with six pavement distress types. Also, the Road Damage
Dataset (Maeda et al. 2018) contains 9,053 road damage images with 15,435 instances of road
surface damage annotations. However, the majority of existing datasets have insufficient
variability in terms of including various backgrounds and different camera poses, because the
images were taken in a fixed-setting or from a close look at the surface. In addition, overall, there
is a lack of bridge-specific component and defect datasets.

METHODOLOGY

A semantic image retrieval and clustering method for supporting domain-specific bridge
component and defect detection is proposed. The proposed method aims to collect and classify a
large size of relevant images with various scenes, angles, and backgrounds from the Web. The
retrieved and clustered images aim to serve as pseudo training data for supporting machine
learning-based bridge component and defect detection. The proposed method includes four
primary steps (as per Figure 1): (1) query formation and image search and retrieval: a set of
domain-specific words was extracted from bridge inspection documents, the LTBP Program
Protocols, and used as queries for retrieving a large number of images from the Web; (2) image
representation: using a transfer learning approach, a deep CNN model pre-trained on a large-
scale annotated dataset, the ImageNet (Russakovsky et al. 2015), was adapted and used to extract
the features of the retrieved images, generating feature vectors for image representation; (3)
image clustering: the images were clustered, based on their feature vectors, using clustering
algorithms; and (4) evaluation.

.

Query Formation Image F
and Image Search Representation Image Clustering
Domain-
—* | specific | —» >
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LTBF Program Search Eagine Web Images ChHNs Feature Vectors Clustering
Protocols . Methods

A

Figure 1. Proposed image retrieval and clustering method
Query Formation and Image Search and Retrieval

The most frequent bridge component and defect-related words were extracted from a set of
domain-specific documents, the LTBP Program Protocols, to formulate queries for retrieving
bridge component and defect-related images from the Web. A corpus of 3,706 unique words with
their frequency counts was collected from the protocols after stop-word removal. By analyzing
word frequency, the top 20 bridge component and top 20 bridge defect words were extracted
(examples are shown in Table 1). In order to retrieve more relevant results, the domain-specific
words were concatenated to the word, “bridge”, forming the search queries. The queries were
then used to retrieve the images from the Web, using the Google Image search. A set of 50
images per query were retrieved, resulting in a total of 1,848 images.
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Table 1. Top S Bridge Component and Top 5 Bridge Defect Words.

Bridge Component Frequency |Bridge Defect Word| Frequency
Word Count Count
Bridge 777 Defect 281

Deck 341 Crack 164

Girder 157 Corrosion 102
Bearing 132 Delamination 54
Surface 131 Deterioration 28

Feature Extraction and Image Representation Using Transfer Learning

Using a transfer learning approach, a pre-trained deep CNN model was adapted and used to
extract the visual features of the retrieved images for image representation. The model was pre-
trained on an existing large-scale annotated dataset, the ImageNet (Russakovsky et al. 2015). The
model is composed of three parts: convolutional blocks, fully-connected layers, and a softmax
layer. To transfer the knowledge (i.e., features, weights) from the pre-trained model to the new
domain-specific model, the pre-trained weights were used to initialize the convolutional blocks
and fully-connected layers. Since the softmax layer was designed for classification not
clustering, it was discarded in this study. The adapted model generates two layers of
features/vectors from the retrieved (domain-specific) images for image representation. Four
types of deep CNN models were tested and evaluated: the VGG16 and VGG19, Inception v3,
and ResNet 50. These four models were selected because they show state-of-the-art performance
in several computer-vision tasks. The sizes of the layers are shown in Table 2. For
implementation, Keras (Chollet 2015) 2.2.0 with Tensorflow 1.9.0 (Abadi et al. 2015) libraries

were used.
Table 2. Length for Each CNN Layer.
VGG16 VGGI19 ResNet50 Inception v3
Last Layer of Convolutional | 25,088 25,088 51,200 100,352
Blocks
Last Fully-connected Layer 1,000 1,000 1,000 1,000

Image Clustering and Outlier Removal

Image clustering aimed to identify and classify images that have the same bridge components
and parts, and remove non-related images. Two clustering algorithms, K-means and
agglomerative hierarchical clustering, were tested and evaluated. These two algorithms were
selected because they have been commonly used in the existing literature for image clustering
(Radford et al. 2015). For selecting the number of clusters, a set of cluster numbers were chosen
to initialize the algorithm, as further discussed in the Experimental Results and Discussion
Section. The cluster numbers, ranging from 2 to 50, were designed to cover bridge component
and defect classes and non-related image classes. The cluster centers, ¢, were calculated by

averaging the image features, f;, within the clusters, where i is the order of features within a

cluster. The Euclidean distance, d; = Hc — /||, from each feature point to its cluster center was

then calculated and ranked within each cluster. The outliers were determined as the feature
points that their distance ranking is larger than the ranking order, ». A set of experiments were
conducted to identify the relationship between the ranking order, », and the clustering

© ASCE

Construction Research Congress 2020



Downloaded from ascelibrary.org by Nora El-Gohary on 09/22/21. Copyright ASCE. For personal use only; all rights reserved.

Construction Research Congress 2020 814

performance. To examine the quality of the dataset, the silhouette coefficients were calculated
after removing outliers on different ranking orders. The total number of images were then
counted to examine the quantity of the dataset after removing outliers on different ranking
orders.

Table 3. Silhouette Coefficient Results on Two Clustering Algorithms, (1) K-Means And (2)
Agglomerative Hierarchical Clustering Using Different CNN Models as Image

Representation.

Cluster | Feature VGG16 VGG19 ResNet50 | Inception v3
Layer

(€9 N @) I € O I ) I B € ) I ) B B C VI )

10 conv. [0.044 0.040|0.037 0.035|0.010 0.014]0.003 0.004

fully |0.134 0.118 | 0.141 0.142|0.184 0.158 | 0.207 0.291

15 conv. [0.028 0.060|0.034 0.044|0.017 0.014]0.020 0.004

fully |0.164 0.144 | 0.164 0.165|0.182 0.185|0.294 0.286

20 conv. |[0.040 0.046|0.039 0.034|0.014 0.011]0.019 0.012

fully |0.123 0.150 | 0.166 0.182|0.185 0.186 | 0.266 0.259

25 conv. |0.046 0.037]0.032 0.066|0.018 0.017|0.008 0.013

fully |0.162 0.164 | 0.166 0.161|0.198 0.214 | 0.277 0.287

30 conv. [0.042 0.042|0.058 0.035|0.025 0.009|0.020 0.019

fully |0.173 0.202 | 0.181 0.191|0.219 0.205|0.298 0.296

35 conv. |0.039 0.044|0.035 0.039|0.031 0.017{0.017 0.013

fully |0.157 0.175(0.177 0.183|0.206 0.194 | 0.318 0.317

40 conv. [0.102 0.041]0.073 0.029|0.019 0.022|0.018 0.015

fully |0.172 0.173 (0.163 0.199 | 0.215 0.214 | 0.303 0.320

45 conv. |0.084 0.087|0.048 0.063|0.025 0.017]0.020 0.019

fully |0.202 0.172|0.184 0.185|0.214 0.213 | 0.337 0.287

50 conv. [0.059 0.039|0.071 0.037|0.024 0.017]0.023 0.020

fully |0.179 0.1710.190 0.183|0.215 0.189 | 0.321 0.330

Evaluation

The clustering performance was evaluated based on the average silhouette coefficient
(Rousseeuw 1987). The average silhouette coefficient is the average of the silhouette coefficients
of all the data in a dataset. The silhouette coefficient for a sample is defined as per Eq. 1, where a
is the mean intra-cluster distance, which refers to the average distance of the sample with all
other data in the same cluster, and b is the mean nearest-cluster distance, which refers to the
average distance of the sample with all other data in the closest cluster. The silhouette coefficient
ranges from -1 to 1. A value near 1 indicates a good clustering performance, i.e., that the samples
are far from their closest neighboring clusters and close to each other within their clusters.

g=—b=a (1)

" max (a, b)
EXPERIMENTAL RESULTS AND DISCUSSION

The silhouette coefficient of the retrieved dataset is 0.63, which indicates that the pre-trained
CNN models, as feature extractors, are suitable for clustering unlabeled bridge component and
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defect-related Web images. A series of experiments were conducted to test the performances of
different feature extraction models, different image representation layers, and different clustering
techniques. The experimental results also indicate that the proposed method could increase the

clustering quality after removing outliers while maintaining the quantity of the dataset.

Feature Extraction, Image Representation, and Clustering Results

The clustering results, using the four adapted CNN models, are summarized in Table 3. The

K-means clustering algorithm showed the highest silhouette coefficient using the last fully-
connected layer of Inception v3 as features. Overall, using the last fully-connected layer as

features outperformed using the last layer of convolutional blocks. The reason might be that the
last fully-connected layer captures higher-level features, such as objects; whereas, the last layer

of convolutional blocks contains lower-level features. These results indicate that complex
architectures, Inception v3 and ResNet50, extracted better features for clustering bridge

component and defect-related images than simple sequential CNNs, the VGGs. The results also
indicate that the proposed image representation is suitable for clustering multiple classes with

more clusters.
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Figure 2. Clustering results after removing outliers on different ranking orders
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Figure 3: Number of images after removing outliers on different ranking orders

Outlier Removal Analysis

The results of outlier removal analysis are illustrated in Figures 2 and 3, using a ranking
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order of 10, 50, 100, and 200. The results show that removing outliers out of the top 10 image
features could achieve 0.63 silhouette coefficient. The performances were boosted with
silhouette coefficients achieving 0.5 in most of the outlier removal conditions. After removing
the outliers, the proposed method was able to collect a large number of images while increasing
the quality of clustering. More than 800 images were collected using a ranking order of 50, and
more than 1,200 images were collected using a ranking order of 200.

CONCLUSION AND FUTURE WORK

In this paper, the authors proposed a domain-specific image retrieval and clustering method
to retrieve and cluster a large set of bridge component and defect-related images from the Web.
The dataset aims to serve as pseudo training data for supporting machine learning-based bridge
component and defect detection tasks. A set of bridge component and defect-related words, 40
words, were extracted and used as queries for retrieving a large number of images from the Web.
A transfer learning technique was used to transfer visual knowledge from an existing large-scale
annotated dataset, ImageNet, to the domain-specific image clustering problem. A CNN model
was pre-trained with the ImageNet, and the pre-trained models then extracted feature vectors for
image representation. Clustering techniques were tested and evaluated for clustering images
based on the extracted feature vectors. Outliers were removed after analysis. Several experiments
were conducted, which indicated that the proposed image representation and clustering method is
able to cluster similar domain-specific images and remove non-related images. The results show
a good clustering performance, with a silhouette coefficient of 0.63.

Two main limitations of this work are acknowledged. First, the scope of the proposed image
retrieval and clustering method is limited to collecting sufficient images and creating training
datasets for supporting domain-specific bridge component and defect detection. A component
and defect detector that would utilize such datasets could be developed in future work. Second,
the evaluation effort in this paper was limited to the verification of the proposed method, by
evaluating the clustering performance based on the average silhouette coefficient. Further
validation of the proposed method will be conducted in future work to evaluate the performance
of the created dataset in its intended application, namely component and defect detection.

Additional directions will be pursued in future work to further improve the proposed image
retrieval and clustering method. First, further efforts on data cleaning and image annotation will
be conducted to develop a ready-to-use training dataset for supporting semi-supervised or
unsupervised machine learning-based defect detectors. Second, this work only focused on the
visual features for image clustering. In future work, the authors plan to extract features from
heterogeneous sources, such as text related to the images, to better support fully automatic
annotation of images.
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