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ABSTRACT the video contents, which are continuously generated by the con-

This paper presents a Brownian-approximation framework to opti-
mize the quality of experience (QoE) for real-time video streaming
in wireless networks. In real-time video streaming, one major
challenge is to tackle the natural tension between the two most
critical QoE metrics: playback latency and video interruption. To
study this trade-off, we first propose an analytical model that pre-
cisely captures all aspects of the playback process of a real-time
video stream, including playback latency, video interruptions, and
packet dropping. Built on this model, we show that the playback
process of a real-time video can be approximated by a two-sided
reflected Brownian motion. Through such Brownian approxima-
tion, we are able to study the fundamental limits of the two QoE
metrics and characterize a necessary and sufficient condition for a
set of QoE performance requirements to be feasible. We propose
a scheduling policy that satisfies any feasible set of QoE perfor-
mance requirements and then obtain simple rules on the trade-off
between playback latency and the video interrupt rates, in both
heavy-traffic and under-loaded regimes. Finally, simulation results
verify the accuracy of the proposed approximation and show that
the proposed policy outperforms other popular baseline policies.
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1 INTRODUCTION

Real-time wireless video streaming has become ubiquitous due to
the widespread use of mobile devices and the rapid development of
various live streaming platforms, such as YouTube and Facebook
Live. These platforms support not only the broadcast of live videos,
but also various interactive activities, such as video conferencing
and online webinars. To support the required level of interactivity,
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tent providers in real-time, are required to be played smoothly at
the video clients with sufficiently low latency (e.g. around 150-300
milliseconds [4]) so as to enable real-time engagement with the au-
dience. Moreover, along with the wide adoption of wireless-enabled
cameras, real-time wireless video streaming is now an integral part
of many video surveillance applications, such as roadway traffic
monitoring and teleoperation of unmanned aerial vehicles. To guar-
antee the required high responsiveness to the changes in the scene,
smooth video playback with low latency is definitely critical.

To support the above applications, it is required to tackle a natu-
ral tension between the two critical factors of quality of experience
(QOE): playback latency and video interruption. Playback latency
refers to the difference between the generation time of a video
frame at the video source and its designated playback time at the
client. Playback latency reflects the freshness of the video content
and needs to be kept as small as possible. To maintain a constantly
low playback latency, each video is configured to meet a certain
playback latency requirement, and the video contents that are not
delivered to the client by the designated playback time will be
dropped. In the meantime, due to the lack of video content to play,
the video client instantly experiences video interruption. To achieve
smooth playback, the amount of video interruption also needs to be
kept as small as possible. However, with a more stringent playback
latency, it becomes more difficult to avoid video interruption as
there is less room for coping with randomness in network condition
during video delivery. This issue becomes even more challenging in
a wireless network environment due to the shared wireless resource
and the unreliable nature of wireless channels.

While there has been a plethora of studies on the trade-off be-
tween prefetching delay and video interruption [10, 13, 20-22, 26,
27], all of them focus only on the playback of on-demand videos,
which differ significantly from the real-time videos in packet gen-
eration, playback latency, and packet dropping. To the best of our
knowledge, this paper is the first attempt to analytically study the
trade-off between playback latency and video interruption as well
as the trade-off of such QoE metrics among different clients for
real-time video streams. The main contributions of this paper are:
e We propose an analytical model that precisely captures all as-

pects of the playback process of a real-time video stream, includ-

ing the packet generation process, the playback latency, packet
dropping, and video interruptions. The proposed model also ad-
dresses the unreliable nature of wireless transmissions. Through

Brownian approximation, we show that the playback process

can be approximated by a two-sided reflected Brownian motion.
e Based on the proposed model and the approximation, we study

the fundamental limits of the trade-off between the two most
important QoE metrics: the playback latency and video interrup-
tions, among all clients. Moreover, we characterize a necessary



and sufficient condition for a set of QoE performance require-
ments to be feasible, given the reliabilities of wireless links.

e Next, we propose a simple policy that jointly determines the
amount of playback latency of each client and the scheduling
decision of each packet transmission. We show that this policy is
able to satisfy any feasible set of QoE performance requirements,
and hence we say that it is QoE-optimal.

e Under the proposed approximation, we study both heavy-traffic
and under-loaded regimes and obtain simple rules on the trade-
off between playback latency and the video interrupt rates: In
the heavy-traffic regime, the video interrupt rates under WLD
are inversely proportional to the playback latency; In the under-
loaded regime, the video interrupt rates under WLD decrease
exponentially fast with the playback latency.

o Through numerical simulations, we show that the proposed ap-
proximation approach can capture the original playback pro-
cesses accurately, and the proposed scheduling policy indeed
outperforms the other popular baseline policies.

The rest of the paper is organized as follows: Section 2 pro-
vides an overview of the related research. Section 3 describes the
system model and problem formulation. Section 4 discusses the
characterization of the playback process. Section 5 presents the
Brownian-approximation framework as well as the fundamental
network properties. Section 6 presents the proposed scheduling
policy and the proof of its QoE-optimality. Section 7 discusses the
asymptotic results regarding playback latency. Simulation results
are provided in Section 8. Finally, Section 9 concludes the paper.

2 RELATED WORK

Prefetching delay and video interruption. The inclusion of
prefetching delay has been one of the major solutions to mitigating
video interruption. For a single video stream, Liang and Liang [20]
and Parandehgheibi et al. [22] study the trade-off between prefetch-
ing delay and interruption-free probability, under different video
playback models. Luan et al. [21] and Xu et al. [26] characterize the
relation between prefetching delay and playback smoothness by
diffusion approximation and the Ballot theorem, respectively. For
the case of multiple video streams, Xu et al. [27] consider the impact
of flow dynamics on the number of video interruption events by
solving differential equations. Joseph et al. [13] consider a QoE
optimization problem, which jointly encapsulates video interrup-
tions, initial prefetching, and video quality adaption, and present
an asymptotically optimal scheduling algorithm.  Despite the
useful insights provided by the above works, they all assume that
the videos are on-demand and thereby fail to capture the salient
features of real-time video streams.

Brownian approximation. There has been a plethora of existing
studies on using Brownian approximation for multi-class queue-
ing networks, such as [6-8, 24]. While the above list is by no
means exhaustive, it can be readily seen that the general proce-
dure is to establish the limits of scaled queueing processes in the
heavy-traffic regime through the reflection of a Brownian motion
obtained from the scaled controlled processes [25]. Below we dis-
cuss the prior works that are most relevant to this paper: Several
recent works have proposed to utilize Brownian approximation
for network scheduling problems. Hou and Hsieh [10, 11] address
wireless scheduling for short-term QoE via Brownian approxima-
tion. Specifically, under Brownian approximation, they characterize
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lower bounds on total video interruptions and propose scheduling
policies that achieve these bounds. However, they consider only
on-demand videos and thereby fail to handle the inherent features
of real-time packet generation and packet dropping in real-time
video streaming. For multi-class queues with finite buffers, Atar and
Shifrin [2] present heavy-traffic analysis and accordingly resort to
solving a Brownian control problem in the diffusion limit. Different
from [2], we take a different approach to directly study a two-sided
reflected Brownian motion and explicitly characterize the relation
between the playback latency and the achievable set of video inter-
ruption rates. In this way, we are able to investigate the trade-off
of interest and obtain simple design rules in both heavy-traffic and
under-loaded regimes.

Real-time wireless scheduling. To address wireless packet sched-
uling with strict deadlines, Hou et al. [9] propose an analytical
framework and propose an optimal scheduling policy in terms of
delivery ratio requirements. This formulation is later extended to
various network settings, such as scheduling with delayed feed-
back [15], general traffic patterns [5], multi-cast scheduling [16],
wireless ad hoc networks [14], and distributed access [19]. All the
above works discuss real-time wireless scheduling, with an aim
to optimize delivery ratios. By contrast, our goal is to tackle the
fundamental trade-off between video interruption and playback
latency in real-time video streaming.

3 MODEL AND PROBLEM FORMULATION

In this section, we formally describe the wireless network model, the
model for real-time video streaming, and the problem formulation.

3.1 Network Topology and Channel Model

We consider a wireless network with one AP that serves N video
clients, each of which is associated with one packet stream of a
real-time video generated by a video source. For ease of exposition,
we assume that all the videos are streamed in downlink?, i.e. from
the AP to the clients. For temporary storage of the video content
to be played, each video is associated with two video buffers: one
buffer is on the client side, and the other is maintained by the AP.
When the video source generates a video packet, the video packet
is first forwarded to the AP and stored at the AP-side buffer. The
AP then forwards the video packet to the client to be stored at the
client-side buffer. Since the bandwidth between the AP and the
video source is usually much larger than the bandwidth at the edge,
we also assume that the latency between the AP and the source of
video contents is negligible. Time is slotted, and the size of each
time slot is chosen to be the total time required for one packet
transmission. For each client n, we use By (t) and Qy(t) to denote
the number of available video packets in the client-side buffer and
that in the AP-side buffer at the end time slot ¢, respectively. Figure
1 shows an example of the AP-side and client-side video buffers
with two clients.

In each time slot, the AP can transmit one packet to exactly one
of the video clients. If the AP chooses to transmit a packet to a client
whose AP-side buffer is empty, then the AP will simply transmit
a dummy packet. By using dummy packets, we can assume that
the AP employs a causal work-conserving scheduling policy that
always chooses a client to transmit to in each time slot based on

!While we focus on downlink streams in this paper, the model and the analysis can be
easily extended to the uplink case with polling packets.



the past observed history. Let I,,(t) be the indicator of the event
that client n is scheduled for a packet transmission at time slot ¢.
Under a work-conserving policy, fozl I,(t) =1,forall t > 0.

User 1
w /v By(1)
AP \

By(1)

User 2

Client-side video buffers

®
&L

Video source 2

AP-side video buffers
Figure 1: An example of video buffers with two clients.

Regarding wireless transmissions, we consider unreliable wire-
less packet transmissions that are subject to interference and colli-
sion from other neighboring networks. Since all links in the network
experience a similar level of interference, we assume that all links
have similar reliability. Specifically, each packet transmitted by the
AP will be delivered successfully with probability p € (0, 1]. The AP
will be instantly notified about the outcome of the transmission via
the acknowledgment from the client and can choose to retransmit
the packet in a later time slot if the current transmission fails.

3.2 The Model for Real-Time Video Streaming

Each client is watching a real-time video stream. The stream of
client n generates one video packet every 1/A, slots, where 1/4, is
a finite positive integer. Hence, the average video bitrate of client
n is A, packets per time slot. We consider real-time video streams
with a fixed playback latency of £, /A slots. Equivalently, #, is
defined as the product of A, and the fixed playback latency (in
slots). Specifically, for each client n, the video packet generated
at the end of time slot ¢ is forwarded immediately to the AP and
is designated to be played by the client right after the end of time
slot ¢ + £/ A,. The playback latency is intended to reduce potential
video rebuffering and hence achieve smoother playback of a real-
time video while guaranteeing the freshness of the video contents.
Moreover, to maintain a fixed playback latency, a video packet that
is not delivered to the client by its designated playback time will
be dropped by the AP. When this happens, the client experiences
video interruption due to the lack of video packets to play. For the
rest of the paper, we call this event an interruption. For each client
n, we use Dy () to denote the total number of video interruptions
up to time ¢, with D,(0) = 0. Since a video interruption event
occurs only when a video packet is dropped, Dy, (t) also represents
the total number of dropped video packets up to time ¢.

Consider an example of the real-time video playback process
with A, = 1/2 (or equivalently one video packet is played every
2 time slots), and ¢, = 2 (or equivalently 4 slots), as illustrated in
Figure 2. Since ¢, = 2, we know there are two video packets (dubbed
as packet 1 and packet 2 in Figure 2) available for transmission at
the AP at ¢t = 0. In particular, packet 1 and packet 2 are generated
at the end of slots t = —2 and t = 0, respectively. In this example,
the client receives packets in time slots 1, 4, 8, and 9. The client
plays packet 1 right after the end of time slot 2 since it successfully
receives packet 1. Similarly, the client plays packet 2 right after the
end of time slot 4 since it receives packet 2 within the playback
latency. By contrast, as the client fails to receive packet 3 within
the playback latency, video interruption begins right after the end
of time slot 6. Meanwhile, to maintain a fixed playback latency of
fn = 2, packet 3 is dropped by the AP at the end of time slot 6. At
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time 8, the video playback resumes as the client receives packet
4 by time slot 8. Note that the AP is able to deliver the packet 5
during slot 9 since packet 5 is generated at the end of time slot 6
and hence is already available for transmission.

Packet | Packet
4 5

Play Packet 4
at the client

Packet

Packet
1 2

Client
side

1 2 3 4 5 6

Play Packet 2
at the client
Packets 1 Packet 3 Packet 4 Packet 5
and 2atAP | | arrives atAP | | arrives atAP | | arrives at AP
AP I I
side Py ° o ° Py Py

1 2 3 4 5 6 7 8 9
Drop Packet 3
atthe AP

Figure 2: An example of real-time video playback process
with A, =1/2and ¢, = 2.

Play Packet 1
at the client

Video
interruption

3.3 Problem Formulation

In this paper, we are interested in studying the trade-off between the
playback latencies and the long-term average video interrupt rates
of all clients. Specifically, given a total latency budget ot, we study
the set of video interrupt rates, limsup,_,, Dn(t)/t, that can be
achieved under the constraint Zf:]:l £y < fiot. The set of achievable
video interrupt rates describes the trade-off of video interrupt rates
among different clients. Moreover, the relation between the set of
achievable video interrupt rates and the value of ot describes the
trade-off between total latency and video interrupt rates. Hence,
we formally define the capacity region for QoE and introduce the
notion of QoE-optimality as follows.

Definition 3.1 (Capacity Region for QoE and QoE-Optimality). A
(N + 1)-tuple (fiot, 01, -+, ON) is said to feasible if there exists a
scheduling policy such that under ZnNzl fn < fot, we have

lim sup D,,_(t) < 8n, (1)
t—oo t

for every n € {1,---,N}. Moreover, the capacity region for QoE

is defined as the set of all feasible tuples. A scheduling policy is

said to be QoE-optimal if it can achieve every point in the capacity

region for QoE.

The main objective of this paper is to design a QoE-optimal
policy that jointly makes scheduling decisions and determines the
allocation of the latency budget among the clients.

4 CHARACTERIZATION OF THE BUFFERING
AND PLAYBACK PROCESSES

In this section, we formally characterize the playback process of a
real-time video with playback latency. As discussed in Section 3.1,
each video is associated with two video buffers: one buffer is on
the client side, and the other is maintained by the AP. Recall that
Bp(t) and Qp () denote the number of available video packets in
the client-side buffer and that in the AP-side buffer at the end of
time slot ¢, respectively. Given the fixed playback latency #,, we
know that at any point of time, the amount of available and yet
unplayed video data, which can be either in the AP-side buffer or
in the client-side buffer, is exactly £, video packets. Therefore,

On(t) +Bp(t) = ty, ¥t >0. ()



Then, both Q,(t) and B, (t) are non-negative integers with 0 <
On(t) < fpand 0 < By (t) < &y, for all t > 0. Suppose that the
client-side buffer is initially empty, i.e. B, (0) = 0, for all n. By (2),
we thereby know Q(0) = £y, for all n. Note that the video packets
stored in the AP-side buffers at time 0 are essentially generated by
the content provider during time [—(£, — 1)/A,,0].

As described in Section 3.1, if the AP chooses to transmit a packet
to client n at time ¢ with Q,(¢) = 0 (i.e. the AP-side buffer for client
n is empty), the AP will simply transmit a dummy packet to client
n. Let U, (t) be the number of dummy packets delivered by the
AP to the client n by time ¢, with U,(0) = 0. Let A,(t) be the
number of video packets received by client n up to time ¢, with
Apn(0) = 0. Upon the designated playback time of each video packet,
client n either consumes a video packet from the client-side buffer
if B, (t) > 1, or experiences video interruption if B, (t) = 0. Let
Sn(t) be the number of video packets that have been played by
client n by the beginning of time slot ¢, with S, (0) = 0. Then, we
have

Bn(t) = An(t) = Sn(2). ®3)
Since a video packet is dropped only when ¢ is an integer multiple
of 1/, and By (t) = 0, we have

Dy (t) = Dp(t—1)+1 ,ifB,(t)=0and t € {k/An, k € N}
e Dn(t-1) , otherwise.

4)

Therefore, we know that B, (t) = 0if Dy, (t) — D, (t —1) = 1. Define

Zn(t) = (An(t) + Un(t)) - (Dn(t) + Sn(t>)~ (5)

Note that A, (t)+ Uy, (¢) is the total number of delivered packets, and
Sn(t) + Dy (t) is the number of packets that the client n should have
played if there is no video interruption. Therefore, Z,(t) loosely
reflects the status of the client-side buffer, with dummy packets
included. By the definitions of B, (t) and Z,(t) in (3) and (5), we
can rewrite By (t) as

Bn(t) = Zu(t) — Un(t) + Du(t). (6)
We summarize the important properties of B, (t) as follows. For
ease of notation, we let D,,(—1) = 0. For any ¢ > 0, we have

Bu(t) = (Zn(t) = Un(t)) + Dn(t) > 0, ()
Dn(t+1) = Du(t) € {0,1}, Dn(0) =0, )
By (t)(Dp(t) = Dp(t —1)) = 0. )]

Now we turn to the AP-side buffer. Recall that U, (t) denotes the
number of dummy packets received by the client n by time ¢. As
a dummy packet is transmitted to the client n only if the AP-side
buffer of the client n is empty, we know Uy () can be updated as

Up(t—1)+1 ,if Qn(t) =0,t ¢ {1+k/Ap,k e NU{0}},
Un(t) = a packet is delivered to n during slot ¢.
Un(t-1) , otherwise.

(10)

Similar to (7)-(9), we summarize the useful properties of Q(t) as
follows. For ease of notation, we let U, (—1) = 0. For any t > 0,

0n(t) = (a = (Za() + Da(0)) 4+ Un(®) 2 0, (1)
Un(t+1) = Un(t) € {0,1}, Un(0) =0, (12)
Qn(t)(Un(t) = Un(t = 1)) =0, (13)
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where (11) follows directly from (2) and (6). Note that the stochastic
processes Dy (t), Un(t), Bn(t), Qn(t), An(t), Sn(t), and Z,(t) are
right-continuous with left limits for every sample path since all of
them change values only at integer ¢. By (7)-(9) and (11)-(13), we
are able to connect Z,(t) with D,(t) and U, (¢) in the following
theorem. For ease of notation, we use (-)* = max{0, -}.

THEOREM 1. For any Z,(t), there exists a unique tuple of
processes (D (t), Un(t), Bn(t), On(t)) that satisfies (7)-(9) and
(11)-(13), for every sample path. Moreover, Dy, (t) and Uy (t) are
the unique solutions to the following recursive equations:

Da(t) = sup (= Zn(2) +Un()) (19
0<r<t

Un(t) = swp (Za(@+Da(@ =), (15)
0<7<t

and Dy, (t) and Uy, (t) are non-decreasing.

ProoF. We prove the uniqueness result by the two-sided reflec-
tion mapping. Specifically, we take Z,(t) as the process of interest
and let 0 and #, be the lower and upper barrier, respectively. If
(14)-(15) are satisfied, the uniqueness of Dy, (), U, (t), Bn(t), and
QOn (¢) follows directly from [25, Theorem 14.8.1]. Next, to establish
that (14)-(15) indeed hold, we present a useful lemma (provided in
Appendix A.1 of [12] due to the space limitation) of discrete-time
one-sided reflection mapping, which resembles the classic result
of continuous-time one-sided reflection mapping [3, Theorem 6.1].
Based on this lemma, we know that (14) holds if and only if (7)-(9)
are satisfied. By using the same argument, we also have that (15)
holds if and only if (11)-(13) are satisfied. o

REMARK 1. The two-sided reflection mapping {Z, (¢), D, (t), U, (%)}
is also called double Skorokhod mapping in the literature [17]. More-
over, from (14)-(15), it is easy to check that under any fixed sample
path of Z,,(t), a larger ¢, will lead to smaller D, (t) and Uy (¢). This
fact manifests the fundamental trade-off between playback latency
and video interruption.

5 THE BROWNIAN-APPROXIMATION
FRAMEWORK

In this section, we formally introduce the Brownian-approximation

framework for real-time video playback processes.

5.1 Fundamental Network Properties

To analyze video interruption, we start by introducing Z(t) as

— (Dn(t) +Sn(1))
p

Z (t) is right-continuous with left limits since Z, (t) is right-continuous
with left limits, for all n. Moreover, Z(0) = 0 as Z,(0) = 0, for all
n. As Z(t) is a weighted sum of Z,(t), Z(t) loosely reflects the
network-wide buffer status on the clients’ side, with dummy pack-
ets included. Recall that #; is the total playback latency budget.
By Theorem 1, we know that given the process Z(t), there exists a
unique pair of non-decreasing processes (D(t),U(t)) that satisfies

N N
Z(t) = Z Zn(t) — Z (An(t) + Un(t)) (16)

n=1 n=1

+
5

D(t) = sup (—Z(r)+U(r)) 17)
0<7t<t
fot |\t
U = swp (2()+D(@ -] (1s)



where ()" = max{0,-}. Note that as Z(0) = 0, we also have
D(0) = 0 and U(0) = 0. Next, we describe an important property
of D(t) and D, (t) that holds regardless of the employed policy.

THEOREM 2. Under any scheduling policy, we have

N
1
D(t) < = > Da(t), (19)
p n=1
forallt > 0 and for every sample path.
Proor. We prove this by contradiction: Define ¢, := inf{t :

D(t) > 21,:]:1 %Dn(t)} and assume t, < co. We apply the recursive

equations (14)-(15) and (17)-(18) to find an upper bound for D(t)
and a lower bound for YV 1D, () for every t > 0. By these two

n=1p
bounds and D(t,) > Zfl\’: 1 I%Dn(t*), we can reach a contradiction.
The detailed proof is presented in Appendix A.2 of [12]. O

5.2 Brownian Approximation For Real-Time
Video Streaming

In this section, we are ready to apply Brownian approximation to

characterize the behavior of playback interruption.

5.2.1 Approximation Through the Fluid Limit and the Diffusion
Limit. We first provide an outline of the approximation approach
as follows: consider the fluid limit and diffusion limit of Z,(t) as

Zn(t) = klggo @ (20)
2n(t) = lim M (21)

k—oo V% ’
respectively. Generally speaking, the fluid limit and the diffusion
limit are meant to capture the evolution of a stochastic process
based on the Strong Law of Large Numbers (SLLN) and the Central
Limit Theorem (CLT), respectively [3]. For ease of exposition, we
will focus on ergodic scheduling policies under which {Z,(t + 1) —
Zn(t),t > 0} forms a positive recurrent Markov chain. In this case,
both limits in (20)-(21) exist [25, Section 4.4], and the fluid limit
can be further written as Z,, () = t - Z,. We consider the following
approximation for Z,(t) [3, Section 6.5]:

Zn(0) £ Zu(0) + Zn(t) = Z3(0), (22)
where g means that the two stochastic processes are approxi-
mately equal in distribution. By (22), we also know Z;;(t) is right-
continuous with left limits, for every sample path. By Theorem 1,
we know that given the process Z;; (t), there exists a unique pair of
non-decreasing processes (D, (¢),U,: (¢)) that satisfies

.

D)= sup (-Zi(0+U; (D), (23)
0<7r<t

UL(t) = sup (Z;:(r)+D;;(r)—{’n)+. (24)
0<7<t

Subsequently, based on Theorem 1 and (22)-(24), we consider the
following approximation for Dy (t) and Uy, (t):

Da(t) £DE(1), Un(t) S UZ(r). (25)
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Similar to (20)-(21), define the fluid limit and diffusion limit of Z(t)

20) = lim 2, (26)
Z(t) = Jlim % (27)

Again, under an ergodic scheduling policy, {Z(t + 1) — Z(¢),t >
0} forms a positive recurrent Markov chain, and hence we know
both limits in (26)-(27) exist [25, Section 4.4]. We will explicitly
characterize Z(t) and Z (t) in Section 5.2.2. Similar to (22), we
consider the following Brownian approximation for Z(t) as

20 L2+ 2(0) = 7 (), (28)

Next, we further define two processes D* (¢; tiot) and U™ (t; fot) as

s
D*(t;bot) = sup ( - ZN(r) +U"(1; ftot)) (29)
0<7<t
* 5 5 17 +
U6 = swp (20 + D" lo) - 2T 60

0<7<t
Since Z*(t) is right-continuous with left limits, by Theorem 1 we
know that D*(t; fiot) and U™ (¢;£0t) can be uniquely character-
ized by (29)-(30). Note that we use the notations D*(t; £0t) and
U*(t; tot) to make explicit their dependence on the total playback
latency budget. Figure 3 summarizes the general recipe of the Brow-
nian approximation framework considered in this paper. Up to this
point, we have discussed how to construct the approximation of
interest with the help of the fluid and diffusion limits as well as the
two-sided reflection mapping. As suggested by Figure 3, we shall
proceed to characterize Z*(t) and D*(t; fot) (Section 5.2.2) as well
as derive Z;,(t) and Dj, (t) under the proposed policy (Section 6).

A ONA0]

D*(t;Z,,,), D (®)

Figure 3: The Brownian approximation framework consid-
ered in this paper.

5.2.2 Characterizing Z*(t). In this section, we explicitly char-
acterize the approximation process Z*(t). First, we define

N

Z(t) _ Z An(t) +(;,)1(t) — Ant

(31)

n=1
By the definitions of Z(t) and Z(t) in (16) and (31), we know
0<Z(t)— Z(t) < N/p, for all t. Due to the uniformly bounded
difference between Z(t) and Z(t), Z(t) and Z(t) have the same
fluid limit and diffusion limit, and we use Z (t) as a proxy of Z(t)
to help characterize Z* (¢). Under any work-conserving policy, in
every time slot, the AP delivers a packet with probability p. Hence,
by (31), for any ¢ > 0,

, with probability p

1
Z(t+1)—§(t):{f (32)

, with probability 1 - p



Moreover, {z(t +1) — z(t)} is i.i.d. across all time slots. Define
N

e:zl—z%,

n=1

(33)

which represents the normalized difference between the channel
capacity and the traffic load. By (32), we have

~ ~ 1 N An N An
E[Z(t+1)-Z(0)] =p- (= - Y. )+ (1-p)- (- ), ) =¢,
P n=1 P n=1 P
(34)
Var[Z(t+1) - Z(1)] (35)
1 N Any2 N Any2 1
=(P(;_n:1;) +(1_P)(—;;) )—€2=;—1=:0'2.
(36)

As Z(t) and Z(t) have the same fluid limit, by the Functional SLLN

for i.i.d. random variables [3], we establish the fluid limit of Z(¢):
- Z(kt Z(kt
70) = Jim 20 = tim Z0 -

et, (37)

almost surely, for any work-conserving scheduling policy. More-

over, as Z(t) and Z (t) have the same diffusion limit, we can estab-

lish the diffusion limit of Z(t) as

Z(kt) - kZ(t) _ i Z(kt) — ket
vk vk

where the last equality follows directly from (37). By the Functional

Z(t) = Jim . (38)

k—o0

CLT for i.i.d. random variables [3], we know that Z (t) is a Brownian
motion with zero drift and variance 2, where 62 = (1/p) — 1 as
defined in (35)-(36). In other words, for any t, At > 0, we know
(2 (t+At) - Z (1)) follows a Gaussian distribution with zero mean
and variance At - 2. Based on (28) and the above discussion on
Z(t) and Z (t), we know that Z*(t) is a Brownian motion with drift
¢ and variance o2. By mimicking (7), we can define

B*(t; tiot) := Z" (1) — U™ (t; fot) + D™ (; frot)- (39)

By Theorems 1 and (29)-(30), we know B*(¢; fiot) € [0, fiot/p] and
that B*(t; fot), U*(t; tot), and D*(t; fot) satisfy the same set of
equations as (7)-(9). As we already know Z*(t) is a Brownian
motion, by [1, Proposition 5.1], we further know that B*(¢; £ot)
satisfies the ergodic property, i.e. B*(¢; fiot) admits a unique station-
ary distribution. As D*(t; fot) is directly related to the event that
B*(t; fot) hits zero, such ergodic property implies that D* (#; fiot)
grows linearly with time at a fixed rate on average. Hence, we can
define the long-term average growth rate of D*(t; fot) as

D*(t;[tot) ] (40)

d’ ([tot) = lim

t—oo

Note that given ot > 0, both D*(¢; 6ot) and d* (fior) are well-

defined, regardless of the policy. Moreover, it is easy to check that

d*(Lot) is a decreasing function of the total playback latency #ot.

This fact also manifests the trade-off between playback latency and
video interruptions.

As will be formally shown in Section 7, the asymptotic behavior
of D}, (t) with respect to the playback latency is largely determined
by the value of €. To prepare for the subsequent analysis, here we
highlight the three major regimes regarding the value of ¢:
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e Heavy-traffic regime: This regime represents the case where
e=1- Zrl:le(/ln/p) = 0. Therefore, Z*(t) is a driftless Brownian
motion with finite variance 2. Note that A,,/p can be viewed
as the equivalent workload of client n as 1/p is the expected
number of required transmissions for each successful packet
delivery. Hence, this regime corresponds to the case where the
total channel resource equals the total video bitrate.

e Under-loaded regime: In this regime, ¢ = 1— 21,:]:1 (An/p) >0,
and therefore (28) suggests that Z*(¢) is a Brownian motion
with positive drift. This regime corresponds to the case where
the total channel resource is strictly larger than the total video
bitrate. Therefore, it is intuitively feasible to have B, (t) close
to ¢, for most of the time by properly scheduling each client
based on its video bitrate. In Section 7, we will see that this effect
also manifests itself in the fast-decaying behavior of Dj, (¢) with
respect to the playback latency.

e Over-loaded regime: This regime corresponds to that ¢ < 0.
If ¢ < 0, then there must exist one client n that suffers from
Bp(t) = 0 and hence excessive video interruption for most of the
time, regardless of the scheduling policy.

The over-loaded regime is generally not the case of interest in
designing policies. Therefore, in this paper we focus mainly on the

heavy-traffic and under-loaded regimes, i.e. Z],:]:l % <1
5.3 Capacity Region for QoE Under Brownian

Approximation

Recall from Definition 3.1 that the capacity region for QoE is defined
based on the feasible video interrupt rates lim sup,_, ., Dn(t)/t un-
der a playback latency budget. Moreover, recall from (25) that we
propose to use Dj,(t) to approximate the original processes Dy, (t).
Therefore, subsequently we proceed by considering the approxima-
tion lim sup,_, ., Dpn(t)/t = limsup,_,, Dy, (t)/t and thereby study
the set of feasible tuples based on lim sup,_, ., Dj(t)/t.

To quantify limsup,_,, D;,(¢)/t, we propose to use D* (t; fiot)
and the corresponding d*(#ot) defined in (40) as the reference
measure for the following reasons: (i) as the distribution of Z*(t)
does not depend on the employed scheduling policy, by (29)-(30)
we know that both D*(t; &ot) and U™ (¢; fot) also have invariant
distributions under a given £ across all scheduling policies; (ii)
there is an inherent connection between Dy, (¢) and D*(t; fot) based
on the two-sided reflection mappings in (23)-(24) and (29)-(30).

To formally compare the two stochastic processes D*(t; ot)
and Dj,(t), we first introduce the notion of stochastic ordering for
stochastic processes as follows.

Definition 5.1 (Stochastic Ordering [23]). Let G1 and Gz be two
real-valued random variables. We say that G; <g G if

P[G; > x] < P[Gy > x], Vx € R. (41)

Now we are ready to present an important property which con-
nects D*(t; o) with Dj; (¢). Specifically, we show that the inequal-
ity in Theorem 2 still holds under the approximation as follows.

THEOREM 3. Under any {;o; > 0 and any scheduling policy,
S
D* (t;€iot) <st Y ~Dj(t), V¢ 2 0.

n=1

(42)



Proor. We prove this by constructing a sequence of processes
based on the scaling approach outlined in [25, Chapter 5.4] as well
as Theorem 1 and the continuous mapping theorem. The detailed
proof is provided in Appendix A.3 of the technical report [12]. O

REMARK 2. To get some intuition of (42), consider a special case
where £, = oo, for all n. This coincides with the on-demand video
scenario, i.e. the AP already has the complete video for each client
at time 0. In this degenerate case, (24) becomes U,;(t) = 0 and
therefore (23) can be simplified as

Dp(t) = sup (=Zy(2)". (43)
0<r<t
Similarly, (30) becomes U*(¢) = 0 and (29) can be simplified as
D*(t;6ot) = sup (-Z*(1))*. (44)
0<r<t

By combining (43)-(44), it is easy to verify that (42) indeed holds
after applying the basic properties of supremum. Note that a similar
result for this degenerate case (i.e. on-demand videos) has been
derived in [10]. Different from [10], the proof of (42) for the general
cases (i.e. finite playback latency #,) requires more involved analysis
due to the recursion in (14)-(15) and (29)-(30).

Based on Theorem 3, under the Brownian approximation, we
can obtain a necessary condition of a feasible tuple as follows.

COROLLARY 1. Let (€101, 01, - - , ON) be a feasible tuple under
the Brownian approximation with £;o; > 0 and 8, > 0, for all
n=1,---,N. Then, this tuple must satisfy

1 N
=80 2 d" (0,,). (45)
p n=1

Proor. Recall from the beginning of Section 5.3 that under the
Brownian approximation, the tuple is feasible if under the condition
that Zrl:le tn < tor, limsup,_, ., D, (t)/t < &y, for all n. Given the
fact that Dy, (t) and D*(; fot) are non-decreasing processes in t,
we divide both sides of (42) by t and take the limit superior to get

N N
. D*(t; fot) . 1 Dy(t)
d* (o) = lim ———= <4 limsup— » —— <
(frot) = lim ; st lim sup » ; "

n=1

6 A QOE-OPTIMAL SCHEDULING POLICY

In this section, we present a QoE-optimal scheduling policy for real-
time video streams. Recall that in Section 5.1, we define the capacity
region for QoE and provide a necessary condition of feasible tuples
in Corollary 1. In this section, we further show that the condition
provided in Corollary 1 is also sufficient.

6.1 Scheduling Policy

To begin with, we formally present the weighted largest deficit policy
(WLD) as follows.

Weighted Largest Deficit Policy (WLD):
Let {fn },}:]: | be the predetermined positive weight factors.
(1) During initialization, the AP configures the playback latency

ﬂn

of each client n as #;, = —x brot-

(2) Ateach time t, the AP sch”g(iulrgs the client with the largest
(Ant — (An(t) + Upn(t)))/Pn, with ties broken arbitrarily.

REMARK 3. Apt — (A, () + Up(t)) can be viewed as deficit for
client n as it reflects the difference between the number of packets
that should have been played and the actual number of received
packets. Moreover, as the video bitrate A, is usually predetermined
and can be treated as hyperparameters, the WLD policy is able to
make scheduling decisions based on A, (t) and Uy, (), which can
be updated based on the acknowledgments from the clients.

6.2 Proof of QoE-Optimality

To show that WLD is QoE-optimal, we first present the following
state-space collapse property.

THEOREM 4. For any given weight tuple (f1,-- - , fN) with
Pn > 0, foralln, and for any {A,} and p such that ), An/p < 1,
the WLD policy achieves

LZ5(0) = =23 (1), (@7)

n m
for all pairs n, m. Moreover, we have
ZE(1) = Z’iZ*(t), Vi, (48)

N
m=1Fm

Proor. The proof first constructs N auxiliary processes that
track the weighted sums of {Z, (¢) }. Next, we construct a Lyapunov
function and calculates the one-step conditional drift to show that
the auxiliary processes are positive recurrent. The detailed proof is
presented in Appendix A.4 of the technical report [12]. O

Recall from Section 5.2.2 that Z*(¢) is a Brownian motion with
drift ¢ and variance o2. By (48) in Theorem 4, we know Zy(t) is also
a Brownian motion with positive drift e, and variance 2 under
the WLD policy, where

e pPn
g = ————, (49)
Svet Bm
2 Phn \2
o= (L )62, (50)
(zﬁzl ﬂm)

By Theorem 4, we are ready to show that WLD policy achieves
every point in the capacity region for QoE.

THEOREM 5. For any feasible tuple (€101, 81, - - , ON'), under
the WLD policy with ,/6n = Pm/Sm for every pair n,m and
7 = f’mtﬂn/zln\i:l PBm for every client n, we have
D} () S "

Sl ﬁd (rot) < On- (51)

m=1°m

lim

t—00 t

Proor. For ease of notation, define n,, := pﬁn/zzzl Bm., for all
n. By substituting (48) into (23)-(24), we have

D0 = swp (=mZ' (@ +U;0) (52)
0<7<t
UX(t) = sup (qnz*(r)+D:,(r)—fn)+. (53)

0<r<t



By comparing (52)-(53) with (29)-(30), it is easy to verify that
Dj, (t) = npD*(t; tior) and U,; (t) = npU™ (85 iot) is the unique solu-
tion to (52)-(53). For each n, we can obtain the limit of D}, (¢)/¢:

D (t 1
lim n() = lim —(ﬂD*(t; ftot)) (54)
t—o0 t t—o0 | ZN7 ﬁm
6 .
= P d" (o) < 8, (55)
BN Om
where the last inequality in (55) follows from Corollary 1. O

By Theorem 5, we know the necessary condition given by Corol-
lary 1 is also sufficient. We summarize this result as follows.

THEOREM 6. For any (N + 1)-tuple ({01, 61, - - ,ON) With
tior > 0 and 8y, > 0, for all n, under the Brownian approxima-
tion, the tuple is feasible if and only zfll) Z],:Izl On = d* (fror)-

REMARK 4. Note that in Theorem 6, we only consider the case
where 8, > 0, for every client n. Despite this, from an engineer-
ing perspective, we can get arbitrarily close to 8, = 0 by simply
assigning an extremely small f3, to client n.

6.3 Choosing f3, for WLD Policy: Examples of
Network Utility Maximization for QoE

In this section, we discuss how to properly choose weights {f, } for
the WLD policy. In practice, the optimal {f,} can be determined
by solving a network utility maximization (NUM) problem, which
encodes the relative importance of the QoE performance of the
clients. To demonstrate the connection between NUM and WLD,
we briefly discuss the following examples of NUM problem for QoE:

Example 1 (Max-Min Fairness): Suppose the AP follows WLD
with a predetermined latency budget #ot and is configured to mini-

mize a network-wide QoE penalty function defined as: fi ({Dj,(#)}) :=

maxj <, <N{limsup,_,, D;,(t)/t}. By Theorem 5, this NUM can be
converted into an equivalent optimization problem as:

max  Op. (56)

min
(biot,01, - ,ON) is feasible n=1,---,N

Note that (56) is a standard NUM for max-min fairness with a
constraint induced by the capacity region for QoE. Therefore, it is
easy to verify that the optimal solution to (56) is 85, = d* (f01t)p/N,
for every n. Moreover, by plugging this solution into Theorem 5, we
know that fi ({D;;(¢)}) is minimized when lim sup,_,, Dy, (t)/t =
lim sup; _,, Dy, (t)/t, for all n, m. Therefore, WLD can achieve the
optimal QoE penalty by choosing f,, = fm, for any pair of n, m,
as suggested by Theorem 5. Moreover, under the total playback
latency budget fiot, fn = Pm suggests that we choose £, = £, (or
equivalently &, = fiot/N).

Example 2 (Weighted Sum of Monomial Penalty): Let {; > 0
be the importance weight of each client n. The AP follows WLD
policy with a predetermined latency budget #ot and is configured
to minimize a network-wide QoE penalty function f({D;,(¢)}) =
Zf:jzl {n(limsup,_, o, D (2)/t)", with some constant x > 1. By
Theorem 5, we can convert this NUM into an equivalent problem:

>t

(57)
5N) is feasible =

(bots01,+-
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Itis easy | to verify that for any k > 1, the optimal solution to (57) is

Sn = (i7" K/Zm 1 $m %) d* (frot)p, for every n. Again, by Theorem
5, WLD can achleve the optimal network utility by choosing 8, =

(G~ / ZZ -%). Regarding the playback latency, WLD simply
assigns £, = ﬂn - tiot, for each n.

Based on these two examples, we know that the WLD policy can
be easily configured to solve a broad class of NUM problems for
QoE given the flexibility provided by the WLD policy.

7 ASYMPTOTIC RESULTS WITH RESPECT TO
PLAYBACK LATENCY

In this section, we present simple asymptotic rules on the trade-off
between playback latency and video interruption under the WLD
policy. Recall that in (39)-(40), we discuss the ergodic property of
the two-sided reflected Brownian motion. Based on Theorem 5,
we know that the video interrupt rates under approximation (i.e.
lim; 0 Dy, (t)/t) exists and depends on the playback latency ;. To
begin with, we consider the heavy-traffic regime, i.e. erY:l Anlp =
1. The following theorem shows that the video interrupt rate is
inversely proportional to the playback latency in heavy-traffic. We
use the Little-Oh notation 0(1/£,) to denote a function g(#,) that
satisfies limg, 00 g(fn)/(1/n) = 0.

THEOREM 7. In the heavy-traffic regime, under the WLD
policy, we have

Di(t 2 1
lim Du(®) = (&) +o(—)
(500t 26, n

Proor. This result can be directly obtained by plugging the
variance of Z; (1) into [1, Theorem 12.1]. o

(58)

Next, we turn to the under-loaded regime, where Zﬁjzl An/p < 1.
The following theorem shows that the video interrupt rate under ap-
proximation decreases exponentially fast with the playback latency
in the under-loaded regime.

THEOREM 8. In the under-loaded regime, under the WLD
policy, we have
. D;Fz(t) —2¢en
lim =cexp ( >
t on

t—o00

—2¢
t’,,) +o(exp ( 2"
O_n

where c is some constant that does not depend on &,.

f,,)), (59)

Proor. By [1, Theorem 3.1], this result can be directly obtained
by finding the root y of the Lundberg equation E[exp(yZ;(1))] = 1.
As Zy (1) is a Gaussian random variable with mean ¢, and variance
o2 (defined in (49)-(50)), it is easy to verify that y = —2¢,/02. O

REMARK 5. Note that a one-dimensional one-sided reflected
Brownian motion with negative drift has a stationary distribution,
which is exponential [3, Theorem 6.2]. In the under-loaded regime,
as shown by Theorem 8, a two-sided reflected Brownian motion also
exhibits a similar behavior as the one-sided reflected counterpart.

8 NUMERICAL SIMULATIONS

In this section, we present the simulation results of the proposed
policy. Throughout the simulations, we consider a network of one
AP and 5 video clients. All the simulation results presented below
are the average of 50 simulation trials.
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Figure 4: Evaluation of the approximation accuracy in the heavy-traffic and under-loaded regimes.

8.1 Accuracy of the Approximation

We first evaluate the accuracy of the proposed approximation under
the WLD policy. We consider a fully-symmetric network of 5 video
clients, where £, = #t/5, for every n. In this case, WLD shall
choose f,, = 1/5, for every client. We consider three heavy-traffic
scenarios with p = 1/2,1/3,5/7 and A, = 1/10,1/15,1/7, respec-
tively. To verify the accuracy of the approximation, Figure 4(a)-4(c)
show the total video interrupt rates (i.e. ZnNz 1 Dn(t)/t) under dif-
ferent playback latency budgets and different channel reliabilities
in the heavy-traffic regime. Note that both the x-axis and y-axis are
in log scale. We also plot the theoretical estimates of the total video
interrupt rates based on Theorem 7 (by (36), we know a% =1,2
and 0.4 for p = 1/2,1/3, and 5/7, respectively). It can be observed
that the empirical rates are very close to the theoretical estimates,
and the difference shrinks with the playback latency budget. This
is consistent with the asymptotic results in Theorem 7.

Next, we turn to the under-loaded case. We consider three
under-loaded scenarios with p = 0.52,0.3467,0.7428 and A, =
1/10,1/15,1/7, respectively. Figure 4(d) shows the total video in-
terrupt rates under different £ and channel reliabilities (note that
the y-axis is in log scale and the x-axis is in linear scale). We can
observe that the dependency of empirical rates on ot is roughly
log-linear, as suggested by Theorem 8. To further verify the accu-
racy of the theoretical estimates provided by Theorem 8, Figure 4(e)
plots the ratio between the empirical total interrupt rate and the

asymptotic term in (59), i.e. (22]:1 D"T([))/(N exp( _f;" £,)), under
different channel reliabilities. We observe that underndifferent ot
this ratio stays at around 0.01, 0.005, and 0.05 under p = 0.52, 0.3467,
and 0.7428, respectively. Hence, Figure 4(e) verifies the accuracy of
the approximation in the under-loaded regime.

In summary, all the above results suggest that the approximation
Dy (t)=Dj;(t) is rather accurate in both heavy-traffic and under-
loaded regimes, even with small to moderate latency budgets.

8.2 Comparison With Other Policies

We evaluate the proposed WLD policy against four baseline policies,
namely Weighted Random (WRand), Weighted Round Robin (WRR),
Earliest Deadline First (EDF), and the Delivery-Based Largest-Debt-
First (DBLDF). Under the WRand policy, in each time slot, the AP
simply schedules each client n with probability A, / Z%zl Am. Under
the WRR policy, the AP groups multiple time slots into a frame
and schedules the clients in a cyclic manner within each frame.
Specifically, in each frame, each client n is scheduled for exactly
KA,/ Z%zl Am times, where K is chosen to be the smallest positive
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Table 1: QoE penalty and video interruptions under p = 0.6,
fiot = 32 at both t = 1.5 X 10° and t = 3 X 10° (separated by ‘|").

Per-client video interruptions

Policy ~ QoE penalty (x10°) Group 1 Group 2
WLD 1.5]|5.7 134.0 | 264.5 158.2 | 309.3
DBLDF 49194 265.3 | 527.4 264.5 | 526.7
EDF 14.0 | 55.7 538.9 | 1074.1 284.3 | 565.1
WRR 138.0 | 550.9 1844.4 | 3684.3 255.6 | 513.2
WRand 368.5 | 1480.2 2994.2 | 6002.0 573.4 | 1143.6

Table 2: QoE penalty and video interruptions under p = 0.65,
fiot = 32 at both t = 1.5 x 10° and ¢ = 3 x 10° (separated by ‘).

Per-client video interruptions

Policy ~ QoEF penalty (x10%) Group 1 Group 2
WLD 0.01 | 0.02 1.3]23 0.2]0.2

DBLDF 0.19 | 0.58 5594 4887
EDF 6.9]27.7 37.7|75.5 20.2 | 40.4
WRR 2813.7 | 11344.9 838.111683.0 35.8 | 69.0

WRand 15927.9 | 63745.6 1982.9 | 3966.7  258.7 | 518.8

integer such that KA,/ Z%zl Am is an integer, for all n. Under the
EDF policy, the AP schedules the video packet with the smallest
absolute deadline among all the video packets in the AP-side buffers,
with ties broken randomly. The EDF policy is widely used in real-
time systems given its strong theoretical guarantee for deadline-
constrained tasks [18]. Under DBLDF, the AP schedules the client
with the largest delivery debt, which is defined as At — A, ().
Different from WLD, DBLDF tracks only the delivery of video
packets and is completely oblivious to the dummy packets. Note
that the delivery-debt index was proposed and analyzed in [9] for
the frame-synchronized real-time wireless networks. We evaluate
the WLD policy as well as the four baseline policies in both heavy-
traffic and under-loaded regimes.

To showcase the performance of the proposed policy, we start
with the following heavy-traffic scenario: The 5 video clients are
divided into two groups: clients 1 and 2 are in Group 1, and clients
3, 4, and 5 belong to Group 2. We consider A, = 1/5 for Group
1 and A, = 1/15 for Group 2. We set p = 0.6 and ot = 32. It is
easy to verify that ZnN= 1 An/p = 1. We consider a quadratic QoE



penalty function as f({D,(#)}) = 23:1 Cn(limsup,_, Dy, (1)/t)?
with {1 = {» = 2 and {3 = {4 = {5 = 1. As described by Example
2 in Section 6.3, for the WLD policy, we choose f, = 1/8 and
tyn = tot/8 = 4 for each client in Group 1 and f, = 2/8 and
by = tior*(2/8) = 8 for each client in Group 2. For a fair comparison,
we use the same playback latency for all the policies.

Table 1 shows the QoE penalty and the average video interrup-
tions per client in each group at both t = 1.5 X 10° and t = 3 x 10°
(values separated by ‘|’). Due to space limitation, the figures of the
complete evolution of video interruptions are presented in Appen-
dix A.5 of the technical report [12]. We observe that WLD achieves
the least amount of video interruptions among all the policies, for
both Group 1 and Group 2. Both WRR and WRand have much
more video interruptions as they are not responsive to the buffer
status. On the other hand, compared to WLD, EDF policy has about
4 times and twice of video interruptions for Group 1 and Group
2, respectively. This is mainly because the design of EDF does not
take the existence and heterogeneity of the playback latency into
account and is also completely oblivious to the target QoE penalty
function. Under WLD, as expected from the choice of f, each
client in Group 1 has only about 80% of the video interruptions
experienced by a client in Group 2 (the slight mismatch in this ratio
comes from the effect of a small £, similar to the effect described in
Figure 4(a)-4(c)). Moreover, compared to WLD, DBLDF has about 2
times of the video interruptions for both groups. This shows that it
is indeed sub-optimal to keep track of only the delivery of video
packets and ignore the dummy packets. The above results verify
that WLD can achieve the optimal network utility by choosing the
proper parameters f,.

Next, we repeat the same experiments but in the under-loaded
regime. We set p = 0.65 and keep the other parameters identical
to those for Table 1. Table 2 shows the performance in terms of
video interruption and QoE penalty in the under-loaded regime.
The figures of the complete evolution of video interruptions are
presented in Appendix A.5 of the technical report [12]. Similar to
the heavy-traffic setting, the baseline policies have much more video
interruptions than WLD. Note that in this case, WLD has almost
zero video interruptions for both groups as the video interrupt
rate decreases much faster with the playback latency in the under-
loaded regime, as suggested by Theorem 8.

9 CONCLUSION

This paper studies the critical trade-off between playback latency
and video interruption, which are the two most critical QoE metrics
for real-time video streaming. With the proposed analytical model
and the Brownian approximation scheme, we study the fundamen-
tal limits of the latency-interruption trade-off and thereby design
a QoE-optimal scheduling policy. Through both rigorous analysis
and extensive simulations, we show that the proposed approxima-
tion framework can capture the original playback processes very
accurately and offer simple design rules on the interplay between
playback latency and video interruption.
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