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Joint Index Coding and Incentive Design
for Selfish Clients

Yu-Pin Hsu , Member, IEEE, I-Hong Hou , Senior Member, IEEE, and Alex Sprintson , Senior Member, IEEE

Abstract— The index coding problem includes a server, a group
of clients, and a set of data chunks. While each client wants
a subset of the data chunks and already has another subset
as its side information, the server transmits some (uncoded or
coded) chunks to the clients over a noiseless broadcast channel.
The objective of the problem is to satisfy the demands of all
clients with the minimum number of transmissions. This paper
investigates the index coding setting from a game-theoretical
perspective. We consider selfish clients, where each selfish client
has private side information and a private valuation of each data
chunk it wants. In this context, our objectives are following:
1) to motivate each selfish client to reveal the correct side
information and true valuation of each data chunk it wants;
2) to maximize the social welfare, i.e., the total valuation of the
data chunks recovered by the clients minus the total cost incurred
by the transmissions from the server. Our main contribution is
to jointly develop coding and incentive schemes for achieving the
first objective perfectly and achieving the second objective opti-
mally or approximately with guaranteed approximation ratios
(potentially within some restricted sets of coding matrices).

Index Terms— Network coding, game theory, incentive design.

I. INTRODUCTION

THERE has been a dramatic proliferation of research
on wireless network coding because it can substantially

reduce the number of transmissions by the broadcast nature of
a wireless medium. On one hand, the wireless medium allows
a wireless sender node to broadcast data to all neighboring
nodes with a single transmission. On the other hand, a wireless
receiver node can overhear the wireless channel and store
the overheard data for decoding future transmissions, which
is referred to as side information. Take the wireless network
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Fig. 1. (a) Senders s1 and s2 transmit data chunks d1 and d2 to receivers
r1 and r2, respectively, through a forwarder; (b) A server has a set D =
{d1, d2, d3, d4} of data chunks. Client ci wants data chunk wi = di with
its valuation vi (as shown in the figure), and has set Hi (as shown in the
figure) as its side information.

in Fig. 1-(a) for example, where sender s1 sends data chunk
d1 to receiver r1 through a forwarder and sender s2 sends
data chunk d2 to receiver r2 also through the forwarder.
While receiver r1 can obtain data chunk d2 destined to r2

by overhearing the transmissions from s2, receiver r2 can
also obtain data chunk d1 destined to r1 by overhearing
the transmissions from s1. Leveraging the side information,
the forwarder can simply broadcast a single XOR-coded data
chunk d1 + d2, and then both receivers can obtain the data
chunks they want by subtracting the side information they
have from the received data chunk d1 + d2. However, with
the conventional communication approach (without coding),
the forwarder has to transmit both data chunks d1 and d2

separately.
The index coding problem is one of fundamental problems

in wireless network coding. An instance of the index coding
problem includes a server (playing the role of the forwarder
in Fig. 1-(a)), a set of wireless clients, and a set D of data
chunks. Each client wants a subset of the data chunks in set D
and has a different subset of the data chunks in set D given to
it as side information. The server can transmit uncoded data
chunks or coded data chunks (i.e., combinations of data chunks
in set D) to all clients over a noiseless broadcast channel.
The goal of the problem is to identify a coding (transmission)
scheme requiring the minimum number of transmissions to
satisfy the demands of all clients. For example, Fig. 1-(b)
depicts an instance of the index coding problem. With the
assist of coding, broadcasting only three coded data chunks
d1 + d2, d2 + d3, and d4 (over GF (2), i.e., using the bit-wise
Exclusive-OR operation) can satisfy all clients.

Since transmitting an (uncoded or coded) data chunk
can incur a significant transmission cost (like the energy
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consumption), the server transmits an (uncoded or coded)
data chunk only when it is important enough to the clients.
Precisely, the server transmits an (uncoded or coded) data
chunk only when the overall valuation of the data chunks
recovered by that transmitted data chunk can justify the
transmission cost. In this context, a client has to evaluate the
data chunks it wants. For example, while a client is watching
an online video, it prefetches some subsequent data chunks
and stores them in a prefetch queue for smoothly playing the
video. The lower the size of the prefetch queue is, the higher
the valuation of the next data chunk is. Once the prefetch
queue is empty, the client would announce a high enough
valuation to justify the transmission cost. In contrast, if the
size of the prefetch queue is larger, the client would announce
a lower valuation and seek an opportunity that the server would
transmit a coded data chunk (that can recover the data chunks
the client wants) because the total valuation of the recovered
data chunks can justify the transmission cost.

Thus, unlike the original index coding problem (where the
server has to satisfy all clients), this paper investigates the
scenario where the server’s transmissions strike a balance
between the valuation of the data chunks and the cost of the
transmissions. Instead of minimizing the number of transmis-
sions, the first goal of this paper is to develop a coding scheme
for maximizing the social welfare, i.e., the difference between
the valuation of the data chunks that can be recovered by
a client and the cost incurred by the transmissions from the
server.

To maximize the social welfare, the server needs to know
each client’s required data chunks, each client’s valuations of
the data chunks it wants, and each client’s side information.
Motivated by Fig. 1-(a), the server can forward the data
chunks according to the destinations’ IP and MAC addresses;
hence, it knows each client’s required data chunks. However,
the server does not know each client’s valuations of the data
chunks it wants because the data chunks are evaluated by
the client itself. Moreover, the server also does not know
each client’s side information because it does not fully know
the client’s surrounding environment like Fig. 1-(a). Thus,
the server has to ask all clients to submit the unknown informa-
tion. All prior works on the index coding problem assumed that
the server knows the side information, for example, because
the clients honestly and periodically broadcast the their side
information such as [2]. However, the server cannot expect
a selfish client to reveal its true information. For example,
suppose that the server’s strategy is simply to calculate the
social welfare according to the information submitted by all
clients and then to construct a code for maximizing that social
welfare. With that strategy, a selfish client would be reluctant
to evaluate the data chunks it wants and would simply submit
valuations as high as possible to get a higher chance of
recovering the data chunks it wants. In particular, with the
wrong information, the server cannot maximize the true social
welfare.

To address that issue, an incentive for motivating each
selfish client to reveal its true information is needed. This
paper uses (money) payment adjustment between the server
and the clients as an incentive (or a punishment). The pricing

idea has been widely used in network design for motivating
a selfish network user to behave in a prescribed way. For
example, [3] developed a payment scheme for motivating each
network user to submit its true utility function. According to
[4, Theorem 9.36 or Lemma 11.9], a payment scheme can
motivate a selfish client to submit the true valuation of a data
chunk it wants (without considering the possibility that a client
can lie about its side information) if and only if 1) there exists
a threshold such that the client can recover the data chunk it
wants if the valuation it submits is higher than the threshold,
but cannot otherwise, and 2) the client is charged the value of
the threshold if it can recover the data chunk it wants. Next,
we consider a network consisting of a server and a single
client that wants data chunk d1 with valuation 0.6 and has data
chunks d2, d3 as its side information. Following [4], the server
might set some thresholds (satisfying the above theorem or
lemma) as follows.

• If the client submits the side information {d2, d3}, then
set the threshold to 0.5. If the client submits the valuation
more than 0.5, the server transmits d1 + d2 + d3 (over
GF (2)); otherwise, the server transmits nothing.

• If the client submits the side information {d2}, then set
the threshold to 0.4. If the client submits the valuation
more than 0.4, the server transmits d1+d2 (over GF (2));
otherwise, the server transmits nothing.

Then, the client would submit the true valuation but the
incomplete side information of {d2} so that it can recover
the data chunk it wants with the minimum payment 0.4.
That is, a selfish client in our problem can lie about its
valuations or the side information it has to recover the data
chunks it wants with the minimum payment. Thus, we need
to revisit those conditions for the incentive design in our
problem. The second goal of this paper is to develop a payment
scheme for motivating all selfish clients to reveal their true
information.

A. Contributions

We investigate the index coding setting in the presence of
selfish clients, aiming to propose a joint coding and incentive
design (called a mechanism) for 1) motivating each selfish
client to truthfully reveal its side information and the valuation
of each data chunk it wants and 2) maximizing the social
welfare. Our first main contribution is to provide a sufficient
condition for mechanisms that can motivate each selfish client
to be truthful. Our second main contribution is to develop
such mechanisms. With the proposed sufficient condition,
we can establish their truthfulness. Moreover, we analyze
their optimality or worst-case approximation ratios (potentially
within some restricted sets of coding matrices) in terms of the
social welfare.

B. Related Works

The index coding problem was introduced in [5] and has
become a hot topic. Most related works characterized capacity
regions (e.g., [6], [7]) for various network settings or devel-
oped computationally efficient coding schemes to (optimally or
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approximately) achieve the regions (e.g., [8], [9]). In addition
to the original index coding problem, some variants of the
index coding problem have also been investigated, such as
the pliable index coding problem (e.g., [10]) and the secure
index coding problem (e.g., [11]). The reader is referred to
[12] for extensive surveys. All the prior works on the index
coding neglected potentially selfish clients. Thus, our work
introduces another variant of the index coding problem by
considering selfish clients. Moreover, our work is the first one
to investigate the social welfare on the index coding setting.

Many prior works on network coding considered self-
ish clients. Most of those works (e.g., [13], [14]) analyzed
equilibrium in the presence of selfish clients. Few works
(e.g., [15], [16]) developed incentive schemes for network-
coding-enabled networks. In particular, those works focused
on incentive design for fixed coding schemes. For exam-
ple, [15] and [16] used random linear codes. In contrast, our
work considers a joint coding and incentive design problem.

Our problem is also related to combinatorial multi-item
auction design (e.g., see [4]) for motivating an auction partic-
ipant to reveal the true valuation of each item. However, our
problem is fundamentally different from the traditional auction
design. The traditional auction design can fully manage the
item allocation. If an item is/isn’t allocated to an auction
participant, the auction participant does/doesn’t obtain it.
However, because a client in our problem can lie about its
side information, the server cannot fully manage the recovery
of data chunks for a client. While the server decides not
to recover a data chunk that a client wants (based on the
side information revealed by the client), the client might still
recover the data chunk with the hidden side information.
Moreover, as discussed in Section I, the results (such as [4,
Theorem 9.36 or Lemma 11.9]) for the traditional auction
design cannot immediately apply to our problem. Thus, this
paper is exploring a new problem in the intersection of coding
theory and game theory.

II. SYSTEM MODEL

A. Network Model

Consider a wireless broadcast network consisting of a server
and a set c1, · · · , cn of n wireless clients, as illustrated
in Fig. 1-(b). The server has a set D = {d1, · · · , dm} of m
data chunks, where each data chunk di represents an element
of the Galois field GF (q) of order q. The server can transmit
uncoded data chunks or coded data chunks (combined from
data chunks in set D) to all clients over a noiseless broadcast
channel. Each client wants a single data chunk in set D. Let
wi ∈ D be the data chunk client ci wants. Multiple clients can
request the same data chunk, i.e., wi = wj for some i and j.
Moreover, each client already has a subset of data chunks in set
D as its side information. Let Hi ⊆ D be the side information
client ci has.

B. Coding Schemes

In this paper, we consider scalar-linear coding schemes,
where every transmission made by the server is a linear
combination of the data chunks in set D. Precisely, the

i-th transmission ti made by the server can be expressed by
ti =

∑m
j=1 gi,jdj with coding coefficient gi,j ∈ GF (q) Let

Gi = (gi,1, · · · , gi,m) be the coding vector of ti. Moreover,
let G = [Gi] be the coding matrix whose i-th rows is the
coding vector of ti. For a given coding matrix G, let function
η(G) represent the total number of transmissions made by the
server.

After receiving the transmissions t1, · · · , tη(G) from the
server, client ci can recover data chunk wi it wants if and
only if there exists a (decoding) function that maps received
data chunks t1, · · · , tη(G) and its side information Hi to data
chunk wi. Note that the server does not need to satisfy all
clients in our setting. For a given coding matrix G, let indicator
function 1i(Hi, G) indicate if client ci can recover data chunk
wi with side information Hi, where 1i(Hi, G) = 1 if it can;
1i(Hi, G) = 0 if it cannot.

Each client ci has a valuation vi ≥ 0 representing the
importance of data chunk wi to it. Suppose that each trans-
mission (from the server) incurs a transmission cost of one
unit. The transmission cost can reflect, for example, the power
consumption. To capture the tradeoff between the importance
of the data chunks and the power consumption, we define a
social welfare by

n∑
i=1

vi · 1i(Hi, G)− η(G), (1)

where the first term vi · 1i(Hi, G) expresses the valuation
of data chunk wi that can be recovered by client ci and
the second term η(G) expresses the cost of the total η(G)
transmissions made by the server. For example, the social
welfare of transmitting d1 + d2, d2 + d3, and d4 (the solution
to the index coding problem) in Fig. 1-(b) is 0.2+0.9+0.5+
0.6− 3 = −0.8. In contrast, the social welfare of transmitting
d3+d4 is 0.5+0.6−1 = 0.1 (where only clients c3 and c4 can
recover the data chunks they want). Thus, transmitting d3 +d4

is more valuable than transmitting d1 + d2, d2 + d3, and d4

from the global view. In this paper, we aim to develop a coding
scheme that identifies a coding matrix G for maximizing the
social welfare.

C. Incentive Schemes

To maximize the social welfare, the server has to know data
chunk wi, valuation vi and side information Hi about each
client ci. As discussed in Section I, we suppose that the server
knows wi for all i but asks each client ci to submit its valuation
and the indices (but not the content) of the data chunks in its
side information.1 Let v̂i > 0 and Ĥi ⊆ D be the valuation
and the side information,2 respectively, revealed by client ci.
Each client ci can tell a lie, so that v̂i and Ĥi (obtained by
the server) can be different from the true information vi and
Hi (owned by client ci). Thus, in this paper, we also aim to

1Submitting the information would incur a slight transmission cost. The
cost can be reflected in valuation vi while client ci evaluates data chunk wi.
Thus, the cost is not included in the social welfare in Eq. (1).

2If a client submits an index that is out of the indices of the data chunks in
set D as its side information, then the server neglects it (because the server
only manages the data chunks in set D). Thus, we assume Ĥi ⊆ D without
loss of generality.
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develop an incentive scheme for motivating each client ci to
tell the truth so that v̂i = vi and Ĥi = Hi for all i. Let
V̂ = {v̂1, · · · , v̂n} and Ĥ = {Ĥ1, · · · , Ĥn} be the sets of all
corresponding elements. Moreover, let V̂−i = V̂ − {v̂i} and
Ĥ−i = Ĥ − {Ĥi} be the set of all corresponding elements
except the one for client ci.

In this paper, we consider money transfers between the
server and the clients as an incentive. Each client ci has to
pay the server for data chunk wi if the client can recover
it. In this context, valuation vi of data chunk wi implies the
maximum amount of money client ci is willing to pay to obtain
it. Let pi ≥ 0 be the payment of client ci charged by the server.
A scheme determining payment pi for each client ci is referred
to as a payment scheme. In general, a payment scheme depends
on valuation set V̂, side information set Ĥ, and coding matrix
G (which determines indicator 1i(Hi, G) for each client ci).
The design of payment schemes and that of coding schemes
depend on each other. Thus, we define a mechanism π by a
joint coding and payment scheme.

The mechanism used by the server is given to all clients.
For a given mechanism π, we define a utility for client ci by
ui(V̂, Ĥ, π) = (vi − pi) · 1i(Hi, G), which is the difference
between the valuation of the data chunk and the money
charged by the server if it can recover the data chunk it wants,
but is zero otherwise. Though the utility of a client can be
computed only when all clients’ information is given (because
the mechanism π needs all client’s information to compute
price pi and coding matrix G), we consider non-cooperative
clients where a client has no information about other clients
and does not cooperate with other clients. In this context,
we aim to develop a mechanism π for guaranteeing that
a client can maximize its utility when submitting its true
information, for any given information submitted by all other
clients. Mathematically, for every V̂−i and Ĥ−i, the mecha-
nism π satisfies

ui

({vi, V̂−i}, {Hi, Ĥ−i}, π
)≥ui

({v̂i, V̂−i}, {Ĥi, Ĥ−i}, π
)
,

(2)

for all possible v̂i and Ĥi. In game theory, we call the
mechanism a dominant strategy [17]. A dominant strategy
equilibrium is always a Nash equilibrium.

D. Problem Formulation

A mechanism satisfying Eq. (2) is referred to as a truthful
mechanism. Moreover, if a truthful mechanism yields the
social welfare equal to the maximum value of Eq. (1) obtained
by a coding scheme that knows the true information V and H,
it is referred to as an optimal truthful mechanism. We aim to
develop an optimal truthful mechanism such that the social
welfare and the utilities of all clients are simultaneously
optimized. Our problem involves both the global and local
optimization problems.

Note that local utility ui(V̂, Ĥ, π) involves more than one
type of private information (i.e., valuation and side informa-
tion). The traditional incentive design for a single type of
private information might be insufficient to motivate a client
in our problem to reveal the true information of both types.

Thus, Section III characterizes truthful mechanisms for our
problem. With the results in Section III, we will develop opti-
mal or approximate truthful mechanisms for various scenarios
of our problem.

III. CHARACTERIZING TRUTHFUL MECHANISMS

This section provides a sufficient condition of truthful
mechanisms for our problem. To that end, we introduce a type
of coding schemes as follows, where we use indicator function
1i(Ĥi, G) to indicate if client ci can recover data chunk wi

with side information Ĥi and coding matrix G.
Definition 1: A coding scheme is a threshold-type coding

scheme if, for every valuation set V̂−i and side information
set Ĥ, there exists a threshold v̄i(V̂−i, Ĥ) such that

• when v̂i > v̄i(V̂−i, Ĥ), it constructs a coding matrix G
such that 1i(Ĥi, G) = 1;

• when v̂i < v̄i(V̂−i, Ĥ), it constructs a coding matrix G
such that 1i(Ĥi, G) = 0,

for all i.
Note that threshold v̄i(V̂−i, Ĥ) for client ci is independent

of valuation v̂i submitted by client ci, but is dependent on
side information Ĥi submitted by client ci. The next theorem
provides a sufficient condition of truthful mechanisms for our
problem.

Theorem 1: Suppose that Ĥi ⊆ Hi for all i. A mechanism
is truthful if the following four conditions hold:

1) The coding scheme is a threshold-type coding scheme.
2) The payment scheme determines payment pi =

v̄i(V̂−i, Ĥ) for client ci if 1i(Ĥi, G) = 1, or pi = 0
if 1i(Ĥi, G) = 0, for all coding matrices G constructed
by the coding mechanism.

3) For every V̂−i and Ĥ−i, v̄i(V̂−i, {Hi, Ĥ−i}) ≤
v̄i(V̂−i, {Ĥi, Ĥ−i}) for all Ĥi ⊆ Hi.

4) For every V̂−i and Ĥ−i, if the coding scheme can
construct a coding matrix G such that 1i(Ĥi, G) =
0 but 1i(Hi, G) = 1 for some v̂i and Ĥi, then
v̄i(V̂−i, {Hi, Ĥ−i}) = 0.

Proof: See Appendix A.
The first two conditions in the above theorem claim that a

client cannot affect the payment by lying about the valuation
of the data chunk it wants, because its payment depends on
the valuations submitted by other clients. The third condition
claims that a client can minimize its payment when submitting
its complete side information. The fourth condition further
considers the case when the server cannot fully manage the
recovery of the data chunk a client wants, i.e., the server
decides not to recover wi (based on v̂i and Ĥi) but client
ci can still recover it by the hidden side information Hi− Ĥi.
For that case, the fourth condition claims that the client can
obtain the data chunk it wants for free when submitting its true
side information. The theorem will be used later to establish
the truthfulness of the proposed mechanisms. We remark
that the theorem generalizes the sufficient condition in [4,
Theorem 9.36 or Lemma 11.9] to the case when a client can
lie about the side information it has.

Note that Theorem 1 assumes Ĥi ⊆ Hi for all i. To avoid
the case when Ĥi �⊆ Hi (i.e., client ci announces data chunks
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it does not really have as its side information), the server can
use a hash function for validating if a client really has the
content of a data chunk. The hash function takes the index and
the first few bits of a data chunk as an input, performs some
operations on it, and returns a value as the output. For example,
the hash function can be SHA-256, which has been widely
used in the Bitcoin protocol for validating a transaction [18]
An important property of the hash function is that a slightly
different input can produce a completely different output value.
That is, the hash output value for data chunk di is different
for all i. The server can compute the mapping between the
data chunks in set D and their respective hash output values
in advance. Then, through a hash output value, the server can
know the associated input data chunk.

Thus, the server asks each client to submit the hash output
values, instead of submitting the indices of its side informa-
tion. If a client wants to lie to the server that it has a data
chunk in set D −Hi, it could only take the index and some
randomly guessed bits (as it does not really have the content
of that data chunk) as an input of the hash function. However,
because the random bits are unlikely to be exactly the same as
those bits in a data chunk in set D−Hi, the hash output value
is unlikely to be that produced by a data chunk in set D−Hi.
Through the hash output values, the server can identify the side
information that a client announces but it does not really have.
Thus, with the assist of the hash function techniques, a client
does not want to lie about a data chunk it does not really
have as its side information. The rest of this paper assumes
Ĥi ⊆ Hi for all i and aims to motivate each client to submit
its complete side information so that Ĥi = Hi for all i.

IV. VCG-BASED MECHANISM DESIGN

This section proposes an optimal truthful mechanism
leveraging the celebrated Vickrey-Clarke-Groves (VCG)
approach [4]. Note that the original VCG mechanism provides
an auction participant with an incentive to reveal only the true
valuation of each item. However, our Theorem 2 will show
that the proposed VCG-based mechanism can motivate each
selfish client to reveal not only the true valuation of the data
chunk it wants but also its complete side information.

Our VCG-based mechanism uses the following function

w(V̂, Ĥ, G) =
n∑

i=1

v̂i · 1i(Ĥi, G)− η(G). (3)

The function w(V̂, Ĥ, G) is the social welfare in Eq. (1)
computed by the information V̂ and Ĥ obtained by the
server. Then, we propose our VCG-based mechanism as
follows, including a VCG-based coding scheme and a
VCG-based payment scheme, for computing a coding matrix
and payments when obtaining valuation set V̂ and side infor-
mation set Ĥ from the clients.

VCG-based coding scheme: Identify a coding matrix G∗

for maximizing function w(V̂, Ĥ, G):

G∗ ∈ arg max
G∈G

w(V̂, Ĥ, G), (4)

where G is a set of the coding matrices that can be selected.
If there is a tie in Eq. (4), it is broken arbitrarily.

VCG-based payment scheme: If 1i(Ĥi, G
∗) = 0 for

coding matrix G∗ computed by Eq. (4), then client ci is
charged pi = 0; otherwise, it is charged

pi = max
G∈G

w({0, V̂−i}, Ĥ, G)− w({0, V̂−i}, Ĥ, G∗), (5)

where valuation set {0, V̂−i} is valuation set V̂ with
valuation vi being substituted by zero. Because of the
optimality of the first term in Eq. (5), payment pi is non-
negative. The idea underlying Eq. (5) is to calculate thresh-
old v̄i(V̂−i, Ĥ). Suppose that client ci submits valuation
ṽi > maxG∈G w({0, V̂−i}, Ĥ, G) − w({0, V̂−i}, Ĥ, G∗).
Then, we can obtain

w({ṽi, V̂−i}, Ĥ, G∗)
(a)
= w({0, V̂−i}, Ĥ, G∗) + ṽi

(b)
> max

G∈G
w({0, V̂−i}, Ĥ, G),

where (a) is from Eq. (3); (b) is from the assumption of ṽi.
In the above inequality, the term maxG∈G w({0, V̂−i}, Ĥ, G)
is the maximum function value among all possible coding
matrices G such that 1i(Ĥi, G) = 0. Moreover, we want to
emphasize that Eq. (5) calculates payment pi for coding matrix
G∗ such that 1i(Ĥi, G

∗) = 1. Thus, the inequality implies that
the VCG-based coding scheme constructs a coding matrix G
such that 1i(Ĥi, G) = 1 when client ci submits a valuation
greater than the value computed by Eq. (5), implying the first
and second conditions in Theorem 1.

The idea behind why the VCG-based mechanism can satisfy
the third in Theorem 1 is that for a fixed valuation ṽi,
if client ci reveals more data chunks as its side information Ĥi,
the VCG-based coding scheme is more likely to construct
a coding matrix G∗ such that 1i(Ĥi, G

∗) = 1. That is,
the threshold decreases with the size |Ĥi|, implying the
third condition in Theorem 1. Moreover, if the VCG-based
coding scheme can construct a coding matrix G∗ such that
1i(Ĥi, G

∗) = 0 but 1i(Hi, G
∗) = 1, then when client ci sub-

mits zero valuation ṽi = 0 and its complete side information
Ĥi = Hi, the coding matrix G∗ is also a maximizer in Eq. (4)
(and 1i(Hi, G

∗) = 1). That is, the threshold is zero, implying
the fourth condition in Theorem 1.

The next theorem establishes the truthfulness and the opti-
mality of the proposed VCG-based mechanism.

Theorem 2: The VCG-based mechanism is an optimal
truthful mechanism.

Proof: Appendix B confirms that the VCG-based mecha-
nism is truthful (by Theorem 1). Then, all clients submit the
true valuations of the data chunks they want and their complete
side information. Moreover, by Eq. (4), the VCG-coding
scheme maximizes the social welfare. Thus, the VCG-based
mechanism is an optimal truthful mechanism.

The proposed VCG-based mechanism involves the combi-
natorial optimization problems in both Eqs. (4) and (5). Our
technical report in [19] shows (by a reduction from the original
index coding problem) that the combinatorial optimization
problems are NP-hard. To develop computationally efficient
mechanisms, the rest of this paper focuses on sparse coding
schemes, which construct coding matrices G (over GF (2))
such that at most two coding coefficients in each coding vector
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TABLE I

SUMMARY OF THE PROPOSED MECHANISMS

Gi is nonzero. That is, a sparse coding scheme combines at
most two data chunks based on a small field size GF (2)
for each transmission, resulting in a smaller packet size and
a lower encoding/decoding complexity. Some sparse coding
schemes have been also developed (e.g., [20]) for approxi-
mately minimizing the number of transmissions in the original
index coding problem.

This paper will consider two different scenarios separately:
the multiple unicast scenario and the multiple multicast sce-
nario. While in the multiple unicast scenario each client wants
a different data chunk (i.e., n = m), in the multiple multi-
cast scenario many clients can request the same data chunk
(i.e., n ≥ m). Moreover, this paper will also consider two
different decoding schemes separately: the instant decoding
scheme and the general decoding scheme. While an instant
decoding scheme can combine each individual transmission
(from the server) with its side information but cannot combine
multiple transmissions, a general decoding scheme can com-
bine more than one transmission with its side information. For
example, in Fig. 1, client c2 can instantly decode data chunk
d2 by d1 +d2; however, it cannot instantly decode data chunk
d1 by d1 + d2 or d2 + d3 separately (but it can decode d1 by
combining both d1 + d2 and d2 + d3). The instant decoding
scheme requires a client to store at most one transmission for
recovering the data chunk it wants, resulting in a smaller buffer
size and a lower decoding complexity. This paper has those
partitions such that each section serves a certain set of clients.

Section V develops computationally efficient mechanisms
for the multiple unicast scenario. While Section V-A proposes
an algorithm optimally solving Eqs. (4) and (5) in polynomial
time when the set G is restricted to sparse and instantly
decodable coding matrices, Section V-B establishes that the
combinatorial optimization problems in Eqs. (4) and (5) are
still NP-hard when the set G is restricted to only sparse
coding matrices. To cope with the NP-hardness, Sections V-B
and V-C develop two approximate truthful mechanisms. More-
over, Section V-D analyzes the computational complexities of
the proposed polynomial-time coding schemes. Subsequently,
Section VI shows that the combinatorial optimization problems
in Eqs. (4) and (5) for the multiple multicast scenario are not
only NP-hard but also NP-hard to approximate even using
those simple sparse coding schemes. Table I summarizes our
main results where the symbol C will be defined soon.

Fig. 2. Weighted dependency graph for the instance in Fig. 1 when v̂1 = 0.8,
v̂2 = 0.9, v̂3 = 0.5, v̂4 = 0.6, and Ĥi = Hi for all i.

V. MECHANISM DESIGN FOR THE

MULTIPLE UNICAST SCENARIO

This section develops computationally efficient truthful
mechanisms for the multiple unicast scenario by proposing
polynomial-time algorithms for (optimally or approximately)
solving Eq. (4) within the set G of sparse coding matrices.
We remark that an approximate solution to Eqs. (4) and (5)
is no longer a truthful mechanism (see Example 1 later).
Thus, we devise alternative payment schemes to substitute
the previously proposed VCG-based payment scheme for
guaranteeing the truthfulness (see Sections V-B and V-C later).

To solve Eq. (4), we introduce a weighted dependency
graph constructed as follows: given valuation set V̂ and side
information set Ĥ,

• for each client ci, construct a vertex λi;
• for any two clients ci and cj such that wi ∈ Ĥj , construct

a directed arc (λi, λj);
• associate each arc (λi, λj) with an arc weight

γ(λi,λj) = v̂i.
The weighted dependency graph generalizes the dependency
graph in [5] to a weighted version. We denote the weighted
dependency graph by G(Λ,A,Γ), where Λ is the vertex set,
A is the arc set, and Γ is the arc weight set. Fig. 2 illustrates
the weighted dependency graph for the instance in Fig. 1.

We make two observations about weighted dependency
graphs:

• for the general decoding scheme, the server can satisfy
all clients in a cycle C in graph G(Λ,A,Γ) with |C|−1
sparse coded data chunks;

• for the instant decoding scheme, the server can satisfy all
clients in a cycle C with |C| = 2 in graph G(Λ,A,Γ)
with |C| − 1 = 1 sparse coded data chunk.
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For example, with the general decoding scheme, clients c1,
c2, and c3 in cycle (λ1, λ2, λ3) of Fig. 2 can recover the data
chunks they want with d1+d2 and d2+d3. In contrast, with the
instant decoding scheme, clients c1, c2, and c3 cannot recover
the data chunks they want with any two transmissions among
d1 + d2, d2 + d3, or d3 + d1. However, clients c3 and c4 in
cycle (λ3, λ4) of Fig. 2 can instantly decode the data chunks
they want with d3 + d4.

We say that a coding scheme encodes along cycle C in
weighted dependency graph G(Λ,A,Γ) if it constructs |C|−1
sparse coded data chunks for satisfying all clients in the cycle.
Note that, for the instant decoding scheme, a coding scheme
can encode along cycle C with |C| = 2 only, according to the
above observations. While encoding along a set of (vertex)
disjoint cycles can satisfy all clients in those cycles with
fewer transmissions than the number of the satisfied clients,
all other sparse codes with no cycle being involved cannot
(see [20] for details). Those transmissions with no cycle
being involved can be substituted by uncoded data chunks
without changing the function value in Eq. (3). Thus, we can
focus on sparse coding schemes that encodes along disjoint
cycles and additionally transmits uncoded data chunk wi if
vertex λi is not in those cycles (i.e., client ci cannot recover
data chunk wi with the coded data chunks along the cycles)
but v̂i ≥ 1.

We aim to identify a sparse coding matrix G including the
coding vectors along a set C of disjoint cycles and those of
uncoded data chunk wi if λi in not in those cycles but v̂i ≥ 1,
for maximizing

w(V̂, Ĥ, G)

=
∑
C∈C

(∑
λi∈C

v̂i − (|C| − 1)

)
︸ ︷︷ ︸

(a)

+
∑

λi /∈C,∀C∈C
v̂i≥1

(v̂i − 1)

︸ ︷︷ ︸
(b)

, (6)

where (a) is because encoding along cycle C satisfies all
clients in the cycle with |C| − 1 transmissions; (b) considers
uncoded data chunks for those clients that submit valuations of
no less than one but cannot recover the data chunks they want
with the coded data chunks along the cycles. Then, we use
the notation [x]+1 = min{x, 1} to represent the truncation of
x toward one; in particular, we can re-write Eq. (6) in terms
of truncated valuations as follow:

w(V̂, Ĥ, G) =
∑
C∈C

(∑
λi∈C

[v̂i]+1 − (|C| − 1)

)

+
∑

λi /∈C,∀C∈C
v̂i≥1

([v̂i]+1 − 1) +
∑
v̂i≥1

(v̂i − 1)

︸ ︷︷ ︸
(a)

, (7)

where (a) adds back the deducted value (caused by the trunca-
tion). Because the value of the term

∑
λi /∈C,∀C∈C

v̂i≥1

([v̂i]+1 − 1)

is zero and the value of the term
∑

v̂i≥1(v̂i − 1) is constant,
it suffices to maximize

∑
C∈C(

∑
λi∈C [v̂i]+1 − (|C| − 1)).

To that end, we associate each cycle C in weighted
dependency graph G(Λ,A,Γ) with a cycle weight γ(C)

defined by

γ(C) =
∑
a∈C

[γa]+1 − (|C| − 1), (8)

which implies the difference between the total truncated val-
uation submitted by the clients in cycle C and the cost of
encoding along cycle C. Note that, for the instant decoding
scheme, we assign cycle weight γ(C) to cycles C with |C| = 2
only. Then, we can turn our attention to a maximum weight
cycle packing problem: identifying a set C of disjoint cycles
for maximizing the total cycle weight

∑
C∈C γ(C) in graph

G(Λ,A,Γ).
Section V-A optimally solves our maximum weight cycle

packing problem for the instant decoding scheme. For the
general decoding scheme, Sections V-B and V-C propose
two approximate solutions to our maximum weight cycle
packing problem and their respective payment schemes as the
incentives.

A. The Instant Decoding Scheme

This section develops Alg. 1 for optimally solving Eqs. (4)
and (5) when set G is restricted to those sparse and instantly
decodable coding matrices. Note that Theorem 2 holds for any
set G. Thus, the VCG-based mechanism along with Alg. 1 is
an optimal truthful mechanism in the set G of sparse and
instantly decodable coding matrices.

Algorithm 1: Polynomial-Time Algorithm for Solving
Eqs. (4) and (5) in the Multiple Unicast Scenario

input : Valuation set V̂ and side information set Ĥ.
output: Sparse and instantly decodable coding matrix G∗

for maximizing function w(V̂, Ĥ, G).
1 G∗ ← ∅;
2 Construct weighted dependency graph G(Λ,A,Γ);
3 Construct undirected auxiliary graph G(Λ̃, Ẽ, Γ̃);
4 Find a maximum weight matching M∗ in G(Λ̃, Ẽ, Γ̃);
5 For each edge (λ̃i, λ̃j) ∈M∗, add the coding vector of

wi + wj to coding matrix G∗;
6 For each vertex λi /∈M∗ but v̂i ≥ 1, add the coding

vector of data chunk wi to coding matrix G∗;

Given valuation set V̂ and side information set Ĥ, Alg. 1
aims to construct a sparse and instantly decodable coding
matrix G for maximizing function w(V̂, Ĥ, G) in Eq. (7)
in polynomial time. To that end, Alg. 1 constructs weighted
dependency graph G(Λ,A,Γ) in Line 2, aiming to identify
a set C of disjoint cycles C with |C| = 2 for maximizing
total cycle weight

∑
C∈C γ(C) in set C. To identify such a

set of disjoint cycles, Alg. 1 constructs an undirected graph
G(Λ̃, Ẽ, Λ̃) in Line 3 with the following procedure:

• for each vertex λ ∈ Λ, construct a vertex λ̃ ∈ Λ̃;
• for any two vertices λi, λj ∈ Λ such that both arcs

(λi, λj) and (λj , λi) are in set A, construct an edge
(λ̃i, λ̃j) ∈ Ẽ;

• associate each edge (λ̃i, λ̃j) ∈ Ẽ with an edge weight
γ̃ ∈ Γ̃ such that γ̃(λ̃i,λ̃j)

= [γ(λi,λj)]
+
1 + [γ(λj ,λi)]

+
1 − 1.
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With the construction, each cycle C with |C| = 2 in graph
G(Λ,A,Γ) corresponds to an edge in graph G(Λ̃, Ẽ, Γ̃); in
particular, a set of disjoint cycles in graph G(Λ,A,Γ) corre-
sponds to a matching in graph G(Λ̃, Ẽ, Γ̃). Moreover, a cycle
weight in graph G(Λ,A,Γ) corresponds to the edge weight
in graph G(Λ̃, Ẽ, Γ̃). Thus, a set of disjoint cycles in graph
G(Λ,A,Γ) for maximizing the total cycle weight corresponds
to a maximum weight matching in graph G(Λ̃, Ẽ, Γ̃). Alg. 1
identifies a maximum weight matching in graph G(Λ,A,Γ)
in Line 4 (by some polynomial-time algorithms like the
Edmonds’s algorithm [21]). Subsequently, Alg. 1 adds the
coding vectors of the coded data chunks (along those cycles
corresponding to the maximum weight matching) to coding
matrix G∗ in Line 5. Finally, if client ci submitting valuation
v̂i ≥ 1 is not satisfied by the coding matrix constructed by the
maximum weight matching, then Alg. 1 adds the coding vector
of data chunk wi to coding matrix G∗ in Line 6. The discussion
in this paragraph leads to the following result: Alg. 1 can
optimally solve the combinatorial optimization problems in
Eqs. (4) and (5) in polynomial time in the set G of sparse and
instantly decodable coding matrices.

B. General Decoding Scheme: max |C|-Approximate Truthful
Mechanism

Our technical report in [19] shows (by a reduction from
the cycle packing problem [22]) that the combinatorial opti-
mization problems in Eqs. (4) and (5) in the set G of sparse
and general decodable coding matrices are still NP-hard. Thus,
this section and next section develop two algorithms (Alg. 2
and its further modification) for approximately solving Eq. (4)
in the set G of sparse coding matrices. To that end, Alg. 2
constructs weighted dependency graph G(Λ,A,Γ) in Line 2,
aiming to approximately solving our maximum weight cycle
packing problem.

The idea underlying Alg. 2 is to iteratively identify a maxi-
mum weight cycle in a greedy way. Note that, in general, iden-
tifying a maximum weight cycle in a graph is NP-hard [23].
However, for our problem, we can observe that cycle weight
γ(C) of cycle C in Eq. (8) can be written as

γ(C) = 1−
∑
a∈C

(1− [γa]+1 ). (9)

By associating each arc a ∈ A with an arc cost ζa = 1−[γa]+1 ,
we can associate each cycle C with a cycle cost ζ(C) =∑

a∈C ζa, which is the total arc cost in cycle C. Then, cycle
weight γ(C) in Eq. (9) becomes γ(C) = 1−ζ(C). Removing
the constant, a maximum weight cycle C minimizes cycle cost
ζ(C). Thus, Alg. 2 identifies a minimum cost cycle in Line 5
(by some polynomial-time algorithms like the Floyd-Warshall
algorithm [24]), followed by adding the coding vectors of
the coded data chunks along the cycle to coding matrix G
in Line 6. Subsequently, Alg. 2 removes the cycle from the
present graph in Line 7. The condition in Line 4 guarantees
that the maximum weight cycle in the present graph has a
non-negative weight. Finally, if client ci submitting valuation
v̂i ≥ 1 is not in those selected cycles, then Alg. 2 adds the
coding vector of data chunk wi to G in Line 11.

Algorithm 2: max |C|-Approximate Coding Scheme for
the Multiple Unicast Scenario

input : Valuation set V̂ and side information set Ĥ.
output: Sparse coding matrix G.

1 G← ∅;
2 Construct weighted dependency graph G(Λ,A,Γ);
3 Associate each arc a ∈ A with arc cost ζa = 1− [γa]+1 ;
4 while there is a cycle in the present graph G(Λ,A,Γ)

whose cycle cost is less than or equal to one do
5 Find a cycle C in the present graph G(Λ,A,Γ) for

minimizing cycle cost ζ(C);
6 Add the coding vectors of the |C| − 1 coded data

chunks along cycle C to coding matrix G;
7 Remove all vertices in cycle C and their incident arcs

from the present graph G(Λ,A,Γ);
8 end
9 for i← 1 to n do

10 if λi is not in the selected cycles but v̂i ≥ 1 then
11 Add the coding vector of data chunk wi to coding

matrix G;
12 end
13 end

Fig. 3. (a) Counter-example of the truthfulness property when we use Alg. 2
to solve Eqs. (4) and (5); (b) The weighted dependency graph.

Let Galg 2 be the coding matrix produced by Alg. 2
and let G∗ be a sparse coding matrix maximizing function
w(V̂, Ĥ, G). The next theorem analyzes the approximation

ratio w(V̂,Ĥ,G∗)

w(V̂,Ĥ,Galg 2)
of Alg. 2.

Theorem 3: The approximation ratio (with respect to an
optimal sparse coding matrix) of Alg. 2 is the maximum cycle
length in weighted dependency graph G(Λ,A,Γ).

Proof: See Appendix C.
Because of Theorem 3, we refer to Alg. 2 as max |C|-

approximate coding scheme. Next, we show that applying
max |C|-approximate coding scheme to solve Eqs. (4) and (5)
is no longer a truthful mechanism.

Example 1: Look at Fig. 3. First, suppose that all clients
submit the true valuations of the data chunks they want. Then,
Alg. 2 produces d2 + d3 along cycle (λ2, λ3) in Fig. 3(b).
In this case, client c1 has zero utility. Second, suppose that
client c1 submits v̂1 = 0.7 but other clients submit the true
valuations of the data chunks they want. Then, Alg. 2 produces
d1 + d2 and d3 + d4 along cycles (λ1, λ2) and (λ3, λ4),

Authorized licensed use limited to: Texas A M University. Downloaded on September 23,2021 at 19:38:22 UTC from IEEE Xplore.  Restrictions apply. 



2184 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 4, APRIL 2021

respectively. By solving Eq. (5) with Alg. 2, client c1 is
charged p1 = (0.6 + 0.6− 1)− (0.6 + 0.6 +0.55− 2) = 0.45.
In this case, client c1 has utility 0.55− 0.45 = 0.1. Client c1

can obtain a higher utility by lying about the valuation of data
chunk wi.

Algorithm 3: Payment Scheme for Those Clients With
1i(Ĥi, G) = 1 Under Coding Matrix G Constructed by
Alg. 2

input : Valuation set V̂, side information set Ĥ, and
client ci with 1i(Ĥi, G) = 1 under coding
matrix G constructed by Alg. 2.

output: Payment pi for client ci.
1 Construct weighted dependency graph G(Λ,A,Γ);
2 Associate each arc a ∈ A with arc cost ζa:

ζa =

{
1 if a = (λi, λj) for some j;
1− [γa]+1 if a �= (λi, λj) for all j.

3 pi ← 1;
4 while there exists a cycle in the present graph
G(Λ,A,Γ) whose cost is less than or equal to one, and
there exists a cycle containing vertex λi do

5 Find a cycle C1 = argminC ζ(C) in the present
graph G(Λ,A,Γ) for minimizing the cycle cost;

6 Find a cycle C2 = argminC∩λi �=∅ ζ(C) in the present
graph G(Λ,A,Γ) that contains vertex λi and
minimizes the cycle cost among those cycles
containing vertex λi;

7 pi ← min{pi, ζ(C2)− ζ(C1)};
8 Remove all vertices in cycle C1 and their incident

arcs from the present graph G(Λ,A,Γ);
9 end

To address the issue in the above example, we propose
a payment scheme in Alg. 3 so that the joint design of
Algs. 2 and 3 is a truthful mechanism. The underlying idea
of Alg. 3 is to calculate threshold v̄i(V̂−i, Ĥ) for each client
ci (with 1i(Ĥi, G) = 1 under coding matrix G constructed
by Alg. 2) as payment pi. To that end, Alg. 3 constructs
weighted dependency graph G(Λ,A,Γ) in Line 1; moreover,
Alg. 3 associates each arc a ∈ A with an arc cost ζa in
Line 2. Note that Alg. 3 defines the arc costs in a different
way from Alg. 2; precisely, Alg. 3 associates each outgoing
arc from vertex λi with the cost of one unit (i.e., assuming
valuation v̂i = 0). Then, Alg. 3 calculates the difference of
the cycle costs between cycle C1 (in Line 5) and cycle C2 (in
Line 6), where cycle C1 has the globally maximum weight but
cycle C2 has the locally maximum weight among those cycles
containing vertex λi. While the value of 1−ζ(C1) (see Eq. (9))
is analogous to the first term of Eq. (5), that of 1− ζ(C2) is
analogous to the second term of Eq. (5). Thus, the difference
ζ(C2)− ζ(C1) of the cycle costs in Line 7 for each iteration
is the minimum valuation v̂i submitted by client ci such that a
cycle containing vertex λi can be selected by Line 5 of Alg. 2
in that iteration. Then, Alg. 3 identifies threshold v̄i(V̂−i, Ĥ)
by searching for the minimum among all iterations in Line 7

Algorithm 4: Identifying Cycle C for Maximizing γ(C)√
|C|

input : Weight dependency graph G(Λ,A,Γ).
output: Cycle C maximizing γ(C)√

|C| .

1 C ← ∅;
2 for i← 2 to n do
3 Find a cycle C′ = argminC′′ ζ(C′′) subject to

|C′′| ≤ i;

4 C ← arg maxC′ orC{ γ(C′)√
|C′| ,

γ(C)√
|C|};

5 end

along with the initial valuation of pi being 1 as in Line 3
(because each client ci can recover the data chunk it wants
when submitting v̂i ≥ 1).

Following Appendix B, we can show shows that the joint
Algs. 2 and 3 is a truthful mechanism.

Theorem 4: In the multiple unicast scenario, the mecha-
nism consisting of the coding scheme in Alg. 2 and the payment
scheme in Alg. 3 is a truthful mechanism.

Proof: See our technical report in [19].

C.
√

n-Approximate Truthful Mechanism

This section proposes another approximate sparse coding
scheme and its corresponding payment scheme for guarantee-
ing the truthfulness. The approximate coding scheme modifies
the previously proposed Alg. 2. The modified approximate
coding scheme substitutes Line 5 of Alg. 2 (i.e., identifying
a cycle for maximizing cycle weight γ(C)) by identifying
a cycle C for maximizing γ(C)√

|C| . The underlying idea is

to maximize cycle weight γ(C) (as in Alg. 2) and at the
same time to minimize the number of transmissions (because
shorter cycle lengths |C| can yield more cycles). To that end,
we propose Alg. 4 for obtaining such a cycle in a weighted
dependency graph. Line 3 of Alg. 4 searches for a cycle for
maximizing cycle weight subject to the cycle length being
no more than i. Then, Line 4 of Alg. 4 can identify cycle
C for maximizing γ(C)√

|C| subject to the cycle length being

no more than i; in particular, Line 4 can identify cycle C
for maximizing γ(C)√

|C| in the last iteration. See our technical

report in [19] for proving the correctness of Alg. 4. The
next theorem provides the approximation ratio of the modified
approximation algorithm.

Theorem 5: In the multiple unicast scenario, substituting
Line 5 of Alg. 2 by identifying a cycle C for maximizing γ(C)√

|C|
yields the approximation ratio (with respect to the welfare
yielded by an optimal sparse coding matrix) of

√
n.

Proof: See Appendix D.
Because of Theorem 5, we refer to the coding scheme

modified from Alg. 2 as
√

n-approximate coding scheme.
To the best of our knowledge, [22] developed the best approx-
imation algorithm for a cycle packing problem (identifying the
maximum number of disjoint cycles), which is a special case
of our problem when v̂i = 1 for all i. That paper showed that
the approximation ratio of that algorithm is

√
n; furthermore,
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TABLE II

DIFFERENCES OF THE SOCIAL WELFARES

it conjectured that
√

n is the best approximation ratio for that
cycle packing problem.

Following Theorem 4, we can establish the truthfulness as
follows.

Theorem 6: Substituting Line 5 of Alg. 2 and Lines 5 and 6
of Alg. 3 by identifying a cycle C for maximizing γ(C)√

|C| yields

a truthful mechanism.

D. Complexities of the Proposed Coding Schemes

This section investigates the computational complexities of
the three proposed coding schemes for the multiple unicast
scenario: 1) Alg. 1 for the set G of sparse and instantly
decodable coding matrices; 2) max |C|-approximate coding
scheme (Alg. 2) for for the set G of sparse coding matrices;
3)
√

n-approximate coding scheme (modified Alg. 2 along
with Alg. 4) for the set G of sparse coding matrices. All
three schemes are based on a weighted dependency graph.
Constructing a weighted dependency graph takes O(n2) steps
to check all pairs of clients.

Regarding Alg. 1, we can apply the Edmond’s maximum
weight matching algorithm [21] to Line 4 of Alg. 1, whose
complexity is O(n3). Then, the complexity of Alg. 1 is O(n3).

Regarding Alg. 2, we can apply the Floyd-Warshall algo-
rithm [24] to Line 3 for each iteration, whose complex-
ity is O(n3). Because there are at most n/2 cycles in
a weighted dependency graph (i.e., at most n/2 iterations
from Line 4), the complexity of max |C|-approximate coding
scheme is O(n4).

Regarding Alg. 4, we can apply the Bellman-Ford algo-
rithm [24] to Line 3 for each iteration i, whose com-
plexity is O(i · n2). Hence, the complexity of Alg. 4 is
O(n4); in turn, the complexity of the

√
n-approximate coding

scheme is O(n5).

E. Numerical Results

This section numerically analyzes the proposed coding
schemes for the multiple unicast scenario via computer sim-
ulations. Fig. 4 simulates Alg. 1 with the instant decoding
scheme and the two approximate coding schemes with the
general decoding scheme. The two sub-figures display the
social welfare when each client has 3 and 6 data chunks,
respectively, in its side information. The experiment setting
is following: We simulate n clients (x-axle) and set D =
{d1, · · · , dn}, where client ci wants data chunk di. Valuation
vi of data chunk di is uniformly picked between 0 and 1. The
data chunks in side information Hi of client ci is randomly
selected from set D − {di}. As a result of the proposed
payment schemes as the incentives, we can guarantee that all
clients submit their true information. Thus, we simulate the
proposed coding schemes along with the true information (like

Fig. 4. Social welfare of Alg. 1, max |C|-approximate coding scheme in
Alg. 2, and

√
n-approximate coding scheme modified from Alg. 2: (a) each

client has 3 data chunks in its side information; (b) each client has 6 data
chunks in its side information.

Fig. 5. Benefit from the approximate coding schemes when each client has
3 data chunks in its side information.

no selfish clients). Note that under that setting, the proposed
approximate coding schemes can approximate the true social
welfare in Eq. (1). All results are averaged over 500 simulation
times.

From Fig. 4, we can observe that even though both approx-
imate coding schemes cannot achieve the maximum social
welfare (in the set G of sparse coding matrices), they still
outperform Alg. 1 (that is optimal in the set of sparse and
instantly decodable coding matrices). The result tells us that
the proposed approximate coding schemes can take advan-
tage of the general decoding scheme. Moreover, Table II
shows the difference between the social welfare yielded by√

n-approximate coding scheme in Alg. 2 and that yielded by
Alg. 1 for various fixed numbers of clients and fixed sizes of
side information. From the table, the difference when |Hi| = 6
is almost more than that when |Hi| = 3 (especially when the
number of clients is larger like n = 34, 40, or 46), i.e., the
advantage from the general decoding scheme becomes more
obvious when the clients have more data chunks as their side
information. That would be because when clients have more
data chunks as their side information, there are more cycles in
the weighted dependency graph whose lengths are more than
two.

While the proposed approximate coding schemes cannot be
optimal in the set G of sparse coding matrices, we want to
further validate them via simulations. Figs. 5 and 6 display
the total valuation

∑n
i=1 vi ·1i(Hi, G) of the data chunks that

can be recovered. For a fair comparison of the total valuation,
we have to fix the number of transmissions from the server for
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Fig. 6. Benefit from the approximate coding schemes when each client has
6 data chunks in its side information.

various coding schemes. Thus, we cannot compare the total
valuation yielded by the approximate coding schemes with
that yielded by Alg. 1 (as they cause different numbers of
transmissions). Instead, Figs. 5 and 6 compare the approximate
coding schemes with the best “no coding” scheme. The results
for the “no coding” scheme in Figs. 5 and 6 are obtained
in the following way: we first obtain the number η(G) of
transmissions incurred by a given approximate coding scheme,
and then calculate the sum of the top η(G) valuations of the
data chunks in set D (which is the maximum total valuation
when the server transmits η(G) uncoded data chunks). From
Figs. 4–6, we can observe that both approximate coding
schemes can improve the total valuation over the best uncoded
transmission scheme.

VI. INAPPROXIMABILITY RESULTS FOR THE

MULTIPLE MULTICAST SCENARIO

Thus far, we analyzed the multiple unicast scenario. This
section analyzes the multiple multicast scenario. Given a graph
G(Λ,E) (with vertex set Λ and edge set E) of the independent
set problem, we construct an instance of our problem as
follows. For each vertex λ ∈ Λ and edge e ∈ E, we construct
data chunks dλ and de. The data chunk set D consists of dλ

and de for all λ ∈ Λ and e ∈ E. For each edge e = (x, y) ∈ E,
we construct three clients ce,1, ce,2, ce,3 such that

• we,1 = de, Ĥe,1 = {dx, dy}, v̂e,1 = 1,
• we,2 = dx, Ĥe,2 = {de}, v̂e,2 = 1

deg(x) ,

• we,3 = dy , Ĥe,3 = {de}, v̂e,3 = 1
deg(y) ,

where deg(λ) is the number of edges that are incident to vertex
λ ∈ Λ. With the reduction, our technical report in [19] shows
that the combinatorial optimization problem in Eq. (4) equiv-
alently becomes the independent set problem (for both the set
G of sparse and instantly decodable coding matrices and the
set G of sparse and general decodable coding matrices). Thus,
the social welfare under our reduction is at most the number
|Λ| of vertices (i.e., the approximation ratio is at most |Λ|).
Following the hardness result [25] of the independent set
problem, the combinatorial optimization problem in Eq. (4)
in the multiple multicast scenario is NP-hard and NP-hard to
approximate within the factor of |Λ|1−ε for any constant � > 0.

VII. CONCLUDING REMARKS

This paper treated the index coding setting in the presence
of selfish clients. We proposed a sufficient condition for
truthful mechanisms (i.e., joint coding and payment schemes).
Leveraging the proposed condition, we proposed truthful

mechanisms, including the VCG-based mechanism and some
polynomial-time mechanisms. While the VCG-based mecha-
nism can maximize the social welfare, other polynomial-time
mechanisms can either maximize the social welfare or approx-
imate it with provable approximation ratios within some
restricted sets of coding matrices. Following are some remarks
on the assumptions made in the paper and possible extensions.

• This paper supposed that each client wants a single data
chunk. Consider the case when a client wants a bundle
of more than one data chunk. If the total valuation
of different data chunks is the sum of their individual
valuations (i.e., the client treats each data chunks in the
bundle separately), then the client can be substituted by
multiple clients that each wants a single data chunk in the
bundle and has the same side information. In this context,
the proposed mechanisms and their results hold for that
case. The more general case when there are different
valuations for different subsets of the bundle would be
an interesting extension.

• This paper assumed scalar-linear coding schemes.
We made that assumption for consistency. In fact, while
those polynomial-time mechanisms (with sparse coding
schemes) need that assumption, Theorem 1 and the pro-
posed VCG-based mechanism do not.

• This paper developed polynomial-time mechanisms with
sparse coding schemes. To develop a mechanism that
can encode more than two data chunks is an interesting
extension. A possible solution would be to construct an
approximation algorithm that can identify a clique cover
in a weighted dependency graph. Then, for each of the
cliques, the server can broadcast a single XOR-coded
data chunk combining all data chunks associated with
the clique (like [5]).

• The inapproximability results for the multiple multicast
scenario in the paper is based on the proposed VCG-based
mechanism. It is a promising future work to develop a
polynomial-time mechanism for the multiple multicast
scenario beyond the scope of the VCG-based mechanism.

• The payment schemes proposed in the paper can motivate
each client to submit its true information such that
the server can maximize or approximate the true social
welfare. However, the payment collected by the server
do not always cover the transmission cost. For example,
the proposed VCG-based mechanism satisfies the fourth
condition in Theorem 1. Though that issue might be hard
to avoid according to [4, Section 9.3.5.5], that is still an
interesting future work.

APPENDIX A
PROOF OF THEOREM 1

Consider a fixed valuation set V̂−i and side information set
Ĥ−i. Next, we consider two cases as follows.

1) The coding scheme can construct a coding matrix G
such that 1i(Ĥi, G) = 0 but 1i(Hi, G) = 1 for some
v̂i and Ĥi: First, suppose that client ci submits the
true valuation vi and the complete side information
Hi. By the first and fourth conditions, client ci can
recover data chunk wi if vi > 0 and cannot if vi = 0.
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By the second and the fourth condition, client is charged
0 if it can recover wi. Thus, client ci has utility vi.
Second, suppose that client ci submits a valuation v̂i �=
vi or side information Ĥi ⊂ Hi. By the definition of the
utility, client ci has utility (vi − pi) · 1i(Hi, G) ≤ vi or
(vi− pi) ·1i(Ĥi, G) ≤ vi. Thus, client ci can maximize
its utility by submitting both the true valuation and the
complete side information.

2) The coding scheme cannot construct a coding matrix
G such that 1i(Ĥi, G) = 0 but 1i(Hi, G) = 1 for all
v̂i and Ĥi: Note that, under the condition of this case,
we have 1i(Hi, G) = 0 if 1i(Ĥi, G) = 0. Moreover,
we also have 1i(Hi, G) = 1 if 1i(Ĥi, G) = 1, because
of Ĥi ⊆ Hi. In summary, this case has 1i(Hi, G) =
1i(Ĥi, G) for all Ĥi ⊆ Hi and all possible coding
matrices G. Then, we claim that for a fixed Ĥi, client ci

can maximize its utility by submitting the true valuation
vi of data chunk wi. To prove that claim, we consider
three cases as follows.

a) vi > v̄i(V̂−i, Ĥ): First, suppose that client
ci submits the true valuation vi of data chunk
wi. By the first and the second conditions,
client ci can recover data chunk wi (because
1i(Hi, G) = 1i(Ĥi, G) = 1) and is charged
threshold v̄i(V̂−i, Ĥ). Thus, client ci has utility
vi−v̄i(V̂−i, Ĥ) > 0. Second, suppose that client ci

submits valuation v̂i �= vi of data chunk wi. By the
first and second conditions, if 1i(Ĥi, G) = 1 for
some coding matrix G, then client ci has utility
vi − v̄i(V̂−i, Ĥ); if 1i(Ĥi, G) = 0, then client ci

has zero utility. In summary, client ci can maximize
its utility by submitting the true valuation vi of data
chunk wi.

b) vi < v̄i(V̂−i, Ĥ): First, suppose that client ci sub-
mits the true valuation vi of data chunk wi. By the
first condition, client ci has zero utility. Second,
suppose that client ci submits valuation v̂i �= vi of
data chunk wi. By the first and second conditions,
if 1i(Ĥi, G) = 1 for some coding matrix G,
then client ci has utility vi − v̄i(V̂−i, Ĥ) < 0;
if 1i(Ĥi, G) = 0, then client ci has zero utility.
In summary, client ci can maximize its utility by
submitting the true valuation vi of data chunk wi.

c) vi = v̄i(V̂−i, Ĥ): First, suppose that client ci sub-
mits the true valuation vi of data chunk wi. By the
first and second conditions, client ci has zero utility
for either 1i(Ĥi, G) = 1 or 1i(Ĥi, G) = 0, for
all possible coding matrices G. Second, suppose
that client ci submits valuation v̂i �= vi of data
chunk wi. By the first and second conditions,
if 1i(Ĥi, G) = 1 for some coding matrix G,
then client ci has utility vi − v̄i(V̂−i, Ĥ) = 0;
if 1i(Ĥi, G) = 0, then client ci has zero utility.
In summary, client ci can maximize its utility by
submitting the true valuation vi of data chunk wi.

According to the above claim, we can suppose that
client ci submits its true valuation vi. It remains to
show that, client ci can maximize its utility by submitting

its complete side information Hi. To prove that claim,
we consider three cases as follows.

a) vi > v̄i(V̂−i, {Hi, Ĥ−i}): First, suppose that
client ci submits the complete side information Hi.
Client ci has utility vi− v̄i(V̂−i, {Hi, Ĥ−i}) > 0.
Second, suppose that client ci submits incomplete
side information Ĥi ⊂ Hi. If 1i(Ĥi, G) = 1 for
some coding matrix G, then client ci has utility vi−
v̄i(V̂−i, {Ĥi, Ĥ−i}) ≤ vi − v̄i(V̂−i, {Hi, Ĥ−i})
by the third condition; if 1i(Ĥi, G) = 0, then
client ci has zero utility. In summary, client ci

can maximize its utility by submitting the complete
side information Hi.

b) vi < v̄i(V̂−i, {Hi, Ĥ−i}): First, suppose that
client ci submits the complete side information
Hi. Client ci has zero utility. Second, suppose
that client ci submits incomplete side informa-
tion Ĥi ⊂ Hi. By the third condition, we have
v̄i(V̂−i, {Ĥi, Ĥ−i}) ≥ v̄i(V̂−i, {Hi, Ĥ−i}) > vi.
Client ci has zero utility. In summary, client ci

can maximize its utility by submitting the complete
side information Hi.

c) vi = v̄i(V̂−i, {Hi, Ĥ−i}): First, suppose that
client ci submits the complete side information Hi.
Client ci has zero utility for either 1i(Hi, G) =
1 or 1i(Hi, G) = 0, for all possible coding
matrices G. Second, suppose that client ci sub-
mits incomplete side information Ĥi ⊂ Hi.
If 1i(Ĥi, G) = 1 for some coding matrix G, then
client ci has utility vi−v̄i(V̂−i, {Ĥi, Ĥ−i}) ≤ vi−
v̄i(V̂−i, {Hi, Ĥ−i}) = 0 by the third condition;
if 1i(Ĥi, G) = 0, then client ci has zero utility.
In summary, client ci can maximize its utility by
submitting the complete side information Hi.

APPENDIX B
PROOF OF THEOREM 2

Let Ĝi ⊆ G be the set of coding matrices such that
1i(Ĥi, G) = 1. Moreover, let Ĝc

i ⊆ G be the set of coding
matrices such that 1i(Ĥi, G) = 0. Thus, we can express set
G in Eq. (4) by G = Ĝi ∪ Ĝc

i . Moreover, let Gi ⊆ G
and Gc

i ⊆ G be the sets of coding matrices G such that
1i(Hi, G) = 1 and 1i(Hi, G) = 0, respectively. In addition,
let G∗ be the set of coding matrices that are solutions
to Eq. (4).

Then, we show that the VCG-based mechanism satisfies the
four conditions in Theorem 1 as follows.

1) The VCG-based coding scheme is a threshold-type cod-
ing scheme: Consider a fixed valuation set V̂−i and a
fixed side information set Ĥ. First, suppose that while
client ci submits a valuation v̂i of data chunk wi,
the VCG-based coding scheme can construct a coding
matrix G such that 1i(Ĥi, G) = 1. That is, the solution
set G∗ to Eq. (4) either belongs to set Ĝi or3 has a

3In the either-or, the first case corresponds to the case when v̂i >
v̄i(V̂−i, Ĥ) and the second one corresponds to that when when v̂i =
v̄i(V̂−i, Ĥ).
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non-empty intersection with both sets Ĝi and Ĝc
i (with

the arbitrary tie-breaking rule). Let G∗ ∈ G∗ ∩ Ĝi

be a solution to Eq. (4) such that 1i(Ĥi, G
∗) = 1.

Second, suppose that client ci submits a valuation ṽi >
v̂i of data chunk wi. Because the number η(G) of
transmissions in Eq. (3) is independent of the valuation
set for a fixed coding matrix G, we can express function
w({ṽi, V̂−i}, Ĥ, G) by

w({ṽi, V̂−i}, Ĥ, G)

=

{
w({v̂i, V̂−i}, Ĥ, G) + (ṽi − v̂i) if G ∈ Ĝi;

w({v̂i, V̂−i}, Ĥ, G) if G ∈ Ĝc
i ,

(10)

Then, we can obtain

w({ṽi, V̂−i}, Ĥ, G∗)
(a)
= w({v̂i, V̂−i}, Ĥ, G∗) + (ṽi − v̂i)
(b)

≥ w({v̂i, V̂−i}, Ĥ, G) + (ṽi − v̂i) for all G ∈ Ĝc
i

(c)
> w({ṽi, V̂−i}, Ĥ, G) for all G ∈ Ĝc

i ,

where (a) is from Eq. (10) along with G∗ ∈ Ĝi;
(b) is because coding matrix G∗ maximizes function
w({v̂i, V̂−i}, Ĥ, G); (c) is from Eq. (10) and ṽi > v̂i.
Thus, while client ci submits valuation ṽi (> v̂i) of data
chunk wi, the set G∗ of solutions to Eq. (4) belongs to
Ĝi. That is, the VCG-based coding scheme constructs
a coding matrix G such that 1i(Ĥi, G) = 1 for sure.
Thus, the VCG-based coding scheme is a threshold-type
coding scheme.

2) The VCG-based payment scheme determines payment
pi = v̄i(V̂−i, Ĥ) if 1i(Ĥi, G

∗) = 1: Consider a fixed
valuation set V̂−i and a fixed side information set Ĥ.
We claim that threshold v̄i(V̂−i, Ĥ) of the VCG-based
coding scheme is

v̄i(V̂−i, Ĥ) = max
G∈Ĝc

i

w({0, V̂−i}, Ĥ, G)

− max
G∈Ĝi

w({0, V̂−i}, Ĥ, G). (11)

Then, the first term of Eq. (5)

max
G∈Ĝi∪Ĝc

i

w({0,V̂−i}, Ĥ, G)= max
G∈Ĝc

i

w({0,V̂−i}, Ĥ, G)

(12)

is the first term of Eq. (11) because of v̂i = 0. Moreover,
the second term of Eq. (5)

w({0, V̂−i}, Ĥ, G∗)
(a)
= w({v̂i, V̂−i}, Ĥ, G∗)− v̂i

(b)
= max

G∈Ĝi

w({v̂i, V̂−i}, Ĥ, G)− v̂i

(c)
= max

G∈Ĝi

w({0, V̂−i}, Ĥ, G)

is the second term of Eq. (11), where (a) is from
Eqs. (10) along with G∗ ∈ Ĝi (because Eq. (5) calcu-
lates the price for the case when 1i(Ĥi, G

∗) = 1); (b) is
because G∗ maximizes function w({v̂i, V̂−i}, Ĥ, G∗)

along with G∗ ∈ Ĝi; (c) is from Eq. (10). Then,
we complete the proof if the claim is true.
To establish that claim, we first consider the case
when client ci submits a valuation v̂i > maxG∈Ĝc

i

w({0, V̂−i}, Ĥ, G) − maxG∈Ĝi
w({0, V̂−i}, Ĥ, G) of

data chunk wi. Then, we can obtain

max
G∈Ĝi

w({v̂i, V̂−i}, Ĥ, G)

(a)
= max

G∈Ĝi

w({0, V̂−i}, Ĥ, G) + v̂i

(b)
> max

G∈Ĝc
i

w({0, V̂−i}, Ĥ, G)

(c)
= max

G∈Ĝc
i

w({v̂i, V̂−i}, Ĥ, G),

where (a) and (c) are from Eq. (10); (b) is by
the assumption of v̂i. Thus, when v̂i > maxG∈Ĝc

i

w({0, V̂−i}, Ĥ, G) − maxG∈Ĝi
w({0, V̂−i}, Ĥ, G),

the VCG-based coding scheme constructs a coding
matrix G such that 1i(Ĥi, G) = 1. Second, similar
to the above argument, when v̂i < maxG∈Ĝc

i

w({0, V̂−i}, Ĥ, G) − maxG∈Ĝi
w({0, V̂−i}, Ĥ, G),

the VCG-based coding scheme constructs a coding
matrix G such that 1i(Ĥi, G) = 0. Fully considering
both cases establishes Eq. (11).

3) v̄i(V̂−i, {Hi, Ĥ−i}) ≤ v̄i(V̂−i, {Ĥi, Ĥ−i}) under the
VCG-based coding scheme for all Ĥi ⊆ Hi: Consider a
fixed valuation set V̂−i and a fixed side information set
Ĥ−i. Then, we can obtain

v̄i(V̂−i, {Hi, Ĥ−i})
(a)
= max

G∈G
w({0, V̂−i}, {Hi, Ĥ−i}, G)

− max
G∈Gi

w({0, V̂−i}, {Hi, Ĥ−i}, G)

(b)
= max

G∈G
w({0, V̂−i}, {Ĥi, Ĥ−i}, G)

− max
G∈Gi

w({0, V̂−i}, {Ĥi, Ĥ−i}, G)

(c)

≤ max
G∈G

w({0, V̂−i}, {Ĥi, Ĥ−i}, G)

− max
G∈Ĝi

w({0, V̂−i}, {Ĥi, Ĥ−i}, G)

(d)
= v̄i(V̂−i, {Ĥi, Ĥ−i}),

for all Ĥi ⊆ Hi, where (a) and (d) are from Eqs. (11)
and (12); (b) is because v̂i = 0; (c) is because Ĝi ⊆Gi.

4) If the VCG-based coding scheme in Eq. (4) can construct
a coding matrix G∗ ∈ G such that 1i(Ĥi, G

∗) =
0 but 1i(Hi, G

∗) = 1 for some v̂i and Ĥi, then
v̄i(V̂−i, {Hi, Ĥ−i}) = 0: Consider a fixed valuation set
V̂−i and a fixed side information set Ĥ−i. Suppose that
client ci submits a valuation ṽi > 0 and its complete
side information Hi. Then, we can obtain

w({ṽi, V̂−i}, {Hi, Ĥ−i}, G∗)
(a)
= w({v̂i, V̂−i}, {Ĥi, Ĥ−i}, G∗) + ṽi
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(b)

≥ w({v̂i, V̂−i}, {Ĥi, Ĥ−i}, G) + ṽi for all G ∈ Gc
i

(c)
= w({v̂i, V̂−i}, {Hi, Ĥ−i}, G) + ṽi for all G ∈ Gc

i

(d)
> w({v̂i, V̂−i}, {Hi, Ĥ−i}, G) for all G ∈ Gc

i

(e)
= w({ṽi, V̂−i}, {Hi, Ĥ−i}, G) for all G ∈ Gc

i ,

where (a) is because 1i(Ĥi, G
∗) = 0 but 1i(Hi, G

∗) =
1 by assumption; (b) is because G∗ maximizes func-
tion w({v̂i, V̂−i}, {Ĥi, Ĥ−i}, G); (c) is from Eq. (10)
along with Ĝc

i ⊆ Gc
i ; (d) is because ṽi > 0; (e) is

from Eq. (10). Thus, when ṽi > 0, the VCG-based cod-
ing scheme constructs a coding matrix G such that
1i(Hi, G) = 1 for sure. Thus, the threshold is
v̄i(V̂−i, {Hi, Ĥ−i}) = 0.

APPENDIX C
PROOF OF THEOREM 3

Let C∗ be a set of those disjoint cycles that maximizes the
total cycle weight in weighted dependency graph G(Λ,A,Γ).
Let graph G(Λk,Ak,Γk) be the remaining graph at the
beginning of iteration k. Let Ck be a cycle minimizing the
cycle cost in graph G(Λk,Ak,Γk). Let C∗

k be the set of those
cycles that appear in set C∗ and also in graph G(Λk,Ak,Γk).
By Ck ∩C∗

k we denote the set of those cycles in C∗
k that has

a common vertex with cycle Ck.
Define APXk = γ(Ck) and OPTk =

∑
C∈(Ck∩C∗

k) γ(C).
Because cycle Ck maximizes the cycle weight in iteration k,
any cycle C ∈ Ck ∩ C∗

k has cycle weight γ(C) less than
or equal to APXk. Moreover, since there are |Ck| vertices in
cycle Ck, there are at most |Ck| cycles in set Ck∩C∗

k (because
those cycles are disjoint). Thus, we can obtain OPTk ≤
|Ck| · APXk. Then, we can complete the proof (by Eq. (7))
as follow:

w(V̂, Ĥ, G∗)

= w([V̂]+1 , Ĥ, G∗) +
∑
v̂i≥1

(v̂i − 1)

≤
∑

k

OPTk +
∑
v̂i≥1

(v̂i − 1)

≤
∑

k

|Ck| · APXk +
∑
v̂i≥1

(v̂i − 1)

≤ max
k
|Ck|

⎛
⎝∑

k

APXk +
∑
v̂i≥1

(v̂i − 1)

⎞
⎠

= max
k
|Ck|

⎛
⎝w([V̂]+1 , Ĥ, Galg 2) +

∑
v̂i≥1

(v̂i − 1)

⎞
⎠

= max
k
|Ck| · w(V̂, Ĥ, Galg 2),

where [V̂]+1 = ([v̂1]+1 , · · · , [v̂n]+1 ).

APPENDIX D
PROOF OF THEOREM 5

Follow the notation set in Appendix C; however, re-define
Ck as a cycle maximizing γ(C)√

|C| in graph G(Λk,Ak,Γk),

i.e., γ(Ck)√
|Ck|
≥ γ(C)√

|C| for all cycles C in graph G(Λk,Ak,Γk).

Then, we can bound OPTk above by

OPTk =
∑

C∈Ck∩C∗
k

γ(C)

≤ γ(Ck)√|Ck|
∑

C∈Ck∩C∗
k

√
|C|

(a)

≤ APTk√|Ck|
√
|Ck ∩C∗

k|
√ ∑

C∈Ck∩C∗
k

|C|

(b)

≤ APTk√|Ck|
√
|Ck|
√

n

=
√

n · APTk,

where (a) is from the Cauchy-Schwarz inequality; (b) is
because all cycles C ∈ Ck ∩C∗

k are disjoint. Hence, OPTk ≤√
n · APXk, yielding the approximation ratio of

√
n.
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