

1 **TITLE:** Fetal growth, high altitude, and evolutionary adaptation: A new perspective
2

3 **RUNNING HEAD:** Fetal growth and altitude
4

5 **AUTHORS:**
6 Kathryn Wilsterman
7 Zachary A. Cheviron
8

9 **AFFILIATIONS:**
10 Division of Biological Sciences, University of Montana, Missoula, MT 59812
11

12 **CORRESPONDING AUTHOR:**
13 Kathryn Wilsterman
14 Division of Biological Sciences
15 Health Sciences Building, Room 104
16 University of Montana
17 Missoula, MT 59812
18

19 484-241-0631
20 kathrynwilsterman@gmail.com
21

22 **TITLE:** Fetal growth, high altitude, and evolutionary adaptation: A new perspective

23
24 **RUNNING HEAD:** Fetal growth and altitude

25
26 **AUTHORS:**

27 Kathryn Wilsterman

28 Zachary A. Cheviron

29
30 **AFFILIATIONS:**

31 Division of Biological Sciences, University of Montana, Missoula, MT 59812

32
33 **KEYWORDS:** physiological plasticity, gestation, pregnancy, hypoxia, SGA

34
35 **Abstract:** Residence at high altitude is consistently associated with low birth weight
36 among placental mammals. This reduction in birth weight influences long-term health
37 trajectories for both the offspring and mother. However, the physiological processes that
38 contribute to fetal growth restriction at altitude are still poorly understood, and thus our
39 ability to safely intervene remains limited. One approach to identify the factors that
40 mitigate altitude-dependent fetal growth restriction is to study populations that are
41 protected from fetal growth restriction through evolutionary adaptations (e.g., high
42 altitude-adapted populations). Here, we examine human gestational physiology at high-
43 altitude from a novel evolutionary perspective that focuses on patterns of physiological
44 plasticity, allowing us to identify (1) the contribution of specific physiological systems to
45 fetal growth restriction and (2) mechanisms that confer protection in highland-adapted
46 populations. Using this perspective, our review highlights two general findings: first, that
47 the beneficial value of plasticity in maternal physiology is often dependent on factors
48 more proximate to the fetus; and second, that our ability to understand the contributions
49 of these proximate factors is currently limited by thin data from altitude adapted
50 populations. Expanding the comparative scope of studies on gestational physiology at
51 high altitude and integrating studies of both maternal and fetal physiology are needed to
52 clarify the mechanisms by which physiological responses to altitude contribute to fetal
53 growth outcomes. The relevance of these questions to clinical, agricultural, and basic
54 research combined with the breadth of the unknown highlight gestational physiology at
55 high altitude as an exciting niche for continued work.

56
57 **Acknowledgements:** We thank members of the Cheviron lab for valuable feedback
58 during the development of these ideas and constructive comments from reviewers in
59 refining the manuscript.

60
61 **Grants:** This work was supported by grants from the National Institutes of Health (R15
62 HD103925 to KW and ZAC) and the National Science Foundation (DBI 1907233 to KW;
63 IOS-1755411 and OIA 1736249 to ZAC).

64
65

66 **I. Introduction**

67
68 High altitude environments (defined here as > 2500 m above sea level) have a long
69 history as focal sites for studying fundamentals of physiology. The reduced oxygen
70 availability and relatively low ambient temperatures that characterize these
71 environments present unavoidable, physiological challenges to residents and transients
72 alike. Despite these challenges, animals including humans have repeatedly colonized
73 high altitude environments. In many of these cases, the novel selective pressures
74 associated with the abiotic challenges of high altitude have driven evolutionary changes
75 that improve Darwinian fitness at altitude (i.e., evolutionary adaptations). Fitness in this
76 sense is comprised of two components: survival and reproduction. Of these, traits that
77 influence survival continues to be the primary focus of research aimed at understanding
78 adaptations to high altitude (1–5), in part because altitude so obviously affects
79 performance (and thus survival) through lower oxygen availability. Although high altitude
80 also impacts the other major component of fitness, reproduction, we still understand
81 relatively little about reproductive adaptations.

82 Gestation at high altitudes is associated with dose-dependent reductions to birth
83 weight in humans (Fig. 1) and other mammals. In domesticated guinea pigs and sheep,
84 gestating at altitude or under simulated hypobaric hypoxia can result in a dramatic 30%
85 decline in birthweight (6–8); similar but more moderate reductions in birthweight occur in
86 mice and humans (9, 10). These reductions in birth weight are associated with long-
87 term risks to newborn survival and health in humans and other animals (11–16). Given
88 the consequences of these adverse outcomes on reproductive success, protection of
89 fetal growth should be an important aspect of evolutionary adaptation to altitude.
90 Indeed, altitude-adapted populations, including indigenous Andean and Tibetan
91 humans, display reduced altitude-dependent fetal growth restriction (Fig. 1).

92 Understanding the physiological bases of evolutionary adaptations that protect fetal
93 growth in altitude-adapted populations is of interest to both basic and applied research.
94 These adaptations can offer novel insights into potential targets for interventions that
95 would limit altitude-dependent growth restriction in humans and livestock. To draw
96 biomedical insight from evolutionary adaptation to altitude and its effects on fetal growth
97 restriction, we need answers to two broad questions:

98
99 (1) Which physiological processes contribute to fetal growth restriction in lowlanders
100 gestating at altitude? and
101 (2) How have these processes been shaped by evolutionary adaptation to protect
102 fetal growth in highland-adapted populations?

103
104 In this review, we provide new insight into these questions by summarizing the
105 current state of the field using a perspective based in evolutionary theory. This
106 perspective can be broadly applied to help identify physiological traits or processes that
107 are likely contributors to fetal growth outcomes at altitude. We then identify key areas
108 where new approaches or questions are needed to advance our understanding of
109 hypoxia-dependent fetal growth restriction from an evolutionary vantage point.

111 **II. Which physiological traits or processes influence fetal growth at**
112 **altitude?**

113 Hypobaric hypoxia is likely the ultimate cause of fetal growth restriction at altitude.
114 However, oxygen availability can influence fetal growth through both direct and indirect
115 mechanisms. Direct effects of oxygen limitation refer to the inability of the fetus to
116 acquire sufficient oxygen for growth, whereas indirect effects refer to the response of
117 maternal, placental, and fetal physiology to environmental hypoxia, which can then
118 secondarily restrict fetal growth. Indirect effects of hypobaric hypoxia on fetal growth
119 thus include physiological changes in the mother that alter the fetal environment. At
120 altitude, many animals undergo plastic changes to their physiology (i.e., acclimatization)
121 to preserve arterial oxygen content and delivery to tissues. Acclimatization can include
122 remodeling function and structure of cardiovascular, metabolic, and pulmonary systems
123 (for further examples and discussion beyond pregnancy, see (17)). Downstream of
124 maternal cardiopulmonary systems, placentation and fetal growth may also respond to
125 oxygen tension directly or to changes in maternal physiology (such as blood viscosity or
126 pressure). With this in mind, a large number of maternal and feto-placental traits may
127 directly or indirectly contribute to fetal growth at altitude, and the degree and nature of
128 physiological plasticity in these traits may also be important. For the purposes of this
129 review, we have grouped traits into four “steps” along the oxygen transport cascade
130 from the environment through maternal circulation and into fetal circulation (Fig. 2): (a)
131 maternal oxygen transport capacity, (b) blood delivery to the fetoplacental unit, (c)
132 organization and function of the placenta, and (d) fetal hematolgy.

133 **III. Physiological plasticity and adaptation**

134 In the field of placental and fetal hypoxia, any plasticity in maternal, fetal, or
135 placental function or structure is often referred to as an “adaptation” to hypoxia, meant
136 to convey simply that the system is responding to hypoxia; these types of responses
137 can be described more specifically as acclimatization. In contrast, adaptation in the
138 evolutionary sense specifically refers to responses that enhance Darwinian fitness. This
139 specificity is important within the context of hypoxia responses because maladaptive, or
140 counterproductive, acclimatization responses are well-known components of the
141 integrated, physiological responses to altitude in lowlanders (5, 17, 18). The prevalence
142 of maladaptive plasticity is thought to reflect evolutionary adaptation to lowland
143 conditions in an ancestral population. Unfortunately, some of the physiological
144 responses that evolved to cope with acute and/or localized hypoxia in low-elevation
145 conditions produce misdirected, maladaptive responses under the chronic and global
146 hypoxia at high altitude (17). For example, in lowland environments, tissue hypoxia may
147 result from anemia, in which case increasing production of red blood cells
148 (erythropoiesis) can facilitate greater oxygen carrying capacity within the blood and thus
149 alleviate hypoxia. Importantly, in this scenario, erythropoiesis returns hematocrit from
150 pathologically low levels into a healthy range. At high altitudes, tissue-level hypoxia
151 resulting from environmental (rather than physiological) factors stimulates this same
152 response (increased erythropoiesis). However, in this case, hematocrit is already within
153 a healthy range, and the excessive erythropoiesis can increase blood viscosity. At

155 extreme levels, elevated blood viscosity places excessive strain on the heart (19), and it
156 can hinder cardiac output and oxygen delivery to the systemic circulatory system (e.g.,
157 (20).

158 Understanding and developing treatments for diseases or pathologies at altitude
159 depends on differentiating between the aspects of physiological plasticity that are
160 maladaptive and those that are adaptive. Harmful versus beneficial value can be
161 assessed through correlations between physiological trait values (e.g., maternal
162 hematocrit) and birth outcomes (e.g., birthweight) or by quantifying a hazard ratio, but
163 there are several limitations to these approaches. As aforementioned, many
164 physiological trait values that influence fetal growth are remodeled at altitude as part of
165 maternal acclimatization. Thus, correlations between trait values and birth outcomes
166 can appear because both are independently responding to the same environmental
167 cues, rather than being causally linked. For example, up-regulation of common
168 transcription factors that are sensitive to hypoxia (like hypoxia-inducible factor, HIF) can
169 induce correlated responses across independent systems. In addition, we might expect
170 that there are particular oxygen content or nutrient delivery thresholds relevant for fetal
171 growth below or above which a relationship between the predictor and outcome (here,
172 fetal growth) is no longer apparent because that variable has been effectively saturated.

173 An inferential framework that is rooted in evolutionary theory can help circumvent
174 some of these challenges and provide new insight. Natural selection acts on plastic
175 traits differently depending on whether the induced response is beneficial (adaptive) or
176 harmful (maladaptive). When plasticity is adaptive, natural selection acts to preserve or
177 even enhance the magnitude of the plastic response (21). In contrast, if plasticity is
178 maladaptive, selection should favor a blunted response that prevents the expression of
179 the maladaptive trait value in the novel environment (22, 23). Empirical data support
180 these theoretical predictions (see refs. (21–23) for further explanation and examples).

181 In practice, these evolutionary expectations allow for the inference of the adaptive
182 value of plastic responses at altitude (21). Put simply, a lowlander response to altitude
183 can be inferred to be adaptive if it moves the trait value closer to that expressed by the
184 locally adapted highland population (Fig. 3A). Conversely, maladaptive plastic
185 responses either move the trait value further from the locally adapted phenotype (Fig.
186 3B) or overshoot it (Fig. 3C). Despite the potential biomedical insight this evolutionary
187 framework could provide, these inferential arguments have not yet been used to
188 interpret the large body of data addressing how altitude shapes physiology and thus
189 affects fetal growth.

190

191 **IV. Using an evolutionary framework to assess evidence for adaptive and** 192 **maladaptive plasticity in gestational physiology.**

193

194 In utilizing this framework to assess the adaptive value of plasticity in a specific
195 gestational trait, there are several important factors that should be considered. First,
196 because the framework requires an understanding of the ancestral and derived
197 phenotypic states, the colonization history must be known. In the case of high altitude
198 adaptation in humans, the well-studied highland populations are definitively derived
199 from lowland ancestors (e.g., (24–27). Our understanding of ancestral gestational
200 plasticity in lowland humans comes primarily from studies of descendants of European

immigrants living at high elevation in the Andes and Rocky Mountains and of Han Chinese living at high elevation on the Tibetan Plateau. These data can be contrasted with similar data from well-studied indigenous populations in the Andes (principally Quechua and Aymara) and Tibet (Tibetans, including Sherpa). Ideally, contrasts should be drawn between highlanders and their closest lowland relatives; however, this can be difficult when the genealogical histories of focal populations are not fully understood. The history of genetic admixture between focal highland and lowland populations is a related issue. Modern-day movement of humans across the globe has resulted in widespread admixture among historically separated populations. As a result, formal analysis of genetic ancestry is often necessary for correct population assignment. Here, we primarily restricted our review to only those studies that assessed the genetic ancestry of sampled individuals to avoid errors in inference based on incorrect population assignment. In a few cases, however, we did include studies that only used surname analyses for population assignment (28–31); these include foundational studies of placenta histology that were published prior to wide availability or use of genetic approaches.

Second, physiological traits rarely function or evolve in isolation. Many of the physiological systems that support gestation are highly interconnected and interdependent, and this interdependence may place constraints on the evolutionary trajectories of individual traits. As a result, the adaptive value of any particular evolutionary change may be context dependent, and subject to evolutionary and functional constraints imposed by interacting systems. Relatedly, not all phenotypic differences affect fitness. Population differences in a phenotype may reflect neutral population genetic processes, and as a result, simply documenting a phenotypic difference between highlanders and lowlanders may not be sufficient to infer adaptation without additional information (32). A more powerful approach is to look for shared features across multiple, independent instances of adaptation (e.g., plasticity that is modified similarly in both Tibetans and Andeans). Such convergent changes provide particularly strong evidence for adaptive evolution and demonstrate that evolution of these solutions is not precluded by or dependent on other functional or evolutionary constraints specific to one group. As a result, these convergent solutions may be particularly promising targets for intervention. Differences in plasticity remodeling among adapted populations can suggest multiple solutions for the same biological problem, but their effectiveness may depend on unique interactions between gestational and maternal physiology as well as genetic background. Although understanding these contingencies could prove insightful for personalized medicine, population-specific solutions will be more difficult to understand because of the complex interconnectedness of relevant traits. With this in mind, using evolutionary frameworks to assign adaptive or maladaptive value to traits relevant to fetal growth should be based on at least two independently-derived highland populations (e.g., Andean and Tibetan; Ethiopian highlanders may be able to serve as a third group for confirmation in the future, however gestational adaptations have not been characterized in this population to-date and thus they are not included in this review).

Here, we first review what is known about altitude acclimatization during gestation in lowland populations to establish general patterns of plasticity in lowlanders. We then contrast these patterns with data from highland populations to infer the adaptive value

247 of lowlander responses. We also include other types of information on adaptive value
248 when available, such as hazards ratios and associations between trait values and
249 outcomes like birth weight. Finally, we identify key areas for future work that will
250 broaden and strengthen the utility of evolutionary frameworks for understanding fetal
251 growth restriction at altitude. Throughout, we discuss only those traits for which there is
252 consistent or sufficient evidence to characterize plasticity in lowlanders. For traits where
253 the published evidence is scant or equivocal, summaries and relevant citations can be
254 found in Table 1.

255

256 i. Maternal oxygen and nutrient transport capacity

257

258 A major challenge to physiology at high altitudes is simply preserving oxygen delivery to
259 tissues. This challenge can be at least partially offset by changes in cardio-pulmonary
260 function and the oxygen carrying capacity of the blood.

261

262 **Ventilation and heart rate:** Acclimatization to high altitude increases ventilation (L/min)
263 and heart rates in lowlanders compared to sea-level values (33–36). While increasing
264 heart rate can improve delivery of oxygen, increasing ventilation rate contributes to
265 pulmonary oxygen uptake as well as respiratory alkalosis, which can affect the off-
266 loading of oxygen at target tissues by altering blood chemistry (see section below).
267 These acclimatization responses persist during pregnancy: women of lowland ancestry
268 that are gestating at altitude display greater ventilation (L/min) and their heart rates tend
269 to be elevated relative to women of similar genetic backgrounds gestating at sea-level
270 (35, 37, 38).

271 Indigenous Andeans and Tibetans differ in their ventilatory adaptations to altitude
272 (39), and these differences are also maintained during pregnancy. Specifically, pregnant
273 Andean women at altitude maintain lower ventilation at term relative to Europeans (40),
274 whereas Tibetans maintain greater ventilation (41). Interestingly, elevated ventilation
275 rates appear to have a positive impact on birth weight for both Tibetans and Andeans,
276 but there does not appear to be a similar benefit of elevated ventilation to birthweights in
277 lowland groups (40, 41). These patterns suggest that increasing ventilation at altitude is
278 adaptive, but the benefit to fetal growth may be dependent on interactions with
279 downstream physiological traits that augment oxygen delivery and/or acid-base balance
280 in the blood through other mechanisms.

281 In contrast, both Tibetans and Andeans display lower heart rates throughout
282 pregnancy at altitude compared to women with lowland ancestry (37, 40–42). In
283 addition, lower pulse rates in Tibetans have been linked to improved pregnancy
284 outcomes (including total pregnancies and survival of the child up to one year; see ref.
285 (43). These patterns suggest that the acclimatization-dependent increase in heart rate
286 of lowland women at altitude is likely maladaptive. Increasing heart rate may have
287 detrimental effects on blood pressure or stress on the heart, but evidence is limited (see
288 section on blood pressure below). Alternatively, the maladaptive pattern in heart rate
289 may reflect underlying maladaptive patterns of catecholamine synthesis (e.g., (44, 45),
290 which can drive sustained peripheral vasoconstriction at altitude.

292 **Hematocrit and hemoglobin:** Oxygen-carrying capacity in the blood is determined by
293 a combination of the concentration and functional properties of hemoglobin, as well as
294 the blood biochemistry. Exposure to high altitude is generally associated with an
295 increase in hematocrit and hemoglobin concentrations during pregnancy in women with
296 lowland ancestry (35, 38, 42, 46–52). Elevated hematocrit in pregnant women at altitude
297 may be due to insufficient blood volume expansion during pregnancy (52): the absolute
298 concentrations of both hematocrit and hemoglobin decline with pregnancy at any
299 altitude (52, 53) as plasma volume increases, but pregnancy-associated increases in
300 plasma volume (and by association, blood volume) are apparently blunted by residence
301 at high altitude in women with lowland ancestry (52).

302 Both insufficient blood volume expansion and elevated hematocrit are
303 independently associated with pregnancy complications (52) (and citations therein) and
304 low birth weight (49, 52–54) but see ref. (42). Elevated hematocrit has also been linked
305 to irregular morphology of the placenta (48). The causal mechanism by which these
306 factors might lead to low birth weight remains unclear. Elevated hematocrit may drive
307 physiological changes that alter placental morphology and/or constrain fetal growth.
308 Alternatively, elevated hematocrit and fetal growth restriction may reflect other upstream
309 physiological constraints.

310 One of the notable adaptations seen in highland-adapted Tibetans is an
311 attenuation of the acclimatization-related increase in circulating hematocrit and
312 hemoglobin. Recently, regulation of plasma volume has also been recognized as
313 important to adaptive changes in hematocrit concentration in male and non-gestating
314 female Tibetans (55). It is unclear whether these patterns persist during high altitude
315 pregnancies. While some studies show that both pregnant Andeans and Tibetans tend
316 to maintain lower hematocrit and hemoglobin concentrations in the blood relative to
317 pregnant women with lowland ancestry (41, 42, 50), others find no difference (37, 40,
318 56). Moreover, blood and plasma volume appear generally similar between European
319 and Andean women at altitude (37, 40). Nonetheless, elevated hematocrit is still
320 associated with reduced fetal growth in Tibetans and Andeans, and lower hemoglobin is
321 associated with greater fertility and survival of children through their first year of life in
322 Tibetans (43). These patterns suggest that altitude-dependent increases in hematocrit
323 are universally maladaptive above a certain threshold.

324 **Blood chemistry and oxygen content:** In concert with changes to hematocrit and
325 hemoglobin content, shifts in blood biochemistry alter hemoglobin affinity for oxygen.
326 Altering hemoglobin-oxygen affinity affects both blood oxygen saturation at the lungs
327 and the dynamics of oxygen off-loading at tissues. Generally speaking, humans with
328 lowland ancestry experience a rightward shift in hemoglobin's affinity for oxygen ($Hb-O_2$
329 affinity) in whole blood at altitude, which is driven by an increase in the erythrocytic
330 concentration of a potent allosteric cofactor, 2,3-biphosphoglycerate (BPG) (57, 58).
331 While these changes can improve oxygen offloading at the tissues, they can also
332 reduce oxygen loading at the lungs, resulting in an overall decrease in oxygen
333 saturation in the circulatory system (17, 59). We have no information on how
334 erythrocytic concentrations of allosteric cofactors are altered by altitude specifically in
335 pregnant women, however, $Hb-O_2$ dissociation in whole blood (which will reflect
336 interactions of allosteric factors with hemoglobin binding affinities) from pregnant

338 women with lowland ancestry are left shifted at altitude (35). This leftward shift means
339 that hemoglobin has a greater affinity for oxygen at altitude during pregnancy, which
340 counters the general pattern in humans with lowland ancestry (17, 60, 61). The leftward
341 shift in pregnant women may be attributable to ventilation-dependent respiratory
342 alkalosis (see above), which drives a decrease in P_aCO_2 and an increase in blood pH
343 during gestation in women with lowland ancestry (35, 38, 42, 50, 62). Ultimately, women
344 with lowland ancestry gestating at altitude tend to have a lower oxygen saturation when
345 compared to gestating women of similar genetic backgrounds nearer sea-level (35, 38,
346 42, 50).

347 These patterns could suggest that fetal growth restriction is simply the result of
348 decreased oxygen availability in circulation. Surprisingly, even with decreases in oxygen
349 saturation (S_aO_2) in gestating women at altitude (35, 38, 42, 50), several studies show
350 that arterial oxygen content (in mL per unit blood volume) is actually *greater* in women
351 with lowland ancestry at high altitude compared to women with lowland ancestry at sea
352 level (35, 38, 42, 50); this difference may be explained by increased hemoglobin
353 concentrations (see previous section). Like women with lowland ancestry, both Andean
354 and Tibetan women also experience increases in blood oxygen content with altitude
355 such that their blood oxygen content at altitude tends to be similar to or *lower* than that
356 of women with lowland ancestry gestating at altitude (37, 40–42, 50). These changes in
357 oxygen content in highland-adapted populations are also associated with a decrease in
358 P_aCO_2 and increases in blood pH (42, 50). The fact that altitude-dependent shifts in
359 oxygen saturation that occur in lowlanders are exaggerated or maintained in altitude-
360 adapted populations suggests that the increase in oxygen content is more important
361 than saturation and that blood oxygen content in lowlanders at altitude is sufficient to
362 maintain fetal growth. Thus, other interacting physiological processes or determinants of
363 oxygen transport and utilization seem more likely to be directly responsible for limiting
364 fetal growth at altitude (63).

365
366 **Blood pressure:** Many of the changes to cardiovascular function, blood biochemistry,
367 and vasoconstrictive factors (i.e., catecholamines) described above can contribute to
368 elevated blood pressure, and hypertensive complications of pregnancies are more
369 common at altitude (52, 64, 65). However, there is mixed evidence for elevated blood
370 pressure in pregnant women at high altitude. Most studies find that blood pressure does
371 not vary with altitude in pregnant women with lowland ancestry or between those with
372 lowland and highlander ancestry (46, 52, 66–72), but others, including two large
373 longitudinal studies, find that blood pressure is indeed elevated in high altitude
374 pregnancies (41, 42, 49, 65, 73). There are at least three important caveats to those
375 majority of studies finding no effect of altitude on blood pressure. First, most studies
376 specifically exclude women who are hypertensive during pregnancy, even if they have
377 no other complications. Given that women at altitude are more likely to have
378 hypertensive disorders during pregnancy (52, 64, 65), this exclusion criteria results in a
379 bias towards women that are able to remain normotensive at altitude. Second, blood
380 pressure changes across a normal pregnancy, meaning that altitude-dependent
381 increases in blood pressure may only be detectable or relevant during specific periods
382 across gestation; of the studies we reviewed, the majority only report measures taken in
383 the 3rd trimester or near-term. Finally, few studies are longitudinal, which could help

384 detect relatively small differences in blood pressure that might persist even among
385 women classified as normotensive. In support of the importance of these caveats, the
386 two large cohort, longitudinal studies reporting blood pressure across gestation (65, 73)
387 do detect relatively small increases in blood pressure at altitude compared to low-
388 altitude counterparts specifically during early pregnancy (weeks 15-25). Additional
389 longitudinal blood pressure measures from gestating women of highland ancestry
390 across altitudes are needed.

391

392 ii. Blood delivery to the feto-placental site

393

394 **Maternal vascular remodeling and growth:** In a healthy pregnancy, remodeling and
395 growth of the uterine artery and associated vasculature facilitates dramatic increases in
396 blood flow to the feto-placental unit, allowing sufficient delivery of gas and nutrients to
397 the placenta. Blood flows to uterine artery from the common iliac artery via the internal
398 iliac artery (see Fig. 2), however most studies present measures from the common and
399 external iliac arteries. Neither the common nor the external iliac arteries experience
400 substantial pregnancy-dependent remodeling in lowland women at low (68) or high
401 altitudes (37, 38, 42, 68). In contrast, the uterine artery increases 1.5-times in diameter,
402 facilitating an incredible 20-fold increase in flow during pregnancy at low altitude (68).
403 Altitude exposure is consistently associated with reduced uterine artery diameters
404 (indicative of insufficient remodeling) and lower volumetric blood flow (mL/min) during
405 pregnancy in women with lowland ancestry (Han Chinese, presumed-European [in
406 Colorado, USA], eastern European, and Arab genetic backgrounds; (38, 42, 68, 74, 75)).
407 One interesting counterpoint to this general pattern are European descendants in South
408 America, who tend to show either an increase or no change in uterine artery diameter
409 while pregnant at high-altitude compared to lowland pregnancies (56, 76, 77). This
410 pattern may be the result of admixture between native Andeans and European-
411 descendants which is common in these populations (see Section V.i).

412

413 Between the uterine artery and the placenta lie the myometrial arteries, which are
414 functionally altered by altitude exposure during pregnancy in lowlanders. Women of
415 presumed European-descent residing in the Rocky Mountains exhibit blunted nitric
416 oxide (NO)-dependent vasodilation of myometrial arteries (78). NO is an important
417 contributor to vasodilation of local vasculature during pregnancy (79), suggesting that
418 blunted NO-dependent vasodilation could contribute to fetal growth restriction by limiting
419 blood delivery to the placenta or by locally elevating blood pressure and/or strain on the
420 vasculature. Conversely, AMPK-dependent vasodilation of myometrial arteries is
421 *increased* in women with European ancestry residing at high altitudes (80). How these
422 changes in NO and AMPK vasodilation contribute to fetal growth trajectories at altitude
423 is not well-understood.

424

425 Data on highland-adapted populations have been limited to artery diameter and
426 flow metrics; no data on vasodilatory function have yet been published. Variation in the
427 diameter and blood flow through the common and external iliac arteries are not
428 consistent between altitude-adapted populations – both are greater in Andeans
429 compared to Europeans at altitude (37, 42), but lower in Tibetans compared to Han
Chinese at altitude (41). Diameter and blood flow through common and external iliac
arteries are thus unlikely to be a major factor in evolutionary protection of fetal growth

restriction at high altitude. In contrast, uterine artery diameter and/or flow tends to be greater in both pregnant Andeans and Tibetans at altitude compared to lowlanders at altitude (37, 41, 42, 56, 76, 77, 81). The fact that highlanders consistently have larger uterine artery diameters relative to lowlanders suggests that attenuation of uterine artery expansion in lowlanders is likely maladaptive for fetal growth at altitude. However, correlations between fetal growth and uterine artery diameter or blood flow vary among studies. In most cases where multiple populations and/or altitudes are examined, associations between uterine artery metrics and fetal growth occur only within a single population and altitude (37, 38, 41, 56, 68). More importantly, the group in which this association can be detected varies across studies. For example, whereas Julian et al. (68) find that uterine artery flow has a marginal, positive relationship with birthweight in European women at high altitude (but not at low altitude), Zamudio et al. (38) document a significant relationship between uterine artery flow and birthweight in European women at low altitude (but not high altitude). This disagreement among studies could reflect real variability among or within groups, unmeasured explanatory factors, or operator and instrument error. While variability among studies could undermine the general importance of uterine artery diameter or flow as a determinant of fetal growth at altitude, loci that contribute variation in these traits bear genetic signatures of a history of natural selection in some altitude-adapted populations. For example, allelic variation in *PRKAA1*, a gene previously identified to have experienced selection in Andeans (82, 83), has been linked to uterine artery diameter and birth weight in European and Andean women (84); *PRKAA1* encodes AMPK and may regulate eNOS-dependent vasodilation in myometrium (85). These results suggest that traits related to dynamic function of the artery like vasodilation, rather than static measures, may be important for fetal growth. If true, measurements of artery diameter or flow under a single set of conditions may be insufficient to fully characterize adaptive variation in the uterine artery in high-altitude adapted populations. Measuring dynamic changes in artery diameter and flow using accessible model systems may therefore be essential to understanding how uterine artery physiology influences fetal growth outcomes.

iii. Nutrient and gas exchange in the placenta

Nutrient and gas exchange are determined by both the structure and function of the placenta. Placental structure determines the total surface area for transfer as well as the rate at which blood will move along that surface, whereas placental function, which includes gene and protein expression and regulation, influences capacity to move solutes from maternal to fetal circulation and placental metabolism.

Placental structure: Altitude exposure is associated with a reduction in absolute placental size in lowlanders, however the ratio of placental to fetal mass tends to increase at altitude because fetal growth restriction outpaces the reduction in placental mass (28, 42, 48, 50, 70, 74, 86–97). In Andeans, the absolute size of the placenta is not affected by altitude (28, 42, 50), and the ratio of placental to fetal mass is unaltered. Changes in the mass of the placenta alone is therefore not likely to be a critical determinant of fetal growth trajectories of humans at altitude.

The placenta contains distinct functional structures and compartments that could be independently altered in ways that further constrain or support fetal growth without

476 altering overall placental mass. Many of these are altered by altitude residence in
477 women with lowland ancestry. For example, villi within the placenta (see Fig. 1), sites of
478 nutrient and gas exchange, tend to be shorter and occupy less total placental volume at
479 altitude in women with lowland ancestry (28, 29, 48, 70, 86, 98, 99). Conversely,
480 vasculature in and around villi are more abundant and larger in lowlanders at high-
481 altitude, perhaps to counteract the decrease in villi volume. Similarly, placental arteries
482 originating from the maternal endometrium are more numerous at high altitude in
483 women with lowland ancestry (91), and fetal capillaries within the villi are often more
484 numerous and/or larger in volume (29, 48, 49, 62, 70, 86, 91, 92, 97, 99, 100). Finally,
485 the villous membrane in apposition with fetal cells thins with altitude, which may improve
486 nutrient and gas exchange (30, 31, 100) but see ref. (70). These changes to vascular
487 structure and organization within the placenta may protect total placental diffusion
488 capacity despite a general decrease in size of the villous portion (98, 99) but see (70,
489 100).

490 The only data on placenta structure in altitude-adapted populations comes from
491 studies on Andeans. Note that these studies, all published in the 1980s, used surnames
492 to differentiate highland and lowland ancestry rather than genetic markers, and thus are
493 potentially prone to misassignment of ancestry. Nonetheless, the villous portion is
494 decreased in Andean placentas during pregnancies at high-altitude, and the magnitude
495 of decrease is similar to that seen in lowland natives at altitude (28, 98). However, the
496 structure of villi in Andean placentas differs from that of lowlanders at altitude. Andeans
497 maintain longer chorionic villi and, within the villi, fetal capillaries are also longer at high
498 altitude compared to lowlander placentas at altitude (29). Andean placentas also display
499 smaller fetal capillary diameters relative to lowlanders at altitude (29). As with
500 lowlanders, the villous membrane of Andean placentas thins at altitude (30, 31).
501 Together, these structural changes to the villi seen in Andean placentas could underlie
502 an increase in the efficiency of nutrient and gas transfer beyond that seen in lowlanders
503 by both increasing surface area *and* decreasing diffusion distance. The fact that
504 Andeans at altitude protect villi and fetal capillary length but retain thinning of the villous
505 membrane and the relative decrease in villous volume suggests that placental structural
506 remodeling that lowlanders express at altitude reflects a mix of adaptive and
507 maladaptive responses.

508 **Function of the placenta:** Changes to various functional aspects of the placenta could
509 augment structural change to preserve or improve nutrient delivery and gas exchange.
510 Alternatively, plasticity in placental function could exacerbate bottlenecks in nutrient and
511 gas exchange. Functional components of the placenta include the activity and
512 abundance of receptors and transporters along the villous membrane, placental
513 metabolic activity, and the production of hormones critical for altering maternal
514 physiology in ways that support fetal growth.

515 In women with lowland ancestry, the placenta at altitude displays altered regulation
516 of stress-related pathways, including those involved in hypoxia and oxidative damage.
517 The hypoxia-inducible factor (HIF) pathway is generally up-regulated in high altitude
518 placentas from women with lowland ancestry such that HIF subunits and their
519 transcriptional targets are both up-regulated within the placenta (67, 69, 72, 101). At the
520 same time, gene expression of inhibitory enzymes, including Factor inhibiting HIF-1
521

(FIH-1) and von Hippel-Lindau protein, which tags HIF subunits for degradation, may also be elevated in placentas from women of lowland ancestry gestating at altitude (72, 92). The combined up-regulation of HIF subunits and the factors that tag them for degradation could explain disagreement among studies as to whether HIF and its targets are up-regulated at the protein level (92, 101). Important to note here is that these studies generally focus on term placentas, which include samples from both vaginal and cesarean deliveries. Vaginal birth results in considerable ischemic and oxidative stress to the placenta, meaning that measurements of markers for hypoxia and oxidative stress from these tissues may reflect the effects of birth rather than *in situ* conditions. Although most studies acknowledge and statistically assess differences between placentas from vaginal and cesarean deliveries, power is often low to detect differences within groups due to small sample sizes, and cesarean deliveries are usually predominant specifically at altitude. Further explicit attention to these differences would be useful to resolve the potential influence of mode of birth on placental markers of hypoxia at altitude.

Genes in angiogenic pathways in the placenta are generally upregulated by altitude exposure in women with lowland ancestry. Many HIF-targets are angiogenic (69, 92), and these factors tend to be up-regulated with other angiogenic genes, such as those in the renin-angiotensin system (101). Increased progesterone, a sex steroid with angiogenic function, at altitude may also promote vascularization of the placenta bed. Progesterone concentration in maternal circulation tends to be greater in high altitude pregnancies for women with lowland ancestry (77, 102), and the placenta is the primary source of progesterone during mid to late gestation in humans (103).

There are considerably fewer data addressing functional aspects of the placenta in altitude-adapted human populations. Comparable data on oxidative damage, stress pathways, or angiogenic genes in placentas from altitude-adapted populations that could be contrasted with that from women with lowland ancestry is extremely limited (Table 1). However, based on patterns in gene expression, one recent study suggests that placentas from Tibetan women at altitude may experience less stress from the ischemia of labor compared to placentas of women with European ancestry at altitude (104). These results imply some population-specific resilience to hypoxia and oxidative damage within the placenta at altitude. There is also some evidence that Andeans tend to have higher concentrations of estrogens and progesterone in maternal circulation at altitude relative to women with European ancestry at altitude (77), which could suggest that elevated progesterone that occurs in lowlander pregnancies at high altitude is adaptive. It is possible that these angiogenic hormones could support greater vascularization of the implantation site and remodeling of maternal vasculature. Linking differences in circulating sex steroids to variation in vascularization in or around the placental bed could help advance this argument.

iv. Fetal hematology

Blood chemistry and hematocrit in the fetus can also influence capacity to exchange gas and nutrients. There is some evidence to suggest that fetuses with lowland ancestry are capable of extracting and consuming similar amounts of oxygen from maternal blood at high altitude and near sea level (400 m, (50), despite changes in maternal arterial oxygen content and blood flow through local vasculature. However, fetal

568 hematological measures generally show that the fetus at high altitude still senses
569 relative maternal hypoxia. Fetal erythropoietin, hematocrit, and hemoglobin
570 concentration are all elevated at altitude (50) but see (49). The pH of fetal blood is also
571 elevated (50, 51) and bicarbonate content decreases (50, 51). These hematological
572 changes are consistent with improved fetal O₂ extraction at high-altitude.

573 We might expect that fetal hematological changes like increased hematocrit also
574 have maladaptive side effects, as they do in adults, in which case we would expect
575 altitude-dependent increases that occur in lowlanders to be blunted or absent in
576 altitude-adapted populations. Surprisingly, Andean fetuses display increases in
577 hematocrit and hemoglobin similar to those seen in fetuses with lowland ancestry (50),
578 whereas Tibetan infants retain lower hematocrit relative to Han Chinese infants (105).
579 Andean fetuses at altitude are also similar to infants with lowlander ancestry in that they
580 display lower umbilical bicarbonate, and they have even more basic blood pH (50).
581 Although there may be changes in regulatory regions upstream of fetal hemoglobins in
582 Andeans and Tibetans (106, 107), there are no known coding changes to these genes
583 in either altitude-adapted population (106–108). Andean fetuses may also extract and
584 consume similar amounts of oxygen per gram of fetal weight when compared with
585 fetuses with lowland ancestry regardless of altitude (50).

586 In general, fetal responses to hypoxia (including increases to hematocrit and
587 hemoglobin) may be sufficient to overcome any altitude-dependent decreases in oxygen
588 delivery regardless of ancestry (50); additional studies to confirm these patterns are
589 desirable.

591 **v. Summary**

593 Many maternal, placental, and fetal physiological traits are altered by exposure to
594 high altitude in humans with lowland ancestry, but evidence for the contribution of any
595 specific change in these traits to fetal growth outcomes remains limited. The simplest
596 explanation for fetal growth restriction at altitude would be that lower oxygen directly
597 limits growth of the fetus. However, plasticity in the placenta and/or fetal hematology
598 appear sufficient to achieve necessary uptake and consumption of oxygen in lowlanders
599 and highlanders alike. Altitude-dependent fetal growth restriction is therefore likely
600 linked to indirect effects of low oxygen on gestational physiology that constrain fetal
601 growth trajectories. Relevant factors may include vascular stress in and around the
602 placenta and change in nutrient delivery to the fetus, but there are relatively few data
603 quantifying these factors *in situ*, especially during early development.

604 **V. Challenges and Opportunities**

607 Many traits that support nutrient and oxygen transport during gestation are plastic in
608 response to the persistent hypobaric hypoxia of altitude. The same appears to be true
609 for structural components of the placenta. Unfortunately, we are limited in the extent to
610 which we can assess adaptive or maladaptive value of these plastic responses because
611 we lack data on the responses of highland-adapted populations, or the data that do
612 exist are inconclusive. Similarly patterns of plasticity in women with lowland ancestries
613 can be inconsistent across studies. Below we offer suggestions for progress.

614

615 **i. A call for greater breadth in model systems**
616617 The literature on gestational adaptation is dominated by work in humans. Human
618 adaptation to altitude continues to be a major area of basic and applied research, and
619 there is clinical importance to understanding gestational physiology at altitude
620 specifically in humans because human pregnancy has unique attributes, including
621 aspects of placental structure and development, that cannot be studied in any non-
622 primate model system. Still, using humans as a model for understanding the evolution
623 of gestational traits is limited by both practical and ethical concerns. To both meet the
624 need for understanding human gestational physiology and overcome limitations of
625 working in humans, we suggest two complimentary avenues that are likely to be fruitful,
626 particularly if they are pursued in parallel. First is expanding the breadth of human
627 populations we study, and second is the development of animal models that can be
628 studied within a comparative, evolutionary framework.629 To-date, the human literature on gestational adaptations to altitude has largely
630 focused on women of presumed European ancestry in the Rocky Mountains in
631 Colorado, USA and women from populations living in and around the Andes (see Table
632 1). Our ability to assemble a comprehensive picture of human gestational physiology at
633 altitude is limited by constraints unique to each population.634 First, studies in the Rockies are limited by the fact that the low altitude comparison
635 group has historically been based in Denver, Colorado, at 1600 m elevation. This
636 moderate altitude corresponds to more than 15% reduction in oxygen availability (19.6
637 kPa at sea level versus ~16 kPa in Denver), and (perhaps unsurprisingly) birthweight is
638 reduced at this elevation relative to sea level (109, 110). Thus, these studies may be
639 prone to miss relevant changes in physiology or correlations between physiology and
640 birth weight because the difference between populations in Denver and those at higher
641 altitudes is likely to be smaller. Recent efforts to include populations from lower
642 elevations provide useful comparative data, and future efforts in this direction with
643 attention to maintaining comparable genetic ancestry will be useful for expanding our
644 understanding of the physiology shaping fetal growth restriction across altitude
645 gradients.646 Populations in the Andes also present challenges to drawing generalizable
647 conclusions about gestational adaptation. Indigenous highland groups in the Andes
648 (namely, Aymara and Quechua) represent a single instance of adaptation to altitude. As
649 discussed in Section IV, it can be difficult to distinguish phenotypic responses that arise
650 from natural selection from those that arise from genetic drift when focusing a single
651 colonization of high altitude (32). Moreover, it can be difficult to account for context-
652 specific adaptive responses that arise from interactions between interrelated systems or
653 other constraints on the adaptive process. For example, Andeans and Tibetans, two
654 independent adaptation events to high altitude environments, differ in how the
655 ventilatory system has adapted to altitude (39, 111, 112). Comparing patterns of
656 plasticity in ventilation between lowlanders and these highland groups independently
657 would lead to different conclusions about the adaptive value of increasing ventilation
658 rates at altitude. When instead viewed together, we can more accurately infer that the
659 adaptive value of ventilation patterns at altitude may depend on the function of

660 interrelated physiological systems. Studying gestational physiology in Tibetans
661 (including Sherpa) and Ethiopian highland groups (namely, Oromo and Amhara) will be
662 important to confirm the adaptive value of plasticity based on comparisons between
663 Andeans and Europeans alone.

664 Inferences based on Andean highlanders are also limited by the relatively recent
665 colonization of high altitude by Andeans (112) combined with a history of admixture
666 between highland indigenous groups, Europeans, lowland indigenous groups and west
667 Africans (Yoruba) in and around the Andes (24, 113). Both recent colonization and
668 prevalent admixture can contribute to lower genetic differentiation between highland and
669 lowland populations, which can result in populations displaying similar phenotypes,
670 including plastic responses. Again, adding comparative data from other independent
671 adaptive events, especially those where gene flow has historically been low for longer
672 periods, will be important for confirming adaptive and maladaptive patterns inferred from
673 a single population.

674 Beyond population-based variation, humans have limited utility as a model for
675 discovery-based research and mechanistic studies because we have limited access to
676 studying dynamic processes across gestation. The majority of studies reviewed here
677 focus primarily on third trimester to late term pregnancies, but many of the processes
678 that organize maternal gestational physiology, vascular remodeling, and placental
679 growth occur at earlier time points (114–116). Early gestation can only be studied *ex*
680 *vivo* in humans and often relies on limited material. The *in vivo* manipulations and
681 controlled sampling that is needed to study placentation and fetal growth at altitude can
682 only be performed in animal models.

683 To date, domestic sheep are the only animal model that has been used to study in
684 evolutionary adaptations in gestational physiology using a comparative approach.
685 Criollo sheep were introduced to Peru by Spanish colonizers as early as the beginning
686 of 16th century and may have been moved to the highlands of the Andes for farming
687 soon thereafter (117). Many of the physiological responses to altitude that are thought
688 to be adaptive in altitude-adapted humans also occur in highland populations of these
689 sheep. For example, both lowland adult and fetal sheep display increased hematocrit
690 and/or hemoglobin concentration at altitude, but adapted adults maintain lower
691 hematocrit at altitude (6, 118). Data on fetal hematocrit or hemoglobin are not available
692 for the altitude-adapted population. Altitude-adapted sheep also seem to maintain
693 elevated concentrations of angiogenic sex steroids during pregnancy relative to
694 lowlanders (119). Finally, the area of the placenta across which nutrient exchange
695 occurs is increased in altitude-adapted sheep (6, 120), and their placenta contains a
696 greater concentration the vasodilator eNOS (118). Sheep are already a well-studied
697 model for hypoxic and metabolic stress during gestation in lowland environments (121),
698 which makes this a promising system for better understanding constraints of both
699 placental and maternal physiology at altitude that contribute to fetal growth restriction.

700 There are two important limitations to using this system as a model for evolutionary
701 insight. First, whole-animal physiological adaptations to altitude have not been
702 described – we do not know the extent to which core physiological systems (e.g.,
703 pulmonary or cardiovascular) have been adaptively modified outside the context of
704 gestation. Given the interdependency of maternal and feto-placental traits, this
705 characterization is important. Comprehensive efforts to characterize the physiological

706 basis of adaptation to altitude in these sheep through the integration of functional
707 genomics and physiology would be useful for further developing the utility of this model.
708 Second, the utility of these sheep as a model for evolutionary adaptation to high-altitude
709 is also limited by the fact that these sheep are domesticated and have been since well
710 before they were brought to the Andes. The capacity of any population to adapt to a
711 novel environment is a function of the initial genetic variation available for selection to
712 act upon and the efficacy of selection on fitness-related traits. Domestication events are
713 typically associated with genetic bottlenecks which reduce genetic variation and the
714 efficiency of selection relative to genetic drift (122). Furthermore, artificial selection for
715 specific traits (e.g., body size, time to maturity) may constrain other evolutionary
716 responses to natural selection (122). For these reasons, models for gestational
717 adaptation to altitude that are not subjected to potential confounding effects of
718 domestication would still be desirable.

719 Identifying useful systems for development as animal models is an important next
720 step towards making experimental progress on this topic. Rodent systems are
721 appealing for many of the same reasons sheep are – there is a large body of research
722 already established for gestational physiology of rodents under acute hypoxia that
723 would facilitate crosstalk between altitude-specific fetal growth restriction research and
724 the broader field of gestational physiology and health. In particular, deer mice
725 (*Peromyscus maniculatus*), which are now well-established as a comparative model for
726 altitude adaptation (18, 123, 124), are a promising system because they offer
727 experimental tractability, genomic resources, and multiple populations that are adapted
728 to both highland and lowland conditions (125). Other wild rodent species, such as
729 *Phyllotis* leaf-eared mice in the Andes, may have similar potential (126, 127).

730 731 ii. **Integrating gestational physiology**

732 The genetic basis for gestational adaptions Andeans and Tibetans is thought to be
733 highly polygenic (42, 43, 56, 128), and thus the mechanisms protecting fetal growth in
734 these populations may involve physiological traits at or across multiple levels between
735 mother and fetus (Fig. 2). Across all the studies we reviewed, most were focused on
736 maternal traits or structural constraints related to the placenta and uterine artery, and
737 they focused on near-term timepoints. Other traits that are likely relevant, especially
738 endocrine and metabolic function of the maternal and placental compartments, have
739 received less attention and/or display equivocal patterns across the small number of
740 published studies (see Table 1). Expanding the set of focal traits, integrating across
741 physiological systems and levels of biological organization, and focusing on
742 developmental trajectories are all necessary to fully understand the major factors that
743 influence birth outcomes at high altitude.

744 As an example, there is evidence that maternal immune function may be important,
745 but it has received very little attention. Local regulation of the maternal immune system
746 is critical during early placentation (44, 81, 129–131), and inflammatory signals are
747 more abundant at high altitude in the maternal circulation and placentas of lowlanders
748 (44, 46, 67, 72) but see (81), suggestive of immune dysregulation. Given its dual role in
749 erythropoiesis and immune cell production, the spleen (which grows ~50% in size
750 during pregnancy; refs. (132, 133) seems to be a promising target of integrative studies

752 but has received surprisingly little attention within the context of high-altitude
753 pregnancies. Uterine natural killer cells, which play an important role in establishing the
754 placental bed are also a promising source of new insight for understanding origins of
755 fetal growth restriction at altitude (129, 134, 135).

756 An integrated view of the materno-feto-placental unit would also be useful for
757 clarifying the ultimate versus proximate factors responsible for fetal growth outcomes.
758 We need a better developmental understanding of how altitude-dependent fetal growth
759 restriction arises. Longitudinal studies, when feasible, would be particularly useful for
760 determining how early events may predict fetal outcomes. Connecting individual traits
761 though physiological networks will also help advance our understanding of the
762 processes that operate at the whole organism-level and translates environmental
763 hypoxia into fetal growth restriction. Computational and experimental approaches for
764 network physiology (e.g., (136–138) may help identify the importance or stability of trait
765 dependencies underlying fetal growth restriction and/or adaptive mechanisms that
766 protect fetal growth at altitude.

767 Understanding physiological integration among traits and dynamic development
768 across pregnancy in the context of altitude-dependent fetal growth restriction is also
769 likely to advance several adjacent areas of active research. Complex interactions
770 between placental development and physiology and maternal physiology are hallmarks
771 of many gestational complications, including intra-uterine growth restriction, pre-
772 eclampsia, and gestational diabetes. Moreover, the risk for many of these complications
773 are increased in pregnancies at high altitude. Understanding how maternal, placental,
774 and fetal physiologies interact and evolve in the context of high altitude is therefore
775 likely to also shed light on mechanisms relevant to these diseases at lower altitudes.
776 For example, although the ultimate cause of fetal growth restriction at altitude is unique
777 to the environment (persistent hypobaric hypoxia), placental gene expression at term is
778 similar to that seen in placentas from pre-eclamptic pregnancies, where hypoxia may be
779 maternal or placental (69). Thus, even when the etiologies differ, there is good reason
780 to think that what we learn from high altitude adaptation could improve treatments for
781 other gestational complications.

782 VI. Perspectives and Significance

783 The relative contribution of individual gestational traits to the broader phenomenon
784 of fetal growth restriction at altitude remains poorly understood, and the evolutionary
785 adaptations that contribute to protecting fetal growth in adapted populations are similarly
786 unclear. We have highlighted many outstanding questions about gestational adaptations
787 and this distinction between plastic responses that are ultimately versus proximally
788 adaptive. Understanding these mechanisms will add valuable new information for both
789 basic science and clinical intervention research aimed at improving human and animal
790 health outcomes across a range of gestational complications that involve hypoxia.
791

792

793 Works Cited

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

1. Gilbert-Kawai ET, Milledge JS, Grocott MPW, et al.: King of the Mountains: Tibetan and Sherpa Physiological Adaptations for Life at High Altitude. *Physiology* 2014; 29:388–402
2. Moore LG: Human Genetic Adaptation to High Altitudes: Current Status and Future Prospects. *Quat Int* 2017; 461:4–13
3. Petousi N, Robbins PA: Human adaptation to the hypoxia of high altitude: the Tibetan paradigm from the pregenomic to the postgenomic era. *J Appl Physiol* 2013; 116:875–884
4. Schweizer RM, Velotta JP, Ivy CM, et al.: Physiological and genomic evidence that selection on the transcription factor Epas1 has altered cardiovascular function in high-altitude deer mice. *PLOS Genet* 2019; 15:e1008420
5. Storz JF, Cheviron ZA: Functional Genomic Insights into Regulatory Mechanisms of High-Altitude Adaptation. *Adv Exp Med Biol* 2016; 903:113–128
6. Parraguez VH, Atlagich M, Díaz R, et al.: Ovine placenta at high altitudes: comparison of animals with different times of adaptation to hypoxic environment. *Anim Reprod Sci* 2006; 95:151–157
7. Gilbert RD, Cummings LA, Juchau MR, et al.: Placental diffusing capacity and fetal development in exercising or hypoxic guinea pigs
8. Rockwell LC, Keyes LE, Moore LG: Chronic Hypoxia Diminishes Pregnancy-associated DNA Synthesis in Guinea Pig Uteroplacental Arteries. *Placenta* 2000; 21:313–319
9. Matheson H, Veerbeek JHW, Charnock-Jones DS, et al.: Morphological and molecular changes in the murine placenta exposed to normobaric hypoxia throughout pregnancy. *J Physiol* 2015; 594:1371–1388
10. Bailey BA, Donnelly M, Bol K, et al.: High Altitude Continues to Reduce Birth Weights in Colorado. *Matern Child Health J* 2019; 23:1573–1580
11. Beauchamp B, Ghosh S, Dysart MW, et al.: Low birth weight is associated with adiposity, impaired skeletal muscle energetics and weight loss resistance in mice. *Int J Obes* 2015; 39:702–711
12. Franco Maria C.P., Christofalo Dejaldo M.J., Sawaya Ana Lydia, et al.: Effects of Low Birth Weight in 8- to 13-Year-Old Children. *Hypertension* 2006; 48:45–50
13. Greenwood PL, Hunt AS, Hermanson JW, et al.: Effects of birth weight and postnatal nutrition on neonatal sheep: I. Body growth and composition, and some aspects of energetic efficiency. *J Anim Sci* 1998; 76:2354
14. Greenwood PL, Hunt AS, Hermanson JW, et al.: Effects of birth weight and postnatal nutrition on neonatal sheep: II. Skeletal muscle growth and development. *J Anim Sci* 2000; 78:50
15. Hack M, Klein NK, Taylor HG: Long-term developmental outcomes of low birth weight infants. *Future Child* 1995; 176–196
16. Milligan BN, Fraser D, Kramer DL: Within-litter birth weight variation in the domestic pig and its relation to pre-weaning survival, weight gain, and variation in weaning weights. *Livest Prod Sci* 2002; 76:181–191
17. Storz JF, Scott GR, Cheviron ZA: Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. *J Exp Biol* 2010; 213:4125–4136

830 18. Storz JF, Scott GR: Life ascending: mechanism and process in physiological adaptation to high-altitude
831 hypoxia. *Annu Rev Ecol Evol Syst* 2019; 50:503–526

832 19. Pop GAM, Duncker DJ, Gardien M, et al.: The clinical significance of whole blood viscosity in
833 (cardio)vascular medicine. *Neth Heart J* 2002; 10:512–516

834 20. Zimmerman R, Tsai AG, Salazar Vázquez BY, et al.: Post-transfusion increase of hematocrit per se does not
835 improve circulatory oxygen delivery due to increased blood viscosity. *Anesth Analg* 2017; 124:1547–1554

836 21. Velotta JP, Chevron ZA: Remodeling Ancestral Phenotypic Plasticity in Local Adaptation: A New
837 Framework to Explore the Role of Genetic Compensation in the Evolution of Homeostasis. *Integr Comp
838 Biol* 2018; 58:1098–1110

839 22. Maughan H, Masel J, Birk CW, et al.: The Roles of Mutation Accumulation and Selection in Loss of
840 Sporulation in Experimental Populations of *Bacillus subtilis*. *Genetics* 2007; 177:937–948

841 23. Murren CJ, Auld JR, Callahan H, et al.: Constraints on the evolution of phenotypic plasticity: limits and costs
842 of phenotype and plasticity. *Heredity* 2015; 115:293–301

843 24. Barbieri C, Barquera R, Arias L, et al.: The Current Genomic Landscape of Western South America: Andes,
844 Amazonia, and Pacific Coast. *Mol Biol Evol* 2019; 36:2698–2713

845 25. Lindo J, Haas R, Hofman C, et al.: The genetic prehistory of the Andean highlands 7000 years BP through
846 European contact. *Sci Adv* 2018; 4:eaau4921

847 26. Su B, Xiao C, Deka R, et al.: Y chromosome haplotypes reveal prehistorical migrations to the Himalayas.
848 *Hum Genet* 2000; 107:582–590

849 27. Zhao M, Kong Q-P, Wang H-W, et al.: Mitochondrial genome evidence reveals successful Late Paleolithic
850 settlement on the Tibetan Plateau. *Proc Natl Acad Sci* 2009; 106:21230–21235

851 28. Jackson MR, Mayhew TM, Haas JD: The volumetric composition of human term placentae: altitudinal, ethnic
852 and sex differences in Bolivia. *J Anat* 1987; 152:173–187

853 29. Jackson MR, Mayhew TM, Haas JD: Morphometric studies on villi in human term placentae and the effects of
854 altitude, ethnic grouping and sex of newborn. *Placenta* 1987; 8:487–495

855 30. Jackson MR, Mayhew TM, Haas JD: On the factors which contribute to thinning of the villous membrane in
856 human placentae at high altitude. I. Thinning and regional variation in thickness of trophoblast. *Placenta*
857 1988; 9:1–8

858 31. Jackson MR, Mayhew TM, Haas JD: On the factors which contribute to thinning of the villous membrane in
859 human placentae at high altitude. II. An increase in the degree of peripheralization of fetal capillaries.
860 *Placenta* 1988; 9:9–18

861 32. Garland T, Adolph SC: Why Not to Do Two-Species Comparative Studies: Limitations on Inferring
862 Adaptation. *Physiol Zool* 1994; 67:797–828

863 33. Boushel Robert, Calbet Jose-Antonio L., Rådegran Goran, et al.: Parasympathetic Neural Activity Accounts
864 for the Lowering of Exercise Heart Rate at High Altitude. *Circulation* 2001; 104:1785–1791

865 34. Hainsworth R, Drinkhill MJ, Rivera-Chira M: The autonomic nervous system at high altitude. *Clin Auton Res
866 Off J Clin Auton Res Soc* 2007; 17:13–19

867 35. Moore LG, Jahnigen D, Rounds SS, et al.: Maternal hyperventilation helps preserve arterial oxygenation
868 during high-altitude pregnancy. *J Appl Physiol* 1982; 52:690–694

869 36. Rahn H, Otis AB: Man's respiratory response during and after acclimatization to high altitude. *Am J Physiol-*
870 *Leg Content* 1949; 157:445–462

871 37. Wilson MJ, Lopez M, Vargas M, et al.: Greater uterine artery blood flow during pregnancy in
872 multigenerational (Andean) than shorter-term (European) high-altitude residents. *Am J Physiol Regul Integr*
873 *Comp Physiol* 2007; 293:R1313–1324

874 38. Zamudio S, Palmer SK, Droma T, et al.: Effect of altitude on uterine artery blood flow during normal
875 pregnancy. *J Appl Physiol Bethesda Md* 1985 1995; 79:7–14

876 39. Beall CM: Two routes to functional adaptation: Tibetan and Andean high-altitude natives. *Proc Natl Acad Sci*
877 2007; 104:8655–8660

878 40. Vargas M, Vargas E, Julian CG, et al.: Determinants of blood oxygenation during pregnancy in Andean and
879 European residents of high altitude. *Am J Physiol-Regul Integr Comp Physiol* 2007; 293:R1303–R1312

880 41. Moore LG, Zamudio S, Zhuang J, et al.: Oxygen transport in tibetan women during pregnancy at 3,658 m. *Am*
881 *J Phys Anthropol* 2001; 114:42–53

882 42. Zamudio S, Postigo L, Illsley NP, et al.: Maternal oxygen delivery is not related to altitude- and ancestry-
883 associated differences in human fetal growth. *J Physiol* 2007; 582:883–895

884 43. Jeong C, Witonsky DB, Basnyat B, et al.: Detecting past and ongoing natural selection among ethnically
885 Tibetan women at high altitude in Nepal. *PLOS Genet* 2018; 14:e1007650

886 44. Coussons-Read ME, Mazzeo RS, Whitford MH, et al.: High Altitude Residence During Pregnancy Alters
887 Cytokine and Catecholamine Levels. *Am J Reprod Immunol* 2002; 48:344–354

888 45. Scott AL, Pranckevicius NA, Nurse CA, et al.: Regulation of catecholamine release from the adrenal medulla
889 is altered in deer mice (*Peromyscus maniculatus*) native to high altitudes. *Am J Physiol-Regul Integr Comp*
890 *Physiol* 2019; 317:R407–R417

891 46. Bashir SO, Morsy MD, Elkarib AO, et al.: Impact of High Altitude on Maternal Serum Leptin Level and its
892 Correlation With Oxidative Stress and Endothelial Inflammatory Markers in Preeclamptic Women. *Chin J*
893 *Physiol* 2018; 61:50–56

894 47. Kametas NA, Savvidou MD, Donald AE, et al.: Flow-mediated dilatation of the brachial artery in pregnancy
895 at high altitude. *BJOG Int J Obstet Gynaecol* 2002; 109:930–937

896 48. Khalid MEM, Ali ME, Ali KZM: Full-term birth weight and placental morphology at high and low altitude.
897 *Int J Gynecol Obstet* 1997; 57:259–265

898 49. Khalid MEM, Ahmed HS, Osman OM, et al.: The Relationship of Birth Weight, Body Shape and Body
899 Composition at Birth to Altitude in Saudi Arabia. *Int J Morphol* 2016; 34:1109–1116

900 50. Postigo L, Heredia G, Illsley NP, et al.: Where the O₂ goes to: preservation of human fetal oxygen delivery
901 and consumption at high altitude. *J Physiol* 2009; 587:693–708

902 51. Yancey MK, Moore J, Brady K, et al.: The effect of altitude on umbilical cord blood gases. *Obstet Gynecol*
903 1992; 79:571–574

904 52. Zamudio S, Palmer SK, Dahms TE, et al.: Blood volume expansion, preeclampsia, and infant birth weight at
905 high altitude. *J Appl Physiol* 1993; 75:1566–1573

906 53. Gonzales GF, Steenland K, Tapia V: Maternal hemoglobin level and fetal outcome at low and high altitudes.
907 *Am J Physiol-Regul Integr Comp Physiol* 2009; 297:R1477–R1485

908 54. Chabes A, Pereda J, Hyams L, et al.: Comparative morphometry of the human placenta at high altitude and at
909 sea level. I. The shape of the placenta. *Obstet Gynecol* 1968; 31:178–185

910 55. Stemberger M, Williams AM, Gasho C, et al.: The overlooked significance of plasma volume for successful
911 adaptation to high altitude in Sherpa and Andean natives. *Proc Natl Acad Sci* 2019; 116:16177–16179

912 56. Julian CG, Wilson MJ, Lopez M, et al.: Augmented uterine artery blood flow and oxygen delivery protect
913 Andeans from altitude-associated reductions in fetal growth. *Am J Physiol Regul Integr Comp Physiol* 2009;
914 296:R1564-1575

915 57. Mairbäurl H: Red blood cell function in hypoxia at altitude and exercise. *Int J Sports Med* 1994; 15:51–63

916 58. Storz JF: Hemoglobin: Insights into protein structure, function, and evolution [Internet]. Oxford University
917 Press[cited 2021 Feb 18] Available from:
918 <https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198810681.001.0001/oso-9780198810681>

920 59. Storz JF: Hemoglobin–oxygen affinity in high-altitude vertebrates: is there evidence for an adaptive trend? *J
921 Exp Biol* 2016; 219:3190–3203

922 60. Lenfant C, Torrance JD, Reynafarje C: Shift of the O₂-Hb dissociation curve at altitude: mechanism and
923 effect. *J Appl Physiol* 1971; 30:625–631

924 61. Lenfant C, Torrance J, English E, et al.: Effect of altitude on oxygen binding by hemoglobin and on organic
925 phosphate levels. *J Clin Invest* 1968; 47:2652–2656

926 62. Espinoza J, Sebire NJ, McAuliffe F, et al.: Placental Villus Morphology in Relation to Maternal Hypoxia at
927 High Altitude. *Placenta* 2001; 22:606–608

928 63. Murray AJ: Oxygen delivery and fetal-placental growth: Beyond a question of supply and demand? *Placenta*
929 2012; 33:e16–e22

930 64. Moore LG, Hershey DW, Jahnigen D, et al.: The incidence of pregnancy-induced hypertension is increased
931 among Colorado residents at high altitude. *Am J Obstet Gynecol* 1982; 144:423–429

932 65. Bailey B, Euser AG, Bol KA, et al.: High-altitude residence alters blood-pressure course and increases
933 hypertensive disorders of pregnancy. *J Matern Fetal Neonatal Med* 2020; 1–8

934 66. Bashir SO, Suckit H, Elkarib AO, et al.: The effect of high altitude on endothelial and vascular dysfunction
935 markers in preeclamptic patients. *Acta Physiol Hung* 2015; 102:391–399

936 67. Ietta F, Wu Y, Romagnoli R, et al.: Oxygen regulation of macrophage migration inhibitory factor in human
937 placenta. *Am J Physiol Endocrinol Metab* 2007; 292:E272-280

938 68. Julian CG, Galan HL, Wilson MJ, et al.: Lower uterine artery blood flow and higher endothelin relative to
939 nitric oxide metabolite levels are associated with reductions in birth weight at high altitude. *Am J Physiol
940 Regul Integr Comp Physiol* 2008; 295:R906-915

941 69. Soleymanlou N, Jurisica I, Nevo O, et al.: Molecular Evidence of Placental Hypoxia in Preeclampsia. *J Clin*
942 *Endocrinol Metab* 2005; 90:4299–4308

943 70. Tissot van Patot MC, Valdez M, Becky V, et al.: Impact of Pregnancy at High Altitude on Placental
944 Morphology in Non-native Women With and Without Preeclampsia. *Placenta* 2009; 30:523–528

945 71. Tissot van Patot MC, Murray AJ, Beckey V, et al.: Human placental metabolic adaptation to chronic hypoxia,
946 high altitude: hypoxic preconditioning. *Am J Physiol Regul Integr Comp Physiol* 2010; 298:R166-172

947 72. Zamudio S, Wu Y, Ietta F, et al.: Human placental hypoxia-inducible factor-1alpha expression correlates with
948 clinical outcomes in chronic hypoxia in vivo. *Am J Pathol* 2007; 170:2171–2179

949 73. Palmer SK, Moore LG, Young DA, et al.: Altered blood pressure course during normal pregnancy and
950 increased preeclampsia at high altitude (3100 meters) in Colorado. *Am J Obstet Gynecol* 1999; 180:1161–
951 1168

952 74. Aksoy AN, Batmaz G, Dane B, et al.: Effects of altitude changes on Doppler flow parameters for uterine,
953 umbilical, and mid-cerebral arteries in term pregnancy: A pilot study. *J Turk Ger Gynecol Assoc* 2015;
954 16:237–240

955 75. Chen D, Zhou X, Zhu Y, et al.: [Comparison study on uterine and umbilical artery blood flow during
956 pregnancy at high altitude and at low altitude]. *Zhonghua Fu Chan Ke Za Zhi* 2002; 37:69–71

957 76. Dávila RD, Julian CG, Wilson MJ, et al.: Do anti-angiogenic or angiogenic factors contribute to the protection
958 of birth weight at high altitude afforded by Andean ancestry? *Reprod Sci Thousand Oaks Calif* 2010;
959 17:861–870

960 77. Charles SM, Julian CG, Vargas E, et al.: Higher Estrogen Levels During Pregnancy in Andean Than European
961 Residents of High Altitude Suggest Differences in Aromatase Activity. *J Clin Endocrinol Metab* 2014;
962 99:2908–2916

963 78. Lorca RA, Lane SL, Bales ES, et al.: High Altitude Reduces NO-Dependent Myometrial Artery Vasodilator
964 Response During Pregnancy. *Hypertens Dallas Tex* 1979 2019; 73:1319–1326

965 79. Boeldt DS, Bird IM: Vascular adaptation in pregnancy and endothelial dysfunction in preeclampsia. *J*
966 *Endocrinol* 2017; 232:R27–R44

967 80. Lorca RA, Matarazzo CJ, Bales ES, et al.: AMPK activation in pregnant human myometrial arteries from
968 high-altitude and intrauterine growth-restricted pregnancies. *Am J Physiol-Heart Circ Physiol* 2020;
969 319:H203–H212

970 81. Dávila RD, Julian CG, Wilson MJ, et al.: Do cytokines contribute to the Andean-associated protection from
971 reduced fetal growth at high altitude? *Reprod Sci Thousand Oaks Calif* 2011; 18:79–87

972 82. Bigham A, Bauchet M, Pinto D, et al.: Identifying Signatures of Natural Selection in Tibetan and Andean
973 Populations Using Dense Genome Scan Data. *PLOS Genet* 2010; 6:e1001116

974 83. Bigham AW, Mao X, Mei R, et al.: Identifying positive selection candidate loci for high-altitude adaptation in
975 Andean populations. *Hum Genomics* 2009; 4:79–90

976 84. Bigham AW, Julian CG, Wilson MJ, et al.: Maternal PRKAA1 and EDNRA genotypes are associated with
977 birth weight, and PRKAA1 with uterine artery diameter and metabolic homeostasis at high altitude. *Physiol*
978 *Genomics* 2014; 46:687–697

979 85. Morton JS, Care AS, Davidge ST: Mechanisms of Uterine Artery Dysfunction in Pregnancy Complications. *J
980 Cardiovasc Pharmacol* 2017; 69:343–359

981 86. Ali KZ, Burton GJ, Morad N, et al.: Does hypercapillarization influence the branching pattern of terminal villi
982 in the human placenta at high altitude? *Placenta* 1996; 17:677–682

983 87. Ali KZM, Burton GJ, Al-Binali AM, et al.: Concentration of free vascular endothelial growth factor and its
984 soluble receptor, sFlt-1 in the maternal and fetal circulations of normal term pregnancies at high and low
985 altitudes. *J Matern-Fetal Neonatal Med Off J Eur Assoc Perinat Med Fed Asia Ocean Perinat Soc Int Soc
986 Perinat Obstet* 2012; 25:2066–2070

987 88. Reshetnikova OS, Burton GJ, Milovanov AP, et al.: Increased incidence of placental chorioangioma in high-
988 altitude pregnancies: Hypobaric hypoxia as a possible etiologic factor. *Am J Obstet Gynecol* 1996; 174:557–
989 561

990 89. Reshetnikova OS, Fokin EI: [Structural adaptation of the placenta in natural hypoxia at moderate and high
991 altitude]. *Arkh Patol* 1991; 53:49–54

992 90. Sobrevilla LA, Romero I, Kruger F, et al.: Low estrogen excretion during pregnancy at high altitude. *Am J
993 Obstet Gynecol* 1968; 102:828–833

994 91. Tissot van Patot M, Grilli A, Chapman P, et al.: Remodelling of Uteroplacental Arteries is Decreased in High
995 Altitude Placentae. *Placenta* 2003; 24:326–335

996 92. Tissot van Patot MC, Bendrick-Peart J, Beckey VE, et al.: Greater vascularity, lowered HIF-1/DNA binding,
997 and elevated GSH as markers of adaptation to in vivo chronic hypoxia. *Am J Physiol-Lung Cell Mol Physiol*
998 2004; 287:L525–L532

999 93. Vaughan OwenR, Thompson F, Lorca RamónA, et al.: Effect of high altitude on human placental amino acid
1000 transport. *J Appl Physiol* 2019; 128:127–133

1001 94. Yung HW, Cox M, Tissot van Patot M, et al.: Evidence of endoplasmic reticulum stress and protein synthesis
1002 inhibition in the placenta of non-native women at high altitude. *FASEB J* 2012; 26:1970–1981

1003 95. Zamudio S, Baumann MU, Illsley NP: Effects of chronic hypoxia in vivo on the expression of human
1004 placental glucose transporters. *Placenta* 2006; 27:49–55

1005 96. Zamudio S, Kovalenko O, Vanderlelie J, et al.: Chronic hypoxia in vivo reduces placental oxidative stress.
1006 *Placenta* 2007; 28:846–853

1007 97. Zhang EG, Burton GJ, Smith SK, et al.: Placental Vessel Adaptation During Gestation and to High Altitude:
1008 Changes in Diameter and Perivascular Cell Coverage. *Placenta* 2002; 23:751–762

1009 98. Lee R, Mayhew TM: Star volumes of villi and intervillous pores in placentae from low and high altitude
1010 pregnancies. *J Anat* 1995; 186:349–355

1011 99. Burton GJ, Reshetnikova OS, Milovanov AP, et al.: Stereological evaluation of vascular adaptations in human
1012 placental villi to differing forms of hypoxic stress. *Placenta* 1996; 17:49–55

1013 100. Reshetnikova OS, Burton GJ, Milovanov AP, et al.: [Human placenta barrier remodelling under different type
1014 of hypoxia]. *Arkh Patol* 1997; 59:50–53

1015 101. Kurlak LO, Mistry HD, Cindrova-Davies T, et al.: Human placental renin-angiotensin system in normotensive
1016 and pre-eclamptic pregnancies at high altitude and after acute hypoxia-reoxygenation insult. *J Physiol* 2016;
1017 594:1327–1340

1018 102. Zamudio S, Leslie KK, White M, et al.: Low serum estradiol and high serum progesterone concentrations
1019 characterize hypertensive pregnancies at high altitude. *J Soc Gynecol Investig* 1994; 1:197–205

1020 103. Tuckey RC: Progesterone synthesis by the human placenta. *Placenta* 2005; 26:273–281

1021 104. Tana W, Noryung T, Burton GJ, et al.: Protective Effects from the Ischemic/Hypoxic Stress Induced by Labor
1022 in the High-Altitude Tibetan Placenta. *Reprod Sci Thousand Oaks Calif* 2021; 28:659–664

1023 105. Niermeyer S, Yang P, Shamma, et al.: Arterial Oxygen Saturation in Tibetan and Han Infants Born in Lhasa,
1024 Tibet. *N Engl J Med* 1995; 333:1248–1252

1025 106. Rottgardt I, Rothhammer F, Dittmar M: Native highland and lowland populations differ in γ -globin gene
1026 promoter polymorphisms related to altered fetal hemoglobin levels and delayed fetal to adult globin switch
1027 after birth. *Anthropol Sci* 2010; 118:41–48

1028 107. Yi X, Liang Y, Huerta-Sanchez E, et al.: Sequencing of 50 Human Exomes Reveals Adaptation to High
1029 Altitude. *Science* 2010; 329:75–78

1030 108. Tashi T, Feng T, Koul P, et al.: High altitude genetic adaptation in Tibetans: no role of increased hemoglobin-
1031 oxygen affinity. *Blood Cells Mol Dis* 2014; 53:27–29

1032 109. Waldhoer T, Klebermass-Schrehof K: The impact of altitude on birth weight depends on further mother- and
1033 infant-related factors: a population-based study in an altitude range up to 1600 m in Austria between 1984
1034 and 2013. *J Perinatol* 2015; 35:689–694

1035 110. Zahran S, Breunig I, Link B, et al.: A Quasi-Experimental Analysis of Maternal Altitude Exposure and Infant
1036 Birth Weight. *Am J Public Health* 2013; 104

1037 111. Beall C: Tibetan and Andean patterns of adaptation to high-altitude hypoxia. *Hum Biol* 2000; 72:201–28

1038 112. Beall CM: Adaptation to high altitude: phenotypes and genotypes. *Annu Rev Anthropol* 2014; 43:251–272

1039 113. Rodriguez-Delfin LA, Rubin-de-Celis VE, Zago MA: Genetic Diversity in an Andean Population from Peru
1040 and Regional Migration Patterns of Amerindians in South America: Data from Y Chromosome and
1041 Mitochondrial DNA. *Hum Hered* 2001; 51:97–106

1042 114. Niermeyer S: Reproduction and Growth [Internet], inHigh Altitude. Springer, New York, NY, 2014, pp 341–
1043 355.[cited 2018 May 14] Available from: https://link.springer.com/chapter/10.1007/978-1-4614-8772-2_18

1044 115. Ducsay CA, Goyal R, Pearce WJ, et al.: Gestational Hypoxia and Developmental Plasticity. *Physiol Rev*
1045 2018; 98:1241–1334

1046 116. Ilekis JV, Tsilou E, Fisher S, et al.: Placental origins of adverse pregnancy outcomes: potential molecular
1047 targets: an Executive Workshop Summary of the Eunice Kennedy Shriver National Institute of Child Health
1048 and Human Development. *Am J Obstet Gynecol* 2016; 215:S1–S46

1049 117. Burfening PJ, Chavez J: The criollo sheep in Peru. *Anim Genet Resour Inf Bull* 1996; 20:115–126

1050 118. Parraguez VH, Atlagich MA, Urquieta B, et al.: Expression of vascular endothelial growth factor and
1051 endothelial nitric oxide synthase is increased in the placenta of sheep at high altitude in the Andes. *Can J Vet
1052 Res* 2010; 74:193–199

1053 119. Parraguez VH, Mamani S, Cofré E, et al.: Disturbances in Maternal Steroidogenesis and Appearance of
1054 Intrauterine Growth Retardation at High-Altitude Environments Are Established from Early Pregnancy.
1055 Effects of Treatment with Antioxidant Vitamins. *PloS One* 2015; 10:e0140902

1056 120. Parraguez VH, Atlagich M, Araneda O, et al.: Effects of antioxidant vitamins on newborn and placental traits
1057 in gestations at high altitude: comparative study in high and low altitude native sheep. *Reprod Fertil Dev*
1058 2011; 23:285–296

1059 121. Barry JS, Anthony RV: The Pregnant Sheep as a Model for Human Pregnancy. *Theriogenology* 2008; 69:55–
1060 67

1061 122. Moyers BT, Morrell PL, McKay JK: Genetic Costs of Domestication and Improvement. *J Hered* 2018;
1062 109:103–116

1063 123. Storz JF, Cheviron ZA: Physiological Genomics of Adaptation to High-Altitude Hypoxia. *Annu Rev Anim*
1064 *Biosci* 2021; 9: null

1065 124. Storz JF, Cheviron ZA, McClelland GB, et al.: Evolution of physiological performance capacities and
1066 environmental adaptation: insights from high-elevation deer mice (*Peromyscus maniculatus*). *J Mammal*
1067 2019; 100:910–922

1068 125. Robertson CE, Wilsterman K: Developmental and reproductive physiology of small mammals at high altitude:
1069 challenges and evolutionary innovations [Internet]. *J Exp Biol* 2020; 223[cited 2021 Jan 2] Available from:
1070 <https://jeb.biologists.org/content/223/24/jeb215350>

1071 126. Storz JF, Quiroga-Carmona M, Opazo JC, et al.: Discovery of the world's highest-dwelling mammal. *Proc*
1072 *Natl Acad Sci* 2020; 117:18169–18171

1073 127. Storz JF, Sabatino SJ, Hoffmann FG, et al.: The Molecular Basis of High-Altitude Adaptation in Deer Mice
1074 [Internet]. *PLoS Genet* 2007; 3[cited 2018 May 23] Available from:
1075 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1839143/>

1076 128. Soria R, Julian CG, Vargas E, et al.: Graduated effects of high-altitude hypoxia and highland ancestry on birth
1077 size. *Pediatr Res* 2013; 74:633–638

1078 129. Chakraborty D, Rumi MAK, Konno T, et al.: Natural killer cells direct hemochorial placentation by regulating
1079 hypoxia-inducible factor dependent trophoblast lineage decisions. *Proc Natl Acad Sci* 2011; 108:16295–
1080 16300

1081 130. Chakraborty D, Rumi MAK, Soares MJ: NK cells, hypoxia and trophoblast cell differentiation. *Cell Cycle*
1082 2012; 11:2427–2430

1083 131. PrabhuDas M, Bonney E, Caron K, et al.: Immune mechanisms at the maternal-fetal interface: perspectives
1084 and challenges. *Nat Immunol* 2015; 16:328–334

1085 132. Bustamante JJ, Dai G, Soares MJ: Pregnancy and lactation modulate maternal splenic growth and
1086 development of the erythroid lineage in the rat and mouse. *Reprod Fertil Dev* 2008; 20:303–310

1087 133. Maymon R, Strauss S, Vaknin Z, et al.: Normal sonographic values of maternal spleen size throughout
1088 pregnancy. *Ultrasound Med Biol* 2006; 32:1827–1831

1089 134. Rätsep MT, Felker AM, Kay VR, et al.: Uterine natural killer cells: supervisors of vasculature construction in
1090 early decidua basalis. *Reproduction* 2015; 149:R91–R102

1091 135. Travis OK, Baik C, Tardo GA, et al.: Adoptive transfer of placental ischemia-stimulated natural killer cells
1092 causes a preeclampsia-like phenotype in pregnant rats. *Am J Reprod Immunol* n/a:e13386

1093 136. Bartsch RP, Liu KKL, Bashan A, et al.: Network Physiology: How Organ Systems Dynamically Interact.
1094 PLOS ONE 2015; 10:e0142143

1095 137. Bashan A, Bartsch RP, Kantelhardt JW, et al.: Network physiology reveals relations between network
1096 topology and physiological function. *Nat Commun* 2012; 3:702

1097 138. Ivanov PCh, Bartsch RP: Network Physiology: Mapping Interactions Between Networks of Physiologic
1098 Networks [Internet], inD'Agostino G, Scala A, editors *Networks of Networks: The Last Frontier of*
1099 *Complexity*. Cham, Springer International Publishing, 2014, pp 203–222.[cited 2020 Aug 27] Available
1100 from: https://doi.org/10.1007/978-3-319-03518-5_10

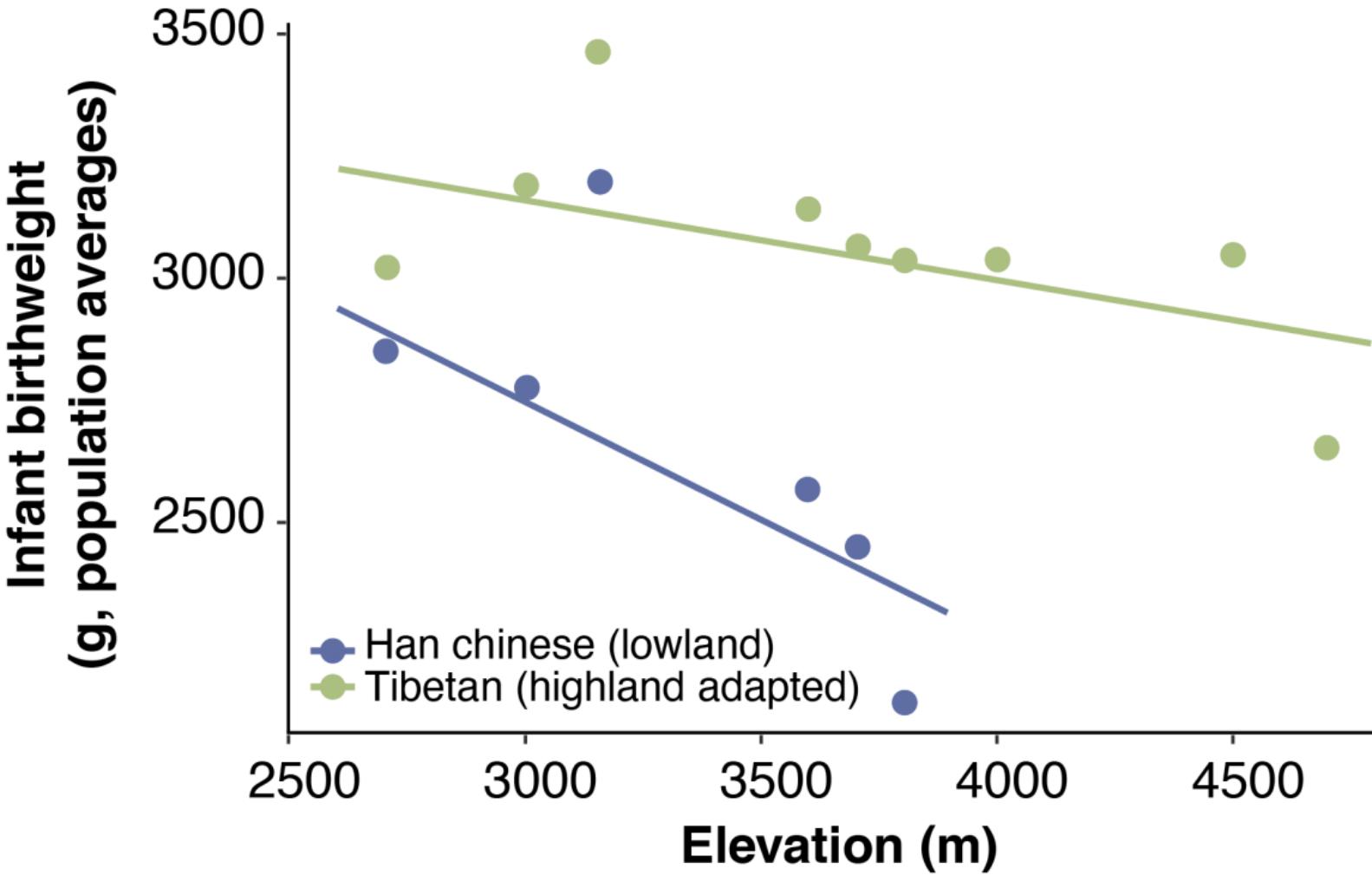
1101 139. Julian CG, Hageman JL, Wilson MJ, et al.: Lowland origin women raised at high altitude are not protected
1102 against lower uteroplacental O₂ delivery during pregnancy or reduced birth weight. *Am J Hum Biol Off J*
1103 *Hum Biol Counc* 2011; 23:509–516

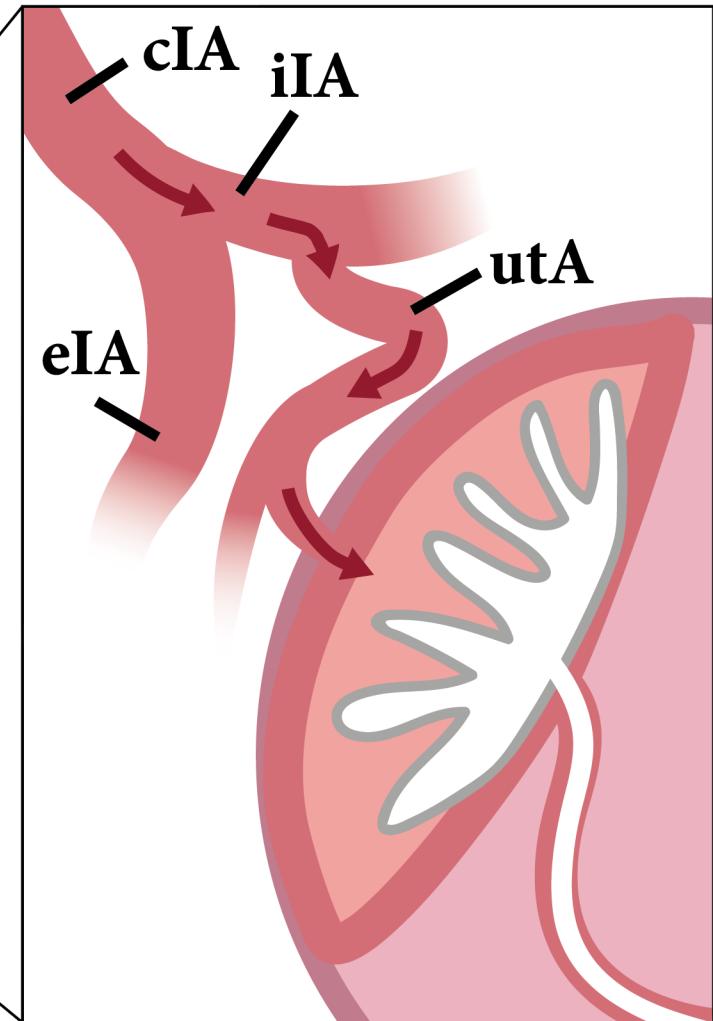
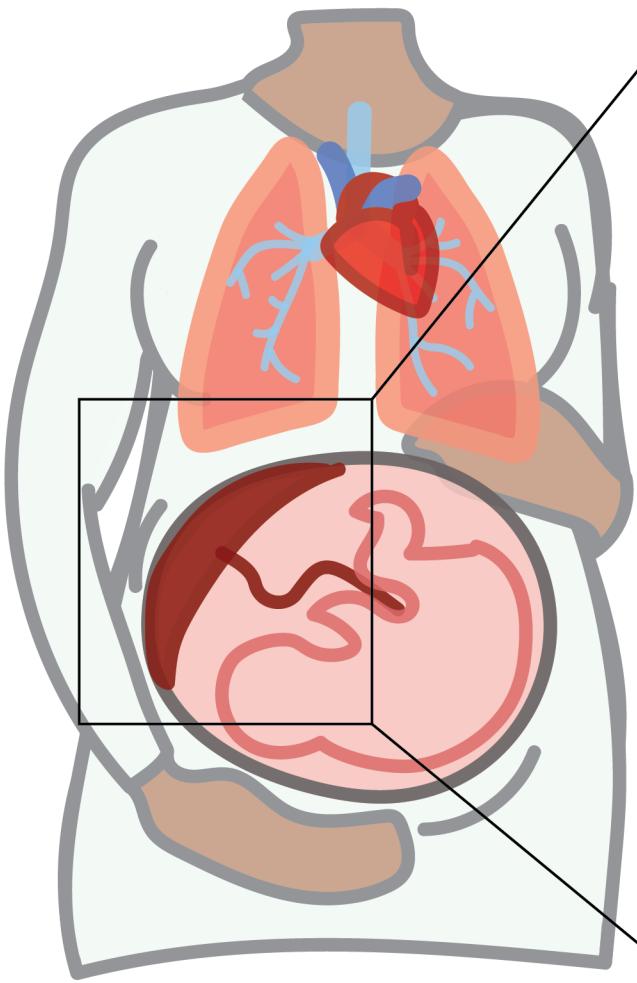
1104 140. Julian CG, Vargas E, Browne VA, et al.: Potential role for elevated maternal enzymatic antioxidant status in
1105 Andean protection against altitude-associated SGA. *J Matern-Fetal Neonatal Med Off J Eur Assoc Perinat*
1106 *Med Fed Asia Ocean Perinat Soc Int Soc Perinat Obstet* 2012; 25:1233–1240

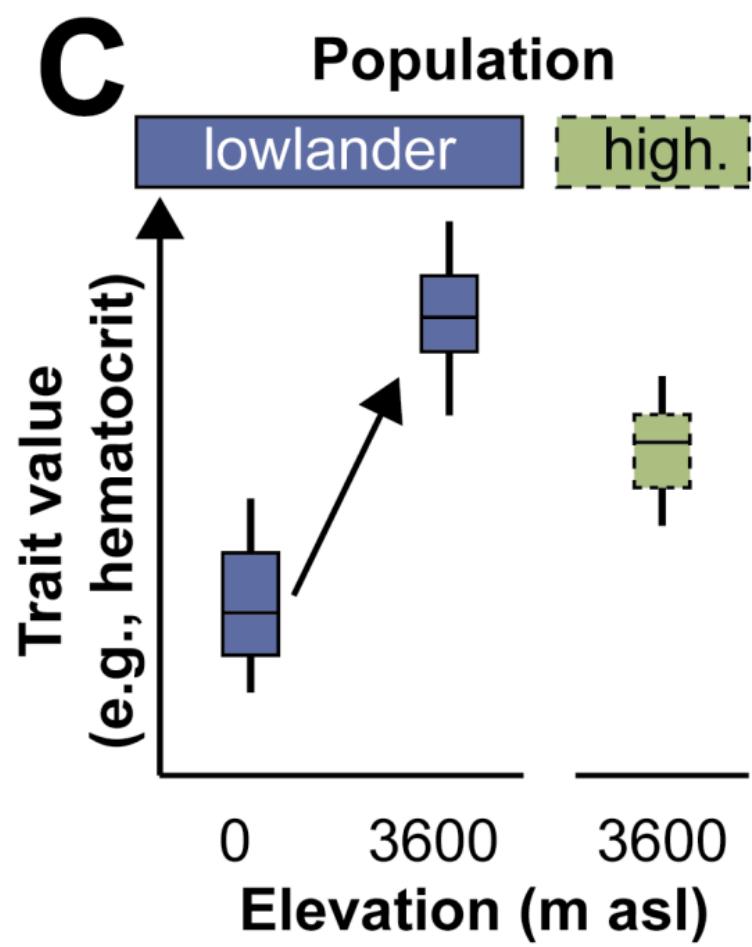
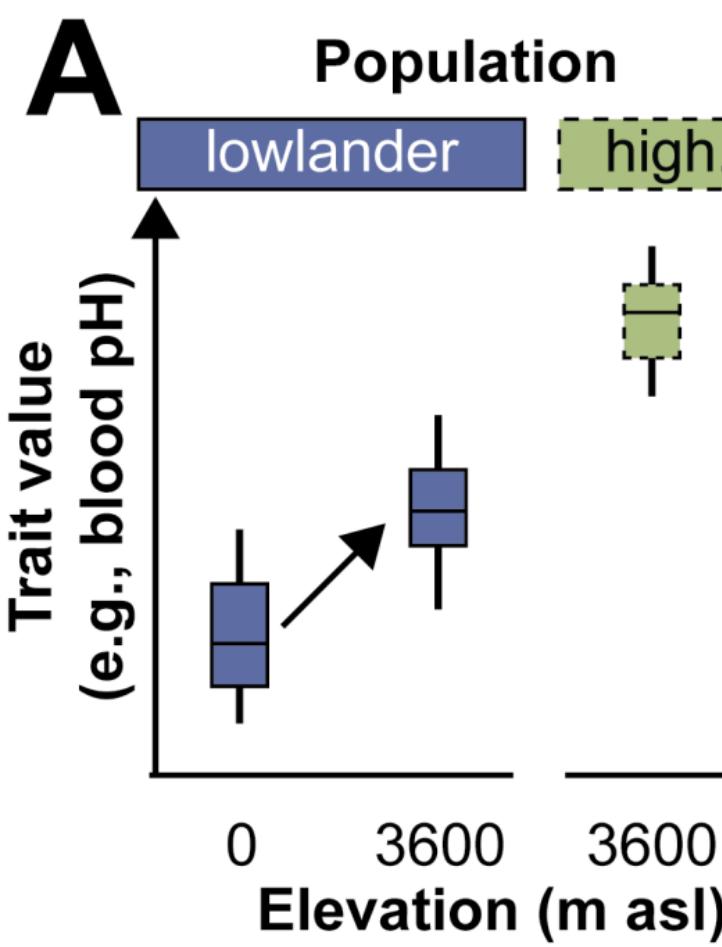
1107 141. Colleoni F, Padmanabhan N, Yung H, et al.: Suppression of Mitochondrial Electron Transport Chain Function
1108 in the Hypoxic Human Placenta: A Role for miRNA-210 and Protein Synthesis Inhibition. *PLOS ONE*
1109 2013; 8:e55194

1110 142. Saga Z, Minhas LA, Qamar K, et al.: Histomorphology of umbilical vessels at regions of low and high
1111 altitudes in Pakistan. *Pak J Pathol Rawalpindi* 2011; 22:86–90

1112 143. Moore LG, Young D, McCullough RE, et al.: Tibetan protection from intrauterine growth restriction (IUGR)
1113 and reproductive loss at high altitude. *Am J Hum Biol* 2001; 13:635–644


1114



1116 **Figure 1 Human birthweight in lowland populations (data from Han Chinese**
1117 **populations shown here in blue) decreases with increasing altitude.** Highland
1118 adapted populations (data from Tibetan populations shown here in green) display
1119 reduced or absent altitude-dependent declines in birthweight. Each point represents a
1120 population average at a given elevation. Linear regressions between altitude and
1121 birthweight are shown for each population (solid lines). Figure reproduced from (143).
1122
1123
1124

1125 **Figure 2 Maternal and fetal systems shaping gas and nutrient exchange.** (a) Gas
1126 exchange (including oxygen uptake) and nutrient circulation is determined by maternal
1127 pulmonary and cardiovascular function. Maternal blood chemistry can also alter oxygen
1128 uptake and delivery. (b) Blood delivery to the fetoplacental unit comes through the
1129 common (cIA), which bifurcates to form the external and internal iliac arteries (eIA and
1130 iIA, respectively). The iIA leads to the uterine artery (utA), which delivers blood to the
1131 placenta. (c) Within the placenta, maternal blood fills the intervillous space (light pink),
1132 bathing the villous membrane (grey outline) to facilitate gas and nutrient exchange with
1133 the fetal blood supply, which is contained within the villi (white). (d) Fetal blood returns
1134 to the fetus via the umbilical cord.

1135
1136
1137 **Figure 3 Patterns of trait values in ancestral (e.g., lowlander) and adapted (e.g.,**
1138 **highland) populations in different environments can be used to infer whether**
1139 **plasticity in a given trait is adaptive or maladaptive.** Organisms can often reversibly
1140 adjust their physiology, behavior, or morphology in response to novel environmental
1141 conditions, however this plasticity can be either beneficial (adaptive) or harmful
1142 (maladaptive), depending on the context. Ancestral (lowlander) plasticity is represented
1143 in this figure as the arrow between two blue boxplots (A-C), which indicate a
1144 hypothetical distribution of ancestral trait values in two different environments, sea level
1145 (0 meters above sea level [asl]) or at high altitude (3600 m asl). When plasticity in
1146 lowlanders is adaptive (beneficial) at high altitude, altitude-adapted should display
1147 similar or even more extreme values for that trait (A). For example, blood pH displays
1148 this pattern across altitudes and populations (Table 1). Alternatively, if ancestral
1149 plasticity induced in lowlanders at high-altitude is maladaptive, altitude-adapted
1150 populations should maintain trait values at altitude similar to those found in the lowland
1151 population when near sea level (B). Uterine artery diameter [UA diam.] displays altitude-
1152 dependent plasticity that may be consistent with this pattern (Table 1). Finally,
1153 maladaptive plasticity can also appear as plasticity in lowlanders that overshoots local
1154 optima seen in highlanders (C). Hematocrit shows this pattern in both gestating and
1155 non-reproductive women (Table 1).
1156

1 **Table 1** Comprehensive summary of studies addressed in this review that quantify gestational traits thought to be
 2 involved in fetal growth restriction in the context of high altitude. Populations for which data have been published for each
 3 trait are indicated in each column as ★. We summarize the direction of plasticity in trait value for women with lowland
 4 ancestry, using ↑/↓/= to indicate increase/decrease/no change in women gestating at altitude relative to those lowland
 5 environments. ? indicates uncertainty due to disagreement among studies or limited empirical data. Similar notation is
 6 used to summarize plasticity in women with highland ancestry along with ND (no data). We summarize evidence for the
 7 adaptive value of lowlander plasticity using A (adaptive), M (maladaptive), N/A (no plasticity in lowlanders), or UNK
 8 (insufficient or absent data in either population for assessment).

9

Trait	LOW ALTITUDE						HIGH ALTITUDE						Relevant Citations		
	European (Rocky Mountains)	European (Peru and Bolivia)	Han Chinese	Other populations (Saudi Arabia, Kyrgyzstan, Turkey, Pakistan)	Andean (Quechua, Aymara)	Tibetan	European (Rocky Mountains)	European (Peru and Bolivia)	Han Chinese	Other populations (Saudi Arabia, Kyrgyzstan, Turkey, Pakistan)	Andean (Quechua, Aymara)	Tibetan			
Maternal physiology	Ventilation (L/min)	★					★	★	★	★	★	↑	↑/↓	A?	(35, 40, 41)
	Heart rate	★	★		★		★	★	★	★	★	↑	=	M	(37, 38, 40–42, 139)
	Hct & Hb	★	★	★	★		★	★	★	★	★	↑	=?	M	(35, 37, 38, 40–43, 46–52, 56)
	Blood & plasma volume	★					★	★		★		↓	ND	M?	(37, 40, 52)
	Blood pressure	★	★	★	★		★	★	★	★	★	↑/≡	=?	M?	(41, 42, 46, 49, 52, 65–73)
	Blood pH	★	★		★		★	★		★		↑	↑	A	(35, 42, 50)
	Arterial O ₂ content	★	★		★		★	★	★	★	★	↑	↑?	A?	(35, 37, 38, 40–42, 50, 56, 62)
Placental blood delivery	Iliac arteries diameter and/or flow	★	★		★		★	★		★	★	=	↑/=?	N/A	(37, 38, 41, 42, 68)
	Uterine artery diameter and/or flow	★	★	★	★		★	★	★	★	★	↓?	↓/=?	M?	(37, 38, 41, 42, 56, 68, 74–77, 81)
	Vasodilatory responses	★					★					↓	ND	UNK	(78, 80)

	Vasodilators in maternal circulation	★			★			★			★			↑/=	ND	UNK	(46, 66, 68)
Nutrient and O ₂ exchange capacity	Uteroplacental artery number	★						★						↑	ND	UNK	(91)
	Placenta size	★	★		★	★		★	★		★	★		↓/=	=	M?	(28, 42, 48, 50, 70, 74, 86–97)
	Villi volume (absolute and/or percent of placenta)	★	★		★	★		★	★		★	★		↓	↓	M?	(28, 29, 70, 86, 98, 99)
	Villous membrane thickness	★	★		★	★		★	★		★	★		↓	↓	A?	(30, 31, 70, 100)
	Fetal capillary number and/or volume	★	★		★	★		★	★		★	★		↑?	↑/↓?	UNK	(29, 48, 49, 62, 70, 86, 91, 92, 97, 99, 100)
	Expression of HIF, HIF-targets, and inhibitors (vHL & FIH)	★						★						↑?	ND	UNK	(67, 69, 72, 92, 101)(69, 72)
	Glucose content/transporter expression	★						★						↓	ND	UNK	(71, 93, 95)
	Oxidative stress & damage	★	★		★			★	★		★	★		↑/↓?	ND	UNK	(94–96, 104, 140)
	Mitochondrial abundance or function	★						★									(141)
	Progesterone	★	★		★			★	★		★			↑	↑	A?	(77, 102)
Fetal hematology	Estrogens	★	★		★			★	★		★			↑/↓?	↑	UNK	(77, 102)
	Umbilical vein diameter and/or flow		★		★	★			★		★	★		↓	↓	M	(50, 142)
	Umbilical artery diameter and/or flow	★	★		★	★		★	★		★	★		↓/=?	↓/=?	M?	(37, 50, 68, 74, 142)
	Hct & Hb		★		★	★			★		★	★		↑	↑	A?	(49, 50, 105)
	Blood pH	★	★		★			★	★		★			↑	↑	A?	(50, 51)
	O ₂ extraction		★		★			★			★			=?	=?	N/A	(50)

