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ABSTRACT
�is paper presents a Brownian-approximation framework to opti-

mize the quality of experience (QoE) for real-time video streaming

in wireless networks. In real-time video streaming, one major

challenge is to tackle the natural tension between the two most

critical QoE metrics: playback latency and video interruption. To

study this trade-o�, we �rst propose an analytical model that pre-

cisely captures all aspects of the playback process of a real-time

video stream, including playback latency, video interruptions, and

packet dropping. Built on this model, we show that the playback

process of a real-time video can be approximated by a two-sided

re�ected Brownian motion. �rough such Brownian approxima-

tion, we are able to study the fundamental limits of the two QoE

metrics and characterize a necessary and su�cient condition for a

set of QoE performance requirements to be feasible. We propose

a scheduling policy that satis�es any feasible set of QoE perfor-

mance requirements and then obtain simple rules on the trade-o�

between playback latency and the video interrupt rates, in both

heavy-tra�c and under-loaded regimes. Finally, simulation results

verify the accuracy of the proposed approximation and show that

the proposed policy outperforms other popular baseline policies.
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1 INTRODUCTION
Real-time wireless video streaming has become ubiquitous due to

the widespread use of mobile devices and the rapid development of

various live streaming platforms, such as YouTube and Facebook

Live. �ese platforms support not only the broadcast of live videos,

but also various interactive activities, such as video conferencing

and online webinars. To support the required level of interactivity,
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the video contents, which are continuously generated by the con-

tent providers in real-time, are required to be played smoothly at

the video clients with su�ciently low latency (e.g. around 150-300

milliseconds [4]) so as to enable real-time engagement with the au-

dience. Moreover, along with the wide adoption of wireless-enabled

cameras, real-time wireless video streaming is now an integral part

of many video surveillance applications, such as roadway tra�c

monitoring and teleoperation of unmanned aerial vehicles. To guar-

antee the required high responsiveness to the changes in the scene,

smooth video playback with low latency is de�nitely critical.

To support the above applications, it is required to tackle a natu-

ral tension between the two critical factors of quality of experience

(QoE): playback latency and video interruption. Playback latency

refers to the di�erence between the generation time of a video

frame at the video source and its designated playback time at the

client. Playback latency re�ects the freshness of the video content

and needs to be kept as small as possible. To maintain a constantly

low playback latency, each video is con�gured to meet a certain

playback latency requirement, and the video contents that are not

delivered to the client by the designated playback time will be

dropped. In the meantime, due to the lack of video content to play,

the video client instantly experiences video interruption. To achieve

smooth playback, the amount of video interruption also needs to be

kept as small as possible. However, with a more stringent playback

latency, it becomes more di�cult to avoid video interruption as

there is less room for coping with randomness in network condition

during video delivery. �is issue becomes even more challenging in

a wireless network environment due to the shared wireless resource

and the unreliable nature of wireless channels.

While there has been a plethora of studies on the trade-o� be-

tween prefetching delay and video interruption [10, 13, 20–22, 26,

27], all of them focus only on the playback of on-demand videos,

which di�er signi�cantly from the real-time videos in packet gen-

eration, playback latency, and packet dropping. To the best of our

knowledge, this paper is the �rst a�empt to analytically study the

trade-o� between playback latency and video interruption as well

as the trade-o� of such QoE metrics among di�erent clients for

real-time video streams. �e main contributions of this paper are:

• We propose an analytical model that precisely captures all as-

pects of the playback process of a real-time video stream, includ-

ing the packet generation process, the playback latency, packet

dropping, and video interruptions. �e proposed model also ad-

dresses the unreliable nature of wireless transmissions. �rough

Brownian approximation, we show that the playback process

can be approximated by a two-sided re�ected Brownian motion.

• Based on the proposed model and the approximation, we study

the fundamental limits of the trade-o� between the two most

important QoE metrics: the playback latency and video interrup-

tions, among all clients. Moreover, we characterize a necessary
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and su�cient condition for a set of QoE performance require-

ments to be feasible, given the reliabilities of wireless links.

• Next, we propose a simple policy that jointly determines the

amount of playback latency of each client and the scheduling

decision of each packet transmission. We show that this policy is

able to satisfy any feasible set of QoE performance requirements,

and hence we say that it is QoE-optimal.

• Under the proposed approximation, we study both heavy-tra�c

and under-loaded regimes and obtain simple rules on the trade-

o� between playback latency and the video interrupt rates: In

the heavy-tra�c regime, the video interrupt rates under WLD

are inversely proportional to the playback latency; In the under-

loaded regime, the video interrupt rates under WLD decrease

exponentially fast with the playback latency.

• �rough numerical simulations, we show that the proposed ap-

proximation approach can capture the original playback pro-

cesses accurately, and the proposed scheduling policy indeed

outperforms the other popular baseline policies.

�e rest of the paper is organized as follows: Section 2 pro-

vides an overview of the related research. Section 3 describes the

system model and problem formulation. Section 4 discusses the

characterization of the playback process. Section 5 presents the

Brownian-approximation framework as well as the fundamental

network properties. Section 6 presents the proposed scheduling

policy and the proof of its QoE-optimality. Section 7 discusses the

asymptotic results regarding playback latency. Simulation results

are provided in Section 8. Finally, Section 9 concludes the paper.

2 RELATEDWORK
Prefetching delay and video interruption. �e inclusion of

prefetching delay has been one of the major solutions to mitigating

video interruption. For a single video stream, Liang and Liang [20]

and Parandehgheibi et al. [22] study the trade-o� between prefetch-

ing delay and interruption-free probability, under di�erent video

playback models. Luan et al. [21] and Xu et al. [26] characterize the

relation between prefetching delay and playback smoothness by

di�usion approximation and the Ballot theorem, respectively. For

the case of multiple video streams, Xu et al. [27] consider the impact

of �ow dynamics on the number of video interruption events by

solving di�erential equations. Joseph et al. [13] consider a QoE

optimization problem, which jointly encapsulates video interrup-

tions, initial prefetching, and video quality adaption, and present

an asymptotically optimal scheduling algorithm. Despite the

useful insights provided by the above works, they all assume that

the videos are on-demand and thereby fail to capture the salient

features of real-time video streams.

Brownian approximation. �ere has been a plethora of existing

studies on using Brownian approximation for multi-class queue-

ing networks, such as [6–8, 24]. While the above list is by no

means exhaustive, it can be readily seen that the general proce-

dure is to establish the limits of scaled queueing processes in the

heavy-tra�c regime through the re�ection of a Brownian motion

obtained from the scaled controlled processes [25]. Below we dis-

cuss the prior works that are most relevant to this paper: Several

recent works have proposed to utilize Brownian approximation

for network scheduling problems. Hou and Hsieh [10, 11] address

wireless scheduling for short-term QoE via Brownian approxima-

tion. Speci�cally, under Brownian approximation, they characterize

lower bounds on total video interruptions and propose scheduling

policies that achieve these bounds. However, they consider only

on-demand videos and thereby fail to handle the inherent features

of real-time packet generation and packet dropping in real-time

video streaming. For multi-class queues with �nite bu�ers, Atar and

Shifrin [2] present heavy-tra�c analysis and accordingly resort to

solving a Brownian control problem in the di�usion limit. Di�erent

from [2], we take a di�erent approach to directly study a two-sided

re�ected Brownian motion and explicitly characterize the relation

between the playback latency and the achievable set of video inter-

ruption rates. In this way, we are able to investigate the trade-o�

of interest and obtain simple design rules in both heavy-tra�c and

under-loaded regimes.

Real-timewireless scheduling. To address wireless packet sched-

uling with strict deadlines, Hou et al. [9] propose an analytical

framework and propose an optimal scheduling policy in terms of

delivery ratio requirements. �is formulation is later extended to

various network se�ings, such as scheduling with delayed feed-

back [15], general tra�c pa�erns [5], multi-cast scheduling [16],

wireless ad hoc networks [14], and distributed access [19]. All the

above works discuss real-time wireless scheduling, with an aim

to optimize delivery ratios. By contrast, our goal is to tackle the

fundamental trade-o� between video interruption and playback

latency in real-time video streaming.

3 MODEL AND PROBLEM FORMULATION
In this section, we formally describe the wireless network model, the

model for real-time video streaming, and the problem formulation.

3.1 Network Topology and Channel Model
We consider a wireless network with one AP that serves # video

clients, each of which is associated with one packet stream of a

real-time video generated by a video source. For ease of exposition,

we assume that all the videos are streamed in downlink
1
, i.e. from

the AP to the clients. For temporary storage of the video content

to be played, each video is associated with two video bu�ers: one

bu�er is on the client side, and the other is maintained by the AP.

When the video source generates a video packet, the video packet

is �rst forwarded to the AP and stored at the AP-side bu�er. �e

AP then forwards the video packet to the client to be stored at the

client-side bu�er. Since the bandwidth between the AP and the

video source is usually much larger than the bandwidth at the edge,

we also assume that the latency between the AP and the source of

video contents is negligible. Time is slo�ed, and the size of each

time slot is chosen to be the total time required for one packet

transmission. For each client =, we use �= (C) and &= (C) to denote

the number of available video packets in the client-side bu�er and

that in the AP-side bu�er at the end time slot C , respectively. Figure

1 shows an example of the AP-side and client-side video bu�ers

with two clients.

In each time slot, the AP can transmit one packet to exactly one

of the video clients. If the AP chooses to transmit a packet to a client

whose AP-side bu�er is empty, then the AP will simply transmit

a dummy packet. By using dummy packets, we can assume that

the AP employs a causal work-conserving scheduling policy that

always chooses a client to transmit to in each time slot based on

1
While we focus on downlink streams in this paper, the model and the analysis can be

easily extended to the uplink case with polling packets.
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the past observed history. Let �= (C) be the indicator of the event

that client = is scheduled for a packet transmission at time slot C .

Under a work-conserving policy,

∑#
==1

�= (C) = 1, for all C ≥ 0.

Figure 1: An example of video bu�ers with two clients.

Regarding wireless transmissions, we consider unreliable wire-

less packet transmissions that are subject to interference and colli-

sion from other neighboring networks. Since all links in the network

experience a similar level of interference, we assume that all links

have similar reliability. Speci�cally, each packet transmi�ed by the

AP will be delivered successfully with probability ? ∈ (0, 1]. �e AP

will be instantly noti�ed about the outcome of the transmission via

the acknowledgment from the client and can choose to retransmit

the packet in a later time slot if the current transmission fails.

3.2 �e Model for Real-Time Video Streaming
Each client is watching a real-time video stream. �e stream of

client = generates one video packet every 1/_= slots, where 1/_= is

a �nite positive integer. Hence, the average video bitrate of client

= is _= packets per time slot. We consider real-time video streams

with a �xed playback latency of ℓ=/_= slots. Equivalently, ℓ= is

de�ned as the product of _= and the �xed playback latency (in

slots). Speci�cally, for each client =, the video packet generated

at the end of time slot C is forwarded immediately to the AP and

is designated to be played by the client right a�er the end of time

slot C + ℓ=/_= . �e playback latency is intended to reduce potential

video rebu�ering and hence achieve smoother playback of a real-

time video while guaranteeing the freshness of the video contents.

Moreover, to maintain a �xed playback latency, a video packet that

is not delivered to the client by its designated playback time will

be dropped by the AP. When this happens, the client experiences

video interruption due to the lack of video packets to play. For the

rest of the paper, we call this event an interruption. For each client

=, we use �= (C) to denote the total number of video interruptions

up to time C , with �= (0) = 0. Since a video interruption event

occurs only when a video packet is dropped, �= (C) also represents

the total number of dropped video packets up to time C .

Consider an example of the real-time video playback process

with _= = 1/2 (or equivalently one video packet is played every

2 time slots), and ℓ= = 2 (or equivalently 4 slots), as illustrated in

Figure 2. Since ℓ= = 2, we know there are two video packets (dubbed

as packet 1 and packet 2 in Figure 2) available for transmission at

the AP at C = 0. In particular, packet 1 and packet 2 are generated

at the end of slots C = −2 and C = 0, respectively. In this example,

the client receives packets in time slots 1, 4, 8, and 9. �e client

plays packet 1 right a�er the end of time slot 2 since it successfully

receives packet 1. Similarly, the client plays packet 2 right a�er the

end of time slot 4 since it receives packet 2 within the playback

latency. By contrast, as the client fails to receive packet 3 within

the playback latency, video interruption begins right a�er the end

of time slot 6. Meanwhile, to maintain a �xed playback latency of

ℓ= = 2, packet 3 is dropped by the AP at the end of time slot 6. At

time 8, the video playback resumes as the client receives packet

4 by time slot 8. Note that the AP is able to deliver the packet 5

during slot 9 since packet 5 is generated at the end of time slot 6

and hence is already available for transmission.

Figure 2: An example of real-time video playback process
with _= = 1/2 and ℓ= = 2.

3.3 Problem Formulation
In this paper, we are interested in studying the trade-o� between the

playback latencies and the long-term average video interrupt rates

of all clients. Speci�cally, given a total latency budget ℓtot, we study

the set of video interrupt rates, lim supC→∞ �= (C)/C , that can be

achieved under the constraint

∑#
==1

ℓ= ≤ ℓtot. �e set of achievable

video interrupt rates describes the trade-o� of video interrupt rates

among di�erent clients. Moreover, the relation between the set of

achievable video interrupt rates and the value of ℓtot describes the

trade-o� between total latency and video interrupt rates. Hence,

we formally de�ne the capacity region for QoE and introduce the

notion of QoE-optimality as follows.

De�nition 3.1 (Capacity Region for QoE and QoE-Optimality). A

(# + 1)-tuple (ℓtot, X1, · · · , X# ) is said to feasible if there exists a

scheduling policy such that under

∑#
==1

ℓ= ≤ ℓtot, we have

lim sup

C→∞

�= (C)
C
≤ X=, (1)

for every = ∈ {1, · · · , # }. Moreover, the capacity region for QoE
is de�ned as the set of all feasible tuples. A scheduling policy is

said to be QoE-optimal if it can achieve every point in the capacity

region for QoE.

�e main objective of this paper is to design a QoE-optimal

policy that jointly makes scheduling decisions and determines the

allocation of the latency budget among the clients.

4 CHARACTERIZATION OF THE BUFFERING
AND PLAYBACK PROCESSES

In this section, we formally characterize the playback process of a

real-time video with playback latency. As discussed in Section 3.1,

each video is associated with two video bu�ers: one bu�er is on

the client side, and the other is maintained by the AP. Recall that

�= (C) and &= (C) denote the number of available video packets in

the client-side bu�er and that in the AP-side bu�er at the end of

time slot C , respectively. Given the �xed playback latency ℓ= , we

know that at any point of time, the amount of available and yet

unplayed video data, which can be either in the AP-side bu�er or

in the client-side bu�er, is exactly ℓ= video packets. �erefore,

&= (C) + �= (C) = ℓ=, ∀C ≥ 0. (2)
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�en, both &= (C) and �= (C) are non-negative integers with 0 ≤
&= (C) ≤ ℓ= and 0 ≤ �= (C) ≤ ℓ= , for all C ≥ 0. Suppose that the

client-side bu�er is initially empty, i.e. �= (0) = 0, for all =. By (2),

we thereby know &= (0) = ℓ= , for all =. Note that the video packets

stored in the AP-side bu�ers at time 0 are essentially generated by

the content provider during time [−(ℓ= − 1)/_=, 0].
As described in Section 3.1, if the AP chooses to transmit a packet

to client = at time C with&= (C) = 0 (i.e. the AP-side bu�er for client

= is empty), the AP will simply transmit a dummy packet to client

=. Let *= (C) be the number of dummy packets delivered by the

AP to the client = by time C , with *= (0) = 0. Let �= (C) be the

number of video packets received by client = up to time C , with

�= (0) = 0. Upon the designated playback time of each video packet,

client = either consumes a video packet from the client-side bu�er

if �= (C) ≥ 1, or experiences video interruption if �= (C) = 0. Let

(= (C) be the number of video packets that have been played by

client = by the beginning of time slot C , with (= (0) = 0. �en, we

have

�= (C) = �= (C) − (= (C). (3)

Since a video packet is dropped only when C is an integer multiple

of 1/_= and �= (C) = 0, we have

�= (C) =
{
�= (C − 1) + 1 , if �= (C) = 0 and C ∈ {:/_=, : ∈ N}
�= (C − 1) , otherwise.

(4)

�erefore, we know that �= (C) = 0 if �= (C) −�= (C −1) = 1. De�ne

/= (C) :=
(
�= (C) +*= (C)

)
−

(
�= (C) + (= (C)

)
. (5)

Note that�= (C)+*= (C) is the total number of delivered packets, and

(= (C) +�= (C) is the number of packets that the client = should have

played if there is no video interruption. �erefore, /= (C) loosely

re�ects the status of the client-side bu�er, with dummy packets

included. By the de�nitions of �= (C) and /= (C) in (3) and (5), we

can rewrite �= (C) as

�= (C) = /= (C) −*= (C) + �= (C). (6)

We summarize the important properties of �= (C) as follows. For

ease of notation, we let �= (−1) = 0. For any C ≥ 0, we have

�= (C) =
(
/= (C) −*= (C)

)
+ �= (C) ≥ 0, (7)

�= (C + 1) − �= (C) ∈ {0, 1}, �= (0) = 0, (8)

�= (C) (�= (C) − �= (C − 1)) = 0. (9)

Now we turn to the AP-side bu�er. Recall that*= (C) denotes the

number of dummy packets received by the client = by time C . As

a dummy packet is transmi�ed to the client = only if the AP-side

bu�er of the client = is empty, we know *= (C) can be updated as

*= (C) =


*= (C − 1) + 1 , if &= (C) = 0, C ∉ {1 + :/_=, : ∈ N ∪ {0}},

a packet is delivered to = during slot C .

*= (C − 1) , otherwise.

(10)

Similar to (7)-(9), we summarize the useful properties of &= (C) as

follows. For ease of notation, we let *= (−1) = 0. For any C ≥ 0,

&= (C) =
(
ℓ= −

(
/= (C) + �= (C)

) )
+*= (C) ≥ 0, (11)

*= (C + 1) −*= (C) ∈ {0, 1}, *= (0) = 0, (12)

&= (C)
(
*= (C) −*= (C − 1)

)
= 0, (13)

where (11) follows directly from (2) and (6). Note that the stochastic

processes �= (C), *= (C), �= (C), &= (C), �= (C), (= (C), and /= (C) are

right-continuous with le� limits for every sample path since all of

them change values only at integer C . By (7)-(9) and (11)-(13), we

are able to connect /= (C) with �= (C) and *= (C) in the following

theorem. For ease of notation, we use (·)+ = max{0, ·}.

Theorem 1. For any /= (C), there exists a unique tuple of
processes (�= (C),*= (C), �= (C), &= (C)) that satis�es (7)-(9) and
(11)-(13), for every sample path. Moreover, �= (C) and*= (C) are
the unique solutions to the following recursive equations:

�= (C) = sup

0≤g≤C

(
− /= (g) +*= (g)

)+
, (14)

*= (C) = sup

0≤g≤C

(
/= (g) + �= (g) − ℓ=

)+
, (15)

and �= (C) and*= (C) are non-decreasing.

Proof. We prove the uniqueness result by the two-sided re�ec-
tion mapping. Speci�cally, we take /= (C) as the process of interest

and let 0 and ℓ= be the lower and upper barrier, respectively. If

(14)-(15) are satis�ed, the uniqueness of �= (C), *= (C), �= (C), and

&= (C) follows directly from [25, �eorem 14.8.1]. Next, to establish

that (14)-(15) indeed hold, we present a useful lemma (provided in

Appendix A.1 of [12] due to the space limitation) of discrete-time

one-sided re�ection mapping, which resembles the classic result

of continuous-time one-sided re�ection mapping [3, �eorem 6.1].

Based on this lemma, we know that (14) holds if and only if (7)-(9)

are satis�ed. By using the same argument, we also have that (15)

holds if and only if (11)-(13) are satis�ed. �

Remark 1. �e two-sided re�ection mapping {/= (C), �= (C),*= (C)}
is also called double Skorokhod mapping in the literature [17]. More-

over, from (14)-(15), it is easy to check that under any �xed sample

path of /= (C), a larger ℓ= will lead to smaller �= (C) and*= (C). �is

fact manifests the fundamental trade-o� between playback latency

and video interruption.

5 THE BROWNIAN-APPROXIMATION
FRAMEWORK

In this section, we formally introduce the Brownian-approximation

framework for real-time video playback processes.

5.1 Fundamental Network Properties
To analyze video interruption, we start by introducing / (C) as

/ (C) :=

#∑
==1

/= (C)
?

=

#∑
==1

(
�= (C) +*= (C)

)
−

(
�= (C) + (= (C)

)
?

(16)

/ (C) is right-continuous with le� limits since/= (C) is right-continuous

with le� limits, for all =. Moreover, / (0) = 0 as /= (0) = 0, for all

=. As / (C) is a weighted sum of /= (C), / (C) loosely re�ects the

network-wide bu�er status on the clients’ side, with dummy pack-

ets included. Recall that ℓtot is the total playback latency budget.

By �eorem 1, we know that given the process / (C), there exists a

unique pair of non-decreasing processes (� (C),* (C)) that satis�es

� (C) = sup

0≤g≤C

(
− / (g) +* (g)

)+
, (17)

* (C) = sup

0≤g≤C

(
/ (g) + � (g) − ℓtot

?

)+
, (18)
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where (·)+ = max{0, ·}. Note that as / (0) = 0, we also have

� (0) = 0 and * (0) = 0. Next, we describe an important property

of � (C) and �= (C) that holds regardless of the employed policy.

Theorem 2. Under any scheduling policy, we have

� (C) ≤ 1

?

#∑
==1

�= (C), (19)

for all C ≥ 0 and for every sample path.

Proof. We prove this by contradiction: De�ne C∗ := inf{C :

� (C) > ∑#
==1

1

?�= (C)} and assume C∗ < ∞. We apply the recursive

equations (14)-(15) and (17)-(18) to �nd an upper bound for � (C∗)
and a lower bound for

∑#
==1

1

?�= (C) for every C ≥ 0. By these two

bounds and � (C∗) >
∑#
==1

1

?�= (C∗), we can reach a contradiction.

�e detailed proof is presented in Appendix A.2 of [12]. �

5.2 Brownian Approximation For Real-Time
Video Streaming

In this section, we are ready to apply Brownian approximation to

characterize the behavior of playback interruption.

5.2.1 Approximation Through the Fluid Limit and the Di�usion
Limit. We �rst provide an outline of the approximation approach

as follows: consider the �uid limit and di�usion limit of /= (C) as

/= (C) := lim

:→∞
/= (:C)
:

, (20)

/
∧
= (C) := lim

:→∞
/= (:C) − :/= (C)√

:
, (21)

respectively. Generally speaking, the �uid limit and the di�usion

limit are meant to capture the evolution of a stochastic process

based on the Strong Law of Large Numbers (SLLN) and the Central

Limit �eorem (CLT), respectively [3]. For ease of exposition, we

will focus on ergodic scheduling policies under which {/= (C + 1) −
/= (C), C ≥ 0} forms a positive recurrent Markov chain. In this case,

both limits in (20)-(21) exist [25, Section 4.4], and the �uid limit

can be further wri�en as /= (C) = C ·/= . We consider the following

approximation for /= (C) [3, Section 6.5]:

/= (C)
d≈ /= (C) + /

∧
= (C) =: / ∗= (C), (22)

where

d≈ means that the two stochastic processes are approxi-

mately equal in distribution. By (22), we also know / ∗= (C) is right-

continuous with le� limits, for every sample path. By �eorem 1,

we know that given the process / ∗= (C), there exists a unique pair of

non-decreasing processes (�∗= (C),* ∗= (C)) that satis�es

�∗= (C) = sup

0≤g≤C

(
− / ∗= (g) +* ∗= (g)

)+
, (23)

* ∗= (C) = sup

0≤g≤C

(
/ ∗= (g) + �∗= (g) − ℓ=

)+
. (24)

Subsequently, based on �eorem 1 and (22)-(24), we consider the

following approximation for �= (C) and*= (C):

�= (C)
d≈ �∗= (C), *= (C)

d≈ * ∗= (C) . (25)

Similar to (20)-(21), de�ne the �uid limit and di�usion limit of / (C)

/ (C) := lim

:→∞
/ (:C)
:

, (26)

/
∧
(C) := lim

:→∞
/ (:C) − :/ (C)

√
:

. (27)

Again, under an ergodic scheduling policy, {/ (C + 1) − / (C), C ≥
0} forms a positive recurrent Markov chain, and hence we know

both limits in (26)-(27) exist [25, Section 4.4]. We will explicitly

characterize / (C) and /
∧
(C) in Section 5.2.2. Similar to (22), we

consider the following Brownian approximation for / (C) as

/ (C) d≈ / (C) + /
∧
(C) =: / ∗ (C), (28)

Next, we further de�ne two processes �∗ (C ; ℓtot) and* ∗ (C ; ℓtot) as

�∗ (C ; ℓtot) = sup

0≤g≤C

(
− / ∗ (g) +* ∗ (g ; ℓtot)

)+
(29)

* ∗ (C ; ℓtot) = sup

0≤g≤C

(
/ ∗ (g) + �∗ (g ; ℓtot) −

ℓtot

?

)+
(30)

Since / ∗ (C) is right-continuous with le� limits, by �eorem 1 we

know that �∗ (C ; ℓtot) and * ∗ (C ; ℓtot) can be uniquely character-

ized by (29)-(30). Note that we use the notations �∗ (C ; ℓtot) and

* ∗ (C ; ℓtot) to make explicit their dependence on the total playback

latency budget. Figure 3 summarizes the general recipe of the Brow-

nian approximation framework considered in this paper. Up to this

point, we have discussed how to construct the approximation of

interest with the help of the �uid and di�usion limits as well as the

two-sided re�ection mapping. As suggested by Figure 3, we shall

proceed to characterize / ∗ (C) and �∗ (C ; ℓtot) (Section 5.2.2) as well

as derive / ∗= (C) and �∗= (C) under the proposed policy (Section 6).

Figure 3: �e Brownian approximation framework consid-
ered in this paper.

5.2.2 Characterizing / ∗ (C). In this section, we explicitly char-

acterize the approximation process / ∗ (C). First, we de�ne

∼
/ (C) :=

#∑
==1

�= (C) +*= (C) − _=C
?

(31)

By the de�nitions of / (C) and

∼
/ (C) in (16) and (31), we know

0 ≤ / (C) − ∼/ (C) < # /? , for all C . Due to the uniformly bounded

di�erence between / (C) and

∼
/ (C), / (C) and

∼
/ (C) have the same

�uid limit and di�usion limit, and we use

∼
/ (C) as a proxy of / (C)

to help characterize / ∗ (C). Under any work-conserving policy, in

every time slot, the AP delivers a packet with probability ? . Hence,

by (31), for any C ≥ 0,

∼
/ (C + 1) − ∼/ (C) =

{
1

? −
∑#
==1

_=
? ,with probability ?

−∑#
==1

_=
? ,with probability 1 − ?

(32)
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Moreover, {∼/ (C + 1) − ∼/ (C)} is i.i.d. across all time slots. De�ne

Y := 1 −
#∑
==1

_=

?
, (33)

which represents the normalized di�erence between the channel

capacity and the tra�c load. By (32), we have

E
[∼
/ (C + 1) − ∼/ (C)

]
= ? · ( 1

?
−

#∑
==1

_=

?
) + (1 − ?) · (−

#∑
==1

_=

?
) = Y,

(34)

Var

[∼
/ (C + 1) − ∼/ (C)

]
(35)

=

(
?
( 1

?
−

#∑
==1

_=

?

)
2 + (1 − ?)

(
−

#∑
==1

_=

?

)
2

)
− Y2 =

1

?
− 1 =: f2 .

(36)

As / (C) and

∼
/ (C) have the same �uid limit, by the Functional SLLN

for i.i.d. random variables [3], we establish the �uid limit of / (C):

/ (C) = lim

:→∞
/ (:C)
:

= lim

:→∞

∼
/ (:C)
:

= YC, (37)

almost surely, for any work-conserving scheduling policy. More-

over, as / (C) and

∼
/ (C) have the same di�usion limit, we can estab-

lish the di�usion limit of / (C) as

/
∧
(C) = lim

:→∞
/ (:C) − :/ (C)

√
:

= lim

:→∞

∼
/ (:C) − :YC
√
:

, (38)

where the last equality follows directly from (37). By the Functional

CLT for i.i.d. random variables [3], we know that/
∧
(C) is a Brownian

motion with zero dri� and variance f2
, where f2 = (1/?) − 1 as

de�ned in (35)-(36). In other words, for any C,ΔC ≥ 0, we know(
/
∧
(C + ΔC) − /

∧
(C)

)
follows a Gaussian distribution with zero mean

and variance ΔC · f2
. Based on (28) and the above discussion on

/ (C) and /
∧
(C), we know that / ∗ (C) is a Brownian motion with dri�

Y and variance f2
. By mimicking (7), we can de�ne

�∗ (C ; ℓtot) := / ∗ (C) −* ∗ (C ; ℓtot) + �∗ (C ; ℓtot). (39)

By �eorems 1 and (29)-(30), we know �∗ (C ; ℓtot) ∈ [0, ℓtot/?] and

that �∗ (C ; ℓtot), * ∗ (C ; ℓtot), and �∗ (C ; ℓtot) satisfy the same set of

equations as (7)-(9). As we already know / ∗ (C) is a Brownian

motion, by [1, Proposition 5.1], we further know that �∗ (C ; ℓtot)
satis�es the ergodic property, i.e. �∗ (C ; ℓtot) admits a unique station-
ary distribution. As �∗ (C ; ℓtot) is directly related to the event that

�∗ (C ; ℓtot) hits zero, such ergodic property implies that �∗ (C ; ℓtot)
grows linearly with time at a �xed rate on average. Hence, we can

de�ne the long-term average growth rate of �∗ (C ; ℓtot) as

3∗ (ℓtot) := lim

C→∞
�∗ (C ; ℓtot)

C
. (40)

Note that given ℓtot > 0, both �∗ (C ; ℓtot) and 3∗ (ℓtot) are well-

de�ned, regardless of the policy. Moreover, it is easy to check that

3∗ (ℓtot) is a decreasing function of the total playback latency ℓtot.

�is fact also manifests the trade-o� between playback latency and

video interruptions.

As will be formally shown in Section 7, the asymptotic behavior

of �∗= (C) with respect to the playback latency is largely determined

by the value of Y. To prepare for the subsequent analysis, here we

highlight the three major regimes regarding the value of Y:

• Heavy-tra�c regime: �is regime represents the case where

Y = 1−∑#
==1
(_=/?) = 0. �erefore, / ∗ (C) is a dri�less Brownian

motion with �nite variance f2
. Note that _=/? can be viewed

as the equivalent workload of client = as 1/? is the expected

number of required transmissions for each successful packet

delivery. Hence, this regime corresponds to the case where the

total channel resource equals the total video bitrate.

• Under-loaded regime: In this regime, Y = 1−∑#
==1
(_=/?) > 0,

and therefore (28) suggests that / ∗ (C) is a Brownian motion

with positive dri�. �is regime corresponds to the case where

the total channel resource is strictly larger than the total video

bitrate. �erefore, it is intuitively feasible to have �= (C) close

to ℓ= for most of the time by properly scheduling each client

based on its video bitrate. In Section 7, we will see that this e�ect

also manifests itself in the fast-decaying behavior of �∗= (C) with

respect to the playback latency.

• Over-loaded regime: �is regime corresponds to that Y < 0.

If Y < 0, then there must exist one client = that su�ers from

�= (C) = 0 and hence excessive video interruption for most of the

time, regardless of the scheduling policy.

�e over-loaded regime is generally not the case of interest in

designing policies. �erefore, in this paper we focus mainly on the

heavy-tra�c and under-loaded regimes, i.e.

∑#
==1

_=
? ≤ 1.

5.3 Capacity Region for QoE Under Brownian
Approximation

Recall from De�nition 3.1 that the capacity region for QoE is de�ned

based on the feasible video interrupt rates lim supC→∞ �= (C)/C un-

der a playback latency budget. Moreover, recall from (25) that we

propose to use �∗= (C) to approximate the original processes �= (C).
�erefore, subsequently we proceed by considering the approxima-

tion lim supC→∞ �= (C)/C ≈ lim supC→∞ �
∗
= (C)/C and thereby study

the set of feasible tuples based on lim supC→∞ �
∗
= (C)/C .

To quantify lim supC→∞ �
∗
= (C)/C , we propose to use �∗ (C ; ℓtot)

and the corresponding 3∗ (ℓtot) de�ned in (40) as the reference

measure for the following reasons: (i) as the distribution of / ∗ (C)
does not depend on the employed scheduling policy, by (29)-(30)

we know that both �∗ (C ; ℓtot) and * ∗ (C ; ℓtot) also have invariant

distributions under a given ℓtot across all scheduling policies; (ii)

there is an inherent connection between�∗= (C) and�∗ (C ; ℓtot) based

on the two-sided re�ection mappings in (23)-(24) and (29)-(30).

To formally compare the two stochastic processes �∗ (C ; ℓtot)
and �∗= (C), we �rst introduce the notion of stochastic ordering for

stochastic processes as follows.

De�nition 5.1 (Stochastic Ordering [23]). Let �1 and �2 be two

real-valued random variables. We say that �1 ≤st �2 if

P[�1 ≥ G] ≤ P[�2 ≥ G], ∀G ∈ R. (41)

Now we are ready to present an important property which con-

nects �∗ (C ; ℓtot) with �∗= (C). Speci�cally, we show that the inequal-

ity in �eorem 2 still holds under the approximation as follows.

Theorem 3. Under any ℓtot > 0 and any scheduling policy,

�∗ (C ; ℓtot) ≤st

#∑
==1

1

?
�∗= (C), ∀C ≥ 0. (42)
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Proof. We prove this by constructing a sequence of processes

based on the scaling approach outlined in [25, Chapter 5.4] as well

as �eorem 1 and the continuous mapping theorem. �e detailed

proof is provided in Appendix A.3 of the technical report [12]. �
Remark 2. To get some intuition of (42), consider a special case

where ℓ= = ∞, for all =. �is coincides with the on-demand video

scenario, i.e. the AP already has the complete video for each client

at time 0. In this degenerate case, (24) becomes * ∗= (C) = 0 and

therefore (23) can be simpli�ed as

�∗= (C) = sup

0≤g≤C
(−/ ∗= (g))+ . (43)

Similarly, (30) becomes * ∗ (C) = 0 and (29) can be simpli�ed as

�∗ (C ; ℓtot) = sup

0≤g≤C
(−/ ∗ (g))+ . (44)

By combining (43)-(44), it is easy to verify that (42) indeed holds

a�er applying the basic properties of supremum. Note that a similar

result for this degenerate case (i.e. on-demand videos) has been

derived in [10]. Di�erent from [10], the proof of (42) for the general

cases (i.e. �nite playback latency ℓ=) requires more involved analysis

due to the recursion in (14)-(15) and (29)-(30).

Based on �eorem 3, under the Brownian approximation, we

can obtain a necessary condition of a feasible tuple as follows.

Corollary 1. Let (ℓtot, X1, · · · , X# ) be a feasible tuple under
the Brownian approximation with ℓtot > 0 and X= ≥ 0, for all
= = 1, · · · , # . �en, this tuple must satisfy

1

?

#∑
==1

X= ≥ 3∗ (Xℓtot ) . (45)

Proof. Recall from the beginning of Section 5.3 that under the

Brownian approximation, the tuple is feasible if under the condition

that

∑#
==1

ℓ= ≤ ℓtot, lim supC→∞ �
∗
= (C)/C ≤ X= , for all =. Given the

fact that �∗= (C) and �∗ (C ; ℓtot) are non-decreasing processes in C ,

we divide both sides of (42) by C and take the limit superior to get

3∗ (ℓtot) = lim

C→∞
�∗ (C ; ℓtot)

C
≤st lim sup

C→∞

1

?

#∑
==1

�∗= (C)
C
≤

#∑
==1

X=

?
.

(46)

�6 A QOE-OPTIMAL SCHEDULING POLICY
In this section, we present a QoE-optimal scheduling policy for real-

time video streams. Recall that in Section 5.1, we de�ne the capacity

region for QoE and provide a necessary condition of feasible tuples

in Corollary 1. In this section, we further show that the condition

provided in Corollary 1 is also su�cient.

6.1 Scheduling Policy
To begin with, we formally present the weighted largest de�cit policy
(WLD) as follows.

Weighted Largest De�cit Policy (WLD):
Let {V=}#==1

be the predetermined positive weight factors.

(1) During initialization, the AP con�gures the playback latency

of each client = as ℓ= =
V=∑#

<=1
V<
ℓtot.

(2) At each time C , the AP schedules the client with the largest

(_=C − (�= (C) +*= (C)))/V= , with ties broken arbitrarily.

Remark 3. _=C − (�= (C) + *= (C)) can be viewed as de�cit for

client = as it re�ects the di�erence between the number of packets

that should have been played and the actual number of received

packets. Moreover, as the video bitrate _= is usually predetermined

and can be treated as hyperparameters, the WLD policy is able to

make scheduling decisions based on �= (C) and *= (C), which can

be updated based on the acknowledgments from the clients.

6.2 Proof of QoE-Optimality
To show that WLD is QoE-optimal, we �rst present the following

state-space collapse property.

Theorem 4. For any given weight tuple (V1, · · · , V# ) with
V= > 0, for all=, and for any {_=} and ? such that

∑
= _=/? ≤ 1,

the WLD policy achieves
1

V=
/ ∗= (C) =

1

V<
/ ∗< (C), (47)

for all pairs =,<. Moreover, we have

/ ∗= (C) =
?V=∑#
<=1

V<
/ ∗ (C), ∀=. (48)

Proof. �e proof �rst constructs # auxiliary processes that

track the weighted sums of {/= (C)}. Next, we construct a Lyapunov

function and calculates the one-step conditional dri� to show that

the auxiliary processes are positive recurrent. �e detailed proof is

presented in Appendix A.4 of the technical report [12]. �

Recall from Section 5.2.2 that / ∗ (C) is a Brownian motion with

dri� Y and variance f2
. By (48) in �eorem 4, we know / ∗= (C) is also

a Brownian motion with positive dri� Y= and variance f2

= under

the WLD policy, where

Y= =
Y · ?V=∑#
<=1

V<
, (49)

f2

= =

( ?V=∑#
<=1

V<

)
2

f2 . (50)

By �eorem 4, we are ready to show that WLD policy achieves

every point in the capacity region for QoE.

Theorem 5. For any feasible tuple (ℓtot, X1, · · · , X# ), under
the WLD policy with V=/X= = V</X< for every pair =,< and
ℓ= = ℓtotV=/

∑#
<=1

V< for every client =, we have

lim

C→∞
�∗= (C)
C

=
X=?∑#
<=1

X<
3∗ (ℓtot) ≤ X= . (51)

Proof. For ease of notation, de�ne [= := ?V=/
∑#
<=1

V< , for all

=. By substituting (48) into (23)-(24), we have

�∗= (C) = sup

0≤g≤C

(
− [=/ ∗ (g) +* ∗= (g)

)+
, (52)

* ∗= (C) = sup

0≤g≤C

(
[=/

∗ (g) + �∗= (g) − ℓ=
)+
. (53)
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By comparing (52)-(53) with (29)-(30), it is easy to verify that

�∗= (C) = [=�∗ (C ; ℓtot) and* ∗= (C) = [=* ∗ (C ; ℓtot) is the unique solu-

tion to (52)-(53). For each =, we can obtain the limit of �∗= (C)/C :

lim

C→∞
�∗= (C)
C

= lim

C→∞
1

C

( ?V=∑#
<=1

V<
�∗ (C ; ℓtot)

)
(54)

=
X=?∑#
<=1

X<
3∗ (ℓtot) ≤ X=, (55)

where the last inequality in (55) follows from Corollary 1. �

By �eorem 5, we know the necessary condition given by Corol-

lary 1 is also su�cient. We summarize this result as follows.

Theorem 6. For any (# + 1)-tuple (ℓtot, X1, · · · , X# ) with
ℓtot > 0 and X= > 0, for all =, under the Brownian approxima-
tion, the tuple is feasible if and only if 1

?

∑#
==1

X= ≥ 3∗ (ℓtot).

Remark 4. Note that in �eorem 6, we only consider the case

where X= > 0, for every client =. Despite this, from an engineer-

ing perspective, we can get arbitrarily close to X= = 0 by simply

assigning an extremely small V= to client =.

6.3 Choosing V= for WLD Policy: Examples of
Network Utility Maximization for QoE

In this section, we discuss how to properly choose weights {V=} for

the WLD policy. In practice, the optimal {V=} can be determined

by solving a network utility maximization (NUM) problem, which

encodes the relative importance of the QoE performance of the

clients. To demonstrate the connection between NUM and WLD,

we brie�y discuss the following examples of NUM problem for QoE:

Example 1 (Max-Min Fairness): Suppose the AP follows WLD

with a predetermined latency budget ℓtot and is con�gured to mini-

mize a network-wide QoE penalty function de�ned as: 51 ({�∗= (C)}) :=

max1≤=≤# {lim supC→∞ �
∗
= (C)/C}. By �eorem 5, this NUM can be

converted into an equivalent optimization problem as:

min

(ℓtot,X1, · · · ,X# ) is feasible

max

==1, · · · ,#
X= . (56)

Note that (56) is a standard NUM for max-min fairness with a

constraint induced by the capacity region for QoE. �erefore, it is

easy to verify that the optimal solution to (56) is X= = 3∗ (ℓtot)?/# ,

for every =. Moreover, by plugging this solution into �eorem 5, we

know that 51 ({�∗= (C)}) is minimized when lim supC→∞ �
∗
= (C)/C =

lim supC→∞ �
∗
< (C)/C , for all =,<. �erefore, WLD can achieve the

optimal QoE penalty by choosing V= = V< , for any pair of =,<,

as suggested by �eorem 5. Moreover, under the total playback

latency budget ℓtot, V= = V< suggests that we choose ℓ= = ℓ< (or

equivalently ℓ= = ℓtot/# ).

Example 2 (Weighted Sum of Monomial Penalty): Let Z= > 0

be the importance weight of each client =. �e AP follows WLD

policy with a predetermined latency budget ℓtot and is con�gured

to minimize a network-wide QoE penalty function 5 ({�∗= (C)}) =∑#
==1

Z=
(
lim supC→∞ �

∗
= (C)/C

)^
, with some constant ^ > 1. By

�eorem 5, we can convert this NUM into an equivalent problem:

min

(ℓtot,X1, · · · ,X# ) is feasible

#∑
==1

Z= · X^= . (57)

It is easy to verify that for any ^ > 1, the optimal solution to (57) is

X= =
(
Z

1

1−^
= /∑#

<=1
Z

1

1−^
<

)
3∗ (ℓtot)? , for every =. Again, by �eorem

5, WLD can achieve the optimal network utility by choosing V= =(
Z

1

1−^
= /∑#

<=1
Z

1

1−^
<

)
. Regarding the playback latency, WLD simply

assigns ℓ= = V= · ℓtot, for each =.

Based on these two examples, we know that the WLD policy can

be easily con�gured to solve a broad class of NUM problems for

QoE given the �exibility provided by the WLD policy.

7 ASYMPTOTIC RESULTS WITH RESPECT TO
PLAYBACK LATENCY

In this section, we present simple asymptotic rules on the trade-o�

between playback latency and video interruption under the WLD

policy. Recall that in (39)-(40), we discuss the ergodic property of

the two-sided re�ected Brownian motion. Based on �eorem 5,

we know that the video interrupt rates under approximation (i.e.

limC→∞ �∗= (C)/C ) exists and depends on the playback latency ℓ= . To

begin with, we consider the heavy-tra�c regime, i.e.

∑#
==1

_=/? =

1. �e following theorem shows that the video interrupt rate is

inversely proportional to the playback latency in heavy-tra�c. We

use the Li�le-Oh notation > (1/ℓ=) to denote a function 6(ℓ=) that

satis�es limℓ=→∞ 6(ℓ=)/(1/ℓ=) = 0.

Theorem 7. In the heavy-tra�c regime, under the WLD
policy, we have

lim

C→∞
�∗= (C)
C

=

( f2

=

2ℓ=

)
+ >

(
1

ℓ=

)
. (58)

Proof. �is result can be directly obtained by plugging the

variance of / ∗= (1) into [1, �eorem 12.1]. �

Next, we turn to the under-loaded regime, where

∑#
==1

_=/? < 1.

�e following theorem shows that the video interrupt rate under ap-

proximation decreases exponentially fast with the playback latency

in the under-loaded regime.

Theorem 8. In the under-loaded regime, under the WLD
policy, we have

lim

C→∞
�∗= (C)
C

= 2 exp

(−2Y=

f2

=

ℓ=

)
+ >

(
exp

(−2Y=

f2

=

ℓ=
) )
, (59)

where 2 is some constant that does not depend on ℓ= .

Proof. By [1, �eorem 3.1], this result can be directly obtained

by �nding the root W of the Lundberg equation E[exp(W/ ∗= (1))] = 1.

As / ∗= (1) is a Gaussian random variable with mean Y= and variance

f2

= (de�ned in (49)-(50)), it is easy to verify that W = −2Y=/f2

= . �

Remark 5. Note that a one-dimensional one-sided re�ected

Brownian motion with negative dri� has a stationary distribution,

which is exponential [3, �eorem 6.2]. In the under-loaded regime,

as shown by �eorem 8, a two-sided re�ected Brownian motion also

exhibits a similar behavior as the one-sided re�ected counterpart.

8 NUMERICAL SIMULATIONS
In this section, we present the simulation results of the proposed

policy. �roughout the simulations, we consider a network of one

AP and 5 video clients. All the simulation results presented below

are the average of 50 simulation trials.
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(c) Total video interrupt rate under

di�erent ℓtot : ? = 5/7.
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(d) Total video interrupt rates ver-

sus ℓtot in the under-loaded regime:

? = 0.52, 0.3467, 0.7428.
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(e) Ratio between the empirical to-

tal video interrupt rate and the the-

oretical estimate: ? = 0.52, 0.3467,
and 0.7428.

Figure 4: Evaluation of the approximation accuracy in the heavy-tra�c and under-loaded regimes.

8.1 Accuracy of the Approximation
We �rst evaluate the accuracy of the proposed approximation under

the WLD policy. We consider a fully-symmetric network of 5 video

clients, where ℓ= = ℓtot/5, for every =. In this case, WLD shall

choose V= = 1/5, for every client. We consider three heavy-tra�c

scenarios with ? = 1/2, 1/3, 5/7 and _= = 1/10, 1/15, 1/7, respec-

tively. To verify the accuracy of the approximation, Figure 4(a)-4(c)

show the total video interrupt rates (i.e.

∑#
==1

�= (C)/C ) under dif-

ferent playback latency budgets and di�erent channel reliabilities

in the heavy-tra�c regime. Note that both the x-axis and y-axis are

in log scale. We also plot the theoretical estimates of the total video

interrupt rates based on �eorem 7 (by (36), we know f2 = 1, 2,

and 0.4 for ? = 1/2, 1/3, and 5/7, respectively). It can be observed

that the empirical rates are very close to the theoretical estimates,

and the di�erence shrinks with the playback latency budget. �is

is consistent with the asymptotic results in �eorem 7.

Next, we turn to the under-loaded case. We consider three

under-loaded scenarios with ? = 0.52, 0.3467, 0.7428 and _= =

1/10, 1/15, 1/7, respectively. Figure 4(d) shows the total video in-

terrupt rates under di�erent ℓtot and channel reliabilities (note that

the y-axis is in log scale and the x-axis is in linear scale). We can

observe that the dependency of empirical rates on ℓtot is roughly

log-linear, as suggested by �eorem 8. To further verify the accu-

racy of the theoretical estimates provided by �eorem 8, Figure 4(e)

plots the ratio between the empirical total interrupt rate and the

asymptotic term in (59), i.e. (∑#
==1

�= (C )
C )/(# exp( −2Y=

f2

=
ℓ=)), under

di�erent channel reliabilities. We observe that under di�erent ℓtot,

this ratio stays at around 0.01, 0.005, and 0.05 under ? = 0.52, 0.3467,

and 0.7428, respectively. Hence, Figure 4(e) veri�es the accuracy of

the approximation in the under-loaded regime.

In summary, all the above results suggest that the approximation

�= (C)≈�∗= (C) is rather accurate in both heavy-tra�c and under-

loaded regimes, even with small to moderate latency budgets.

8.2 Comparison With Other Policies
We evaluate the proposed WLD policy against four baseline policies,

namely Weighted Random (WRand), Weighted Round Robin (WRR),

Earliest Deadline First (EDF), and the Delivery-Based Largest-Debt-

First (DBLDF). Under the WRand policy, in each time slot, the AP

simply schedules each client=with probability _=/
∑#
<=1

_< . Under

the WRR policy, the AP groups multiple time slots into a frame

and schedules the clients in a cyclic manner within each frame.

Speci�cally, in each frame, each client = is scheduled for exactly

 _=/
∑#
<=1

_< times, where  is chosen to be the smallest positive

Table 1: QoE penalty and video interruptions under ? = 0.6,
ℓtot = 32 at both C = 1.5 × 10

5 and C = 3 × 10
5 (separated by ‘|’).

Per-client video interruptions

Policy QoE penalty (×10
5
) Group 1 Group 2

WLD 1.5 | 5.7 134.0 | 264.5 158.2 | 309.3
DBLDF 4.9 | 19.4 265.3 | 527.4 264.5 | 526.7

EDF 14.0 | 55.7 538.9 | 1074.1 284.3 | 565.1

WRR 138.0 | 550.9 1844.4 | 3684.3 255.6 | 513.2

WRand 368.5 | 1480.2 2994.2 | 6002.0 573.4 | 1143.6

Table 2: QoE penalty and video interruptions under ? = 0.65,
ℓtot = 32 at both C = 1.5 × 10

5 and C = 3 × 10
5 (separated by ‘|’).

Per-client video interruptions

Policy QoE penalty (×10
3
) Group 1 Group 2

WLD 0.01 | 0.02 1.3 | 2.3 0.2 | 0.2
DBLDF 0.19 | 0.58 5.5 | 9.4 4.8 | 8.7

EDF 6.9 | 27.7 37.7 | 75.5 20.2 | 40.4

WRR 2813.7 | 11344.9 838.1 | 1683.0 35.8 | 69.0

WRand 15927.9 | 63745.6 1982.9 | 3966.7 258.7 | 518.8

integer such that  _=/
∑#
<=1

_< is an integer, for all =. Under the

EDF policy, the AP schedules the video packet with the smallest

absolute deadline among all the video packets in the AP-side bu�ers,

with ties broken randomly. �e EDF policy is widely used in real-

time systems given its strong theoretical guarantee for deadline-

constrained tasks [18]. Under DBLDF, the AP schedules the client

with the largest delivery debt, which is de�ned as _=C − �= (C).
Di�erent from WLD, DBLDF tracks only the delivery of video

packets and is completely oblivious to the dummy packets. Note

that the delivery-debt index was proposed and analyzed in [9] for

the frame-synchronized real-time wireless networks. We evaluate

the WLD policy as well as the four baseline policies in both heavy-

tra�c and under-loaded regimes.

To showcase the performance of the proposed policy, we start

with the following heavy-tra�c scenario: �e 5 video clients are

divided into two groups: clients 1 and 2 are in Group 1, and clients

3, 4, and 5 belong to Group 2. We consider _= = 1/5 for Group

1 and _= = 1/15 for Group 2. We set ? = 0.6 and ℓtot = 32. It is

easy to verify that

∑#
==1

_=/? = 1. We consider a quadratic QoE

49



penalty function as 5 ({�= (C)}) =
∑

5

==1
Z= (lim supC→∞ �= (C)/C)2

with Z1 = Z2 = 2 and Z3 = Z4 = Z5 = 1. As described by Example

2 in Section 6.3, for the WLD policy, we choose V= = 1/8 and

ℓ= = ℓtot/8 = 4 for each client in Group 1 and V= = 2/8 and

ℓ= = ℓtot∗(2/8) = 8 for each client in Group 2. For a fair comparison,

we use the same playback latency for all the policies.

Table 1 shows the QoE penalty and the average video interrup-

tions per client in each group at both C = 1.5 × 10
5

and C = 3 × 10
5

(values separated by ‘|’). Due to space limitation, the �gures of the

complete evolution of video interruptions are presented in Appen-

dix A.5 of the technical report [12]. We observe that WLD achieves

the least amount of video interruptions among all the policies, for

both Group 1 and Group 2. Both WRR and WRand have much

more video interruptions as they are not responsive to the bu�er

status. On the other hand, compared to WLD, EDF policy has about

4 times and twice of video interruptions for Group 1 and Group

2, respectively. �is is mainly because the design of EDF does not

take the existence and heterogeneity of the playback latency into

account and is also completely oblivious to the target QoE penalty

function. Under WLD, as expected from the choice of V= , each

client in Group 1 has only about 80% of the video interruptions

experienced by a client in Group 2 (the slight mismatch in this ratio

comes from the e�ect of a small ℓ= , similar to the e�ect described in

Figure 4(a)-4(c)). Moreover, compared to WLD, DBLDF has about 2

times of the video interruptions for both groups. �is shows that it

is indeed sub-optimal to keep track of only the delivery of video

packets and ignore the dummy packets. �e above results verify

that WLD can achieve the optimal network utility by choosing the

proper parameters V= .

Next, we repeat the same experiments but in the under-loaded

regime. We set ? = 0.65 and keep the other parameters identical

to those for Table 1. Table 2 shows the performance in terms of

video interruption and QoE penalty in the under-loaded regime.

�e �gures of the complete evolution of video interruptions are

presented in Appendix A.5 of the technical report [12]. Similar to

the heavy-tra�c se�ing, the baseline policies have much more video

interruptions than WLD. Note that in this case, WLD has almost

zero video interruptions for both groups as the video interrupt

rate decreases much faster with the playback latency in the under-

loaded regime, as suggested by �eorem 8.

9 CONCLUSION
�is paper studies the critical trade-o� between playback latency

and video interruption, which are the two most critical QoE metrics

for real-time video streaming. With the proposed analytical model

and the Brownian approximation scheme, we study the fundamen-

tal limits of the latency-interruption trade-o� and thereby design

a QoE-optimal scheduling policy. �rough both rigorous analysis

and extensive simulations, we show that the proposed approxima-

tion framework can capture the original playback processes very

accurately and o�er simple design rules on the interplay between

playback latency and video interruption.
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[14] Xiaohan Kang, Weina Wang, Juan José Jaramillo, and Lei Ying. 2014. On the

performance of largest-de�cit-�rst for scheduling real-time tra�c in wireless

networks. IEEE/ACM Transactions on Networking 24, 1 (2014), 72–84.

[15] Kyu Seob Kim, Chih-Ping Li, Igor Kadota, and Eytan Modiano. 2015. Optimal

scheduling of real-time tra�c in wireless networks with delayed feedback. In

Proc. of Allerton. 1143–1149.

[16] Kyu Seob Kim, Chih-ping Li, and Eytan Modiano. 2014. Scheduling multicast

tra�c with deadlines in wireless networks. In Proc. of IEEE INFOCOM. 2193–2201.

[17] Łukasz Kruk, John Lehoczky, Kavita Ramanan, Steven Shreve, et al. 2008. Double

Skorokhod map and reneging real-time queues. In Markov Processes and Related
Topics: A Festschri� for �omas G. Kurtz. 169–193.

[18] Phillip A Laplante. 2004. Real-time systems design and analysis. Wiley.

[19] Bin Li and Atilla Eryilmaz. 2013. Optimal distributed scheduling under time-

varying conditions: A fast-CSMA algorithm with applications. IEEE Transactions
on Wireless Communications 12, 7 (2013), 3278–3288.

[20] Guanfeng Liang and Ben Liang. 2008. E�ect of delay and bu�ering on ji�er-free

streaming over random VBR channels. IEEE Transactions on Multimedia 10, 6

(2008), 1128–1141.

[21] Tom H Luan, Lin X Cai, and Xuemin Shen. 2010. Impact of network dynamics on

user’s video quality: Analytical framework and QoS provision. IEEE Transactions
on Multimedia 12, 1 (2010), 64–78.

[22] Ali ParandehGheibi, Muriel Médard, Asuman Ozdaglar, and Srinivas Shakko�ai.

2011. Avoiding interruptions—A QoE reliability function for streaming media

applications. IEEE Journal on Selected Areas in Communications 29, 5 (2011),

1064–1074.

[23] Moshe Shaked and J George Shanthikumar. 2007. Stochastic orders. Springer.

[24] Alexander L Stolyar et al. 2004. Maxweight scheduling in a generalized switch:

State space collapse and workload minimization in heavy tra�c. �e Annals of
Applied Probability 14, 1 (2004), 1–53.

[25] Ward Whi�. 2002. Stochastic-process limits: an introduction to stochastic-process
limits and their application to queues. Springer Science & Business Media.

[26] Yuedong Xu, Eitan Altman, Rachid El-Azouzi, Majed Haddad, Salaheddine Elay-

oubi, and Tania Jimenez. 2014. Analysis of bu�er starvation with application to

objective QoE optimization of streaming services. IEEE Transactions on Multime-
dia 16, 3 (2014), 813–827.

[27] Yuedong Xu, Salah Eddine Elayoubi, Eitan Altman, and Rachid El-Azouzi. 2013.

Impact of �ow-level dynamics on QoE of video streaming in wireless networks.

In Proc. of IEEE INFOCOM. 2715–2723.

50

https://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-video/212134-Video-Quality-of-Service-QOS-Tutorial.pdf
https://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-video/212134-Video-Quality-of-Service-QOS-Tutorial.pdf
https://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-video/212134-Video-Quality-of-Service-QOS-Tutorial.pdf
https://arxiv.org/abs/1911.00902

	Abstract
	1 Introduction
	2 Related Work
	3 Model and Problem Formulation
	3.1 Network Topology and Channel Model
	3.2 The Model for Real-Time Video Streaming
	3.3 Problem Formulation

	4 Characterization of the Buffering and Playback Processes
	5 The Brownian-Approximation Framework
	5.1 Fundamental Network Properties
	5.2 Brownian Approximation For Real-Time Video Streaming
	5.3 Capacity Region for QoE Under Brownian Approximation

	6 A QoE-Optimal Scheduling Policy
	6.1 Scheduling Policy
	6.2 Proof of QoE-Optimality
	6.3 Choosing n for WLD Policy: Examples of Network Utility Maximization for QoE

	7 Asymptotic Results With Respect To Playback Latency
	8 Numerical Simulations
	8.1 Accuracy of the Approximation
	8.2 Comparison With Other Policies

	9 Conclusion
	References

