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Abstract— This paper considers a wireless network where
multiple flows are delivering status updates about their respective
information sources. An end-user aims to make accurate real-
time estimations about the status of each information source
using its received packets. As the accuracy of estimation is most
impacted by events in the recent past, we propose to measure
the Confidence-in-Estimation by the number of timely deliveries
in a window of the recent past, and say that a flow suffers from
a Loss-of-Confidence (LoC) if this number is insufficient for the
end user to make a reliable estimation with small confidence
intervals.

We then study the problem of minimizing the system-wide LoC
in wireless networks where each flow has a different requirement
and link quality. We show that the problem of minimizing the
system-wide LoC requires the control of the temporal variance of
timely deliveries for each flow. This feature makes our problem
significantly different from other optimization problems that only
involve the average of control variables. Surprisingly, we show
that there exists a simple online scheduling algorithm that is near-
optimal. Simulation results show that our proposed algorithm
is significantly better than other state-of-the-art policies. The
practical value of this work is further evaluated by a case study
of the real-time estimation problem of linear Gaussian processes,
where we show that, under the optimal estimate algorithm, our
scheduling policy results in better estimate accuracy, both in
terms of the average mean square error and 95-percentile of
mean square error, than other policies, including one that aims
to optimize Age-of-Information, another performance metric for
the application of real-time estimation.

Index Terms—Wireless Networks, Packet Scheduling, Opti-
mization, Information-update Systems, Real-time Estimation

I. INTRODUCTION

Many emerging applications in the information-update sys-
tem, such as industrial Internet-of-Things (IoT) and Virtual-
Reality (VR), require the real-time delivery of information.
From an end user’s perspective, the performance of such
applications is determined by their ability to accurately es-
timate the real-time status of their respective information
sources, such as the temperature of a machine in industrial
IoT or the location of a monster in a VR game. Further,
most estimation techniques have two following features: First,

Part of this work has been presented at 17th International Symposium
on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks,
WIOPT 2019, Avignon, France, 3–7 June, 2019 [1]. This work significantly
expands [1] by including more theoretical analysis and simulation studies, as
well as a case study on a real-time estimation problem.

information collected in the recent past is much more useful
than that in the distant past for making an accurate or reliable
estimate. Second, most estimation algorithms, even simple
ones like linear extrapolation, require multiple data points in
the recent past. However, most existing network performance
metrics, ranging from traditional Quality-of-Service (QoS)
metrics such as throughput, delay, and jitter, to emerging ones
like Timely-Throughput and Age-of-Information (AoI), fail
to directly capture those features of the users’ estimation.
Therefore, network algorithms aiming at optimizing these
network performance metrics may result in poor performance
for these emerging applications.

To address the need for such applications, we borrow the
idea of a “confidence interval” from statistics, and introduce
a new metric called Confidence-in-Estimation (CiE). In statis-
tics, a small confidence interval means that the ground truth
falls in a small range around the estimate with a pre-specified
probability, and therefore implies that the estimate is accurate.
We then aim to define CiE to reflect whether the network
performance of wireless information-update systems leads to
small confidence intervals for the end-user.

Our proposal for the CiE is directly based on two above
features of general estimation algorithms: We consider that
each information source, such as sensors generating readings
or VR servers generating video frames, generates information
updates periodically. Stale information is dropped in favor
of the transmission of new information. The CiE of an
information flow only depends on the number of packets that
are delivered on time in a window of the recent past. If the
number of timely deliveries in this window of the recent past
is below a user-specified threshold, then the resulting estimate
will have a wide confidence interval, and we therefore say that
this flow suffers from a Loss-of-Confidence (LoC). Our goal
is to minimize the system-wide LoC in a wireless network
with multiple flows, each with different threshold and channel
reliability.

Using Brownian approximation and martingale theory, we
show that the problem of minimizing the system-wide LoC
is equivalent to an optimization problem that involves two
sets of constraints: One set of constraints are related to the
average of timely deliveries of each flow, and another set
of constraints are related to the temporal variance of timely



deliveries. The existence of constraints about the variance of
timely deliveries makes this problem significantly different
from other Network-Utility-Maximization (NUM) problems
that only involve constraints about the average of variables,
and hence cannot be solved by most existing techniques for
NUM problems.

We propose a simple online scheduling algorithm for this
problem. We analytically prove that the timely deliveries under
our scheduling algorithm satisfy both the constraints on the
average and those on the variance in the optimization problem.
We also analytically prove that our algorithm is near-optimal
for the optimization problem in the sense that its performance
can be made arbitrarily close to a theoretical bound.

In the evaluation, we compare our algorithm against two
other state-of-the-art policies, one of them is provably optimal
in terms of timely-throughput, and the other achieves an ap-
proximation bound in terms of Age-of-Information. Simulation
results show that our policy achieves much smaller LoC than
these two policies.

Finally, to verify the practicality of our assumptions about
the confidence of information-update flows, we conduct a case
study on the real-time estimation problem of linear Gaussian
processes. We consider the scenario where there are multiple
sensors generating noisy measurements of their monitored
processes, and an estimator makes real-time estimation of
all processes based on its received information. We run sim-
ulations for this estimator and evaluate its resulting mean
square error. The result shows that our policy receives the
best performance when compared to the other two policies,
in terms of the average mean square estimate error and the
95-percentile of mean square estimate error. This result also
demonstrates that the concept of confidence does capture the
performance of general information-update remote-estimation
problems, and provides more insights than AoI-based models
in the reliability of estimate in more general cases.

The rest of this paper is as following order: Section II
introduces our model for confidence in real-time wireless
networks. Section III shows that the problem of minimizing
LoC is equivalent to an optimization problem. Section IV in-
troduces our online scheduling algorithm. Section V analyzes
the performance of our scheduling algorithm and shows that
it is near-optimal for the optimization problem. Section VI
presents our simulation results. Section VII conducts a case
study on the real-time estimation problem of linear Gaussian
processes. Section VIII reviews some related work. Finally,
Section IX concludes this paper.

II. SYSTEM MODEL

We extend the model in [2], which focuses on the short-term
performance for wireless networks with homogeneous links,
to address the confidence in information flows estimation in
real-time wireless network where different wireless links can
have different channel qualities.

We consider a real-time wireless network that serves N
clients. Time is slotted, and the duration of one time slot is
the amount of time needed by a whole transmission, including

all overheads such as the transmission of poll packet or ACK.
Hence, the AP can transmit to at most one client at each
time slot, and it has the instantaneous feedback information
on whether the transmission is successful. We consider that
wireless transmissions are subject to effects of shadowing,
multi-path, fading, interference, etc., and different clients
experience different channel qualities as they are located at
different positions. Hence, we assume that each transmission
for client i is successful with probability pi.

We consider that each client is associated with a real-time
information-update flow, and use flow i to indicate the flow
associated with client i. Specifically, we assume that each real-
time flow generates one packet periodically every τ slots, that
is at time slots 1, τ+1, 2τ+1, . . . . Each packet has a stringent
delay bound of τ slots, and is removed from the system if it
cannot be delivered before its delay bound. In other words,
each packet in a real-time flow is only valid for transmission
until the next packet arrives. We thereby say that τ time slots
form an interval. Packets arrive at the system at the beginning
of each interval, and have deadlines at the end of the interval.

We note that this model for real-time flows applies to many
emerging wireless applications. For example, consider multi-
user virtual reality (VR) or augmented reality (AR), where an
AP streams VR/AR contents to multiple VR/AR headsets. All
headsets play VR/AR contents at the same frame rates, and
therefore they generate traffic at the same frequency. Further,
as the AP should always transmit the newest VR/AR content
to a headset, packets that fail to be delivered on time should
be removed and replaced by newer packets. Likewise, one
can also consider industrial Internet of Things (IoT), where
an AP polls measurements from multiple sensors monitoring
different locations. Sensors have the same sampling frequency
and therefore generate traffic at the same frequency. Also, stale
measurements should be dropped when a new measurement is
generated.

An important feature of real-time application such as
VR/AR and industrial IoT is that each flow can typically
tolerate a small amount of sporadic packet losses, but is very
sensitive to a burst of packet losses. For example, in industrial
IoT, a controller can use various estimation techniques to
estimate the value of a lost sensor reading. However, the
accuracy of the estimate significantly degrades if there is a
burst a packet losses. Further, it is obvious that the accuracy
of the estimate only depends on the deliveries of recent sensor
readings, and readings in the distant past have negligible
effect on the estimation accuracy. We thereby say that the
Confidence-in-Estimation (CiE) of one information flow relies
on if its delivered packets enable the controller to make an
accurate estimation.

The goal of this paper is to define and optimize the CiE for
each information flow. To capture the aforementioned feature
of real-time applications, we assume that the confidence of a
real-time flow estimated status at a given point of time only
depends on the packet deliveries in the window of past T
intervals. Specifically, let Xi(t) be the total number of timely-
deliveries for flow i in the first t intervals. We then have



Xi(t) − Xi(t − 1) = 1 if a packet is delivered to client i
in interval t, and Xi(t) −Xi(t − 1) = 0 if not. The number
of timely-deliveries in the window of the last T intervals can
then be represented as Xi(t)−Xi(t−T ), and we assume that
the CiE of flow i at the end of interval t only depends on the
value of Xi(t)−Xi(t− T ).

We assume that, to make an accurate estimate, each client
i requires that there are at least qiT packets being delivered
in the past T intervals, i.e., Xi(t) − Xi(t − T ) ≥ qiT . The
value of qi depends on the context of the information flow. For
example, a sensor monitoring a high-frequency signal requires
a larger qi than one that is monitoring a low-frequency signal.

Due to the unreliable nature of wireless transmissions, it is
obvious that it is not possible to satisfy the requirements of all
clients at all time. When the AP fails to deliver qiT packets
for a client i, then the estimation of current state of client i
becomes less accurate, and therefore we say that flow i loses
confidence.

We now formally define the measure of Loss-of-Confidence
(LoC). Suppose Xi(t) − Xi(t − T ) < qiT for some i and
t. Recall that every transmission for client i is successful
with probability pi. Hence, the AP would have needed to,
on average, schedule qiT−(Xi(t)−Xi(t−T ))

pi
more transmissions

for client i to make Xi(t) −Xi(t − T ) = qiT . We therefore
define the unbiased shortage of client i at the end of interval t
as θi(t) := max{ qiT−(Xi(t)−Xi(t−T ))

pi
, 0}. At the end of each

interval t, each client i suffers from a LoC of C(θi(t)) based
on its unbiased shortage, where C(·) is a strictly increasing,
strictly convex, and differentiable function with C(0) = 0 and
C ′(0) = 0.

This paper aims to evaluate the long-time average to-
tal LoC of all clients in the system, which is written as

lim
T→∞

T+T∑
t=T+1

N∑
i=1

C(θi(t))

T = lim
T→∞

T+T∑
t=T+1

N∑
i=1

C(
qiT

pi
−Xi(t)−Xi(t−T )

pi
)

T .

It also aims to propose an online scheduling policy1 that
minimizes the total LoC.

III. THE FORMULATION OF THE OPTIMIZATION PROBLEM

In this section, we derive some fundamental properties
about the minimization of total LoC. We then formulate an
optimization problem.

Recall that Xi(t) is the total number of timely-deliveries for
client i in the first t intervals. Obviously, {Xi(1), Xi(2), . . . }
is a sequence of random variables whose distribution is
determined by the employed packet scheduling policy. For
simplicity, we only focus on ergodic scheduling policies in
this paper. Thus, the random variable {Xi(t) − Xi(t − T )}
can be modeled by a positive recurrent Markov chain. By the
law of large numbers, we can define X̄i := limt→∞

Xi(t)
t .

Further, following the central limit theorem of Markov chains
[3], X̂i := limT→∞

Xi(T)−TX̄i√
T is a Gaussian random variable

with mean 0 and some finite variance, which we denote by σ2
i ,

with σi ≥ 0. Hence, we can approximate Xi(t) −Xi(t − T )

1An online scheduling policy is a policy that determines which packet to
transmit in each slot based on all system parameters and the entire history.

as a Gaussian random variable with mean TX̄i and variance
Tσ2

i when T is reasonably large. Let Φ(x) represents the
cumulative distribution function of a random variable under
standard normal distribution, then, under this approximation,
we have that the CDF of (Xi(t) − Xi(t − T )) − TX̄i) is
Φ( x√

σ2
i T

).

The long-term average total LoC can now be re-written as
below:

lim
T→∞

T+T∑
t=T+1

N∑
i=1

C( qiTpi −
Xi(t)−Xi(t−T )

pi
)

T

= lim
T→∞

N∑
i=1

E[C(
qiT

pi
− Xi(T)−Xi(T− T )

pi
)]

≈ lim
T→∞

N∑
i=1

E[C(
qiT

pi
−
√
TX̂i + TX̄i

pi
)]

=

N∑
i=1

∫
z

C(

√
σ2
i T

p2
i

z − (X̄i − qi)T
pi

)dΦ(z). (1)

The approximation step is from the above definitions of X̄i

and X̂i. The last step is the expectation formula under the law
of the unconscious statistician.

Let [X̄i] and [σi] be the vectors consisting of X̄i and σi for
all 1 ≤ i ≤ N respectively. Then, Eq. (1) can be viewed as has
two sets of control variables: [X̄i] and [σi], since their values
are determined by the employed policy. Below, we derive the
corresponding constraints of these two sets of variables.

We first derive the constraints on [X̄i]. Previous work [4]
has shown that, under any work-conserving policy2, we have,
for all t,

E[

N∑
i=1

Xi(t)−Xi(t− 1)

pi
] = τ − I{1,2,...,N}, (2)

and
E[
∑
i∈S

Xi(t)−Xi(t− 1)

pi
] ≤ τ − IS , (3)

for any subset S ⊆ {1, 2, . . . N}, where IS is called the idle
time and has been shown to be a well-defined constant under
all work-conversing policies. Therefore, we have

N∑
i=1

X̄i

pi
= τ − I{1,2,...,N}, (4)

and ∑
i∈S

X̄i

pi
≤ τ − IS ,∀S ⊆ {1, 2, . . . N}. (5)

We further assume that, similar to the total resource pooling
condition, the constraint

∑
i∈S

X̄i
pi
≤ τ − IS is not tight and

can be ignored when S is not {1, 2, . . . N}.

2A scheduling policy is called work-conserving if it always schedules a
transmission when there is at least one packet available for transmission.



Now, we derive the constraint of [σi]. By (2), the sequence
of random variables {

∑N
i=1

Xi(t)
pi
− t(τ − I{1,2,...,N})|t =

1, 2, . . . } is a martingale. By the martingale central limit

theorem [5], X̂TOT := limT→∞

∑N
i=1

Xi(T)

pi
−T(τ−I{1,2,...N})√

T =

limT→∞

∑N
i=1

Xi(T)

pi
−T(

∑N
i=1

X̄i
pi

)
√
T is a Gaussian random variable

with mean 0, and its variance is

σ2
TOT := lim

T→∞

1

T
[

T∑
t=1

(

N∑
i=1

Xi(t)−Xi(t− 1)

pi
)2]

− (τ − I{1,2,...N})2, (6)

whose value depends on the employed scheduling policy.
Recall that X̂i := limT→∞

Xi(T)−TX̄i√
T is a Gaussian random

variable with variance σ2
i . Hence, we have X̂TOT =

∑N
i=1

X̂i
pi

,

and the variance of X̂i
pi

is (σipi )
2. By Cauchy-Schwarz Inequal-

ity, we have:

( N∑
i=1

σi
pi

)2
=
( N∑
i=1

√
V ar(

X̂i

pi
)
)2

=

N∑
i=1

V ar(
X̂i

pi
)

+ 2

N∑
l=1

N∑
m=l+1

√
V ar(

X̂l

pl
)V ar(

X̂m

pm
)

≥
N∑
i=1

V ar(
X̂i

pi
) + 2

N∑
l=1

N∑
m=l+1

Cov(
X̂l

pl
,
X̂m

pm
)

=V ar(

N∑
i=1

X̂i

pi
) = σ2

TOT , (7)

where V ar(X) denotes the variance of X and Cov(X,Y )
denotes the covariance.

Although the value of σTOT may be different for different
scheduling policies, we first consider the special case of
minimizing the total LoC when σTOT is given and fixed. By
(1), (4), and (7), the optimization problem can be written as:

Min L =

N∑
i=1

∫
z

C(

√
σ2
i T

p2
i

z − (X̄i − qi)T
pi

)dΦ(z) (8)

s.t.

N∑
i=1

X̄i

pi
= τ − I{1,2,...N} (9)

N∑
i=1

σi
pi
≥ σTOT . (10)

Theorem 1. Let [X̄i
∗
] and [σ∗i ] be the optimal solution to (8)

– (10). Then X̄i
∗

= (
τ−I{1,2,...N}

N −
∑N
j=1

qj
Npj

+ qi
pi

)pi, and
σ∗i = σTOT

N pi, for all 1 ≤ i ≤ N .

Proof. Since C(·) is a convex function, we have:

L =

N∑
i=1

∫
z

C(

√
σ2
i T

p2
i

z − (X̄i − qi)T
pi

)dΦ(z)

≥ N
∫
z

C(
1

N

N∑
i=1

(

√
σ2
i T

p2
i

z − (X̄i − qi)T
pi

))dΦ(z)

≥ N
∫
z

C(
1

N
(σTOT

√
Tz −

N∑
i=1

(X̄i − qi)T
pi

))dΦ(z),

with equality occurs when X̄∗i
pi
− qi

pi
=

X̄∗j
pj
− qj

pj
and σ∗i

pi
=

σ∗j
pj

for any i, j ∈ {1, 2, . . . N}. By (9) and (10), we have X̄i
∗

=

(
τ−I{1,2,...N}

N −
∑N
i=1

qi
Npi

+ qi
pi

)pi and σ∗i = σTOT
N pi.

Theorem 1 establishes the optimal {X̄i} and {σi} that
minimizes the total LoC when σTOT is given and fixed. Obvi-
ously, smaller σTOT leads to smaller total LoC. Therefore, we
seek to solve the optimization problem below, which aims to
minimizing σTOT while satisfying the results of Theorem 1:

Min σ2
TOT := lim

T→∞

1

T
[

T∑
t=1

(

N∑
i=1

Xi(t)−Xi(t− 1)

pi
)2]

− (τ − I{1,2,...N})2 (11)
s.t.X̄i = X̄∗i ,∀1 ≤ i ≤ N (12)

σi =
σTOT
N

pi, ∀1 ≤ i ≤ N, (13)

where X̄∗i := (
τ−I{1,2,...N}

N −
∑N
j=1

qj
pjN

+ qi
pi

)pi.
We note that the problem (11) – (13) involves both a

constraint on the average of Xi(t) (12) and a constraint on
the variance of Xi(t) (13) for each i. Most existing studies on
network utility maximization (NUM) problem only addresses
constraints on the average of decision variables, and therefore
cannot be applied to solve (11) – (13). In fact, no stationary
randomized policies can optimally solve (11) – (13). In the
following sections, we will establish the surprising result that
there exists a simple online scheduling policy that is near-
optimal for the problem (11) – (13).

IV. AN ONLINE SCHEDULING POLICY

In this section, we propose a simple online scheduling
policy for the problem (11) – (13). We first provide a brief
outline of the construction of our algorithm. First, we remove
the constraint on variance (13) and focus on the following
optimization problem:

Min lim
T→∞

1

T
[

T∑
t=1

(

N∑
i=1

Xi(t)−Xi(t− 1)

pi
)2]

− (τ − I{1,2,...N})2 (14)
s.t.X̄i = X̄∗i ,∀1 ≤ i ≤ N. (15)

Obviously, this optimization problem is a lower bound to
the original problem (11) – (13). It is also a standard NUM
problem that only involves a constraint on the average of Xi(t)



for each i. We can therefore derive a near-optimal online
scheduling algorithm using the Drift-Plus-Penalty approach
[6]. We further demonstrate the surprising result that, due to
the specific choice of our Lyapunov function, our algorithm
also satisfies the constraint on variance (13). Therefore, our
algorithm is near-optimal to the original problem (11) – (13).

We now introduce some notations that are necessary for the
design and analysis of our algorithm. Let di(t) :=

X̄∗i t
pi
− Xi(t)

pi
be the deficit of client i in interval t. Obviously, we have X̄i :=
limt→∞

Xi(t)
t = X̄∗i if and only if limt→∞

di(t)
t = 0. We also

define ∆di(t) := di(t+ 1)− di(t) =
X̄∗i
pi
− Xi(t+1)−Xi(t)

pi
and

D(t) :=
∑N
i=1 di(t)

N .

We consider the Lyapunov function L(t) = 1
2

∑N
i=1[di(t)−

D(t)]2. The drift of the Lyapunov function is ∆L(t) :=
E[L(t+ 1)− L(t)|[di(t)]].

Given [di(t)], we have, under any scheduling policy,

∆L(t) = E[L(t+ 1)− L(t)]

=E
[1
2

N∑
i=1

(
di(t+ 1)−D(t+ 1)

)2
− 1

2

N∑
i=1

(
di(t)−D(t)

)2]
=E
[1
2

N∑
i=1

(
di(t)−D(t) + ∆di(t)−

∑N
i=1 ∆di(t)

N

)2]
− E

[1
2

N∑
i=1

(
di(t)−D(t)

)2]
=E
[1
2

N∑
i=1

(
∆di(t)−

∑N
i=1 ∆di(t)

N

)2]
+

N∑
i=1

E
[
∆di(t)

](
di(t)−D(t)

)
− E

[∑N
i=1 ∆di(t)

N

] N∑
i=1

(
di(t)−D(t)

)
≤β +

N∑
i=1

E
[
∆di(t)

](
di(t)−D(t)

)
, (16)

where β is a bounded positive number. The last inequality
holds since ∆di(t) is bounded by X̄∗i −1

pi
≤ ∆di(t) ≤ X̄∗i

pi
and∑N

i=1 di(t) = ND(t).
Our scheduling algorithm is based on the Drift-Plus-Penalty

approach [6]. Let

B(t) :=

N∑
i=1

E
[
∆di(t)

](
di(t)−D(t)

)
+ εE[(

N∑
i=1

Xi(t+ 1)−Xi(t)

pi
)2], (17)

where ε is a positive number whose value can be arbitrary
determined by the system designer. We then have

∆L(t) + εE[(

N∑
i=1

Xi(t+ 1)−Xi(t)

pi
)2] ≤ β +B(t). (18)

We aim to design an online scheduling algorithm that
minimizes B(t). Note that the value of B(t) depends on
the scheduling decisions on all time slots within the interval
t, which consists of τ time slots. Minimizing an objective
function over a finite horizon of τ time slots typically requires
the usage of dynamic programming. However, we will show
that there exists a simple online scheduling algorithm that
minimizes B(t).

Our algorithm is called the Minimum-Drift-and-Variance-
First (MDVF) policy. Under the MDVF policy, the AP cal-
culates the value of ei(t) := ε 1

pi
− di(t) at the beginning

of each interval t. In each time slot within the interval, the
AP finds the undelivered packet with the smallest ei(t) and
transmits that packet, as long as there is at least one packet to
be transmitted. Alg. 1 provides a detailed description of the
algorithm, where we streamline some of the steps to simplify
the implementation.

Algorithm 1: The MDVF Policy

Initialization: t = 0, di = 0,∀i;
while each new interval do

for each i do
ei = ε 1

pi
− di;

di = di +
X̄∗i
pi

;
end
Sort all flows such that e1(t) ≤ e2(t) ≤ . . . ;
i = 1; for each time slot do

Transmit packet i;
if transmission is successful then

di = di − 1
pi

;
i = i+ 1;

end
end
t = t+ 1;

end

We now show that the MDVF policy indeed minimizes
B(t).

Lemma 1. The MDVF policy minimizes B(t).

Proof. We prove this lemma by induction. First, we consider
the optimal scheduling decision in the last time slot of the in-
terval. At this time, some packets have already been delivered
in the previous τ − 1 slots, and we use V to denote the set of
clients whose packets have already been delivered. As this is
the last time slot of the interval, the scheduling decision of the
AP only consists of choosing one client u /∈ V and transmit-
ting its packet. Given V and u, we will calculate the value of∑N
i=1E

[
∆di(t)

](
di(t)−D(t)

)
+εE[(

∑N
i=1

Xi(t+1)−Xi(t)
pi

)2].



For this chosen client u, its packet will be delivered, that
is, Xu(t + 1)−Xu(t) = 1, with probability pu, and Xu(t +
1) − Xu(t) = 0, with probability 1 − pu. Hence, we have
E[∆du(t)] = X̄u−pu

pu
.

On the other hand, for each client i ∈ V , its packet has
already been delivered. We have Xv(t)−Xv(t− 1) = 1 and
E[∆di(t)] = X̄i−1

pi
.

Finally, for each client i /∈ V ∪ {u}, its packet will not be
delivered, and we have Xi(t)−Xi(t−1) = 0 and E[∆di(t)] =
X̄i
pi

.
We now have, given V and u,

N∑
i=1

E
[
∆di(t)

]
[di(t)−D(t)]

+ εE[(

N∑
i=1

Xi(t+ 1)−Xi(t)

pi
)2]

=
X̄u − pu
pu

[du(t)−D(t)] +
∑
i∈V

X̄i − 1

pi
[di(t)−D(t)]

+
∑

i/∈V ∪{u}

X̄i

pi
[di(t)−D(t)]

+ ε[pu
(∑
i∈V

1

pi
+

1

pu

)2
+ (1− pu)

(∑
i∈V

1

pi

)2
]

= ε
1

pu
− du(t) + λ(V ), (19)

where λ(V ) := D(t) +
∑N
i=1

X̄i
pi

[di(t) − D(t)] −∑
i∈V

1
pi

[di(t) − D(t)] + ε[
(∑

i∈V
1
pi

)2
+ 2

(∑
i∈V

1
pi

)
] is

the same regardless of the choice of u. Therefore, it is clear
that an optimal scheduling algorithm that minimizes B(t) will
schedule the undelivered packet u with the smallest ε 1

pu
−du(t)

in the last time slot.
Now, assume that, starting from the (s+1)-th time slot in an

interval, scheduling the undelivered packet with the smallest
ε 1
pu
− du(t) in each of the remaining time slot is optimal.

We will show that, even in the s-th time slot, scheduling the
undelivered packet with the smallest ε 1

pu
− du(t) is optimal.

We prove this claim by contradiction. Let u∗ be the unde-
livered packet with the smallest ε 1

pu
− du(t) in time slot s.

If the claim is false, then the optimal scheduling algorithm,
which we denote by A, would schedule another undelivered
packet u′ 6= u∗ in time slot s, and the value of B(t) under A
is strictly smaller than any policy that schedules u∗ in the s-th
time slot. By the induction hypothesis, A begins to schedule
the undelivered packet with the smallest ε 1

pu
− du(t) starting

from the (s+ 1)-th time slot. As u∗ is not scheduled by A is
the s-th time slot, A needs to schedule u∗ in the (s + 1)-th
time slot. In summary, A schedules u′ in the s-th time slot,
and u∗ in the (s+ 1)-th time slot.

Now, we can construct another algorithm B by simply
swapping the transmissions in the s-th time slot and the (s+1)-
th time slot. In other words, B schedules u∗ in the s-th time
slot, u′ in the (s+ 1)-th time slot, and then follows A starting

from the (s + 2)-th time slot. Obviously, the value of B(t)
under A and B is the same, which results in a contradiction.

We have established that, even in the s-th time slot, schedul-
ing the undelivered packet with the smallest ε 1

pu
− du(t) is

optimal. By induction, scheduling the undelivered packet with
the smallest ε 1

pu
− du(t) in each time slot is optimal, and

MDVF minimizes B(t).

V. PERFORMANCE ANALYSIS OF THE MDVF POLICY

We now study the performance of the MDVF policy. We
will demonstrate the surprising result that the MDVF policy
satisfies both constraints on mean (12) and variance (13), and
the value of σ2

TOT under the MDVF policy can be made
arbitrary close to a lower bound. Throughout this section, we
use ·|η to denote the value of · under a scheduling policy η.
For example, ∆L(t)|MDVF denotes the value of ∆L(t) under
the MDVF policy.

We first establish the following property.

Theorem 2. Under the MDVF policy, the Markov process with
state vector {di(t)−D(t)} is positive recurrent.

Proof. We prove this theorem by establishing an upper bound
of ∆L(t)|MDVF. To simplify notations, we let Ω be the policy
that schedules the undelivered packet with the maximum value
of di(t). We also sort all clients such that d1(t) ≥ d2(t) ≥
· · · ≥ dN (t). Then Ω will only transmit a packet for client
i if, for each j < i, the packet for flow j has already been
delivered. This is equivalent to the largest-debt-first policy in
[4], and we have, for all 1 ≤ j ≤ N :
j∑
i=1

E[∆di(t)]|Ω =

j∑
i=1

X̄∗i
pi
− E[

j∑
i=1

Xi(t+ 1)−Xi(t)

pi
]|Ω

=

j∑
i=1

X̄∗i
pi
− (τ − I{1,2,...,j}). (20)

By (4), we have
∑N
i=1E[∆di(t)]|Ω = 0. Further, as we as-

sume that (5) is not tight when S 6= {1, 2, . . . , N}, there exists
a positive number δ > 0 such that

∑j
i=1E[∆di(t)]|Ω ≤ −δ

for all 1 ≤ j ≤ N − 1. We now have

N∑
i=1

E[∆di(t)]
(
di(t)−D(t)

)
|Ω

=

N∑
i=1

E[∆di(t)]
(
di(t)− di+1(t) + di+1(t)

− di+2(t) + · · · − dN (t) + dN (t)−D(t)
)
|Ω

=

N∑
i=1

E[∆di(t)]
(
dN (t)−D(t)

)
|Ω

+

j∑
i=1

N−1∑
j=1

E[∆di(t)]
(
dj(t)− dj+1(t)

)
|Ω

≤− δ
N−1∑
j=1

(
dj(t)− dj+1(t)

)
= −δ

(
d1(t)− dN (t)

)
. (21)



Next, we study ∆L(t)|MDVF. By Lemma 1, the MDVF
policy minimizes B(t). Hence, we have

∆L(t)|MDVF + εE[(

N∑
i=1

Xi(t+ 1)−Xi(t)

pi
)2]|MDVF

≤β +B(t)|MDVF
(
By (18)

)
≤β +B(t)|Ω

≤β + εE[(

N∑
i=1

Xi(t+ 1)−Xi(t)

pi
)2]|Ω

− δ
(
d1(t)− dN (t)

) (
By (17) and (21)

)
(22)

Since 0 ≤ Xi(t+ 1)−Xi(t) ≤ 1, there exists some constant
M such that

∆L(t)|MDVF ≤ −δ
(
d1(t)− dN (t)

)
+M. (23)

Recall that we have sorted all clients such that d1(t) ≥
d2(t) ≥ . . . . Hence,

(
d1(t) − dN (t)

)
≥ 0 and

(
d1(t) −

dN (t)
)
≥ |di(t)−D(t)|, for all i. We have

∆L(t)|MDVF < −δ, if |di(t)−D(t)| > M
δ + 1, for some i,

and

∆L(t)|MDVF ≤M, otherwise. (24)

By the Foster-Lyapunov Theorem, the Markov process with
state vector {di(t)−D(t)} is positive recurrent.

Now we are able to show that the MDVF policy satisfies
both constraints (12) and (13).

Corollary 1. X̄i|MDVF = X̄∗i and σi|MDVF =
σTOT |MDV F

N pi, ∀i.

Proof. Recall that di(t) :=
X̄∗i t
pi
− Xi(t)

pi
and D(t) :=∑N

i=1 di(t)

N . By (4), we have:

lim
T→∞

D(T)|MDVF
T

= lim
T→∞

∑N
i=1 di(T)|MDVF

NT

=
1

N

N∑
i=1

lim
T→∞

TX̄∗i −Xi(T)|MDVF
piT

=
1

N

N∑
i=1

X̄∗i
pi
− 1

N

N∑
i=1

X̄i(T)|MDVF
pi

=
τ − I{1,2,...N}

N
−
τ − I{1,2,...N}

N
= 0. (25)

By Theorem 2, the vector {di(t) − D(t)}|MDVF con-
verges to a steady state distribution as t → ∞. Hence, both
limT→∞

di(T)−D(T)
T |MDVF and limT→∞

di(T)−D(T)√
T |MDVF

converge to 0 in probability. We then have

lim
T→∞

di(T)|MDVF
T

=
X̄∗i
pi
− X̄i|MDVF

pi

= lim
T→∞

D(T)|MDVF
T

= 0, (26)

and hence X̄i|MDVF= X̄∗i .

Next, we study σi|MDVF. Recall that σ2
i is the variance of

X̂i := limT→∞
Xi(T)−TX̄i√

T . We then have:

lim
T→∞

di(T)|MDVF√
T

= lim
T→∞

TX̄∗i −Xi(T)|MDVF
pi
√
T

= −X̂i|MDVF
pi

,

since X̄i|MDVF= X̄∗i . This shows that the variance of
limT→∞

di(T)|MDVF√
T is σ2

i |MDVF
p2
i

.

Also, recall that σ2
TOT is the variance of X̂TOT =∑N

i=1
X̂i
pi

. We have

lim
T→∞

D(T)|MDVF√
T

= lim
T→∞

∑N
i=1 di(T)|MDVF

N
√
T

= lim
T→∞

N∑
i=1

TX̄∗i −Xi(T)|MDVF
Npi
√
T

= −
N∑
i=1

X̂i|MDVF
Npi

,

and the variance of limT→∞
D(T)|MDVF√

T is σ2
TOT |MDVF

N2 . As

limT→∞
di(T)−D(T)√

T |MDVF converges to 0 in probability, we

have σi|MDVF = σTOT |MDVF
N pi.

We have shown that the MDVF policy satisfies both
constraints (12) and (13). We now show that the value of
σ2
TOT |MDVF can be made arbitrarily close to a theoretical

lower bound.
Consider the problem (14) – (15), which ignores the con-

straint on variance (13). Since this problem only involves a
constraint on mean, there exists a stationary randomized policy
that is optimal, which we denote by ω. Obviously, σ2

TOT |ω is a
lower bound of the problem (11) – (13). We have the following
theorem.

Theorem 3. σ2
TOT |MDVF ≤ σ2

TOT |ω + β
ε .

Proof. Since ω is a stationary randomized policy that satisfies
(15), we have E[∆di(t)]|ω = 0, for all i and t. By (17), we
have

B(t)|ω = εE[(

N∑
i=1

Xi(t+ 1)−Xi(t)

pi
)2]|ω = εσ2

TOT |ω.

Now, recall that the MDVF policy minimizes B(t). Hence, for
every t, we have

∆L(t)|MDVF + εE[(

N∑
i=1

Xi(t)−Xi(t− 1)

pi
)2]|MDVF

≤B(t)|MDVF + β

≤B(t)|ω + β = εσ2
TOT |ω + β.

Summing the above inequality over t = 1 to t = T, and then
divide both sides by T yields

E[L(T + 1)]− E[L(0)]

T
|MDVF + εσ2

TOT |MDVF

≤εσ2
TOT |ω + β. (27)



By Theorem 2, we have limT→∞
E[L(T+1)]−E[L(0)]

T |MDVF
= 0, and hence σ2

TOT |MDVF ≤ σ2
TOT |ω + β

ε .

We note that Theorem 3 holds for all ε, which is a constant
that can be arbitrarily chosen by the system designer. By
choosing a large ε, one can make σ2

TOT |MDVF arbitrarily
close to the lower bound σ2

TOT |ω.
Therefore, combining Theorem 1 that gives the form of

optimal solutions and Corollary 1 that shows the MDVF policy
satisfies both constraints (12) and (13), the MDVF policy
solves the optimization problem (11), (12) and (13).

VI. SIMULATION RESULTS

A. Simulation Settings

We present our simulation results in this section. We have
implemented and tested our policy and two other state-of-
the-art policies in ns-2. All simulations are conducted using
the 802.11 MAC protocol with 54Mbps data rate. Simulations
show that the time needed to transmit a packet and to receive
an ACK is about 0.5ms. The duration of an interval is chosen
to be 10ms, or, equivalently, 20 time slots. We evaluate the
simulation for LoC in two convex functions: one is chosen
to be C(θi(t)) := ( θi(t)T )2, which we call the quadratic LoC
function, and the other is C(θi(t)) := e(

θi(t)

T ) − 1, which we
call the exponential LoC function. We note that both functions
normalize θi(t) by T . Recall that θi(t) is the unbiased shortage
accumulated in last T intervals. Hence, θi(t)

T can be thought
of as the average unbiased shortage occurred in the last T
intervals. By normalization, we are able to compare the LoC
across different T . All results presented in this section are the
average of 1000 runs.

We compare our MDVF policy against two other policies.
The first policy is the largest debt first (LDF) policy in [4],
[7]. In each interval t, the LDF policy sorts all clients in de-
scending order of qit−Xi(t), and transmits packets according
to this ordering. It has been shown that LDF guarantees to
deliver a long-term average timely-throughput of qi to each
client i, as long as it is feasible to do so. The second policy
is a Max-Weight type of policy that aims to reduce the total
age-of-information (AoI) in the network while guaranteeing
some average timely-throughput policy [8]. We call this policy
MW-AoI. Although the problem of minimizing AoI remains
an open problem, it has been shown that the MW-AoI policy
is 4-optimal in terms of AoI.

As for the network topology, we consider two different
settings. In the first setting, there are 12 wireless clients. The
channel reliability of client i is set to be pi = 0.9−0.05i. We
set qi = 0.85 for the first 6 clients and qi = 0.75 for the last 6
clients. We call this setting the high-timely-throughput system.
In the second setting, there are 18 clients with pi = 1−0.05i.
We set qi = 0.35 for all 18 clients. We call this setting the
low-timely-throughput system.

B. The Impact of ε

Our MDVF policy makes scheduling decisions based on
the value of ei(t) := ε 1

pi
− di(t) for each flow i, where ε

(a) (b)

Fig. 1. The convergence of emax(t) − emin(t) in (a) The high-timely-
throughput system. (b) The low-timely-throughput system.

is a parameter determined by the system. Theorem. 3 has
shown that σ2

TOT |MDVF ≤ σ2
TOT |ω + β

ε . Therefore, larger
ε leads to better steady-state performance. On the other hand,
[9], [10] and [11] have shown that larger ε may lead to
longer convergence time. In this section, we investigate the
convergence speed of the MDVF policy under different values
of ε.

Recall that our MDVF policy sorts all flows by their ei(t)
and schedules packets according to the ordering in each
interval t. Hence, when the system reaches steady-state, all
flows should have roughly the same ei(t). Based on this
observation, we evaluate the convergence speed of the MDVF
policy as follows: In each simulation run and at each interval
t, we find the flow with the largest ei(t) =: emax(t) and
the flow with the smallest ei(t) =: emin(t). We then use
emax(t)−emin(t) as the indicator of convergence. Obviously,
a small value of emax(t)− emin(t) implies that the values of
ei(t) are roughly the same for all flows. We then calculate the
average of emax(t) − emin(t) over 1000 simulation runs for
all t.

Simulation results for different values of ε and for both the
low-timely-throughput system and the high-timely-throughput
system are shown in Fig. 1. Not surprisingly, it can be easily
observed that, while emax(t) − emin(t) converges to a small
value for all settings, larger ε leads to longer convergence
time. It can also be observed that the convergence speed of the
setting with ε = 5 is reasonably fast. By setting ε = 5, both the
high-timly-throughput system and the low-timely-throughput
system converge in less than 0.5 second. Hence, in the sequel,
we choose ε = 5 for our MDVF policy.

C. The Approximation Accuracy in T

Throughout the paper, we assume the CLT approximation
of Markov chain that Xi(t)−Xi(t−T ) can be approximated
as a Gaussian random variable with mean TX̄i and variance
Tσ2

i when T reasonably large as the duration of the window.
Hence, in this section, we evaluate how large T needs to be
for this approximation under our MDVF policy.

Recall the Corollary. 1, σi|MDV F
pi

should have roughly
the same value as σTOT |MDV F

N . Although σTOT |MDV F is
a near-optimal variable determined by the value of ε, the



(a) (b)

Fig. 2. The convergence of σi
pi

in (a) The high-timely-throughput system. (b)
The low-timely-throughput system.

values of σi
pi

should converge across all clients to a same
value when ε is fixed. Therefore, we design simulations in
both the high-timely-throughput system and the low-timely-
throughput system as follows: In each simulation run, t is
set to be 500, and we obtain Xi(500 + T ) − Xi(500) for
each client i, where T is set to be increasing in increments
of 5, i.e.1, 6, 11, 16, . . . , 151. Consequently, we collect 1000
samples over all simulation runs, then calculate the value of
σi
pi

for all T .
Results are shown in Fig. 2. We plot the curve of client

1, 4, 8 and 12 for the high-timely-throughput system in
Fig. 2(a), and the curve of client 1, 5, 9, 13 and 17 for the low-
timely-throughput system in Fig. 2(b). The results show that,
when T becomes larger, the values of σi

pi
converge to the same

value across clients. It can also be observed, the convergence
speed is reasonably fast that, values converge from dramatic
gaps into reasonably small gaps among clients after T = 20,
and they keep converging slowly and stably along with T .

D. Performance Comparison

We now present our simulation results that evaluate the LoC
performance of the three policies, namely, our MDVF policy,
the LDF policy, and the MW-AoI policy. We set ε = 5 and
test the three cases for T = 10, T = 20, and T = 30. For
each simulation run, we record the total LoC incurred in the
past second for up to 10 seconds.

Simulation results of the LoC in two system are shown in
Fig. 3 and Fig. 4. Since LoC can only be defined after the
system has run for T intervals, the first data point is at time 2
second, which is the total LoC incurred between time 1 second
and 2 second. The figures clearly show that our MDVF policy
achieves the smallest LoC in all settings, including both the
high-timely-throughput system and the low-timely-throughput
system, both the quadratic LoC function and the exponential
LoC function, and the three different choices of T .

A very surprising result is that the MW-AoI policy has
higher LoC than the LDF policy, even though the LDF policy
only considers long-term average timely-throughput while
the MW-AoI policy considers short-term fluctuations in the
form of Age-of-Information. The reason is that the MW-AoI
policy focuses on optimizing AoI, which only depends on

the time of the most recent packet delivery. However, many
estimation techniques require more than the most recent data
to make an accurate estimation. Even basic techniques like
linear extrapolation needs at least two data points to make
an estimate. This simulation result highlights that AoI may
fail to completely capture the reliability of estimation. On
the other hand, the LDF policy only aims to optimize the
long-term average timely-throughputs and ignores temporal
variance. This leads it to also have suboptimal total LoC.

Some interesting observations can be made by comparing
the performance of the MDVF policy between different values
of T . We note that the LoC of the MDVF policy decreases as T
becomes larger. Under our settings, the computed value of X̄∗i
is always larger than qi for each i. Therefore, we have θi(t)

T →
0 as T →∞. Our simulation results indeed demonstrate such
trends.

VII. A CASE STUDY OF REAL-TIME STATE ESTIMATION

An important motivation of this work is emerging applica-
tions that require real-time state estimation, such as industrial
IoT and VR. From an end user’s perspective, the perceived
performance is the user’s ability to make accurate estimation.
In order to demonstrate the practical value of our proposed
metric, LoC, and our proposed policy, MDVF, this section
studies the problem of sensing and estimating several inde-
pendent linear Gaussian processes, where the performance of
a flow is determined by the mean square error (MSE) of the
resulting estimation.

A. Overview of the Sensing and Estimation Problem

Consider a system with one estimator and N wireless sen-
sors. Each sensor is monitoring an independent linear Gaussian
process. We number the sensors and stochastic process so that
sensor i is monitoring process i. Further, we denote zi,t as
the value of process i in interval t. The stochastic process i
evolves according to the recursion:

zi,t+1 = zi,t + wi,t, (28)

where {wi,1, wi,2, . . . } is a sequence of i.i.d Gaussian random
variables with mean 0 and variance Wi. We also call wi,t the
Process Noise (PN).

In each interval t, each sensor i obtains a noisy measurement
of the value of process i. The value of the measurement is
denoted by mi,t, and we assume that:

mi,t = zi,t + ri,t, (29)

where {ri,1, ri,2 . . . } is a sequence of i.i.d Gaussian random
variables with mean 0 and variance Ri. We call mi,t the
actual measurement or observation under noise, and ri,t the
Measurement Noise (MN).

The network model is the same as that in Section II. In each
interval t, each sensor i generates a packet containing the value
of mi,t and the timestamp t. The packet is discarded either
when it is successfully delivered to the estimator or when the
sensor generates a newer packet. The estimator, which is also
the AP, schedules all transmissions. Thus, the estimator has



(a) T = 10 (b) T = 20 (c) T = 30

Fig. 3. Two LoC Functions in the past second of high-timely-throughput system: (a) T = 10. (b) T = 20. (c) T = 30.

(a) T = 10 (b) T = 20 (c) T = 30

Fig. 4. Two LoC Functions in the past second of low-timely-throughput system: (a) T = 10. (b) T = 20. (c) T = 30.

access to the value of mi,t if and only if a packet is delivered
for sensor i in interval t.

The goal of the estimator is to find the best estimate of the
current value zi,t of each process i based on all the packets that
it has received so far. Let Mt

i be the set of sensor readings,
along with their timestamps that have been delivered to the
estimator on or before interval t. Let ẑi,t be the best estimate
of zi,t and Σi,t be the Mean Square Error (MSE) of the best
estimate, with observation up to interval t. We then have:

ẑi,t = E[zi,t|Mt
i] (30)

Σi,t = E[(zi,t − ẑi,t)2|Mt
i]. (31)

When all packets are successfully delivered on time, it is
well-known that Kalman Filter [12] [13] [14], a recursive
algorithm that calculates ẑi,t and Σi,t simultaneously, yields
the best estimate of the underlying Gaussian linear processes.
In our system, some packets may be dropped due to deadline

violation, which leads to some missing samples. This scenario
has been discussed in [15] and [16], where a variation of
Kalman Filter has been proposed and proved to be optimal.
Alg. 2 summarizes the variation of Kalman Filter.

B. Simulation of the Estimation Problem

MSE captures the error variance that occurred in the esti-
mate process. Thus it shows the accuracy of the estimate. We
design the simulation to see the performance of MSE of three
policies. For all policies, we collect the average MSE and 95
percentile MSE of all clients in the past second for 10 seconds
in total. The simulation result is based on the average of 1000
runs.

An important challenge of this simulation is to make the
MSEs of different processes comparable to each other. In this
simulation, we set Wi = qi = pi for each process and Ri = 20
for all i. This setting is chosen based on the following two
reasons. First, suppose each sensor i delivers one packet every
1
qi

intervals periodically, and therefore delivers qiT packets in



Algorithm 2: Kalman Filter Recursion Rule with
Missing Samples

Result: The ẑi,t and Σi,t based on Mt
i.

Initialization: ẑi,t, Σi,t, when t = 0;
while each new interval do

for each i do
if mi,t+1 is not delivered then

ẑi,t+1 = ẑi,t;
Σi,t+1 = Σi,t +Wi;

else
ẑi,t+1 = ẑi,t +

Σi,t+1(mi,t+1−ẑi,t)
(Σi,t+1+Ri)

;

Σi,t+1 =
(Σi,t+Wi)Ri

(Σi,t+Wi+Ri)
;

end
end
t = t+ 1;

end

(a) The 95 percentile MSE (b) The average MSE

Fig. 5. The average MSE and 95 percentile MSE result of the 12-process
system.

every T intervals, then it can be shown that all processes have
the same MSE. Second, consider the case that each sensor i
delivers one packet every 1

qi−δpi intervals. In this case, the
unbiased shortage of all sensors are δT . It can be shown that,
under this case, all processes still have the same steady-state
MSE. In summary, setting Wi = qi = pi for each process
and Ri = 20 for all i ensures that the MSEs between different
processes are comparable. The exact calculations for the MSEs

(a) The 95 percentile MSE (b) The average MSE

Fig. 6. The average MSE and 95 percentile MSE result of the 18-process
system.

are shown in Appendix A.
We consider two different systems in our simulations. The

first system has 12 processes and is called the 12-process
system. The values of pi are {0.5, 0.47, 0.45, 0.43, 0.4, 0.37,
0.35, 0.33, 0.3, 0.27, 0.25, 0.23}. The second system has 18
processes and is called the 18-process system. The values of
pi are {0.3, 0.29, 0.28, 0.27, 0.26, 0.25, 0.24, 0.23, 0.22,
0.21, 0.20, 0.19, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13}.

The simulation results are shown in Fig 5 and Fig 6. In
the 12-process system, all three policies have roughly the
same average MSE, but our MDVF policy has a smaller 95-
percentile MSE. In the 18-process system, our MDVF policy
and the LDF policy have almost identical performance, and
both of them perform better than the MW-AoI policy, both in
terms of average MSE and 95-percentile MSE. In our network
model, whenever a process delivers a packet of measurement
data, the AoI of that process drops to zero. However, since
the measurement is noisy, the delivery of one single packet
is not sufficient to make an accurate estimation. Instead,
the estimator needs to have multiple recent measurements to
make an accurate estimation. This is why our MDVF policy
performs better than the MW-AoI policy.

This simulation result demonstrates that our MDVF policy
indeed provides superior performance for real-time estimation
applications. It also suggests that AoI-based solutions may
not be sufficient to capture the reliability of estimation when
considering many estimate techniques.

VIII. RELATED WORK

Age-of-information (AoI) is another metric that aims to cap-
ture the short-term performance of information flows that has
gained a lot of research interests. For the wireless information-
update system, Kadota et.al have built the model of AoI
optimization problem in [17] when considering unreliable
channel and multiple information flows. Further, Kadota, Sinha
and Modiano in [8] have proposed the optimal scheduling
policy for the AoI minimization problem when providing the
minimum throughput requirement. Both Hsu et.al in [18] and
Kadota et.al in [19] have recently proposed the scheduling
algorithm when considering random arrivals to minimize the
average age. Kam et.al in [20] and [21] first introduce the idea
of “effective AoI” to capture the estimation error extended
from AoI for a Markov source. Some extended area are also
researched with AoI, such as [22] in vehicular network, [23]
in multi-hops wireless network, and [24] for link-scheduling
optimization in wireless system. The major difference of our
work to the AoI approach is that our work cares not only
the “timely” status update but also the amount of timely
information. When regarding the remote-estimate problems,
AoI-based policies normally consider the Markov-style esti-
mate problems, rather than other estimate problems requiring
multiple data points, which is our main concentration.

Real-time wireless networks have gained a lot of research
interests. Hou, Borkar, and Kumar [4] have proposed a frame-
based model to describe delay requirements of real-time flows.
Under this model, the performance of each flow is determined



by its timely-throughput, which is the long-term average
number of timely deliveries. Jaramillo, Srikant, and Ying [25]
have studied wireless flows with heterogeneous delay and
timely-throughput requirements. Kang et. al. [26] have studied
the performance of timely-throughputs in ad hoc wireless
networks with stochastic packet arrivals. Meko and Seid [27]
have proposed a randomized scheduling algorithm for real-
time flows. Zhang et. al. [28] have studied timely-throughputs
in heterogeneous cellular networks with mobile nodes. Lash-
gari and Avestimehr [29] have looked for the additive gap of
maximal timely throughput in a relaxed problem under the
time-varying channel states. However, all these studies focus
on the long-term average timely-throughput of each flow. As
demonstrated in this paper, the temporal variance of timely-
throughput can have significant impact on the credibility of an
information flow. Singh, Hou, and Kumar [30] have studied the
fluctuation of timely-throughput, but its results only hold for a
limiting scaled workloads. Hou [2] has proposed a scheduling
policy to optimize the short-term performance of real-time
flows, but the policy only applies to wireless networks where
all links have the same quality.

IX. CONCLUSION

We have studied the problem of minimizing the total Loss-
of-Confidence (LoC) in real-time wireless networks, where the
LoC of each flow only depends on the timely deliveries in a
window of the recent past. We have shown that, unlike most
existing network utility maximization (NUM) problem, the
problem of minimizing total LoC requires the precise control
of the temporal variance of timely deliveries. To solve this
problem, we have proposed a simple online algorithm called
the MDVF policy, and have proved that the MDVF policy
is near-optimal. Simulation results have demonstrated that
the MDVF policy outperforms other state-of-the-art policies.
Further, we have studied the application of real-time estimation
of multiple independent linear Gaussian processes, where an
estimator aims to make the best estimate of the current states
based on all the measurements that it has received. We evaluate
the performance of our policy and others by their resulting
estimation error. Simulation results show that our MDVF
policy achieves both the smallest average estimation error as
well as the smallest 95-percentile of estimation error. This
case study suggests that AoI solutions may fail to capture the
performance for real-time remote estimation problems.

There are several important directions for future work: First,
this work relies on the knowledge of channel reliability pi. It
is of interest to study other channel models, including fading
channels where pi can change overtime and not known in
advance and the usage the rate adaptation. Second, although
our simulations showed that LoC-based policies outperform
AoI-based policies, more comprehensive comparisons will be
involved in future work. Third, we have studied one case of
estimation in Section. VII and showed that LoC-based policy
leads to smaller MSE. However, the connection between MSE
and LoC can be further explored in the future.
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APPENDIX A
THE STEADY-STATE MSE OF REAL-TIME FLOWS WITH

PERIODIC DELIVERIES

In this section, we consider the real-time estimation problem
as described in Section VII. We calculate the MSE of a real-
time flow when the corresponding sensor i delivers one packet
every 1

qi−δpi intervals periodically.
Let t0 be the first interval in which sensor i delivers a packet.

Sensor i therefore delivers one packet in each of the intervals
t0, t0 + 1

qi−δpi , t0 + 2 1
qi−δpi , . . . . Recall that Σi,t is the MSE

of sensor i in interval t. We then define the steady-state MSE
of sensor i as Σi := limk→∞ Σi,t0+k 1

qi−δpi
.

To calculate Σi, we note that, by Alg. 2, we have:

Σi,t0+k 1
qi−δpi

=(Σi,t0+k 1
qi−δpi

−1 +Wi)Ri/(Σi,t0+k 1
qi−δpi

−1 +Wi +Ri),

since there is a packet delivery in interval t0 + k 1
qi−δpi . In

addition, we also have

Σi,t0+k 1
qi−δpi

−1 = Σi,t0+k 1
qi−δpi

−2 +Wi

= Σi,t0+k 1
qi−δpi

−3 + 2Wi

. . .

= Σi,t0+(k−1) 1
qi−δpi

+ (
1

qi − δpi
− 1)Wi.

Combining these two equations and setting Wi = pi = qi and
Ri = 20, as used in Section VII, yield

Σi = lim
k→∞

Σi,t0+k 1
qi−δpi

= lim
k→∞

20(Σi,t0+(k−1) 1
qi−δpi

+ Wi

1−δ )

(Σi,t0+(k−1) 1
qi−δpi

+ Wi

1−δ + 20)
=

20(Σi + Wi

1−δ )

(Σi + Wi

1−δ + 20)
,

and hence

Σi =
− 1

1−δ +
√

1
(1−δ)2 + 80

1−δ

2
,

for all i. In particular, when δ = 0, we have Σi = 4. This
justifies the simulation settings in Section VII.

REFERENCES

[1] D. Guo and I.-H. Hou, “On the credibility of information flows in
real-time wireless networks,” in 2019 17th International Symposium on
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOpt), 2019.

[2] I. Hou, “On the modeling and optimization of short-term performance
for real-time wireless networks,” in IEEE INFOCOM 2016 - The 35th
Annual IEEE International Conference on Computer Communications,
April 2016, pp. 1–9.



[3] G. L. Jones, “On the markov chain central limit theorem,”
Probab. Surveys, vol. 1, pp. 299–320, 2004. [Online]. Available:
https://doi.org/10.1214/154957804100000051

[4] I.-H. Hou, V. Borkar, and P. R. Kumar, “A theory of qos for wireless,”
in INFOCOM 2009, IEEE, 2009, pp. 486–494.

[5] B. M. Brown, “Martingale central limit theorems,” The Annals of
Mathematical Statistics, vol. 42, no. 1, pp. 59–66, 1971.

[6] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synthesis Lectures on Commu-
nication Networks, vol. 3, no. 1, pp. 1–211, 2010.

[7] I.-H. Hou, “Scheduling heterogeneous real-time traffic over fading
wireless channels,” IEEE/ACM Transactions on Networking, vol. 22,
no. 5, pp. 1631–1644, 2014.

[8] I. Kadota, A. Sinha, and E. Modiano, “Optimizing age of information
in wireless networks with throughput constraints,” in IEEE INFOCOM
2018-IEEE Conference on Computer Communications. IEEE, 2018,
pp. 1844–1852.

[9] L. Huang, X. Liu, and X. Hao, “The power of online learning
in stochastic network optimization,” SIGMETRICS Perform. Eval.
Rev., vol. 42, no. 1, pp. 153–165, Jun. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2637364.2591990

[10] L. Huang and M. J. Neely, “Delay reduction via lagrange multipliers
in stochastic network optimization,” IEEE Transactions on Automatic
Control, vol. 56, no. 4, pp. 842–857, April 2011.

[11] L. Huang, S. Moeller, M. J. Neely, and B. Krishnamachari, “Lifo-
backpressure achieves near-optimal utility-delay tradeoff,” IEEE/ACM
Transactions on Networking, vol. 21, no. 3, pp. 831–844, June 2013.

[12] P. R. Kumar and P. Varaiya, Stochastic Systems: Estimation, Identifica-
tion and Adaptive Control. Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 1986.

[13] P. Zarchan and H. Musoff, Fundamentals of Kalman Filtering:
A Practical Approach, ser. Fundamentals of Kalman filtering:
a practical approach. American Institute of Aeronautics and
Astronautics, Incorporated, 2000, no. v. 190. [Online]. Available:
https://books.google.com/books?id=AQxRAAAAMAAJ

[14] D. M. Wolpert and Z. Ghahramani, “Computational principles of move-
ment neuroscience,” Nature Neuroscience, vol. 3, pp. 1212–1217, 2000.

[15] H. M. Faridani, “Performance of kalman fil-
ter with missing measurements,” Automatica, vol. 22,
no. 1, pp. 117 – 120, 1986. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0005109886901123

[16] W. Palma and N. H. Chan, “Estimation and forecasting of long-
memory processes with missing values,” Journal of Forecasting,
vol. 16, no. 6, pp. 395–410, 11 1997. [Online]. Avail-
able: https://doi.org/10.1002/(SICI)1099-131X(199711)16:6¡395::AID-
FOR660¿3.0.CO;2-P

[17] I. Kadota, A. Sinha, E. Uysal-Biyikoglu, R. Singh, and E. Modiano,
“Scheduling policies for minimizing age of information in broadcast
wireless networks,” CoRR, vol. abs/1801.01803, 2018. [Online].
Available: http://arxiv.org/abs/1801.01803

[18] y.-P. Hsu, E. Modiano, and L. Duan, “Scheduling algorithms for mini-
mizing age of information in wireless broadcast networks with random
arrivals,” IEEE Transactions on Mobile Computing, vol. PP, 12 2017.

[19] I. Kadota and E. Modiano, “Minimizing the age of information in
wireless networks with stochastic arrivals,” in the Twentieth ACM
International Symposium, 07 2019, pp. 221–230.

[20] C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and
A. Ephremides, “Towards an “effective age” concept,” in 2018 IEEE
19th International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), June 2018, pp. 1–5.

[21] ——, “Towards an effective age of information: Remote estimation of
a markov source,” in IEEE INFOCOM 2018 - IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), 2018,
pp. 367–372.

[22] S. Kaul, M. Gruteser, V. Rai, and J. Kenney, “Minimizing age of infor-
mation in vehicular networks,” in 2011 8th Annual IEEE Communica-
tions Society Conference on Sensor, Mesh and Ad Hoc Communications
and Networks, June 2011, pp. 350–358.

[23] R. Talak, S. Karaman, and E. Modiano, “Minimizing age-of-information
in multi-hop wireless networks,” in 2017 55th Annual Allerton Confer-
ence on Communication, Control, and Computing (Allerton), Oct 2017,
pp. 486–493.

[24] Q. He, D. Yuan, and A. Ephremides, “Optimizing freshness of infor-
mation: On minimum age link scheduling in wireless systems,” in 2016

14th International Symposium on Modeling and Optimization in Mobile,
Ad Hoc, and Wireless Networks (WiOpt), May 2016, pp. 1–8.

[25] J. Jaramillo, R. Srikant, and L. Ying, “Scheduling for optimal rate
allocation in ad hoc networks with heterogeneous delay constraints,”
IEEE Journal on Selected Areas in Communications, vol. 29, no. 5, pp.
979–987, 5 2011.

[26] X. Kang, W. Wang, J. J. Jaramillo, and L. Ying, “On the performance of
largest-deficit-first for scheduling real-time traffic in wireless networks,”
in Proceedings of the Fourteenth ACM International Symposium on
Mobile Ad Hoc Networking and Computing, ser. MobiHoc ’13.
New York, NY, USA: ACM, 2013, pp. 99–108. [Online]. Available:
http://doi.acm.org/10.1145/2491288.2491298

[27] S. F. Meko and H. Seid, “Stochastic approximation based scheduling for
real-time applications in wireless networks,” in AFRICON 2015, Sep.
2015, pp. 1–4.

[28] G. Zhang, A. Huang, T. Q. S. Quek, and H. Shan, “Timely throughput
of heterogeneous cellular networks,” in 2015 IEEE International Con-
ference on Communications (ICC), June 2015, pp. 5621–5626.

[29] S. Lashgari and A. S. Avestimehr, “Timely throughput of heterogeneous
wireless networks: Fundamental limits and algorithms,” IEEE Transac-
tions on Information Theory, vol. 59, no. 12, pp. 8414–8433, Dec 2013.

[30] R. Singh, I.-H. Hou, and P. Kumar, “Fluctuation analysis of debt
based policies for wireless networks with hard delay constraints,” in
INFOCOM, 2014 Proceedings IEEE. IEEE, 2014, pp. 2400–2408.

Daojing Guo received his B.S. in Electrical Engi-
neering from the South China University of Tech-
nology in 2012 and his M.S. in Electrical Engi-
neering from the Illinois Institute of Technology.
He is currently pursuing a Ph.D. degree with the
Department of Electrical and Computer Engineering,
Texas A&M University, College Station, TX, USA.
His research interests include wireless networks,
vehicle-to-x, internet-of-things, and software-defined
networks.

I-Hong Hou (S’10–M’12–SM’21) received the B.S.
in Electrical Engineering from National Taiwan Uni-
versity in 2004, and his M.S. and Ph.D. in Com-
puter Science from University of Illinois, Urbana-
Champaign in 2008 and 2011, respectively.

In 2012, he joined the department of Electrical
and Computer Engineering at the Texas A&M Uni-
versity, where he is currently an Associate Professor.
Dr. Hou received the Best Paper Award in ACM
MobiHoc 2017 and ACM MobiHoc 2020, the Best
Student Paper Award in WiOpt 2017, and the C.W.

Gear Outstanding Graduate Student Award from the University of Illinois at
Urbana-Champaign.


