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ABSTRACT

This paper presents a dynamic network rewiring (DNR) method to

generate pruned deep neural network (DNN) models that are robust

against adversarial attacks yet maintain high accuracy on clean im-

ages. In particular, the disclosed DNR method is based on a unified

constrained optimization formulation using a hybrid loss function

that merges ultra-high model compression with robust adversar-

ial training. This training strategy dynamically adjusts inter-layer

connectivity based on per-layer normalized momentum computed

from the hybrid loss function. In contrast to existing robust pruning

frameworks that require multiple training iterations, the proposed

learning strategy achieves an overall target pruning ratio with only

a single training iteration and can be tuned to support both irregu-

lar and structured channel pruning. To evaluate the merits of DNR,

experiments were performed with two widely accepted models,

namely VGG16 and ResNet-18, on CIFAR-10, CIFAR-100 as well

as with VGG16 on Tiny-ImageNet. Compared to the baseline un-

compressed models, DNR provides over 20× compression on all

the datasets with no significant drop in either clean or adversarial

classification accuracy. Moreover, our experiments show that DNR

consistently finds compressed models with better clean and adver-

sarial image classification performance than what is achievable

through state-of-the-art alternatives. Our models and test codes are

available at https://github.com/ksouvik52/DNR_ASP_DAC2021.

CCS CONCEPTS

• Adversarial training → Robustness; • DNN Model Pruning

→ Irregular and Structured pruning.
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Figure 1: (a) Weight distribution of the 14𝑡ℎ convolution

layer of ResNet18model for different training schemes: nor-

mal, adversarial [23], and noisy adversarial [14]. (b) An ad-

versarially generated image (x̂) obtained through FGSM at-

tack, which is predicted to be the number 5 instead of 4 (x).
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1 INTRODUCTION

In recent years, deep neural networks (DNNs) have emerged as

critical components in various applications, including image classi-

fication [17], speech recognition [15], medical image analysis [21]

and autonomous driving [3]. However, despite the proliferation of

deep learning-powered applications, machine learning models have

raised significant security concerns due to their vulnerability to

adversarial examples, i.e., maliciously generated images which are

perceptually similar to clean ones with the ability to fool classifier

models into making wrong predictions [2, 8]. Various recent work

have proposed associated defense mechanisms including adversar-

ial training [8], hiding gradients [30], adding noise to the weights

[14], and several others [24].

Meanwhile, large model sizes have high inference latency, com-

putation, and storage costs that represent significant challenges in

deployment on IoT devices. Thus reduced-size models [7, 19] and

model compression techniques e.g., pruning [4, 5, 12], have gained

significant traction. In particular, earlier work showed that without

a significant accuracy drop, pruning can remove more than 90% of

the model parameters [4, 5] and that ensuring the pruned models

have structure can yield observed performance improvements on a

broad range of compute platforms [13]. However, adversarial train-

ing that increases network robustness generally demands more

non-zero parameters than needed for only clean data [23] as illus-

trated in Fig. 1(a). Thus a naively compressed model performing

well on clean images, can become vulnerable to adversarial images.
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Unfortunately, despite a plethora of work on compressed model

performance on clean data, there have been only a few studies on

the robustness of compressed models under adversarial attacks.

In particular, some prior works [9, 31] have tried to design a

compressed yet robust model through a unified constrained opti-

mization formulation by using the alternating direction method of

multipliers (ADMM) in which dynamic 𝐿2 regularization is the key

to outperforming state of the art pruning techniques [27]. However,

these efforts require the network designer to specify layer-wise

sparsity ratios, which requires prior knowledge of an effective

compressed model. This knowledge may not be available and thus

training may require multiple iterations to determine good layer-

sparsity ratios. In other schemes like Lasso [26], a target compres-

sion ratio cannot be set because the final compression ratio is not

determined until training is completed. Moreover, Lasso requires

separate re-training to increase the accuracy after the assignment

of non-significant weights to zero, resulting in costly training.

In contrast, this paper presents dynamic network rewiring (DNR),

a unified training framework to find a compressed model with

increased robustness that does not require individual per-layer

target sparsity ratios. In particular, we introduce a hybrid loss

function for robust compressionwhich has threemajor components:

a clean image classification loss, a dynamic 𝐿2-regularizer term

inspired by a relaxed version of ADMM [6], and an adversarial

training loss. Inspired by sparse-learning-based training scheme of

[4], we then propose a single-shot training framework to achieve

a robust pruned DNN using the proposed loss. In particular, DNR

dynamically arranges per layer pruning ratios using normalized

momentum, maintaining the target pruning every epoch, without

requiring any fine tuning.In summery, our key contributions are:

• Given only a global pruning ratio, we propose a single-

shot (non-iterative) training framework that simultaneously

achieves ultra-high compression ratio, state-of-the-art accu-

racy on clean data, and robustness to perturbed images.

• We extend the approach to support structured pruning tech-

nique, namely channel pruning, enabling benefits on a broader

class of compute platforms. As opposed to conventional

sparse-learning [4] that can perform only irregular pruning,

models generated through structured DNR can significantly

speed up inference. To the best of our knowledge, we are the

first to propose a non-iterative robust training framework

that supports both irregular and channel pruning.

• We provide a comprehensive investigation of adversarial ro-

bustness for both channel and irregular pruning, and obtain

insightful observations through evaluation on an extensive

set of experiments on CIFAR-10 [16], CIFAR-100 [16], and

Tiny-ImageNet [10] using variants of ResNet18 [11] and

VGG16 [29]. Our proposed method consistently outperforms

state-of-the-art (SOTA) [26, 31] approaches with negligible

accuracy drop compared to the unpruned baselines.

We further empirically demonstrate the superiority of our scheme

when used to target model compression on clean-only image classi-

fication task compared to SOTA non-iterative pruning mechanisms

[4, 5, 12, 20].1

1This paper targets low-cost training, thus comparisons to iterative pruning methods
(e.g., [27]) are out of scope.

The remainder of this paper is structured as follows. In section 2

we present necessary background work. Section 3 describes pro-

posed DNR based training method. We present our experimental

results in Section 4 and conclude in Section 5.

2 BACKGROUND WORK

2.1 Adversarial Attacks

Recently, various adversarial attacks have been proposed to find

fake images, i,e., adversarial examples, which have barely-visible

perturbations from real images but still manage to fool a trained

DNN. One of the most common attacks is the fast gradient sign

method (FGSM) [8]. Given a vectorized input x of the real image

and corresponding label t, FGSM perturbs each element x in x along

the sign of the associated element of the gradient of the inference

loss w.r.t. x as shown in Eq. 1 and illustrated in Fig. 1(b). Another

common attack is the projected gradient descent (PGD) [23]. The

PGD attack is a multi-step variant of FGSM where x̂𝑘=1 = x and

the iterative update of the perturbed data x̂ in 𝑘𝑡ℎ step is given in

Eq. 2.

x̂ = x + 𝜖 × 𝑠𝑔𝑛(∇𝑥 𝐽 (𝑔(x;𝜃𝜃𝜃 ), t)) (1)

x̂
𝑘 = Proj𝑃𝜖 (x)(x̂

𝑘−1 + 𝛼 × 𝑠𝑔𝑛(∇𝑥 𝐽 (𝑔(x̂
𝑘−1;𝜃𝜃𝜃 ), t))) (2)

Here, the scalar 𝜖 corresponds to the perturbation constraint that

determines the severity of the perturbation. 𝑔(x,𝜃𝜃𝜃 ) generates the

output of the DNN, parameterized by 𝜃𝜃𝜃 . Here, Proj projects the

updated adversarial sample onto the projection space 𝑃𝜖 (x) which

is the 𝜖-𝐿∞ neighbourhood of the benign sample 2
x. 𝛼 is the attack

step size.

Note that these two strategies assume the attacker knows the

details of the DNN and are thus termed as white-box attacks. We

will evaluate the merit of our training scheme by measuring the

robustness of our trained models to the fake images generated by

these attacks. We argue that this evaluation is more comprehensive

than using images generated by attacks that assume limited knowl-

edge of the DNN [28]. Moreover, we note that PGD is one of the

strongest 𝐿∞ adversarial example generation algorithms [23] and

use it as part of our proposed framework.

2.2 Model Compression

ADMM is a powerful optimization method used to solve problems

with non-convex, combinatorial constraints [1]. It decomposes the

original optimization problem into two sub-problems and solves the

sub-problems iteratively until convergence. Pruning convolutional

neural networks (CNNs) can bemodeled as an optimization problem

where the cardinality of each layer’s weight tensor is bounded by

its pre-specified pruning ratio. In the ADMM framework, such

constraints are transformed to ones represented with indicator

functions, such as I𝜃 (z) = 0 for |z|≤ 𝑛 and +∞ otherwise. Here,

z denotes the duplicate variable [1] and 𝑛 represents the target

number of non-zero weights determined by pre-specified pruning

ratios. Next, the original optimization problem is reformulated as:

L𝜌 (𝜃𝜃𝜃, z, 𝜆) = 𝐽 (𝑔(x;𝜃𝜃𝜃 ), t) + I𝜃 (z) + 〈𝜆,𝜃𝜃𝜃 − z〉 +
𝜌

2
| |𝜃𝜃𝜃 − z| |22 (3)

2It is noteworthy that the generated x̂ are clipped to a valid range which for our
experiments is [0, 1].
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where 𝜆 is the Lagrangian multiplier and 𝜌 is the penalization

factor when parameters 𝜃𝜃𝜃 and z differ. Eq. (3) is broken into two

sub-problems which solve 𝜃𝜃𝜃 and z iteratively until convergence

[27]. The first sub-problem uses stochastic gradient descent (SGD)

to update𝜃𝜃𝜃 while the second sub-problem applies projection to find

the assignment of z that is closest to 𝜃𝜃𝜃 yet satisfies the cardinality

constraint, effectively pruning weights with small magnitudes.

Not only can ADMM prune a model’s weight tensors but it also

has as a dynamic regularizer. Such adaptive regularization is one

of the main reasons behind the success of its use in pruning. How-

ever, ADMM-based pruning has several drawbacks. First, ADMM

requires prior knowledge of the per-layer pruning ratios. Second,

ADMM does not guarantee the pruning ratio will be met, and there-

fore, an additional round of hard pruning is required after ADMM

completes. Third, not all problems solved with ADMM are guaran-

teed to converge. Fourth, to improve the convergence, 𝜌 needs to

be progressively increased across several rounds of training, which

increases training time [1].

Sparse learning [4] addresses the shortcomings of ADMM by

leveraging exponentially smoothed gradients (momentum) to prune

weights. It redistributes pruned weights across layers according

to their mean momentum contribution. The weights that will be

removed and transferred to other layers are chosen according to

their magnitudes while the weights that are brought back (reacti-

vated) are selected based on their momentum values. On the other

hand, a major shortcoming of sparse learning compared to ADMM

is that it does not benefit from a dynamic regularizer and thus

often yields lower levels of accuracy. Furthermore, existing sparse-

learning schemes only support irregular forms of pruning, limiting

speed-up on many compute platforms. Finally, sparse-learning, to

the best of our knowledge, has not previously been extended to

robust model compression.

3 DYNAMIC NETWORK REWIRING

To tackle the shortcomings of ADMM and sparse-learning this sec-

tion introduces a dynamic 𝐿2 regularizer that enables non-iterative

training to achieve high accuracy with compressed models. We

then describe a hybrid loss function to provide robustness to the

compressed models and an extension to support structured pruning.

3.1 Dynamic 𝐿2 Regularizer

For a DNN parameterized by 𝜃𝜃𝜃 with 𝐿 layers, we let 𝜃𝜃𝜃𝑙 represent

the weight tensor of layer 𝑙 . In our sparse-learning approach, these

weight tensors are element-wise multiplied (�) by corresponding

binary mask tensors (m𝑙 ) to retain only a fraction of non-zero

weights, thereby meeting a target pruning ratio. We update each

layer mask in every epoch similar to [4]. The number of non-zeros

is updated based on the layer’s normalized momentum and the

specific non-zero entries are set to favor large magnitude weights.

We incorporate an ADMM dynamic 𝐿2 regularizer [27] into this

framework by introducing duplicate variable z for the non-zero

weights, which is in turn updated at the start of every epoch. Unlike

[27], we only penalize differences between the masked weights

(𝜃𝜃𝜃𝑙 � m𝑙 ) of a layer 𝑙 and their corresponding duplicate variable z𝑙 .

Because the total cardinality constraint of the masked parameters

is satisfied, i.e.
∑𝐿
𝑙=1

card(𝜃𝜃𝜃𝑙 � m𝑙 ) ≤ 𝑛, the indicator penalty factor

is redundant and the loss function may be simplified as

L𝜌 (𝜃𝜃𝜃, z,m) = 𝐽 (𝑔(x;𝜃𝜃𝜃,m), t) +
𝜌

2

𝐿∑

𝑙=1

| |𝜃𝜃𝜃𝑙 � m𝑙 − z𝑙 | |
2
2 (4)

where, 𝜌 is the dynamic 𝐿2 penalizing factor. This simplification

is particularly important because the indicator function used in

Eq. 3 is non-differentiable and its removal in Eq. 4 enables the

loss function to be minimized without decomposition into two

sub-problems.3 Moreover, SGD with this loss function converges

similarly to the SGD with 𝐽 (𝑔(x;𝜃𝜃𝜃,m), t) and more reliably than

ADMM. Intuitively, the key role of the dynamic regularizer in this

simplified loss function is to encourage the DNN to not change

values of the weights that have large magnitude unless the corre-

sponding loss is large, similar to what the dynamic regularizer does

in ADMM-based pruning.

3.2 Proposed Hybrid Loss Function

For a given input image x, adversarial training can be viewed as a

min-max optimization problem that finds the model parameters 𝜃𝜃𝜃

that minimize the loss associated with the corresponding adversar-

ial sample x̂, as shown below:

arg min
𝜃𝜃𝜃

{arg max
x̂∈𝑃𝜖 (x)

𝐽 (𝑔(x̂;𝜃𝜃𝜃 ), t)} (5)

In our framework, we use SGD for loss minimization and PGD to

generate adversarial images. More specifically, to boost classifica-

tion robustness on perturbed data we propose using a hybrid loss

function that combines the proposed simplified loss function in Eq.

4 with adversarial image loss, i.e.,

𝐽𝑡𝑜𝑡 = 𝛽L𝜌 (𝜃𝜃𝜃, z,m) + (1 − 𝛽)𝐽 (𝑔(x̂;𝜃𝜃𝜃,m), t) (6)

𝛽 provides a tunable trade-off between the two loss components.

Observation 1 A DNN only having a fraction of weights active

throughout the training can be trained with the proposed hybrid loss

to finally converge similar to that of the un-pruned model (mask

m = 1) to provide a robust yet compressed model.

This is exemplified in Fig. 2(a) which shows similar conver-

gence trends for both pruned and unpruned models, simultaneously

achieving both the target compression and robustness while also

mitigating the requirement of multiple training iterations.

3.3 Support for Channel Pruning

Let the weight tensor of a convolutional layer 𝑙 be denoted as

𝜃𝜃𝜃𝑙 ∈ R
𝑀×𝑁×ℎ×𝑤 , where ℎ and 𝑤 are the height and width of the

convolutional kernel, and 𝑀 and 𝑁 represent the number of fil-

ters and channels per filter, respectively. We convert this tensor

to a 2D weight matrix, with 𝑀 and 𝑁 × ℎ ×𝑤 being the number

of rows and columns, respectively. We then partition this matrix

into 𝑁 sub-matrices of 𝑀 rows and ℎ ×𝑤 columns, one for each

channel. To compute the importance of a channel 𝑐 , we find the

Frobenius norm (F-norm) of corresponding sub-matrix, thus effec-

tively compute 𝑂𝑐
𝑙
= |𝜃𝜃𝜃 :,𝑐,:,:

𝑙
|2
𝐹
. Based on the fraction of non-zero

weights that need to be rewired during an epoch 𝑖 , denoted by the

pruning rate 𝑝𝑖 , we compute the number of channels that must be

pruned from each layer, 𝑐
𝑝𝑖
𝑙
, and prune the 𝑐

𝑝𝑖
𝑙

channels with the

3Note this simplified loss function also drops the term 〈𝜆,𝜃𝜃𝜃 − z〉 because z is updated
with 𝜃𝜃𝜃 at the beginning of each epoch, forcing the Lagrangian multiplier 𝜆 and its
contribution to the loss function to be always 0.
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Algorithm 1: DNR Training.

Data: weight 𝜃𝜃𝜃𝑙 , momentum 𝜇𝜇𝜇𝑙 , binary mask M𝑙 , 𝑙 = 0..𝑘

Data: density 𝑑 , 𝑖 = 0..numEpochs, pruning rate 𝑝 = 𝑝𝑖=0
pT: irregular or channel

1 for 𝑙 ← 0 to 𝑘 do

2 𝜃𝜃𝜃𝑙 ← init(𝜃𝜃𝜃𝑙 ) & M𝑙 ← createMaskForWeight(𝜃𝜃𝜃𝑙 , 𝑑)

3 applyMaskToWeights(𝜃𝜃𝜃𝑙 ,M𝑙 )

4 z𝑙 ← 𝜃𝜃𝜃𝑙 � M𝑙

5 end

6 for i ← 0 to numEpochs do

7 for j ← 0 to numBatches do

8 J = computeCleanLoss(xxx) + updateDynmicRegularizr(𝜃𝜃𝜃, z)

9 J𝑎𝑑𝑣 = computePerturbedLoss(x̂xx)

10 J𝑡𝑜𝑡 = updateRobustLoss(J, J𝑎𝑑𝑣 )

11
𝜕J𝑡𝑜𝑡
𝜕𝜃𝜃𝜃

= computeGradients(𝜃𝜃𝜃, batch)

12 updateMomentumAndWeights(
𝜕J𝑡𝑜𝑡
𝜕𝜃𝜃𝜃

, 𝜇𝜇𝜇)

13 for 𝑙 ← 0 to 𝑘 do

14 applyMaskToWeights(𝜃𝜃𝜃𝑙 ,M𝑙 )

15 end

16 end

17 tM ← getTotalMomentum(𝜇𝜇𝜇)

18 pT ← getTotalPrunedWeights(𝜃𝜃𝜃, 𝑝𝑖 )

19 𝑝𝑖 ← linearDecay(𝑝𝑖 )

20 for 𝑙 ← 0 to 𝑘 do

21 𝜇𝜇𝜇𝑙 ← getMomentumContribution(𝜃𝜃𝜃𝑙 ,M𝑙 , tM, pT)

22 Prune(𝜃𝜃𝜃𝑙 ,M𝑙 , 𝑝𝑖 , pT)

23 Regrow(𝜃𝜃𝜃𝑙 ,M𝑙 , 𝜇𝜇𝜇𝑙 · tM, pT)

24 applyMaskToWeights(𝜃𝜃𝜃𝑙 ,M𝑙 )

25 z𝑙 ← 𝜃𝜃𝜃𝑙 � M𝑙

26 end

27 end

lowest F-norms. We then compute each layer’s importance based

on the normalized momentum contributed by its non-zero channels.

These importance measures are used to determine the number of

zero-F-norm channels 𝑟 𝑖
𝑙
≥ 0 that should be re-grown for each

layer 𝑙 . More precisely, we re-grow the 𝑟 𝑖
𝑙
zero-F-norm channels

with the highest Frobenius norms of their momentum. We note

that this approach can easily be extended to enable various other

forms of structured pruning. Moreover, despite supporting pruning

of both convolution and linear layers, this paper focuses on reduc-

ing the computational complexity of a DNN. We thus experiment

with pruning only convolutional layers because they dominate the

computational complexity [18]. The detailed pseudo-code of the

proposed training framework is shown in Algorithm 1.

It is noteworthy that DNR’s ability to arrange per-layer pruning

ratio for robust compression successfully avoids the tedious task

of hand-tuning the pruning-ratio based on layer sensitivity. To

illustrate this, we follow [5] to quantify the sensitivity of a layer by

measuring the percentage reduction in classification accuracy on

both clean and adversarial images caused by pruning that layer by

𝑥% without pruning other layers.

Observation 2 DNN layers’ sensitivity towards clean and per-

turbed images are not necessarily equal, thus determining layer prun-

ing ratios for robust models is particularly challenging.

Figure 2: (a) Training loss vs. epochs and (b) Pruning sensi-

tivity per layer for VGG16 on CIFAR-10.

As exemplified in Fig. 2(b), for 𝑥 = 95% there is significant differ-

ence in the sensitivity of the layers for clean and perturbed image

classification. DNR, on the contrary, automatically finds per-layer

pruning ratios (overlaid as pruning sensitivity as in [5]) that serves

well for both types of image classification targeting a global pruning

of 95%.

4 EXPERIMENTS

In this section, we first describe the experimental setup we used to

evaluate the effectiveness of the proposed robust training scheme.

We then compare our method against other state-of-the-art robust

pruning techniques based on ADMM [31] and 𝐿1 lasso [26]. We also

evaluate the merit of DNR as a clean-image pruning scheme and

show that it consistently outperforms contemporary non-iterative

model pruning techniques [4, 5, 12, 20]. We finally present an abla-

tion study to empirically evaluate the importance of the dynamic

regularizer in the DNR’s loss function. We used Pytorch [25] to

write the models and trained/tested on AWS P3.2x large instances

that have an NVIDIA Tesla V100 GPU.

4.1 Experimental Setup

4.1.1 Models and Datasets. We selected three widely used datasets,

CIFAR-10 [16] CIFAR-100 [16] and Tiny-ImageNet [10] and picked

two well known CNN models, VGG16 [29] and ResNet18 [11]. Both

CIFAR-10 and CIFAR-100 datasets have 50K training samples and

10K test samples with an input image size of 32 × 32 × 3. Training

and test data size for Tiny-ImageNet are 100k and 10k, respectively

where each image size is of 64× 64× 3. For all the datasets we used

standard data augmentations (horizontal flip and random crop with

reflective padding) to train the models with a batch size of 128.

4.1.2 Adversarial Attack and DNR Training Settings. For PGD, we

set 𝜖 to 8/255, the attack step size 𝛼 = 0.01, and the number of

attack iterations to 7, the same values as in [14]. For FGSM, we

choose the same 𝜖 value as above.

We performed DNR based training for 200/170/60 epochs for

CIFAR-10/CIFAR-100/Tiny-ImageNet, with a starting learning rate

of 0.1, momentum value of 0.9, and weight decay value of 5𝑒−4. For

CIFAR-10 and CIFAR-100 the learning rate (LR) was reduced by

a factor of 0.2 after 80, 120, and 160 epochs. For Tiny-ImageNet

we reduced the LR value after 30 and 50 epochs. In addition, we

hand-tuned 𝜌 to 10−4 and set the pruning rate 𝑝 = 0.5. We linearly

decreased the pruning rate every epoch by
𝑝

𝑡𝑜𝑡𝑎𝑙 𝑒𝑝𝑜𝑐ℎ𝑠
. Finally,

to balance between the clean and adversarial loss, we set 𝛽 to 0.5.

Lastly, note that we performed warm-up sparse learning [4] for the
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Pruning Compression % Channel Accuracy (%)
type -ratio present Clean FGSM PGD

Unpruned-baseline 1× 100 50.91 18.19 13.87
Irregular 20.63× 98.52 51.71 18.21 14.46
Channel 1.45× 74 51.09 17.92 13.54

Table 1: Results on VGG16 to classify Tiny-ImageNet.

first 5 epochs with only the clean image loss function before using

the hybrid loss function with dynamic regularization (see Eq. 6) for

robust compression for the remaining epochs.

4.2 Results

Results onCIFARdatasets:We analyzed the impact of our robust

training framework on both clean and adversarially generated im-

ages with various target compression ratios in the range [0.01, 1.0],

where model compression is computed as the ratio of total weights

of themodel to the non-zeroweights in the prunedmodel. As shown

in Figs. 3(a-b) DNR can effectively find a robust model with high

compression and negligible compromise in accuracy. In particular,

for irregular pruning our method can compress up to ∼20× with

negligible drop in accuracy on clean as well as PGD and FGSM based

perturbed images, compared to the baseline non-pruned models,

tested with VGG16 on CIFAR-10 and ResNet18 on CIFAR-100.4

Observation 3 As the target compression ratio increases, chan-

nel pruning degrades adversarial robustness more significantly than

irregular pruning.

As we can see in Fig. 3(a-b), the achievable model compression

with negligible accuracy loss for structured (channel) pruned mod-

els is ∼10× lower than that achievable through irregular pruning.

This trend matches with that of the model’s performance on clean

image. However, as we can see in Fig. 3(c), the percentage of chan-

nels present in our channel-pruned models can be up to ∼10× lower

than its irregular counterparts, implying a similarly large speedup

in inference time on a large range of compute platforms [4].

Results on Tiny-ImageNet: As shown in Table 1, DNR can com-

press the model up to 20.63× without any compromise in perfor-

mance for both clean and perturbed image classification.

It is also noteworthy that all our accuracy results for both clean

and adversarial images correspond to models that provide the best

test accuracy on clean images. This is because robustness gains are

typically more relevant on models in which the performance on

clean images is least affected.

4.3 Comparison with State-of-the-art

Here, were compare the performance of DNR with ADMM [31]

and 𝐿1 lasso based [26] robust pruning. For ADMM based robust

pruning we followed a three stage compression technique namely

pre-training, ADMM based pruning, andmasked retraining, perform-

ing pruning for 30 epochs with 𝜌𝑎𝑑𝑚𝑚 = 10−3 as described in [31].

𝐿1 lasso based pruning adds a 𝐿1 regularizer to its loss function to

penalize the weight magnitudes, where the regularizer coefficient

determines the penalty factor. Table 2 shows that our proposed

method outperforms both ADMM and 𝐿1 Lasso based approaches

by a considerable margin, retaining advantages of both worlds 5.

In particular, compared to ADMM, with VGG16 (ResNet18) model

4A similar trend is observed for VGG16 on CIFAR-100 and ResNet18 on CIFAR-10.
These are not included in the paper due to space limitations.

No pre- Per-layer Targe t Pruning Compre- Accuracy (%)
Model Method trained sparsity pruning type ssion

model knowledge met ratio Clean FGSM PGD
not-needed

ADMM [31] × × � Irregular 16.78× 86.34 49.52 40.62
VGG16 ADMM naive × � � 19.74× 83.87 42.46 32.87

𝐿1 Lasso [26] � � × 2.01× 83.24 50.32 42.01
DNR � � � 20.85× 86.74 52.92 43.21

ADMM [31] × × � Irregular 14.6× 87.15 54.65 46.57
ResNet18 ADMM naive × � � 19.74× 86.10 50.49 42.24

𝐿1 Lasso [26] � � × 6.84× 85.92 55.20 46.80
DNR � � � 21.57× 87.32 55.13 47.35

Table 2: Comparison of DNR, ADMM based, and 𝐿1 lasso

based robust pruning schemes on CIFAR-10.

on CIFAR-10, DNR provides up to 3.4% (0.78%) increased classi-

fication accuracy on perturbed images with 1.24× (1.48×) higher

compression. Compared to 𝐿1 Lasso, we achieve 10.38× (3.15×)

higher compression and up to 2.6% (0.55%), and 3.5% (1.4%) in-

creased accuracy on perturbed and clean images, respectively, for

VGG16 (ResNet18) on CIFAR-10 classification.

Observation 4 Naively tuned per-layer pruning ratio degrades

both robustness and clean-image classification performance of amodel.

For this, we evaluated robust compression using naive ADMM,

i.e. using naively tuned per-layer pruning-ratio (all but the 1st layer

∼𝑥% for a 𝑥% total sparsity). As shown in Table 2, this clearly de-

grades the performance, implying layer-sparsity tuning is necessary

for ADMM to perform well.

4.4 Pruning to Classify Clean-only Images

To evaluate the merit of DNR as a clean-image only pruning scheme

(DNR-C), we trained using DNR with the same loss function minus

the adversarial loss term (by setting 𝛽 = 1.0 in Eq. 6) to reach a target

pruning ratio. Table 3 shows that our approach consistently out-

performs other state-of-the-art non-iterative pruning approaches

based on momentum information [4, 5], reinforcement-learning

driven auto-compression (AMC) [12], and connection-sensitivity

[20]5. The 𝛿 value in the seventh column represents the error dif-

ference from corresponding non-pruned baseline models. We also

present performance on CIFAR-100 for VGG16 and ResNet18 and

Tiny-ImageNet for VGG16.6 In particular, we can achieve up to

34.57× (12.61×) compression on CIFAR-10 dataset with irregular

(channel) pruning maintaining accuracy similar to the baseline. On

CIFAR-100 compression of up to 22.45× (5.57×) yields no signifi-

cant accuracy drop (less than 2.7% in top-1 accuracy) with irregular

(channel) pruning. Moreover, our evaluation shows a possible prac-

tical speed up of up to 6.06× for CIFAR-10 and 2.41× for CIFAR-100

can be achieved through channel pruning using DNR-C. For Tiny-

ImageNet, DNR-C can provide compression and speed-up of up to

11.55× and 1.53×, respectively with negligible accuracy drop.

4.5 Ablation Study

To understand the performance of the proposed hybrid loss function

with a dynamic 𝐿2 regularizer, we performed ablation with both

VGG16 and ResNet18 on CIFAR-10 for a target parameter density

of 5% and 50% using irregular and channel pruning, respectively. As

5Romanized numbers in the table are results of our experiments, and italicized values
are directly taken from the respective original papers.
6To have an "apple to apple" comparison we provide results on ResNet50 model for
classification on CIFAR-10. All other simulations are done on only the ResNet18 variant
of ResNet.
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Figure 3:Model compression vs. accuracy (on both clean and adversarially generated images) for irregular and channel pruning

evaluated with (a) VGG16 on CIFAR-10 and (b) ResNet18 on CIFAR-100. (c) Comparison of channel pruning with irregular

pruning in terms of % of channels present. Note that the % of channels present correlates with inference time [4, 22].

Dataset Model Method Pruning Compress- Error (%) 𝛿 from Speedup
type ion ratio top-1 baseline

VGG16 SNIP [20] Irregular 32.33× 8.00 -0.26 –
Sparse-learning [4] 32.33× 7.00 -0.5 –

DNR-C 34.57× 6.50 -0.09 1.29×
DNR-C Channel 12.61× 8.00 -1.5 6.06×

CIFAR ResNet50 GSM [5] Irregular 10× 6.20 -0.25 –
-10 AMC [12] 2.5× 6.45 +0.02 –

DNR-C 20× 4.8 -0.07 1.75×
ResNet18 DNR-C Irregular 20.32× 5.19 -0.10 1.31×

Channel 5.67× 5.36 -0.27 2.43×

VGG16 DNR-C Irregular 20× 27.14 -1.04 1.07×
CIFAR Channel 2.76× 28.78 -2.68 2.06×
-100 ResNet18 DNR-C Irregular 22.45× 24.9 -1.17 1.13×

Channel 5.57× 25.28 -1.55 2.41×

Tiny VGG16 DNR-C Irregular 11.55× 40.96 +0.36 1.01×
ImageNet Channel 1.74× 42.61 -1.28 1.53×

Table 3: Comparison with state-of-the-art non-iterative

pruning schemes on CIFAR-10 and comparison of deviation

from baseline on CIFAR-100 and Tiny-ImageNet.

Accuracy (%) with Accuracy (%) with
Model Method: DNR irregular pruning channel pruning

Clean FGSM PGD Clean FGSM PGD

VGG16 Without dynamic 𝐿2 87.01 50.09 40.62 86.28 49.49 41.25
With dynamic 𝐿2 86.74 52.92 43.21 85.83 51.03 42.36

ResNet18 Without dynamic 𝐿2 87.45 53.52 45.33 87.97 53.10 45.91
With dynamic 𝐿2 87.32 55.13 47.35 87.49 56.09 48.33

Table 4: Comparison of DNR with and without the dynamic

regularizer for CIFAR-10 classification.

shown in Table 4, using the dynamic regularizer improves the ad-

versarial classification accuracy by up to 2.83% for VGG16 and ∼3%

for ResNet18 with similar clean-image classification performance.

4.6 Generalized Robustness Against PGD
Attack of Different Strengths

Fig. 4 presents the performance of the pruned models as a function

of the PGD attack iteration and the attack bound 𝜖 . In particular,

we can see that, for both irregular and channel pruned models, the

accuracy degrades with higher number of attack iterations. When 𝜖

increases, the accuracy drop is similar in both the pruning schemes.

These trends suggest that our robustness is not achieved through

gradient obfuscation [26].

5 CONCLUSIONS

This paper addresses the open problem of achieving ultra-high

compression of DNN models while maintaining their robustness

Figure 4: On CIFAR-10, the perturbed data accuracy of

ResNet18 under PGD attack versus increasing (a), (c) attack

iteration and (b), (d) attack bound 𝜖 for irregular (5% density),

and channel pruned (50% density) models, respectively.

through a non-iterative training approach. In particular, the pro-

posed DNR method leverages a novel sparse-learning strategy with

a hybrid loss function that has a dynamic regularizer to achieve

better trade-offs between accuracy, model size, and robustness. Fur-

thermore, our extension to support channel pruning shows that

compressed models produced by DNR can have a practical inference

speed-up of up to ∼10×.
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