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Ensuring proper use of personal protective equipment (PPE) is essential for improving workplace safety man-
agement. The authors present an extensible pose-guided anchoring framework aimed at multi-class PPE
compliance detection. The overall approach harnesses a pose estimator to detect worker body parts as spatial
anchors and guide the localization of part attention regions using body-knowledge-based rules considering
workers' orientations and object scales. Specifically, “part attention regions” are local image patches expecting
PPEs based on their inherent relationships with body parts, e.g., (head, hardhat) and (upper-body, vest). Finally,
the shallow CNN-based classifiers can reliably recognize both PPE and non-PPE classes within their corre-
sponding part attention regions. Quantitative evaluations tested on the developed construction personal pro-
tective equipment dataset (CPPE) show an overall 0.97 and 0.95 F1-score for hardhat and safety vest detection,
respectively. Comparative studies with existing methods also demonstrate the higher detection accuracy and

advantageous extensibility of the proposed strategy.

1. Introduction

Detecting proper use of personal protective equipment is crucial for
promoting safety management in construction workplaces. Construction
sites continue to be among the most accident-prone and potentially
hazardous workplaces [1]. Excessive risks (e.g., working at height,
collapse, and manual handling) on the job site frequently expose
workers to injuries and even fatalities. To prevent accidents, personal
protective equipment (PPE) aims at protecting the wearer's body against
job-related hazards. However, several factors, including low awareness,
discomfort, fatigue, and carelessness, contribute to low compliance with
PPE use and incorrect handling among workers [2]. Computer vision-
based methods have shown potential for automated PPE compliance
detection in past practices, as they permit non-invasive and low-cost
perception on construction sites. Computer vision-based methods typi-
cally detect all workers and PPE components first and then verify if a
worker uses the PPE based on spatial relationships among the workers
and the involved PPE instances [3].

Although deep neural networks have led to significant progress in
object detection, detecting individual workers and PPE items at con-
struction sites remains a challenge due to the complex backgrounds
around workers. Most object detection methods tend to scan the whole
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image to localize and classify multi-class objects, which may result in
false detections on cluttered construction backgrounds. Another chal-
lenge in object detection for PPE and workers is the significant varia-
tions in object scales resulting from dynamic camera perspectives [4].
The shape and size of objects can change noticeably in videos when
captured by cameras over varying distances. Furthermore, most existing
methods for inspecting PPE compliance focus only on detecting hard-
hats. When verifying multi-class PPE objects, an accurate and robust
object detection model requires collecting a large-scale domain-specific
object dataset covering various scenarios for model training, which can
be costly, tedious, and time-consuming.

Even after detecting individual objects, whether a worker lacks PPE
remains to be verified. Many state-of-the-art approaches pair individual
workers with their PPE by checking if the detected PPE is present in or
around a worker's detection region [5,6]. However, these methods often
fail to identify cases of incorrect PPE handling. For example, an
employee may just hold the hardhat instead of wearing it on the head, as
shown in Fig. 1a. Significant variations in workers' postures and orien-
tations make it hard to enumerate all possible spatial relationships be-
tween the workers and PPE proposals. Additionally, these methods
could hardly handle crowded workspaces where workers could occlude
each other partially; bounding box representations (i.e., axis-aligned
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rectangles tightly bounding the object) used by these methods make it
hard to isolate individual workers in crowded scenarios. The overlaps
between bounding boxes could lead to matching confusion for individ-
ual workers and PPE items (see Fig. 1b). Furthermore, the computational
complexity of spatial verification expands significantly with the number
of PPE elements and workers [3]. For example, for two PPE instances
and two workers, four (2 x 2 = 4) possible combinations need spatial
verification. However, for two PPE items and five workers, there are ten
(2 x 5 = 10) pairs of individual instances. The number of such combi-
nations will grow exponentially and make the spatial verification of all
of the instances unmanageable.

Recently, pose estimation has gained increasing attention in the
computer vision community. The mission is to identify, localize, and
track anatomical keypoints (also known as joints) for individuals in
images or videos. Current pose estimation algorithms based on deep
learning have achieved impressive results in unconstrained environ-
ments, demonstrating the potential for worker detection in complex
construction environments. Contrasted with bounding-box based ap-
proaches for worker detection, human skeletons can provide more fine-
grained information (e.g., location and visibility) about a person, espe-
cially in the occluded conditions (see Fig. 1b).

Motivated by the success of pose estimation models, the authors
propose an extensible framework that leverages skeleton-based human
pose information to improve multi-class PPE detection. First, the authors
use a pose estimator rather than object detection methods to detect and
represent individual workers in the form of human skeletons, which help
isolate each worker from a crowded workspace where severe occlusions
exist between workers. Empirical observations indicate that workers'
poses also provide joint-level anchors for guiding the localization of
different PPE items, e.g., (head, hardhat) and (upper-body, vest). This
paper then defines human-body-part attention regions (the authors will
use the term — “part attention regions” for the rest of the paper) that are
informative image areas spatially correlated with PPE items. This
attention-guided strategy can produce more accurate PPE detection re-
sults for two reasons: (1) the computational resource can be guided to
concentrate on an informative local region, and (2) the local patch
appearance can be shared between workers to benefit various back-
grounds. To navigate through these image patches, the authors develop
body knowledge-based rules using detected 2D keypoints to configure
the location and size of the objects' bounding boxes under various
workers' orientations. Finally, this study trains two shallow CNN-based
classifiers to recognize hardhats or vests within cropped part attention
regions. The efficient inference of non-PPE use workers is to identify
those areas where the expected PPE is missing without evaluating the
complex spatial relationships of the instances involved. To evaluate the
performance of the proposed method, the authors introduce a new
Construction Personal Protective Equipment (CPPE) Dataset and pub-
licly release all data and annotations to encourage future research in the
area. Extensive experiments verify this new method's potential by
simultaneously checking for safety violations of non-hardhat use and
non-vest use within the paper's scope.

In the remainder of this paper, Section 2 reviews the literature on the
necessity for PPE use monitoring and computer vision-based PPE
detection, as well as recent progress in pose estimation. The authors then
describe the details of the proposed method in Section 3. Section 4
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introduces the constructed CPPE dataset and describes the imple-
mentation details. Section 5 then evaluates the individual components of
the developed method and compares this work against state-of-the-art
approaches. Section 6 discusses the research limitations, followed by a
summary of the research findings and future studies in Section 7.

2. Literature review

In this section, the authors first discuss the necessity of inspecting
multiple PPE items in the workplace. Next, the authors review the main
techniques for PPE detection at construction sites. Finally, since the
authors recommend a pose-guided anchoring framework for PPE
detection, a review of emerging human pose estimation methods is
provided.

2.1. Importance of personal protective equipment (PPE) in construction

PPE acts as a fundamental barrier between workers and hazardous
conditions in workplaces. Depending on the body-protected areas,
standard PPE classifications and examples include head protection, eye
and face protection, hand protection, body protection, foot protection,
and hearing protection [7]. For instance, workers wearing hardhats can
mitigate the impact of falling objects and avoid injuries from accidental
bumps to stationary objects. Gloves are essential for shielding hands
when handling rough or sharp materials. Likewise, the use of reflective
safety vests could increase workers' visibility in workspaces, lowering
the likelihood of struck-by accidents, especially in low-light or dark
conditions.

Despite the high prevalence of hazardous working conditions,
compliance with PPE use in workspaces remains low. The Occupational
Safety and Health Administration (OSHA) stated that the lack of or
improper use of PPE was one of the most violated OSHA standards
during the 2019 fiscal year [8]. Statistics from the Bureau of Labor
Statistics (BLS) revealed that nearly 84% of the workers sustaining head
injuries from non-hardhat use, only 1% of almost 770 workers experi-
encing facial injuries were correctly wearing face protection, and the
utilization rate of safety shoes was 23% among those workers who suf-
fered foot injuries [9]. Companies and employers may also face signif-
icant fines of up to $12,934 per violation for PPE non-compliance [10].
Therefore, detecting non-compliance with requirements for using multi-
class PPE is necessary for the workplace.

2.2. Computer vision-based PPE detection

There are two main techniques for verifying PPE compliance at
construction sites: vision-based and sensor-based [5]. Wearable sensor-
based methods focus on applying external location sensors and then
analyzing the recorded signals to monitor compliance with the PPE use
policy. Kelm et al. (2013) [11] introduced a mobile radio-frequency
identification (RFID) device to determine if the workers' PPE use con-
formed to the corresponding safety regulations. Similarly, Li et al.
(2017) [12] proposed a non-hardhat wear inspection system by
attaching silicone pressure sensors to the hardhats' sweatbands. Kim
et al. (2018) [13] used a three-axis accelerometer sensor to detect the
proper use of safety helmets. Despite their potential to provide prompt

(a) hardhat use vs. non-hardhat use

(b) bounding boxes vs. human poses

Fig. 1. Illustration of challenges in PPE detection.
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alarms, sensor-based methods inevitably cause discomfort to the
wearers over long working hours. The use of many wearable sensors can
also lead to additional investment. Therefore, this paper focuses pri-
marily on vision-based approaches for verifying PPE compliance in the
workplace.

Conventionally, provided with a frame from the surveillance camera
on construction sites, the vision-based techniques perform PPE compli-
ance detection through two stages: object detection and relationship
verification [3]. The first step is to detect workers and PPE items in the
images. Previous works relied mainly on handcrafted features (e.g.,
shape, motion, color, and edge) to detect these objects. Wu et al. (2018)
[14] utilized the histogram of oriented gradients (HOG) descriptor and
support vector machine (SVM) for worker detection and then applied a
color-based hybrid descriptor for hardhat identification. Mneymneh
et al. (2019) [15] identified moving workers using background sub-
traction and detected the hardhat in the human head regions with the
color-based classification algorithm.

Recently, deep learning techniques, such as Fast/Faster R-CNN
[16,171, You Only Look Once (YOLO) [18], and Single Shot Detection
(SSD) [19], have emerged as powerful methods for their exceptional
machine learning abilities from large-scale labeled datasets. Fang et al.
(2018a) [20] developed a Faster R-CNN method to detect non-hardhat
use workers. Similarly, Fang et al. (2018b) [21] also utilized the
Faster-R-CNN model to identify workers and their harnesses. Wu et al.
(2019) [22] applied an SSD-based algorithm to identify workers with
hardhats. Nath et al. (2020) [3] built on the YOLO architecture to verify
non-compliance with hardhats and safety vests. However, these methods
generally regard PPE detection as a specific target of object detection.
Due to the cluttered backgrounds, the large variability of object scale,
and common occlusions at construction sites, detecting multi-class PPE
items will demand thousands or tens of thousands of domain-specific
data samples for training these “data-hungry” methods.

When performing the relationship verification task, previous studies
often relied on defining geometric and spatial rules to assess the
contextual relationships of the detected instances of workers and PPE.
For example, Park et al. (2015) [5] matched human bodies' windows and
hardhats with predefined spatial rules. Nath et al. (2020) [3] verified if a
worker was using a hardhat or vest by checking the Intersection over
Union (IoU) of the bounding boxes that surround hardhats/vests and
workers. Tang et al. (2020) [23] further designed a new human-object
interaction (HOI) recognition method to check PPE compliance by
detecting potential worker-PPE box pairs. Some researchers also inte-
grate geometric rules to verify the proper use of PPE. Chen et al. (2020)
[24] used the Euclidean distance between bounding boxes of detected
hardhats and the neck to determine whether everyone uses the hardhat.
However, the relationship verification's computational complexity ex-
pands with the number of PPE instances and workers because possible
combinations of PPE instances and workers increase exponentially in
response to those numbers [3]. Furthermore, the spatial relationships
between workers and PPE may change with the workers' poses and
orientations. That fact makes it difficult to define all possible verification
rules.

Facilitated by recent achievements in face detection, a few re-
searchers have attempted to utilize face regions to aid in non-hardhat
use detection. For example, Du et al. (2011) [25] identified non-
hardhat use workers by first detecting faces using Haar-like face fea-
tures and then checking the presence of a hardhat based on color fea-
tures around face regions. Shrestha et al. (2015) [26] also implemented
an automatic non-hardhat use detection method by identifying the
workers' faces and then using edge detection to localize hardhats near
upper-head regions. Shen et al. (2020) [4] developed a face bounding-
box regression algorithm to determine the candidate regions of safety
helmets. However, these face-region-based methods fail to detect cases
where the workers have their backs facing the camera. Additionally,
most of the existing techniques are exclusively for detecting safety issues
associated with hardhat use. Many other standard PPE components (e.g.,
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safety vests or gloves) can hardly be applied to such face-based schemes.
2.3. Human pose estimation

“Human” is a special class in the computer vision community. Pose
estimation explicitly represents “human” with human skeletons, which
is a crucial step towards many domain applications, such as activity
recognition [27], intelligent driver assistance systems [28], sign lan-
guage understanding [29], and medical healthcare [30]. Classical pose
estimation algorithms, such as pictorial structures [31] and deformable
part models [32], have shown low detection accuracy in unconstrained
environments.

With the introduction of the DeepPose network by Toshev and
Szegedy (2014) [33], deep learning-based models have significantly
reshaped human pose estimation techniques. The DeepPose network
formulated the pose estimation as a joint regression problem using
CNNs, which has yielded drastic improvements over standard bench-
marks. Later, Wei et al. (2016) [34] designed a Convolutional Pose
Machine network with iterative convolutional and pooling layers to
output a set of heatmaps (also known as confidence maps) for keypoint
prediction. Instead of regressing to XY locations, heatmaps model the
joint distributions as Gaussian peaks. Newell et al. (2016) [35] proposed
a Stacked Hourglass network using successive convolutional layers and
residual modules. The test results on the FLIC dataset [36] reveal that
the Stacked Hourglass network has obtained 99% Percentage of Correct
Keypoints (PCK) accuracy on elbow joints and 97% on wrist joints. Cao
et al. (2017) [37] developed a real-time OpenPose network by modi-
fying Convolutional Pose Machines with the Part Affinity Fields (PAFs),
which encode both location and orientation information of the limbs to
aid in pair matching. This method has attained state-of-the-art accuracy
results on the MS COCO Keypoints Challenge with a detection speed of
22 frames per second (FPS) on a single Nvidia GTX 1080 Ti machine
[371.

In the construction domain, human pose estimation has gained
increasing attention in various occupational tasks, such as worker
behavior analysis [38,39], ergonomic analysis [40], and productivity
assessments [41]. Liu et al. (2017) [42] applied CNNs to estimate worker
poses in sequential images within unconstrained and cluttered envi-
ronments. The experimental results achieved 91.7% PCKh@0.5 of all
keypoints localization in the steel beam cutting task. Yan et al. (2017)
[43] developed an ergonomic posture recognition technique for con-
struction hazard prevention in 2D skeleton motion. The test results have
demonstrated the feasibility of estimating worker poses with 2D ordi-
nary cameras in the workplace. Given the success of pose estimation
algorithms under real-world scenarios, this paper examines how to
leverage skeleton-based human pose estimation techniques to enhance
PPE detection accuracy with improved computational efficiency and
reduced needs for training large-scale image samples.

3. Methodology

This section details the pose-guided framework for multi-class PPE
detection in workspaces. In particular, the authors highlight the tech-
nical differences between the existing PPE detection strategies and the
developed method in this study. To validate that the framework is
extensible for detecting multiple PPE classes, the authors evaluate safety
violations of hardhats and safety vests within the scope of this work.

3.1. Overview of the proposed framework

Fig. 2 illustrates the overall framework of the proposed method.
Three parts collectively address the challenges related to efficient and
effective PPE detection in workspaces: (1) worker pose estimation, (2)
part attention localization, and (3) binary classification for PPE and non-
PPE use. The authors first use a pose estimator to detect individual
workers with occlusions. Part attention localization module utilizes
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Worker Pose Estimation

Part Attention Localization
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Binary classification for PPE and non-PPE use
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Fig. 2. Overview of the pose guided anchoring framework for multi-class PPE detection.

known 2D keypoints to locate informative image patches anticipating
hardhats and vests. To guide through these part attention regions, the
authors define body knowledge-based rules to configure the location
and size of the cropping boxes. Finally, this study develops two CNN-
based classifiers to determine whether these areas contain hardhats or
vests. The algorithm then infers non-PPE use cases by identifying those
anticipated PPE missing from their part attention regions.

The authors also summarize two widely adopted strategies from the
existing literature and explain their technical differences with the pro-
posed method, as are shown in Fig. 3. In scheme-1, the object detectors
first identify all workers and PPE instances (in the form of a bounding
box) in the images, then the spatial relations of workers and PPE are
verified by evaluating the Intersection over Union (IoU) of identified
bounding boxes. If these two bounding boxes (PPE box and worker box)
overlap an intersecting area larger than a given threshold, then the
worker is classified as correct PPE use [3,5,6]. To further reduce the
search spaces, recent methods (scheme-2) will first localize workers'
regions and then identify different PPE types within or around the
bounding boxes of detected workers [3,14,15]. In contrast, the proposed
method (scheme-3) uses a pose estimator to detect and represent indi-
vidual workers in the form of skeletons. Instead of simply considering
PPE detection as a specific application of object detection, the authors
transform the process of PPE detection into a binary classification
problem. To achieve this goal, the authors integrate the spatial anchors

(a) Schematic diagram

of worker poses to predetermine the candidate regions for PPE, e.g.,
(head attention region, hardhat) and (upper-body attention region,
vest). This optimized strategy can effectively reject distracting back-
grounds while improving PPE recognition accuracy within limited
training samples.

3.2. Worker pose estimation

Instead of detecting workers with bounding box representations, the
authors applied the pose estimation method for fine-grained detection
and representation of workers' body parts. The pose estimation algo-
rithm will identify all keypoints of the workers first and assemble these
keypoints that belong to the same person in the image, which can pro-
vide joint-level information (e.g., location and visibility) about a person,
especially in crowd scenes.

This study applies the OpenPose model developed by Cao et al. [37]
for worker pose estimation for the following reasons: 1) well-established
implementation for multi-person 2D pose detection with reliable results;
and 2) real-time performance, which can attain near-real-time estima-
tion in real-world conditions regardless of the number of people in any
given image. To further speed up the detection process, the optimized
method adopts the MobileNet network [44] rather than the original
VGG-19 [45] as the feature extractor. The lightweight network uses
depth-wise separable convolution filters that separate depth and spatial

(b) Image illustration
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dimensions to improve computational efficiency.

Fig. 4 illustrates the pipeline of the lightweight OpenPose model. The
network uses an iterative two-branch architecture, which simulta-
neously refines the pose estimation results over n consecutive stages.
One branch generates a set of Part Affinity Fields (PAFs) for the pair-
wise association, which connects all detected body parts to form full-
body skeletons. PAFs link two associated keypoints of limbs and repre-
sent their locations and orientations with a list of 2D vector fields. The
other branch produces coarse-to-fine heatmaps for part detection.
Instead of an end-to-end coordinate regression, each heatmap is a 2D
representation of the probability that a keypoint occurs at each pixel
location, where a single peak implies its most likely location in the
image. After that, the greedy inference can parse each heatmap and PAF
map to assemble the candidate connections into full-body poses for
multiple workers.

For model training, the authors compute the ground-truth heatmap
H based on annotated keypoints. Let x;; be the ground-truth location of
the i-th keypoint for the j-th worker in the image. Placing a 2D Gaussian
distribution centered at x;j, the probability value at pixel location x in
individual heatmaps H;; is defined as:

H;;(x) = exp( - ||x—x,-JH§/62) (€D)

Mathematically, the authors model individual workers with a list of
pose skeletons. The set W = (w3, wo, ..., wy) denotes all the poses of
individual workers, where J is the total number of workers in the frame.
For the j-th worker, p;j = (x;j, yij, vij) denotes the predicted 2D co-
ordinates of the i-th keypoint and its visibility v;;. For the human skel-
eton model, each pose has a total of I = 18 keypoints, including 1) nose,
2) neck, 3) right shoulder, 4) right elbow, 5) right wrist, 6) left shoulder,
7) left elbow, 8) left wrist, 9) right hip, 10) right knee, 11) right ankle,
12) left hip, 13) left knee, 14) left ankle, 15) right eye, 16) left eye, 17)
right ear, and 18) left ear.

The detected keypoints can serve as spatial anchors for guiding
attention to anticipated body part regions (i.e., part attention regions)
depending on the types of PPE items, as illustrated in Table 1. For
example, workers wear hardhats on the head to mitigate head impacts so
that the keypoints such as the ears and nose can help navigate to the
head regions. Similarly, shoulders and hips can predetermine potential
regions for detecting safety vests, which are typically present around
upper-body areas. Safety glasses protect the eye areas; ankles can
initially localize potential areas for recognizing safety-toed footwear;
wrists can guide gloves' detection; and ears are spatially relevant to
earmuffs. For the scope of this research, the authors focus on detecting
the proper use of hardhats and safety vests.

3.3. Part attention localization

The next step is to integrate the detected 2D keypoints as spatial
anchors to infer and localize part attention regions, thus effectively
eliminating the distracting backgrounds and guiding computational re-
sources within informative local regions based on the PPE types.

Fig. 5 shows an overview of the part attention localization module. In
this work, the authors examine two types of part attention regions: head

Stage 1
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Table 1
Spatial anchors for localizing PPE items.

PPE items Body protection Spatial anchors
hardhat head ears; nose
safety vest body shoulders; hips
safety goggles eyes eyes

safety-toe footwear feet ankles

gloves hands wrists
earmuffs hearing ears

attention regions (Region Type I) and upper body attention regions
(Region Type II) to recognize expected hardhats and safety vests.
Mathematically, this study formulates part attention regions as a set of
bounding boxes R = {Rj, Ry, ..., Rx} for the candidate PPE items, where
K is the total number of part attention regions in the image. To localize
these part attention regions, the authors define body knowledge-based
rules to configure the location and size of bounding boxes concerning
diverse worker poses and orientations. Specifically, the following par-
agraphs detail two rules used to assign dynamic head and upper body
attention regions for PPE recognition.

(1) Head attention regions for hardhat recognition.

Head attention regions (Region Type I) are candidate areas in the
image for hardhat recognition. For each Region Type I, the authors
select the nose and ears as the reference points to determine the location
and size of Region Type I for a given worker instance. The redundant
joints guarantee cropping performance when some keypoints are
invisible in the image. Considering the workers' relative orientation to
the camera, the visibility of nose and ears consists of five situations: a)
ears are visible, but the nose is invisible, b) one ear and nose are visible,
c) ears and nose are visible, d) one ear is visible while the nose is
invisible, e) ears and nose are invisible. Fig. 6 shows these cases of
visible joints for defining head attention regions.

Let Xie, Yies Xres Yres Xn» Yns Xnecks Yneck denote the coordinates of the left
ear, right ear, nose, and neck, respectively. Vi, Vr, V4 €{0,1} represent the
visibility of the left ear, right ear, and nose in the same way.

Case 1-A - ears are visible. In this case, workers present with the
back view. This study utilizes oriented bounding boxes to represent
Region Type I in the format of (xi, y1, lj, 61), where x1, y; denote the
midpoint coordinates on the bottom edge, [ is the side length, and 6; is
rotation angle. In this study, the authors used oriented region proposals
rather than horizontal bounding boxes to localize part attention regions.
These rotated image patches with additional angle parameters are
generated adaptively according to the workers' orientations, which
helps describe their locations and contents more accurately than axis-
aligned boxes. The rules determine the expected regions of hardhats as
follows:

X1 = (X +xre)/2

yi = (yle +yr5)/2

1/2
li=r, [(xle_xre)z + ()ﬁe—ym)z]

01 = tan’l [(yze_Yre)/(xle_xre)] (2)

Pair-wise association

sdewjeaq
sdewyeaq

s4vd
s4vd

Feature maps

Fig. 4. Architecture of the OpenPose network.
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Fig. 6. Illustration of the body knowledge-based rules for configuring head attention regions.

where r, is a hyperparameter to ensure that the local window scales
with the workers' size.

Case 1-B - one ear and nose are visible. In this case, workers
appear in a side view. Similarly, the rules segment the expected regions
as follows:

Xy = X

Y2 =Yn

L=r [(xn—Xneck)2 + O Yneat) ] "

0> = tan™" (Yo Vie + YreVee=Vn) / (XieVie + Xee Vi) | 3

where x5, y» denote the corner coordinates on the bottom edge, Iy is
the side length, and 6 is rotation angle ry, is a hyperparameter to
regulate the proper size of Region Type L.

Case 1-C - ears and nose are visible. In this case, the worker poses
are present in a front view. The rule for calculating the oriented box is
the same as Case 1-A.

Case 1-D - one ear is visible while the nose is invisible. Since no
reference point is visible in the regions, the rotation angle 4 = 0 in this
case. The rules for localizing the head areas are as follows:

X4 = XpeVie + XreVie (©)]

Y4 = YieVie T YreVie

12
I = 14 [(XieVie + XeeVieXneek)” + (VieVie + YreVee—Yneek) )

where x4, y4 denote the corner coordinates on the bottom edge, and
I5 is the side length. ry is a hyperparameter to determine the proper size

of Region Type L.

Case 1-E - ears and nose are invisible. Severe head occlusions can
lead to head invisible cases, where none of the keypoints within the head
regions are visible in the image.

(2) Upper-body attention regions for vest recognition.

Upper-body attention regions (Region Type II) are potential regions
that expect the existence of safety vests. For Region Type II, the authors
select shoulders and hips as the reference points to determine the location
and size of Region Type II. Considering their orientation to the camera,
the visibility of the shoulders and hips contains five cases: a) shoulders
and hips are visible, b) shoulders are visible while hips are invisible, c)
shoulders and one hip are visible, d) one shoulder is visible, and e)
shoulders are invisible. Fig. 7 illustrates these possible cases of worker
poses for defining upper-body attention regions.

Let Xis, Yis, Xrs» Yrs> Xth, Yih» Xrh» Yrh denote the coordinates of the left
shoulder, right shoulder, left hip, and right hip, respectively. vi, Vrs, Vin, and
vy, represent the visibility of the left shoulder, right shoulder, left hip, and
right hip, respectively.

Case 2-A -s houlders and hips are visible. The authors represent
the oriented bounding boxes in the format of (x1, y1, w1, h1, 61), where
X1, Y1, W1, hi1, 67 denote the midpoint coordinates on the upper edge,
width, height, and rotation angle of the bounding boxes, respectively.
The rules for localizing the expected regions of safety vests are as
follows:

X1 = (X +Xp5) /2 (5)
V1= (yls +yrs)/2

h = [(yzs + )’rs_ylh_ym)z/4 + (s + xrs_xlh_xrh)2/4] 2
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Region Type Il

0,

(a) shoulders and hips (b) shoulders

(c) shoulders and one hip
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(d) one shoulder

Fig. 7. Illustration of the body knowledge-based rules for configuring upper-body attention regions.

W; =8, h]

01 = tan™ [(vis + Yo=Yy )/ (Xis + Xp—Xp—X1) |

where s, is the side length ratio of rotated boxes for Region Type IIL
Case 2-B -s houlders are visible while hips are invisible. The rules
for cropping the expected regions of safety vests are as follows:

Xy = (i 4 Xr5) /2 (6)

Y2 = ()’I: +yrS)/2~

1/2
Wy = [(wie)? + ()]

hy = sp Wy

02 = tanil [(yrs_yls)/(xrs_xls)]

where x1, y1, w1, h1, 61 denote the midpoint coordinates on the upper
edge, width, height, and rotation angle of the bounding boxes, respec-
tively. sp is the side length ratio of rotated boxes for Region Type II.

Case 2-C - shoulders and one hip are visible. In this case, the rule
for calculating the oriented box is the same as Case 2-B.

- gL

(b) Upper-body attention region localization

Case 2-D - one shoulder is visible. The rules for determining upper-
body attention regions are defined as follows:

X4 = X5 Vis + Xps Vis (7)

Ya = Yis Vis + Yrs Vis

2 211/2
hy = [()ﬁs Vis + Yos Vis=Vin Vi=Yrn Vi)~ + (Xis Vig + Xog Vis—Xan VX Vi) ]

Wy = Sq hy

Oy = tan™" [(Vis Vis + Yrs Vis=Yin Vi=Yon Vo) / (Xts Vis & Xrs Vos=Xtn V=X Vi) ]

where x4, ya, Wa, h4, 04 indicate the corner coordinates on the upper
edge, width, height, and rotation angle of the bounding boxes, respec-
tively. sq is the side length ratio of rotated boxes for Region Type II.

Case 2-E - shoulders are invisible. Severe occlusion occurs in upper
body regions, so the authors define these cases as upper-body invisible.

Fig. 8 shows several examples of localized head and upper body
attention regions. By cropping these part attention regions, even if
approximate, the proposed localization strategy could efficiently reduce
the search spaces while distributing computational resources on small
human-body areas that are candidates of PPE items.

Fig. 8. Part attention regions obtained for hardhat and vest recognition.
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3.4. Binary classification for PPE and non-PPE use

Workers wear the PPE items to protect a specific body area properly.
The inherent relationships between the PPE instances and local body
parts, e.g., (head, hardhat) and (upper-body, vest), can be used to aid in
inferring the fact whether the worker is using the PPE without a detailed
analysis of the spatial relations of the objects involved. Therefore, the
classification of the cases into PPE use and non-PPE use classes relies on
detecting PPE instances in the corresponding body part attention region.
For example, if a hardhat appears in the head attention region, the
worker is regarded as correctly complying with the compliance re-
quirements of hardhats. In other cases, if the expected hardhat is missing
from the head attention regions, the corresponding worker will be
labeled as the NH.

Each worker can produce two types of part attention regions: head
attention regions and upper-body attention regions if their body parts
are visible in the image. To recognize PPE instances within the part
attention regions, the authors develop two classifiers: hardhat classifier
f1(X1) and vest classifier fo(X3). Specifically, head attention regions
comprise two classification results- hardhat use (WH) and non-hardhat
use (NH), while the upper-body attention regions have two classes -
vest use (WV) and non-vest use (NV). Based on the above analysis, the
authors have implemented an inference engine to investigate the re-
lationships between workers and PPE items and ultimately determine
the categories of the focused regions as follows:

Input: E;;, is the m-th (m = 1, 2) part attention region of the j-th worker.
Output: The PPE-use labels 0;  of the j-th worker.
0jk = @;
for each head attention region E;; of the j-th worker do:
Apply the hardhat classifier f1(X;) to predict the hardhat label oj; (i.e., WH or
NH);
Add the label 0;; to 0j;
end
for each upper body attention region E; > of the j-th worker do:
Apply the vest classifier f2(X») to predict the vest label ;3 (i.e., WV or NV);
Add the label 0; > to 0jx;
end
Return 0jx

For image classification, the prevalent deep CNN networks such as
VGG [45], Inception [46], and ResNet [47] have attained impressive
recognition results on the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [48]. However, due to their network complexity
with many parameters, very deep neural networks may have difficulty in
optimizing the parameters and are prone to get overfitting during the
training process. Given the relatively small size of cropped image
patches (usually 32x32 or 64x64 in pixels) in this study, the authors
adopted a shallow PPE/non-PPE classifier for hardhat and vest recog-
nition based on the improved LeNet architecture [49].

Fig. 9 illustrates the architecture of the proposed classifier. This CNN
classifier consists of six layers, including iterative convolutional and
subsampling layers, along with fully connected layers. To illustrate, the
authors denote convolutional layers (C layers), subsampling layers (S
layers), and fully connected layers (F layers) as Cy, Sy, and Fy, respec-
tively, where x refers to the layer index.

C1
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The architecture takes the cropped image patches as input. The first
convolutional layer C1 produces twenty feature maps from 5 x 5 filters.
The feature maps in the C1 layer use different sets of weight parameters
and biases, thus extracting multiple features from each location. The
layer S2 with the filter size 2 x 2 and a stride of 2 can reduce the feature
maps' height and width by half while the depth remains unchanged.
Similar to C1, layer C3 is a convolutional layer with 5 x 5 kernels and
fifty filters, resulting in fifty feature maps. The output of Layer C3 passes
through the next subsampling Layer S4, which produces 16 feature
maps. The fifth layer F5 is a fully connected layer containing 500 output
units. Finally, the output layer F6 with Softmax activation assigns each
input image into one of two classes (WH or NH; WV or NV).

To determine the normalized size of input images, the authors
analyze the scale distributions of part attention regions in the training
subset, as shown in Fig. 10. For head attention regions, the image
patches in the scale range of (14, 40) account for more than 50% of the
samples. Therefore, the resized window size of head attention regions is
32 x 32 pixels. Similarly, the cropped upper-body attention regions in
the scale range of (29, 77) constitute more than half of the instances. The
input resolution of the vest classifier is 64 x 64 pixels.

4. Dataset and implementation details

This section introduces the developed Construction Personal Pro-
tective Equipment (CPPE) dataset and describes the implementation
details and experimental settings of training and validation steps.

4.1. Dataset statistics

Publicly available image datasets on evaluating proper use of per-
sonal protective equipment (PPE) involve Pictor-v3 dataset [3], GDUT-
Hardhat Wearing Detection (GDUT-HWD) dataset [22], and Safety
helmet wearing detect dataset (SHWD) [50]. These datasets have
contributed to encouraging progress in ensuring site safety. However,
GDUT-HWD and SHWD are established only for hardhat wearing
detection. The public portion of the Pictor-v3 dataset contains few
training samples that capture safety vest use scenarios. For this reason,
this study introduces a new Construction Personal Protective Equipment
(CPPE) dataset by collecting high-quality data from public datasets and
web-mined images. The constructed CPPE dataset consists of 932 im-
ages, including 2747 instances of hardhats, 1339 instances of safety
vests, and 3428 workers, while covering various construction activities,
illuminations, occlusions, and resolutions (see Fig. 11).

The CPPE dataset contains 627 randomly selected training images
and 305 testing images. Fig. 12 shows the number of hardhats, vests,
hardhat use workers, non-hardhat use workers, vest use workers, and
non-vest use workers in the training and testing subsets. The training
subset consists of 2406 workers, 1890 instances of hardhats, 889 in-
stances of vests, 1797 instances of hardhat use workers, 594 instances of
non-hardhat use workers, 889 instances of vest use workers, and 1485
instances of non-vest use workers. The number of hardhats is larger than
the number of hardhat use workers because some workers are not
properly wearing the hardhats (see Fig. 1a). The testing subset consists
of 1022 workers, 857 instances of hardhats, 450 instances of vests, 804

PPE/Non-PPE classifier
S2 ca sS4

Worker poses Part attention regions feature maps  feature maps feature maps feature maps F5 FtG t
@wxh 20@wxh 20@w/2%h/2  50@w/2Xh/2 50@w/4Xh/4 ORI
‘-\ -
1! J |
Head || \
\
—_\
Upper . ) \\ X
Body 'R ESE 5X5 2%2 5X5 2%2 N\  fuly
convolution % subsampling convolution subsampling \\ connected \

Feature extraction classification

Fig. 9. The architecture of the PPE/non-PPE classifier network.
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Fig. 10. Scale distributions of part attention regions.

Fig. 11. Sample images from the CPPE dataset.
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Fig. 12. Data distributions of the CPPE dataset.
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instances of hardhat use workers, 216 instances of non-hardhat use
workers, 450 instances of vest use workers, and 562 instances of non-
vest use workers.

4.2. Implementation details

The proposed method follows a three-step framework. First, a pose
estimator extracted joint-level information for individual workers. Sec-
ond, the authors used the spatial anchors of worker poses to localize
body part attention regions that anticipate PPE items. Finally, two
developed image classifiers can recognize PPE instances within the
cropped part attention regions.

4.2.1. Training of the lightweight OpenPose network

To speed up the inference process, the authors used the MobileNet
network [44] rather than the original VGG-19 [45] as the backbone. The
lightweight OpenPose network [37] pre-trained on the MS COCO key-
point train2017 split dataset [51] obtained the pose information of in-
dividual workers. Similar to the original work of OpenPose, the authors
applied random cropping, rotation (+ 45 ), scaling (+ 20%), and flip-
ping (50%) for data augmentation. The input resolution is 368 x 368
pixels with a batch size of 10 images. The network used Adam optimizer
(initial learning rate of 1e-4 and epsilon of 1e-9) for 440,000 training
iterations on a server with two NVIDIA GeForce GTX 1080Ti GPUs.

4.2.2. Localization of the part attention regions

The authors localized two types of part attention regions: head
attention regions (Region Type I) and upper body attention regions
(Region Type II) with joint-level information from the deriving poses of
workers. Considering the workers' relative orientation, the authors
defined body knowledge-based rules to localize corresponding part
attention regions in different poses. To test optimal parameters r and s
for regulating the proper size of part attention regions, the authors
randomly selected about 20% images from the training subset for
extensive trials. Table 2 lists the scaling parameters of part attention
regions used in the experiment.

4.2.3. Training of the PPE classifiers

After cropping the body part (head and upper body) regions from the
whole image, the authors manually annotate image patches with two-
class labels (i.e., WH or NH for head attention regions, and WV or NV
for upper-body attention regions). To fine-tuning network parameters of
hardhat classifier f1(X;), 20% of WH and NH image patches cropped
from the training subset of the CPPE dataset are randomly selected as the
validation subset. The localized head attention regions are 32 x 32
resized image patches. The batch size of all training models is 8, with the
Adan optimizer and an initial learning rate of le-4 for 100 epochs.
Similarly, the WV and NV image patches cropped from the training
subset of the CPPE dataset are randomly split into 80% training samples
and 20% validation samples for training the vest classifier f>(Xs) with a
batch size of 4. The cropped upper-body attention regions are infor-
mative image patches with a window size of 64 x 64. All classifiers, i.e.,
hardhat classifier f1(X;) and vest classifier f5(X»), are trained with Adam
optimizer with an initial learning rate of 1e-4 for 100 epochs. The au-
thors also decrease the learning rate by half every ten epochs. The data

Table 2
Scaling parameters of part attentions regions.

Regions Head attention regions Upper-body attention regions
Case 1-A 1-B 1-D 2-A 2-B 2-D
ears  one ear one shoulders shoulders  one
and ear and hips shoulder
nose
Parameters Tq 103 T4 Sa sp=1/54 sq=1/s4
Values 1.2 1.5 1.0 0.6 1.7 1.7

10
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augmentation involved horizontal flipping, scaling (+ 20%), rotation (+
30u), horizontal and vertical shifting (& 10%), and shearing (+ 20%).
The authors select the trained model with the highest accuracy in the
validation subset for testing. In the experiment, the highest accuracy of
hardhat classifier f1(X;) is at the 70th epoch, while the high accuracy of
vest classifier fo(X») is at the 46th epoch.

5. Results and evaluations

This section evaluates the performance of individual elements of the
proposed method. These elements support worker detection, part
attention localization, and PPE recognition as needed by the framework.
The authors also compare the proposed method with state-of-the-art
approaches.

5.1. Performance evaluation of worker detection

The authors use precision, recall, and F1-score as evaluation metrics
to evaluate worker detection performance. The precision and recall are
defined as follows:

Precision = TP/(TP + FP) (8

Recall = TP/(TP +FN) 9

where true positive (TP) is the number of correctly detected workers,
false positive (FP) is the number of detected workers that are actually
non-workers, and false negative (FN) is the number of missing workers.

To measure the balanced performance of worker detection, the au-
thors also use the F1 measure, which is the harmonic mean between
precision and recall, as in Eq. (10):

F1 = 2 X Precision x Recall/(Precision + Recall) (10)

Table 3 summarizes the precision and recall results for worker
detection. The proposed method for worker detection achieved a
99.61% precision and a 98.04% recall in worker detection, meaning that
0.39% of the workers were incorrectly detected, and the algorithm
missed 1.96% of the workers in the image. To evaluate the effect of scale
variations of workers, the authors divide the CPPE dataset into three
categories: small (0-96 pixels), medium (96-128 pixels), and larger
(>128 pixels), based on worker heights (as given by the bounding box
annotation). The test results (Table 3) show that the overall precision
and recall of worker detection were above 95% for medium and large-
scale cases. However, the proposed method showed a relatively low
recall (71.97%) for worker detection under small-scale scenarios
because extracting features from tiny persons is hard, and even human
inspectors have difficulty in recognizing tiny instances from a long-
range view.

The authors have analyzed the typical examples of false worker de-
tections in the CPPE dataset — these images cause false positive or false
negative cases, as shown in Fig. 13. In these examples, ambiguous ob-
jects at construction sites, such as humanoid shadows and equipment
structures, may be incorrectly detected as human bodies in image
frames. Introducing more negative instances helps the model discrimi-
nate between workers and other site objects, thus reducing false-positive
cases. Moreover, as indicated in Table 3, the small scale of workers that
often occur in practical workplaces also frequently leads to false-
negative errors.

5.2. Performance evaluation of part attention localization

To assess the performance of part attention localization, the authors
used the intersection-over-union (IoU) between the cropped part
attention regions and ground-truth bounding boxes as the evaluation
metrics. The calculation of IoU between oriented bounding boxes is
similar to that between horizontal bounding boxes. The only difference
is that the IoU calculation for oriented bounding boxes is performed
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Table 3
Summary of the results for worker detection.
Task Category TP FN FP Precision Recall Fl-score
Worker detection Small (0-96 pixels) 113 44 7 94.17 71.97 81.59
Medium (96-128 pixels) 129 6 1 99.23 95.56 97.36
Large (>128 pixels) 3119 17 5 99.84 99.46 99.65
Total 3361 67 13 99.61 98.04 98.82

Note: precision, recall, and F1-score values are in percentage.

B
Worker: 16

(®)

P |

FNs for worker detection

i

Fig. 13. Examples of false worker detections.

within polygons, as illustrated in Fig. 14.
The computation of the IoU between two oriented bounding boxes is
as follows:

_ area(B; N By) a1
area(B; U B,)

where B; and B are two oriented bounding boxes.

The authors used the open-source tool roLabellmg [52] to label the
oriented ground-truth boxes of part attention regions. In general, the
higher the IoU of part attention regions is, the higher the localization
accuracy is. The IoU will check whether the IoU between these two
bounding boxes is higher than a defined threshold. For the task of part
attention localization, TP is the number of correct localizations with an
IoU > 0.5. FP is the number of improper localizations with an IoU < 0.5,
while FN is the number of ground truth regions not detected.

To further assess the impact of occlusion on part attention location,
the authors classify the occlusion degree into different categories based
on the number of visible anchoring keypoints in their corresponding part

Fig. 14. Examples of IoU between oriented bounding boxes.
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attention regions. Accordingly, the occlusion degree of head attention
regions consists of five categories: “ears and nose,” “one ear and nose,”
“ears,” “one ear,” and “head invisible.” The occlusion degree of upper-
body attention regions contains four classes: “shoulders and hips”,
“shoulders”, “one shoulder and one hip”, and “upper-body invisible”. In
particular, the cases of “part invisible”, i.e., “head invisible” and “upper-
body invisible”, will not generate any bounding boxes. TP is the number
of correctly “part invisible” instances, FP is the number of “part invis-
ible” instances that are actually “part visible”, and FN is the number of
mis-detected “part invisible” instances.

Table 4
Summary of the results for part attention localization.

Regions Category Number of Precision  Recall  F1-
anchoring score
keypoints

Head ears and nose 3 98.68 99.02 98.85

one ear and 2 99.26 98.38 98.82

nose

ears 2 96.34 95.18 95.76

one ear 1 87.88 76.32 81.69

head invisible* 0 76.92 66.67 71.43

Total 98.55 98.02 98.28
Upper shoulders and 4 99.68 98.81 99.24

body hips

shoulders 2 91.89 94.01 92.94

one shoulder 2 84.21 74.41 79.01

and one hip

upper-body 0 83.87 7222 77.61

invisible*

Total 98.85 98.03 98.44

Note: precision, recall, and F1-score values are in percentage. * indicates that the
performance evaluation metrics of “head invisible” and “upper-body visible”
differ from other cases.
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The test results (see Table 4) show that the overall precision and
recall of hardhat and upper-body region localization are above 98%.
However, upper-body region localization performance is higher than the
performance of head region localization because the head regions are
typically much smaller than the upper-body regions. The anchoring
keypoints within the head attention regions have denser distributions
than the anchoring keypoints of upper-body attention regions, which
makes it challenging for the pose estimator to infer their locations
accurately. The results also reveal that body occlusions can affect the
performance of part attention localization. For example, with fewer
anchoring keypoints, the precision and recall of head part region
localization provide 87.88% and 76.32% results, and precision and
recall of upper-body part region localization yield 84.21% and 74.41%
performance.

The authors examined the typical cases where the proposed method
fails in the CPPE dataset. Fig. 15 shows typical examples of false local-
ization errors. Since the part attention regions are determined based on
the detected worker poses, the localization errors and pose estimation
failures are closely related. False part detection (Fig. 15a), which results
from body occlusion, can lead to localization errors for head and upper
body attention regions. High overlapping scenarios (Fig. 15b) can also
lead to localization errors. In highly crowded scenes where workers are
overlapping, the pose estimator may merge keypoints among different
workers and partly miss detections. Fig. 15c¢ shows false positives
resulting from incorrect worker detections, while Fig. 15d refers to false-
negative errors where the pose estimator fails to detect workers in the
workplace.

5.3. Performance evaluation of PPE recognition

As for the PPE recognition, TP is the total number of the correctly
classified cases where workers are using PPE, FP is the number of
workers who are not using PPE properly is incorrectly identified as PPE
use, FN is the number of workers who are wearing PPE is predicted as
non-PPE use. In particular, the errors caused by incorrect part attention
localization will not be calculated in the experiments since the objective
of this section is to evaluate the PPE classifier's performance individu-
ally. The authors also compared the developed classifier with the state-
of-the-art CNN classifiers [44,45,47], including VGG-16, VGG-19,
MobileNet, ResNet-18, ResNet-34, ResNet-101, and ResNet-152. The
runtime speed for each CNN classifier uses Frames Per Second (FPS) as
the evaluation metrics by averaging the inference time on the testing
subset.

(b) overlapping part
detections

(a) false part detections
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The test results (see Table 5 and Table 6) show that VGG-19 and
VGG-16 achieve the highest Fl-score (0.98 and 0.97) on hardhat and
vest recognition, respectively. The proposed method achieves a 97.13%
precision, a 97.74% recall for hardhat recognition, and a 96.12% pre-
cision, a 94.61% recall for vest recognition. However, the shallow CNN
classifier with far fewer parameters used by this study provides 179.3
FPS on the hardhat testing subset and 156.6 FPS on the vest testing
subset, which is much faster than other methods. Furthermore, the CNN
classifiers with different depths have shown similar classification per-
formances. Two main reasons are: (1) the model inputs are typically
low-resolution patches (usually 32x32 or 64x64 in pixels); and (2) the
part attention regions retain the informative regions while eliminating
distracting backgrounds. Consequently, the shallow CNN classifiers
trained from scratch can also achieve high performance for recognizing
PPE items.

Additionally, the CNN classifiers with different depths have shown
similar testing performances due to the relatively low resolution of
cropped image patches (usually 32 x 32 or 64 x 64 in pixels) in this
study. Meanwhile, the part attention regions retain the informative re-
gions while eliminating distracting backgrounds, which also makes it
easier for classifiers to extract critical features of PPE instances.

Fig. 16 shows typical mislabeled examples in the testing subset. In
general, two reasons can explain these errors: (1) the low resolution of
the input image patches and (2) visual confusion caused by similar ob-
jects. The CNN classifiers have difficulty in extracting sufficient features
from low-resolution inputs. The alternative is to enhance image reso-
lution with super-resolution (SR) techniques [53] before feeding them
into the image classifiers. Similar objects can also lead to false-positive
errors. For example, ordinary hats can be misleading objects for hard-
hats for their similarity in shapes. Introducing more negative examples
during the training process could mitigate these false-positive errors.

5.4. Overall performance evaluation and comparative studies

In previous sections, the authors reported the performance of the
three components that support the framework individually. This section
provides the overall performance of the proposed method. An efficient
PPE detection algorithm provides accurate classification results and
localizes their classes with high IoU. TP is the number of correct PPE use
detections with an IoU > 0.5. FP is the number of PPE use detections
with an IoU < 0.5, while FN is the number of the PPE use instances that
are not detected.

The test results in Table 7 show that the proposed framework yields a

(d) missing part
detections

(c) false positives for
worker detections

Fig. 15. Examples of localization errors for part attention regions.
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Table 5
Summary of the hardhat recognition results with different classifiers.

Automation in Construction 130 (2021) 103828

Task Input size Algorithms Precision Recall Fl-score Speed (fps)
Hardhat recognition 32x32 VGG-16 97.52 98.62 98.07 104.9
VGG-19 97.76 98.49 98.12 96.2
MobileNet 94.92 96.11 95.51 49.3
ResNet-18 97.35 96.61 96.98 59.3
ResNet-34 97.59 96.49 97.04 37.3
ResNet-101 97.98 97.62 97.80 15.8
ResNet-152 97.82 95.86 96.83 10.5
Proposed method 97.13 97.74 97.43 179.3
Note: precision, recall, and F1-score values are in percentage. The bold value indicates the highest performance.
Table 6
Summary of the vest recognition results with different CNN classifiers.
Task Input size Algorithm Precision Recall Fl-score Speed (fps)
Vest recognition 64x64 VGG-16 96.23 97.53 96.88 99.9
VGG-19 93.38 98.20 95.73 92.8
MobileNet 94.35 86.29 90.14 48.3
ResNet-18 94.95 93.03 93.98 55.8
ResNet-34 89.44 89.44 89.44 37.5
ResNet-101 92.34 89.44 90.87 15.5
ResNet-152 93.94 90.56 92.21 10.4
Proposed method 96.12 94.61 95.36 156.6

Note: precision, recall, and F1-score values are in percentage. The bold value indicates the highest performance.

(c) false negatives for vest recognition

(b) false positives for hardhat recognition

WS 99.55% ‘

7 |

(d) false positives for vest recognition

Fig. 16. Examples of mislabeled image patches.

Table 7
Detection results on the CPPE dataset.

Algorithm Input size Backbone Hardhat detection Vest detection

Precision Recall Fl1-score Precision Recall F1-score
YOLO-v3 [54] 416x416 Darknet-53 94.70 90.58 92.59 92.10 67.63 77.99
SSD300 [19] 300%300 VGG-16 95.68 52.18 67.53 92.01 84.82 88.27
Faster R-CNN [20] 300x500 ResNet-50 79.01 89.99 84.14 90.76 92.97 91.85
Proposed method 32x32 / 64x64 - 97.01 96.89 96.95 95.68 93.56 94.61

Note: precision, recall, and F1-score values are in percentage. The bold value indicates the highest performance.

97.01% precision and a 96.89% recall for hardhat detection, and a
95.68% precision and 93.56% recall for vest detection. The performance
of vest detection is slightly lower than hardhat recognition. Several
factors may contribute to this issue. First, the upper body regions are
more likely to be occluded by other workers, materials, or equipment in
the workplace. Body occlusions can lead to additional distracting in-
formation (e.g., the partial bodies of other workers or site objects), even
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when the corresponding part attention regions are correctly localized
and cropped. Second, particular orientations of workers (e.g., side-view)
with fewer visual features of upper-body regions increase the task dif-
ficulty of vest recognition. Finally, distinguishing vests from ordinary
clothing is challenging due to their visual similarity in textures, colors,
and shapes. Fig. 17 shows the qualitative results of the proposed
method. Different PPE classes are labeled in different colors to achieve
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Fig. 17. Qualitative results of the proposed method. Different object categories are labeled in different colors. Red color — non-hardhat use; Green color — hardhat
use; Yellow color — non-vest use; Blue color — vest use. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

better visualization.

The authors also compared the proposed method with current state-
of-the-art methods [17,19,54] on the developed CPPE dataset. This
study annotated all workers and PPE instances (e.g., hardhats and vests)
in the CPPE dataset using Labellmg [55] as the Pascal VOC format. Ten
percent of the images randomly selected from the training subset serve
as validation subsets. To achieve better model performance, the authors
first pre-trained all three models on the MS COCO dataset [51] and then
fine-tuned the models on the CPPE dataset with a batch size of 8 using
the Adam optimizer and an initial learning rate of 1e-4 for 100 epochs.
The learning rate dropped by half every ten epochs. Table 7 reports the
detection results of different methods on the CPPE testing subset.

As listed in Table 7, the proposed method provides higher precision

Yolo-V3

SSD300

)
4,

o,
3

i

\
=y

Faster R-CNN

Ours

and recall performance than existing methods. Specifically, the adopted
detecting strategy surpasses the state-of-the-art methods by 1.33%
precision (SSSD300) and 6.31% recall (YOLO-v3) in hardhat detection,
as well as 3.58% precision (YOLO-v3) and 0.59% recall (Faster R-CNN)
in vest detection. The Faster R-CNN model offers a relatively balanced
performance for hardhat detection and vest detection. The SSD model
commonly fails to detect hardhats, while the YOLO-v3 model yields
relatively low recall performance on vest detection.

Fig. 18 shows a qualitative comparison of these approaches. The
proposed method brings detection improvements by only focusing on
local areas expecting PPE instances. Meanwhile, the developed strategy
can directly determine non-PPE-use cases without any computational
process of relationship verification of the cases involved. The skeleton-

T b
‘!,- T 1l

Fig. 18. Qualitative comparisons with state-of-the-art methods. Examples annotated with white ovals correspond to false detections.
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based representations of workers also help isolate each worker from a
crowded workspace where severe occlusions exist between workers,
compared to the worker detection in the form of bounding boxes.
Finally, the pose-guided framework of this study supports the advanta-
geous extensibility of detecting multi-class PPE items. The available
keypoints can provide spatial anchors for localizing anticipated body
part regions depending on PPE classes. When introducing a new PPE
class, the classifiers trained to verify existing PPE types do not require
any further re-training of the entire model.

5.5. Performance evaluation under challenging site scenarios

In this section, the authors qualitatively evaluated the performance
of the proposed method under challenging site conditions, including tiny
targets, extreme occlusions, non-regular illumination, low light, and
blur, with the model parameters trained on the developed CPPE dataset.
This study integrated the Pictor-v3 dataset [3] captured from con-
struction sites as the additional testing dataset for these challenging
scenarios. Since the Pictor-v3 dataset contains few safety vest-use ex-
amples, this study evaluated the model performance on worker and
hardhat detection.

Table 8 shows the detection results of the YOLO-v3 model and the
proposed method on the Pictor-v3 dataset. The results showed that the
proposed method provides higher detection performance of workers and
hardhats than the YOLO-v3 model. The challenging conditions mainly
result in missing detections rather than false alarms. One of the most
significant factors that could explain recall performance drop is that the
Pictor-v3 dataset contained many tiny workers. As the tiny objects
contain only a few pixels, the computer vision algorithms struggle to
identify small-scale objects from long-range views [56]. Future research
will examine optimal placements of cameras at construction sites to fully
cover workplaces and improve image resolutions. In terms of enhancing
algorithms for small object detection, recent model architectures such as
Feature Pyramid Network (FPN) [57] that utilize multiscale features
have shown promising performance for small object detection. The au-
thors will explore the effectiveness of these two strategies for improving
the performance of the developed approach in small object detection in
future research.

Fig. 19 shows a qualitative comparison of these approaches. Since
the object-centric models verify non-hardhat-use workers by checking
whether a hardhat is present in or around a worker's detection region,
the YOLO-v3 based detection scheme could generate false alarms while
processing images having severe occlusions for human heads. However,
the proposed method can significantly reduce the number of false alarms
when body parts are invisible in the images. The qualitative results also
demonstrated that other challenging conditions, such as low light,
irregular illumination, or blur, did not significantly affect the perfor-
mance of the proposed method in detecting workers and hardhats.

6. Limitations and discussions
The proposed method has shown several limitations in testing results

Table 8
Detection results on the Pictor-v3 dataset.

Method Worker detection Hardhat detection
Precision Recall F1- Precision Recall F1-
(%) (%) score (%) (%) score
YOLO-v3 97.61 77.94 86.76 93.48 66.85 77.95
[54]
Proposed 98.16 78.80 87.42 96.43 67.21 79.21
method

Note: precision, recall, and F1-score values are in percentage. The authors report
the detection results by eliminating over-similar samples from the dataset to
avoid evaluation bias.
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for future improvements. First, the authors trained the pose estimation
model on the publicly available MS COCO keypoint dataset [51]. The MS
COCO keypoint dataset mainly collects images from daily life scenarios
while containing few image samples from construction sites. Although
the pre-trained model on the MS COCO dataset has achieved high
worker detection performance in most cases, further efforts to establish
a domain-specific dataset will enhance the model adaptation to pose
estimation for construction workers. Second, the cropped body part
attention regions are typically in low resolution (usually 32 x 32 or 64 x
64 in pixels). Such low-resolution examples are challenging for the
classifiers to extract explicit features. The authors will integrate super-
resolution (SR) techniques to improve the resolution of image patches
before feeding them into the CNN classifiers. Third, to speed up the
inference process, the authors used a lightweight MobileNet [44] with
fewer parameters as the backbone of the pose estimation model and
adopted a shallow CNN classifier rather than deep networks for PPE
recognition. Simplifying the pose estimation model based on PPE types
could further reduce computational resource requirements. For
example, if the task were to identify the non-hardhat use workers, only
the body joints in the head attention regions would need to be detected
in images. Likewise, if the goal were to localize both non-hardhat use
and non-vest use workers, lower body joints like ankles and knees are
not necessarily required for this detection purpose. Furthermore,
although the proposed method is extensible for verifying multi-class PPE
compliance, the authors only focus on demonstrating the effectiveness of
the proposed framework by simultaneously testing for safety violations
of two types of PPE — hardhat and vest. The authors plan to extend the
CPPE dataset to detect more types of PPE components, such as safety-toe
footwear, gloves, or goggles.

7. Conclusions

Automatic monitoring for PPE use is crucial for ensuring safety
controls and preventive measures at construction sites. This paper pro-
poses a pose-guided anchoring framework to address the challenges of
multi-class PPE detection in workspaces. The pose estimator first detects
and represents individual workers in the form of full-body skeletons in
crowded workplaces. The spatial anchors of worker poses can guide the
algorithm's attention to specific body part attention regions that are
anticipating PPE instances. The part attention localization module then
integrated body knowledge-based rules to localize local image patches
considering workers' orientations and object scales. This new strategy
demonstrates its effectiveness in reducing search spaces while
improving object recognition performance for handling multi-type PPE.
Finally, this research trained two CNN-based classifiers to determine
whether the identified part attention regions have hardhats or vests.
Instead of verifying non-PPE use cases by checking spatial relationships
of the involved workers and PPE instances, the new method directly
inferred non-PPE cases from those regions where the expected PPE is
missing.

To assess the performance of the proposed method, the authors
established a new CPPE dataset of 932 images amounting to 2747 in-
stances of hardhats, 1339 instances of safety vests, and 3428 workers.
The experimental results on the developed CPPE dataset show that this
new approach has achieved high precision and recall in individual tasks,
i.e., worker detection, hardhat detection, and vest detection. Compared
with the existing methods, the proposed method shows higher precision
and recall performance in worker detection and PPE recognition. The
pose-guided strategy also supports the advantageous extensibility of
detecting multi-class PPE items. To encourage future research in the
area, the authors have publicly released all trained models and the CPPE
dataset in this paper on the GitHub page https://github.com/ruoxinx
/PPE-Detection-Pose.

Nevertheless, the proposed framework has shown several limita-
tions, and the authors also suggest possible directions for further im-
provements. First, establishing a construction domain-specific dataset
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Fig. 19. Qualitative comparisons with state-of-the-art methods in challenging scenarios. Left: YOLO-v3 model; Right: The proposed method.

for worker pose estimation could enhance the model adaptation and
reduce incorrect and missing detections. Second, the authors plan to
simplify the pose prediction network based on the nature of the specific
PPE detection task, which should further reduce the computation
resource needs of the algorithm. Finally, the authors plan to extend the
CPPE dataset to include more diverse PPE components.
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