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Developmental and reproductive physiology of small mammals
at high altitude: challenges and evolutionary innovations
Cayleih E. Robertson1,* and Kathryn Wilsterman2

ABSTRACT
High-altitude environments, characterized by low oxygen levels and
low ambient temperatures, have been repeatedly colonized by small
altricial mammals. These species inhabit mountainous regions year-
round, enduring chronic cold and hypoxia. The adaptations that allow
small mammals to thrive at altitude have been well studied in non-
reproducing adults; however, our knowledge of adaptations specific
to earlier life stages and reproductive females is extremely limited. In
lowland natives, chronic hypoxia during gestation affects maternal
physiology and placental function, ultimately limiting fetal growth.
During post-natal development, hypoxia and cold further limit growth
both directly by acting on neonatal physiology and indirectly via
impacts on maternal milk production and care. Although lowland
natives can survive brief sojourns to even extreme high altitude as
adults, reproductive success in these environments is very low, and
lowland young rarely survive to sexual maturity in chronic cold and
hypoxia. Here, we review the limits to maternal and offspring
physiology – both pre-natal and post-natal – that highland-adapted
species have overcome, with a focus on recent studies on high-
altitude populations of the North American deer mouse (Peromyscus
maniculatus). We conclude that a combination of maternal and
developmental adaptations were likely to have been critical steps in
the evolutionary history of high-altitude native mammals.

KEY WORDS: Fetal growth, Gestational adaptations, High altitude,
Maternal care, Post-natal development

Introduction: adaptation to high-altitude environments
‘One reason to focus on the physiology of juveniles and nestlings is
that for most individuals it is the only physiology ever experienced’

Hill (1983).
The abiotic factors characteristic of high-altitude (HA) environments

pose significant energetic challenges to their inhabitants. Animals
endemic to alpine regions must cope with chronic cold exposure – as
ambient temperature drops on average 2°C with every 300 m gain in
elevation – alongside unremitting hypobaric hypoxia, which limits
aerobic metabolism (Körner, 2007). This combination of stressors
(hypoxia and cold) is particularly challenging for small endotherms
whose high surface area to volume ratios promote rapid heat loss. The
metabolic demands of this environment routinely push these small HA
endotherms close to their _VO2, max (see Glossary; Hayes, 1989). Yet,
despite these energetic challenges, small rodents and lagomorphs are
the animals with the highest altitudinal distributions across numerous
mountain ranges (e.g. Peromyscus maniculatus, Hock, 1964; Phyllotis

xanthopygus, Kramer et al., 1999; Ochotona curzoniae, Ci et al.,
2009). For example, the animal with the highest known distribution in
the world is the yellow-rumped leaf-eared mouse (P. xanthopygus,
adult body mass ∼55 g), which was recently found to inhabit sites
>6700 m above sea level (Storz et al., 2020).

Integrative studies of ecology, population genetics and
physiology have identified numerous adaptations that allow small
endotherms to thrive at HA despite significant and pervasive
physiological challenges (reviewed inMcClelland and Scott, 2019).
With very few exceptions, studies on these small HAmammals have
focused exclusively on the traits of non-reproducing adults (Ivy and
Scott, 2015). In contrast to many HA-native bird species, small HA
mammals inhabit mountainous regions year-round, meaning they
undergo their entire reproductive cycle under conditions of chronic
cold and hypoxia. Despite the fundamental importance of
reproductive success for fitness, the reproduction, growth and
development of these HA-adapted species has been largely ignored.

For youngmammals, who are small and physiologically immature,
the cold and hypoxic HA environment poses unique energetic
and physiological challenges (both pre-natally and post-natally)
compared with those experienced by adults. As such, developing
mammals may require unique physiological solutions to cope with
their environment. In addition, the physiology of developing
mammals is inextricably linked to that of their mother, who shapes
both the pre-natal and post-natal environment of her offspring (Wells,
2019; Wolf andWade, 2009). The adaptive evolution of reproductive
traits at altitude is therefore likely to be a function of both maternal
and offspring physiology, aswell as the complex interactions between
the two (Fig. 1, arrows). In this Review, we discuss the energetic and
physiological challenges posed by chronic hypoxia and cold to
reproduction in small mammals, and we review what we know about
the physiological adaptations during gestation and early life that have
allowed some species to be highly successful at HA.

Pre-natal challenges
We have known for nearly a century that altitude directly challenges
the very first steps in mammalian development. At altitude, fetal
growth is reduced as much as 30% in lowland-native mammals,
including mice, rats, guinea-pigs, humans and sheep (Bailey et al.,
2019; Gilbert et al., 1979; Matheson et al., 2016; Parraguez
et al., 2005, p. 200; Royer et al., 2000; Scheffen et al., 1990; Turan
et al., 2017; Weihe, 1965). In addition, many lowland-native rodents
experience increased rates of fetal death when gestating under
experimental hypobaric hypoxia (Gilbert et al., 1979; Kelley and
Pace, 1968; Matheson et al., 2016). Adaptation to altitude has
ameliorated fetal growth restriction in the two mammals that have
been studied to date: highland-adapted human populations (including
native Andeans and Tibetans; Moore, 2017b) and multi-generational
highland sheep (Parraguez et al., 2005). Although no one has yet
examined the degree to which altitude adaptation may protect fetal
growth in any small mammal, the dramatic effects of altitude on fetal
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death rates and growth in lowland species suggest that fetal growth
is a critical challenge that highland-resident small mammals must
overcome.
In this part of the Review, we draw on literature exploring the

effects of gestational hypoxia on the site of placentation in
laboratory strains of lowland rodents, and literature focused on
gestational hypoxia and altitude adaptation in humans and sheep.
The physiological mechanisms underlying adaptive preservation of
fetal growth at altitude in humans and sheep remain poorly resolved;
however, there is substantial evidence from these species that
multiple traits are likely to be important (Moore, 2017a). It should
be noted that these models have some limitations related to their
unique reproductive biology and evolutionary history that may
restrict the extent to which patterns in their physiology are likely to
be shared with small mammals at altitude (see Box 1 for further
discussion).

The physiological traits relevant to fetal growth are both maternal
and fetal. Essentially all major maternal physiological systems are
modified by pregnancy to facilitate the metabolic demands of fetal
growth (for a detailed review, see Napso et al., 2018). In particular,
the respiratory, cardiovascular and hematological systems all
increase their capacity or otherwise modify their function in order
to facilitate sufficient gas exchange and nutrient delivery to the feto-
placental unit (Napso et al., 2018). Thus, the first major challenge to
reproduction at altitude is ensuring that systemic changes to
maternal physiology can fulfil delivery demands at altitude, where
the partial pressure of oxygen is lower than at low altitude. Once
oxygen (and nutrients) reach the site of implantation (see Glossary),
their delivery and realized utility to the fetus depend on fetal
hematology – which is particularly important for oxygen uptake –
and of course on the structure and function of the placenta, which
gates nutrient transfer between mother and fetus.

Maternal physiology
Chronic hypoxia at altitude may constrain fetal growth by inhibiting
or altering gestational remodeling of maternal physiology, resulting
in insufficient gas exchange and nutrient delivery to the
implantation site. In humans, changes to maternal respiratory and
cardiovascular function that occur in lowlanders at altitude are
sufficient to match oxygen content in maternal circulation measured
in highlanders (Moore et al., 2001; Zamudio et al., 2007b),
suggesting that oxygen availability in maternal circulation is not the
critical challenge for fetal growth at altitude (Postigo et al., 2009;
Zamudio et al., 2007b; but see Julian et al., 2009). However, the
physiological changes required to maintain blood oxygen content
may confer costs that directly or indirectly limit fetal growth. For
example, increases in hematocrit and hemoglobin content that occur
in non-pregnant lowland humans and rodents at altitude persist
during pregnancy (Gilbert et al., 1979; Julian et al., 2009; Nuzzo
et al., 2018; Royer et al., 2000; Thompson et al., 2016; Zamudio
et al., 2007b). Elevated hematocrit contributes to a general increase
in blood viscosity in pregnant women (Kametas et al., 2004), which
may increase flow resistance and thus impede local delivery or
exchange of nutrients and gases at the implantation site and in the

Glossary
Implantation
The process by which the blastocyst attaches to and, in some species,
embeds itself within, the uterine wall. Implantation is the first step in
placentation in which connections between maternal and fetal tissue are
established. It is essential to the further development of the embryo and
successful gestation.
Tidal volume
Volume of air taken into the lungs during a single breath.
Trophoblast
A class of cells that are derived from the outer layer of the blastocyst.
Trophoblasts differentiate from a general stem cell type into an array of
specialized trophoblasts that perform specific functions, including
facilitating implantation and building the placenta.
_VO2,max

Maximal whole-animal oxygen consumption, indicative of maximum
capacity for aerobic metabolism. _VO2,max can be elicited by exercise or
cold. The exercise and cold-induced _VO2,max values for a given individual
are not always the same. Cold-induced _VO2,max (thermogenic capacity,
_VO2, summit) is the product of both shivering and non-shivering
thermogenesis.
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Fig. 1. The cold and hypoxic conditions of high-altitude environments act directly and indirectly on the physiology of small mammals at various life
stages. Black arrows denote direct effects; red arrows denote indirect effects. (1) Maternal physiology during gestation; (2) nutrient transfer to the fetus
via the placenta; (3) post-natal growth and development; (4) maternal physiology during lactation; (5) nutrient transfer to pups via nursing; (6) adult physiology. To
date, only the direct effects of high-altitude adaptation on non-reproducing adults (6) have been well studied. Graphic designed using BioRender.
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placenta. Indeed, elevated maternal hematocrit and/or hemoglobin
levels have been linked to an increased risk of fetal growth
restriction and other complications in humans at altitude (Gonzales
et al., 2012, 2009; Khalid et al., 2016; Laflamme, 2011; Zamudio
et al., 1993). Altitude-adapted deer mice and humans are able to
preserve arterial oxygen saturation in circulation at altitude without
similar increases to hematocrit thanks to adaptations spanning
the oxygen-transport cascade (Beall, 2007; Bigham et al., 2013;
Chappell and Snyder, 1984; Moore, 2017b; Scott et al., 2018; Storz
et al., 2010; Tate et al., 2020), and thus they would not experience
negative effects of increased blood viscosity and vascular resistance
on placental function at altitude during pregnancy.
Vascular remodeling to increase the diameter or distensibility of

blood vessels near the implantation site could moderate some of
these changes to maternal hematology by altering local stress and
strain and thus flow resistance. On the maternal side, the uterine
artery is a critical site of vascular remodeling that is alsowell studied
in the context of altitude adaptation. During healthy pregnancy at
sea level, the uterine artery increases in diameter by more than three
times to facilitate blood flows that will be 50–70 times greater at the
end of pregnancy relative to the non-pregnant state (Boeldt and Bird,
2017; Mandala and Osol, 2012; Osol and Mandala, 2009). Uterine
artery distensibility, or the ability for the vessel to expand in
response to elevated intraluminal pressure, is also increased
(Mandala and Osol, 2012; Mateev et al., 2006). When structural

and functional remodeling of the uterine artery and associated
vasculature are insufficient, it increases the risk of vascular injury
within maternal and placental blood vessels (Cartwright et al., 2010;
Mateev et al., 2006) and directly affects the delivery of nutrients to
the implantation site by limiting blood flow.

High altitude appears to inhibit both structural and functional
remodeling of the uterine artery and associated vasculature at
altitude. Women of lowlander ancestry gestating at altitude have
smaller increases in uterine artery diameter across gestation than
their sea level counterparts (Aksoy et al., 2015; Chen et al., 2002;
Julian et al., 2008; Zamudio et al., 1995, 2007b, 2010) and, relative
to those gestating at sea level, vascular resistance in the uterine
artery of mothers at altitude is elevated in guinea-pigs (Turan et al.,
2017) and humans (Aksoy et al., 2015; Chen et al., 2002; Julian
et al., 2008; Zamudio et al., 1995, 2007b, 2010). Furthermore, the
vasodilatory function of the uterine artery is deficient in lowland
humans at altitude (Lorca et al., 2019), and the sensitivity of the
smooth muscle cells of the uterine artery to changes in blood
pressure is decreased in guinea-pigs under hypoxia (Mateev et al.,
2006). In the case of guinea-pigs, we know that these changes
contribute to increased mechanical strain within the vessel (Mateev
et al., 2006). Failure of the uterine artery to sufficiently remodel to
support blood flow during pregnancy may be related to hypoxia-
dependent inhibition of cell replication: DNA synthesis in the
uterine artery of pregnant guinea-pigs is lower under chronic
hypoxia (Rockwell et al., 2000).

Highland adaptation appears to have modified the sensitivity of
uterine artery remodeling to chronic hypobaric hypoxia. Highland-
adapted humans are able to achieve larger uterine artery diameters and
lower resistance indices at altitude (Charles et al., 2014; Dávila et al.,
2010; Julian et al., 2009; Moore et al., 2001; Zamudio et al., 2007b).
The relevant mechanism(s) are unknown, but in humans an allele for
the gene PRKAA1 has been linked to larger gestational uterine artery
diameter and is under positive selection in Andean women (Bigham
et al., 2014). For small mammals, gestational remodeling of the uterine
artery diameter and vasodilatory function (and thus blood flow) in
each uterine horn is a function of local (i.e. feto-placental) processes
(Fuller et al., 2009; Whitney et al., 1993), meaning that litter size and
the density of implantation sites along each uterine horn may
contribute to the degree towhich the uterine arteries are able to achieve
sufficient remodeling under chronic hypoxia.

Fetal physiology
Fetal hematology is also altered by gestational hypoxia. For
example, fetal hematocrit and hemoglobin content increase at
altitude in both humans and guinea-pigs (Gilbert et al., 1979;
Postigo et al., 2009). However, adaptation to altitude does not blunt
this effect in human fetuses (Postigo et al., 2009), and there is no
evidence for adaptations to fetal hemoglobin structure in HA natives
(Storz, 2016). Despite this, in humans, Andean fetuses still display
an increased hemoglobin–oxygen binding affinity at altitude
relative to ancestrally lowland fetuses at altitude, suggesting that
there are still some unidentified adaptations in fetal physiology
(Postigo et al., 2009). This could be important for the maintenance
of fetal–maternal O2 gradients, as many HA-adapted species have
evolved higher-affinity adult hemoglobin, which could impede O2

unloading at the placenta (Storz, 2016).

Placenta structure and function
The placenta plays an important role in determining the effects of
altitude on fetal outcomes, both because it is the major mediator of
nutrient transport between maternal and fetal circulations and

Box 1. Models for gestational adaptations to altitude
There is a long history of studying effects of hypoxia on fetal growth.
However, the established model systems have limited value for
identifying physiological mechanisms that preserve fetal growth in high
altitude (HA)-adapted small mammals. Highland populations of humans
and sheep have been the primary systems for studying HA adaptation
and fetal growth. However, what we know about these systems may not
apply to small mammals. The energetic challenges faced by large HA
mammals are not equivalent to those of smaller species, whose higher
mass-specific metabolic rates drive increasedO2 requirements and rates
of heat loss, necessitating active thermogenesis. Additionally, the long
generation time of humans and sheep relative to that of small mammals
means that there has been less opportunity for evolutionary innovation in
these groups (the influence of domestication in sheep notwithstanding).
Both well-studied populations of HA-native humans (Andean, Tibetan)
have resided at altitude for 11,000–25,000 years (Beall, 2007), which
accounts for between 1000 and 2000 generations, and domestic sheep
have resided at HA for no more than 500 generations (Parraguez et al.,
2006). In contrast, HA deer mice native to the ColoradoRockyMountains
have been separated from their Great Plains conspecifics for ∼200,000
generations (Natarajan et al., 2015). There has therefore been much
more opportunity for selection to act on these smaller species with short
generation times.

Research into hypoxia-dependent fetal growth restriction in small
mammals has nearly exclusively utilized laboratory rodent strains, which
are generally lowland-derived. These studies can thus only provide
insight into lowlander challenges, not adaptative solutions. In addition,
these studies primarily focus on the placenta, ignoring maternal
acclimatization to the environmental stressor. This focus on the
placenta is problematic because maternal gestational physiology,
which is altered by altitude, determines the environment of the
placenta and fetus, and thus provides critical context for changes to
placental and fetal physiology. Finally, in the case of both laboratory
rodents and sheep, many studies tend to use relatively short-term
hypoxia exposure (e.g. only the final third of gestation). Short-term
hypoxias, particularly nearer term, are problematic for understanding
ecologically relevant responses to chronic hypoxia because they
introduce the environmental stressor after the placenta has already
completed critical developmental processes.
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because its structural and functional development are highly
sensitive to hypoxia. The placentas of rodents and lagomorphs
contain two distinct compartments: a vascular compartment, where
nutrient exchange occurs, and an endocrine compartment, which
plays a critical role in connecting maternal and fetal vasculature and
in organizing maternal physiology. Both these compartments are
modified by gestational hypoxia, although the impact of these
changes on fetal growth is not as clear. In rats and mice, the
implantation site and placenta tend to display increased vascularity
under gestational hypoxia (Soares et al., 2017), facilitating greater
blood flow and nutrient delivery and exchange. However, increased
blood flow may come at a cost of increased endoplasmic reticulum
stress within the placenta (Matheson et al., 2016; Yung et al., 2012).
Increased oxidative damage in the placenta at HA has only been
reported in laboured placentas, where the ischemia/hypoxia caused
by the process of labour may drive differences in these markers
(Kurlak et al., 2016; Nuzzo et al., 2018; Parraguez et al., 2011;
Tissot van Patot et al., 2010; Zhou et al., 2013). Placentas from high-
altitude pregnancies at mid-gestation or following cesarean sections
at term do not appear to experience increased oxidative damage
(Matheson et al., 2016; Zamudio et al., 2007a).
At altitude, the vascular compartment of the placenta is also

characterized by a reduction in the diameter of fetal capillaries,
which may increase the surface area to volume ratio of the surface
across which gas and nutrient exchange occurs (Burton et al., 1996;
Espinoza et al., 2001; Khalid et al., 2016; Parraguez et al., 2010;
Scheffen et al., 1990; Tissot van Patot et al., 2003, 2004). HA-
adapted humans display similar decreases in the diameter of fetal
capillaries at altitude (Jackson et al., 1987a,b), suggesting that the
increase in the surface area to volume ratio may indeed be adaptive.
The endocrine compartment of the placenta, termed the

junctional zone in rodents, tends to undergo hypertrophy under
gestational hypoxia (Soares et al., 2017). Behavior of the invasive
trophoblast (see Glossary), a sub-type of trophoblast arising from
the junctional zone that is responsible for invading and remodeling
maternal vasculature, is also critically affected by gestational
hypoxia in species including rats and guinea-pigs. Hypoxia
increases the depth of invasive migration into maternal tissues by
these cells (Soares et al., 2017), potentially allowing for more
extensive vascular remodeling. However, chronic hypoxia also
appears to inhibit the remodeling behavior of these cells (Soares
et al., 2017; Zhou et al., 2013). Insufficient remodeling by
trophoblasts is likely to be harmful for the fetus because it leads
to insufficient blood flow and/or elevated blood pressure, which can
collapse the structures across which nutrient and gas exchange
occur; thus, we might expect to find that highland adaptations to
altitude should preserve or even expand invasion and remodeling at
the site of implantation. However, in a mouse knock-out for
PRL7B1, a signaling molecule that is critical for trophoblast
invasion, the mice that lacked invasive trophoblasts displayed
improved pregnancy success under hypoxia relative to wild-type
animals (Bu et al., 2016). A major caveat to these findings is that
mice do not have extensive trophoblast invasion under normoxia or
hypoxia, and thus it provides limited insight into the adaptive role of
trophoblast invasion for species with more extensive invasion,
including humans, rats and guinea-pigs. To date, no data exist on
HA native mice or other species where trophoblast invasion and
remodeling are more modest, which could speak to this fundamental
question about the extent to which trophoblast invasion contributes
to fetal growth outcomes at altitude.
Altitude-dependent structural changes to the lowlander placenta

and surrounding vasculature described above are occurring

alongside functional changes (such as changes to gene
expression) that further affect nutrient transport to the fetus. In
particular, glucose utilization by the feto-placental unit appears to
be altered by altitude, such that the placenta relies more heavily
upon glucose and delivers less to the fetus (Royer et al., 2000;
Sakuragawa et al., 1988; Tissot van Patot et al., 2010; Vaughan
et al., 2019; Zamudio et al., 2010, 2006). In addition to nutrient
transporters, the placenta produces a large number of hormones that
remodel maternal physiology across gestation. These hormones are
primarily synthesized by cells derived from the junctional zone
(Soares et al., 2017). Placental prolactins are the major family of
placental hormones responsible for gestational remodeling of
maternal physiology (Napso et al., 2018), and they are critical for
facilitating trophoblast–vascular interactions and remodeling
vascular structure in and around the placenta (Soares et al., 2017).
Broader changes to the transcriptional landscape of the placenta are
thought, in part, to reflect shifts in the differentation pathways taken
by trophoblasts (i.e. the number or proportion of cells adopting
specific trophoblast sub-types) (Bu et al., 2016; Soares et al., 2017,
2006); thus, additional consideration of the effects of hypoxia on
trophoblast cell behavior and function are warranted.

Preparing for the post-natal period
Maternal physiology during gestation is not simply about
facilitating fetal growth in utero. Fat accretion, remodeling of
neural circuitry and maturation of the mammary glands towards the
end of gestation set the stage for successful lactation and parental
care (Napso et al., 2018). Placenta-derived hormones that influence
these late-gestation processes may therefore also be important
components of successful reproduction at altitude, particularly in
altricial species; however, the effects of altitude on late-gestational
placenta function as it relates to post-natal maternal success have not
yet been explored in any system to our knowledge.

Post-natal challenges
Once young HAmammals are born, they must contend with chronic
cold and hypoxia, both of which limit post-natal growth and
survival in low-altitude (LA) natives (e.g. Farahani et al., 2008; Hill,
1972; Weihe, 1965).

The maturity of HA neonates at birth is likely to be an important
factor influencing the adaptive evolution of post-natal development.
The mammalian inhabitants of the most extreme altitudes are
primarily altricial, meaning that they are born relatively immature
with little to no thermoregulatory capacity (Pembrey, 1895). For all
altricial rodents, regardless of altitude, the post-natal period is
precarious. Mortality rates during the first weeks of post-natal
development in the wild can range from 49% to 96% (e.g. Bendell,
1959; Howard, 1949). These high mortality rates coincide with the
timewhen many major physiological systems (e.g. thermoregulation,
respiratory control) are developing and are sensitive to the
environment. As a result, although certain traits that are thought to
be important adaptations to HA (e.g. high-affinity hemoglobin; Ivy
et al., 2020) may be present at birth in these altricial species, many of
these traits do not develop or become functional until much later in
these species (e.g. Adams et al., 1999; Agbulut et al., 2003; Barnard
et al., 1970; Chew and Spencer, 1967; Dubowitz, 1963; Dzal et al.,
2020; Gokhin et al., 2008; Goldspink and Ward, 1979; Hill, 1976;
Lagerspetz, 1966). Given the low likelihood of survival during the
post-natal period, anything that can confer a fitness benefit will
probably be under strong selection at HA (Hill, 1983).

Below we have outlined developmental adaptations in three
physiological systems in the well-studied HA-native populations of
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the North American deer mouse. Notably, all these systems are also
under selection in adults of this species, and we describe the adult
traits for comparison. These adult adaptations are reviewed
extensively in Storz et al. (2019). The post-natal adaptations were
discovered using a common garden experimental design, where wild-
caught HA and LA mice, native to the same latitude but different
altitudes (300 m versus >4300 m above sea level), were bred in
captivity for two generations. Pups were compared with the closely
related but strictly LA white-footed mouse (P. leucopus). These
experiments allowed us to isolate the effects of the environment and
ancestry (genotype) on the ontogeny of a physiological trait
(Fig. 2A). It is important to note that these studies focus on a
single subspecies of HA deer mouse native to the Colorado Rocky
Mountains (P. maniculatus nebracensis), where gene flow between
LA and HA elevations is limited. This population has been separated
from the conspecific LA controls used in these studies for ∼200,000
generations (Natarajan et al., 2015). Mitochondrial gene sequence
homologies suggest that various HA subspecies of deer mice, native
to different mountain ranges, tend to be more closely related to each
other compared with their geographical closest LA counterparts
(Natarajan et al., 2015). However, it is unclear whether the
developmental adaptations discussed below are common to other
HA subspecies, particularly P. maniculatus sonoriensis, native to the
California White Mountains, where gene flow between elevations is
much more prevalent (Natarajan et al., 2015; Snyder et al., 1982).
Geographical variation in HA sites is an important factor to consider
in future studies.

Brown adipose tissue function
Adult HA-adapted mice (P. maniculatus) have a higher
thermogenic capacity (cold-induced _VO2, max) than their LA
conspecifics (Cheviron et al., 2012, 2013; Hayes, 1989). This
whole-animal trait, which is a function of both shivering and non-
shivering thermogenesis (NST), is under positive selection at HA
(Hayes and O’Conner, 1999), and it improves survival and increases
activity levels in the cold (Sears et al., 2006). In deer mice and other
small rodents, a major component (>50%) of whole-animal
thermoregulatory capacity is brown adipose tissue (BAT)-based
NST (McClelland et al., 2017; Van Sant and Hammond, 2008).
BAT is unique to placental mammals though marsupials may
contain BAT-like structures (reviewed in Jastroch et al., 2018). BAT
is characterized by lipid-rich brown adipocyte cells with a high
mitochondrial density. These mitochondria express uncoupling
protein-1 (UCP-1), which dissipates the proton gradient established
by the electron transport chain across the inner mitochondrial
membrane. This uncouples the production of ATP from the
oxidation of fuel, creating a futile cycle that generates heat. UCP-
1 is activated when BAT is sympathetically recruited in response to
cold (Cannon and Nedergaard, 2004). BAT activity is higher in wild
adult HA deer mice compared with wild-caught LA Peromyscus
(Velotta et al., 2016). BAT is present, although non-functional, at
birth in most altricial species and develops faster than skeletal
muscle (Barnard et al., 1970). As a result of this rapid maturation,
early thermogenesis in these animals is driven exclusively by BAT-
based NST, whereas shivering thermogenesis matures later.
Surprisingly, in HA deer mouse pups, BAT does not become

functional until significantly later in development compared with
lowlanders (Robertson et al., 2019). Unlike lowland Peromyscus,
who begin to actively thermoregulate at 8 days old (Hill, 1983;
Robertson et al., 2019), neonatal HA mice cannot use BAT to
maintain body temperature during early post-natal development. This
delay in BAT activation appears to be due to reduced sympathetic

regulation of the tissue and a coordinated suppression of metabolism
(Robertson et al., 2019; Velotta et al., 2020). In many species of LA
rodents, post-natal exposure to hypoxia or cold alters the rate of BAT
maturation: cold tends to accelerate BATmaturation whereas hypoxia
suppresses it (Denjean et al., 1999; Morrison et al., 2000; Mortola
and Naso, 1997, 1998; Skála and Hahn, 1974). However, BAT
function does not appear to be sensitive to rearing environment in
highlanders (Velotta et al., 2016). The developmental delay in BAT
function is coordinated by a suite of regulatory genes that are
under directional selection at HA (Velotta et al., 2020), suggesting
that suppressing BAT function during development is a functional
adaptation to the HA environment. This is an example of
physiological heterochrony, an evolved change in the
developmental timing of a physiological trait (Gould, 1977; Spicer,
2006). We discuss the potential adaptive benefits of such a delay
below.

Skeletal muscle phenotype and function
In endotherms, skeletal muscle performs the dual function of
locomotion and thermogenesis via shivering. Many HA-adapted
mammals and birds have evolved a more oxidative and/or highly
vascularized adult muscle phenotype (Hepple et al., 1998; Kayser
et al., 1991; León-Velarde et al., 1993; Lui et al., 2015; Mahalingam
et al., 2017; Mathieu-Costello et al., 1998; Scott et al., 2009; Sheafor,
2003). In adults, this probably confers both a higher running _VO2, max

and a greater capacity and endurance for shivering.Musclemetabolism
is also altered in HA species, with HA adults having a greater capacity
for both lipid and carbohydrate oxidation (Lau et al., 2017; Lui et al.,
2015; McClelland et al., 2017; Schippers, et al., 2012).

In deer mice, whole-animal _VO2, max (running and cold induced) is
sensitive to HA rearing environment (Chappell et al., 2007; Russel
et al., 2008). However, the specialized HAmuscle phenotype itself is
genetically fixed (Nikel et al., 2018; Scott et al., 2015). As stated
above, skeletal muscle is immature at birth in altricial species. For
example, in both newborn LA and HA deer mice, muscle fibers are
small and poorly vascularized, and muscle metabolic phenotype is
not yet established (Robertson and McClelland, 2019).

In HA deer mice, the characteristic aerobic muscle phenotype of
adult mice does not appear until several weeks after birth. Up until this
point, the skeletal muscles grow at the same rate as those of LA pups
(Robertson and McClelland, 2019). However, prior to the phenotype
divergence, many genes associated with muscle metabolic processes
are down-regulated in HA pups (Velotta et al., 2020), and – unlike LA
pups – young HA mice are unable to shiver. Overall, despite cold-
induced _VO2, max being elevated in HA adults, neonatal HA pups have
a much lower thermogenic capacity relative to lowlanders, due to
delays in both shivering and non-shivering thermogenesis throughout
post-natal development (Fig. 2B). Suppression of thermogenesis lasts
from birth until weaning at 3 weeks of age (Robertson et al., 2019).
See below for further discussion.

Breathing pattern and O2 sensing
A primary challenge that LA natives encounter when they ascend to
greater altitude is that of efficiently transporting enough oxygen to
their mitochondria for oxidative phosphorylation. Oneway in which
HA-adapted mammals and birds have overcome this hurdle is by
altering respiratory physiology (reviewed in Ivy and Scott, 2015).
For example, HA deer mice and HA plateau pikas (O. curzoniae)
have evolved a deeper tidal volume (see Glossary) compared with
their LA counterparts (Ivy and Scott, 2017; Pichon et al., 2009).
This altered breathing pattern allows them to take up oxygen more
efficiently compared with lowlanders.
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During early post-natal development, the breathing pattern of young
mammals is insensitive to hypoxia. The chemosensory cells of the
carotid bodies, which normally sense arterial O2 saturation and trigger

an increase in ventilationwhen oxygen levels drop (hypoxic ventilatory
response), are insensitive to hypoxia at birth in all mammals studied to
date (Carrol and Kim, 2013). In HA deer mice, it takes longer for the
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Fig. 2. Testing for physiological adaptations to high altitude during development. (A) Amulti-generation (G), common garden experimental design allows us
to isolate the effects of ancestral, developmental and maternal environment on a given physiological trait. In the wild, an individual’s phenotype is driven by a
complex interaction between genotype and environment, as well as persistent effects of their rearing environment (pre- and post-natal) and carry-over
effects of the environment on their mother. Each generation under common garden conditions removes one of these effects until theoretically only genotypic
influences on phenotype remain. (B) Using this design, we see that a slower maturation of thermoregulatory mechanisms has evolved in high altitude
(HA)-adaptedPeromyscusmaniculatus. Themetabolic responses (cold-induced _VO2

) to acute cold exposure (10 min at 24°C, post-natal days 8 and 10; 10 min at
−5°C, post-natal days 14 and 21) are reduced throughout post-natal development until weaning (post-natal day 21) in G2 HA-adapted P. maniculatus
(Robertson et al., 2019; Robertson and McClelland, 2019; Velotta et al., 2020). These pups are raised under common conditions, so this response is driven
primarily by underlying genetic adaptations (Velotta et al., 2020). We hypothesize that suppressing metabolically costly thermogenesis has evolved at HA,
to allow pups to conserve energy for growth. Experimental design figure made in BioRender.
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carotid bodies to mature, and the ventilatory sensitivity to hypoxia is
delayed relative to that of lowlanders (Ivy et al., 2020). Additionally,
the more effective altered breathing pattern that is characteristic of adult
highlanders is not established until several weeks after birth (Ivy et al.,
2020). Interestingly, the delay in the establishment of a mature
breathing pattern and sensitivity to hypoxia matches the developmental
delay in the onset of endothermy in HA deer mice.

Why delay developmental function of adaptive phenotypes at HA?
The studies described above show that, at least in one species,
delaying the maturation of critical physiological systems during the
nursing period is likely to be adaptive in HA environments. These
findings are counterintuitive, particularly because these delays
occur in the systems directly responsible for responding to low
oxygen and temperature. What are the possible fitness benefits that
make these delays adaptive?
Young altricial neonates are not as sensitive to perturbations in

homeostasis as adults. For example, 4-day-old Peromyscus pups can
survive several hours at a body temperature close to freezing without
suffering any adverse consequences (Hill, 2017). If cold neonates
are passively rewarmed by an external heat source (i.e. their
mother), they do not incur the metabolic cost that would normally be
associated with re-warming (Currie et al., 2015; Geiser et al., 2002).
At least one other small, altricial mammalian species, the desert
hamster (Phodopus roborovskii) has been shown to use a ‘precocial
torpor’ strategy early in post-natal development to save energy in the
cold (Geiser et al., 2019). Additionally, most small mammals tend to
be far less sensitive to low oxygen as neonates than as adults
(reviewed in Dzal et al., 2020). It is therefore possible that it is
adaptive for HA neonates to conserve limited energy for growth
rather than using energy to mount costly physiological responses to
low oxygen and ambient temperature. Under cold alone, the benefits
of thermoregulation outweigh the metabolic cost: lowland altricial
mammals tend to accelerate the maturation of thermoregulatory
systems when reared in the cold (Barnard et al., 1970; Morrison
et al., 2000), and some cold-adapted species – for example, the
Norwegian lemming – have evolved the ability to thermoregulate
earlier after birth than most other altricial rodents studied (e.g. mice,
rats or golden hamsters; Lagerspetz, 1966). However, hypoxia also
affects the timing of the development of both thermoregulation
(Mortola and Naso, 1997, 1998) and the hypoxic ventilatory
response (Bavis, 2005). We can therefore only speculate that the
combination of cold and hypoxia at HA makes the suppression of
lowlander responses the most cost-effective strategy.

Maternal care from birth to weaning
During the early post-natal period, HA mammalian mothers with
altricial youngmust act as both a source of heat and as a source of food
(Hill, 1972). This creates a significant energetic burden for animals
that already operate close to their _VO2, max (Hayes, 1989). In mice,
milk output during lactation accounts for∼50% of the energy derived
from food (Johnson et al., 2001). In fact, lactation is widely considered
to be the most energetically costly life stage for a female mammal
(Speakman and McQueenie, 1996). Successfully provisioning
offspring under extreme conditions was likely to have been one of
the critical evolutionary challenges faced by HA-adapted species.
Short breeding seasons at HA relative to LA sites of the same

latitude limit the number of litters that a HA female can birth each
year. To compensate, it is likely that HA mothers must invest
heavily in the few litters that they have (McLean et al., 2019; Smith
and McGinnis, 1968). Small HA mammals tend to give birth to
larger litters than their LA conspecifics (e.g. P. xanthopygus, Sassi

et al., 2018; P. maniculatus, Dunmire, 1960; Halfpenny, 1980;
Robertson et al., 2019). For those species that do not have large litter
sizes – for example, HA North American pikas (Ochotona princips,
average of one to two pups) – mothers still completely deplete their
fat reserves during lactation, suggesting that they are maximizing
their reproductive investment (Miller, 1973).

Hypoxia tends to limit milk production in lowland mammals (e.g.
Bruder et al., 2008; Moore and Price, 1948; Walton and Uruski,
1946; Weihe, 1965). Decreases in milk output under hypoxia can be
partially alleviated by supplementing nursing mothers with a high
fat diet, which increases milk fat content (Weihe, 1965). LA-native
wild house mice (Mus musculus) raised for 10 generations in the
cold (3°C) produce high fat content milk, which improves offspring
growth and body composition (Barnett and Dickson, 1984). It is
possible that small HA mammals also increase the fat content of
their milk, although this has not been seen in the few large HA
mammals studied to date (humans, yaks and dairy cows: Barsila
et al., 2014; Bartl et al., 2009; Qiao et al., 2013; Quinn et al., 2016).
Therefore, the mechanism by which HA mothers produce enough
milk to provision their offspring is unclear. Regardless, the
energetic cost of lactation at HA is likely to be quite high.

One way to support the metabolic costs of lactation at HA is a
complementary increase in food intake. At LA, mammalian mothers
remodel their digestive tracts to increase nutrient absorption during
gestation and lactation. Cold exposure has a similar effect on food
intake, increasing nutrient assimilation by increasing the size of
digestive organs. The combination of lactation and cold stress act
synergistically to further increase food intake in rodent mothers
(Hammond et al., 1994; Hammond and Kristan, 2000). In fact, it has
been suggested that food intake during lactation is limited by a
mother’s ability to dissipate metabolically produced heat (the heat
dissipation limit hypothesis; for a review, see Speakman and Król,
2010). Therefore, in cold environments, lactating females consume
more food than would otherwise be possible (Johnson and Speakman,
2001). However, hypoxia is a known anorexic agent, and it decreases
food intake in lactating rats (Bruder et al., 2008). In non-lactating adult
P. maniculatus the increase in food intake seen in the cold is partially
ablated at 3800 m above sea level (Hammond et al., 2001). Rigorous
ecological studies of HA females are required to determine whether
food intake during lactation increases in the wild.

HA mothers also invest in their offspring through various forms
of maternal care. Many measures of maternal behavior (e.g. time
spent nursing, incubating and grooming pups, nest-building) vary
considerably amongst individual rodents in the laboratory and in the
wild (Champagne et al., 2003). For example, wild mice spend more
time nursing when population density is low and thus competition
for food is reduced (Stewart and McAdam, 2014). Importantly, in
lowland altricial species, when mothers spend more time foraging,
pup growth suffers from the combination of less milk and increased
thermoregulatory costs to the pups (Hill, 1972). Rodents also alter
their nest size or complexity in response to low temperatures, and
those native to cold climates tend to build larger, more complex
nests (King et al., 1964; Phifer-Rixey et al., 2018). Variation in
maternal care (e.g. grooming) can have long-lasting epigenetic
consequences for offspring phenotype, programming metabolism,
the stress response and their own care behavior (reviewed in
Champange, 2008). Although maternal behavior is sensitive to
environmental conditions, there is also a genetic basis to many of
these traits (Bendesky et al., 2017). As such, altered maternal care
phenotypes can evolve in different environments. To our
knowledge, adaptation of maternal behavior to HA has not been
studied, and this would be an interesting area for future research.
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Conclusions
The combined cold and hypoxic conditions of HA present significant
metabolic challenges to young mammals that specifically limit
growth. Maternal physiology is also directly influenced by cold and
hypoxia. As a result, in HA environments, resource transfer from
mother to offspring may be limited during both pregnancy and
lactation, compounding the direct effects of cold and hypoxia on
young mammals. Previous research has shown that these
environmental effects make it almost impossible for lowlanders at
HA to successfully reproduce and grow.We propose that for a species
to successfully establish at HA, both maternal and developmental
phenotypes must evolve together. The fact that very little is known
about the adaptive strategies used by these animals means there are
many exciting avenues for future study.
Alongwith the direct impact of cold and hypoxia on each life stage,

which we have outlined above, animals living at HA also deal with
the cumulative effects of prior exposure to HA conditions that can
affect fitness throughout their lifetime. For example, a pregnant
female who is unable to properly remodel her mammary glands,
neural circuitry and fat accretion during gestation due to hypoxia will
be unprepared to provide sufficient nutrients and care to her pups
during lactation. Insufficient maternal remodeling during pregnancy
could thus exacerbate the effect of cold and hypoxia on nursing and
other care behaviors, further limiting energy transfer to pups that must
grow under cold and hypoxia. Females from such litters who survive
to adulthood will be likely to display long-lasting effects on body
condition that will limit their own future reproductive success. Thus,
what happens during a single reproductive attempt will affect the
future chances of success for both mother and offspring.
Finally, moving forward, it is important to remember that young

altricial mammals are not simply small adults. They do not have the
same physiological tools available to cope with environmental
stressors. As such, any given physiological system (e.g.
thermoregulation) may need to respond very differently to the
same selective pressure across life stages. By focusing exclusively
on adult physiology, we may miss many of the physiological
innovations that are critical for adaptation in resident species.
Studies of HA reproduction and development provide an important
framework for comparative physiology, as the two main selective
pressures (cold and hypoxia) are well understood. However, the
same kinds of energetic limitations to growth and reproduction
probably appear across all extreme environments.
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