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Abstract—This paper studies a remote sensing system where
multiple wireless sensors generate possibly noisy information
updates of various surveillance fields and delivering these updates
to a control center over a wireless network. The control center
needs a sufficient number of recently generated information
updates to have an accurate estimate of the current system status,
which is critical for the control center to make appropriate
control decisions. The goal of this work is then to design the
optimal policy for scheduling the transmissions of information
updates. Through Brownian approximation, we demonstrate that
the control center’s ability to make accurate real-time estimates
depends on the averages and temporal variances of the delivery
processes. We then formulate a constrained optimization problem
to find the optimal means and variances. We also develop a
simple online scheduling policy that employs the optimal means
and variances to achieve the optimal system-wide performance.
Simulation results show that our scheduling policy enjoys fast
convergence speed and better performance when compared to
other state-of-the-art policies.

I. INTRODUCTION

Remote sensing has recently attracted significant research
interests due to its critical role in many emerging applications,
such as industrial Internet-of-Things (IoT), autonomous and
connected vehicles, and cyber-physical systems (CPS). In
remote sensing, there are multiple sensors generating infor-
mation updates about their respective surveillance fields and
sending these information updates to a control center. The
control center then uses its received information for real-time
estimation of the current system state, so as to, in the example
of industrial IoT, determine the appropriate control actions.
The control center needs to be able to make accurate estimates
of the system states at all times to ensure the safety and the
efficiency of the system.

In this paper, we study the problem of scheduling the
transmissions of information updates when the sensors and the
control center communicate over a shared wireless band. We
propose a new model to capture how the network behavior
impacts the ability of the control center to make accurate
real-time estimates. Our model is based on two important
features of remote sensing: First, because the surveillance
fields evolve with time, recent information updates are much
more useful than stale ones. Second, because the sensors and
the surveillance fields are subject to noises, the control center
may need multiple recent information updates to make an
accurate estimate.

Motivated by these observations, we propose a model where
each sensor sets a threshold for the freshness of its information
updates. At any given point of time, the instantaneous esti-
mation accuracy for the sensor’s surveillance field depends
on the current quantity of fresh information updates at the
control center. Compared to Age-of-Information (AoI), which
is a popular metric that measures the freshness of the most
recent information update, our model can provide a richer
characterization by considering both the quantity and the
freshness of data. We further address the challenge that sensors
are located at different locations and are monitoring different
fields by explicitly considering that different sensors can have
different thresholds for freshness, different mappings between
the quantify of fresh data and the estimation accuracy, and
different channel conditions.

In order to analyze this model, we first demonstrate that
the quantify of fresh information updates that the control
center has at a given time can be expresses as a closed-form
function involving the processes of update generations and
update deliveries. We then show that, by applying a Brownian
approximation to the update delivery process, the quantity of
fresh information updates can be characterized as a random
variable whose distribution only depends on the mean and
temporal variance of the delivery process. The dependency
on temporal variances makes it infeasible to apply traditional
network optimization techniques that only consider the means
of delivery processes. To take temporal variances into account,
we analytically establish the fundamental constraints on the
means and variances of the delivery processes for all sensors,
given the limitations of the wireless bandwith and channel con-
ditions. Thus, the problem of the optimal wireless scheduling
can be transformed into a constrained optimization problem
of finding the optimal means and variances, subject to the
constraints imposed by the wireless channels.

After finding the optimal means and variances of the de-
livery processes, it remains to develop a scheduling policy
that actually achieves them. To this end, we propose a simple
scheduling policy and theoretically prove that its resulting
means and variances are indeed the optimal ones. Thus, this
scheduling policy is the one that enables the control center
to have the most accurate real-time estimation. An important
and surprising feature of our proposed scheduling policy is
that it does not require any knowledge about the freshness of
each individual information update, despite the fact that the



accuracy of real-time estimation depends on data freshness.
We also conduct comprehensive simulations to evaluate the

performance of our proposed scheduling policy. Simulation
results show that the means and variances under our scheduling
policy indeed converges to the optimal values very fast. In
addition, our scheduling policy significantly outperforms other
policies, including one that aims to optimize AoI.

The rest of this paper is as following: Section II describes
our system model. Section III derives the closed-form expres-
sion of the quantity of fresh information updates at the control
center. Section IV uses Brownian approximation to derive
the distribution of the quantity of fresh information updates.
Section V formulates the problem of optimal scheduling as a
constrained optimization problem of finding the optimal means
and variances of delivery processes. Section VI proposes an
online scheduling policy and analyzes its performance. Section
VII provides our simulation results. Section VIII reviews some
related work. Finally, Section IX concludes the paper.

II. SYSTEM MODEL

We consider the following network model: there is
one Access Point (AP) and multiple flows, numbered as
1, 2, 3, . . . , N , each of which is monitoring an independent
and time-varying stochastic field. Time is slotted and denoted
by t = 1, 2, 3, . . . . Each flow i generates one time-stamped
information update about its monitored field every mi slots.
The AP schedules all transmissions. When the AP schedules a
flow i to transmit, the AP first sends a POLL packet to flow i,
and, upon receiving the POLL packet, flow i sends one of its
information updates to the AP. The duration of a time slot is
hence chosen to be sufficient for the transmission of one POLL
packet and one information update, along with any necessary
overheads. The AP then uses all the information updates that
it has ever received to estimate the current status of each
monitored field. We further consider the effects of shadowing,
multi-paths, fading, and interference by assuming that each
transmission for flow i is successful, that is, a status update is
received after sending a POLL packet, with probability pi.

Since the AP needs to make real-time estimation about
each stochastic field, the performance of the network should
be measured by the accuracy of the estimation. We need a
model to express the accuracy of the estimation in terms of
network behaviors. Our model is based on two observations of
most estimation problems: First, recent information is much
more useful than stale information; Second, the more recent
information that the AP has, the more accurate its estimation
can be. Hence, we model the accuracy of the estimation by
assuming that it depends on the number of recent information
updates that the AP has received. Compared to Age-of-
Information (AoI), which measures the performance based on
the freshness of the most recent data, our model offers a richer
characterization as it considers both the freshness of data and
the quantity of fresh data.

Specifically, we assume that each information update gener-
ated by flow i is only useful to the AP’s estimation algorithm
for Ti time slots. Afterwards, the information update becomes

stale and is no longer useful. Thus, at time slot t, only
information updates generated after time slot t−Ti are useful.
We use Ui(t) to denote the number of useful packets that the
AP has received from flow i at time t. For example, Fig. 1
illustrates the packet arrivals and deliveries histogram of a flow
with Ti = 15. At time 40, only information updates generated
after time 25 are useful, and hence we have Ui(40) = 2.
Note that while packet 1 was delivered after time 25, it was
generated before time 25 and hence is not useful at time 40.

Fig. 1. An Example for Useful Packets and Deliveries

In order to make an accurate estimation of the stochastic
field of flow i at time t, the AP needs to have a sufficient
number of useful information updates. This requirement is
described by a threshold qi, and we say that the AP needs at
least qiTi useful information updates, that is, Ui(t) ≥ qiTi,
to make an accurate estimation. If Ui(t) < qiTi at some
time t, then the estimation is inaccurate and results in a large
confidence interval. In this case, we say that the AP suffers
from a Loss-of-Confidence (LoC) of Ci(qiTi−Ui(t)) at time t,
where Ci(·) is a strictly increasing, convex and differentiable
function over [0,+∞) with Ci(0) = 0 and C ′i(0) = 0. The
goal of this paper is to minimize the long-time average LoC
for the entire system of all flows, which can be written as

limk→∞

∑N
i=1

∑k+Ti
t=Ti+1 Ci(qiTi−Ui(t))

k .
The optimization of total average LoC consists of two parts:

First, the AP decides which flow to schedule in each time slot;
Second, upon receiving a POLL message, the flow decides
which information update to respond. For the second part, it
can be shown that the Last-In-First-Out (LIFO) strategy, where
the flow always responds with the newest undelivered infor-
mation update, is optimal. Intuitively, the newest information
update is the one that will remain useful for the longest time,
and hence sending it is optimal. Recent work [1] has shown
that LIFO-type strategy is optimal or near-optimal for AoI-
related metrics in the queueing system under different service
time. While LoC is not AoI-related, similar arguments can be
used to establish the optimality of LIFO for LoC.

III. FUNDAMENTAL PROPERTIES FOR LIFO SYSTEMS

To optimize the long-term average LoC problem, the first
challenge is to model the behavior of the useful delivery. In
this section, we derive a closed form expression for Ui(t).
This derivation is built on the assumption of LIFO strategy
when the flow selects the information update in its buffer to
transmit.

Let ai(t) be the indicator function that flow i generates a
new information update at time t, and xi(t) be the indicator
function that flow i successfully delivers a packet at time t.



Recall that flow i generates a new information update every
mi time slots. If flow i generates the first information update at
time oi with 0 ≤ oi < mi, then we have ai(t) = 1 if and only
if t− oi is a multiple of mi. If flow i is scheduled to transmit
at time t, then we have xi(t) = 1 with probability pi, since the
channel reliability of flow i is pi. Let Ai(t) =

∑t
τ=0 ai(t) and

Xi(t) =
∑t
τ=0 xi(t) be the accumulated number of arrivals

and deliveries, respectively.
We also define ui(τ, t) be the indicator function that flow i

successfully delivers an information update at time τ that will
remain useful until at least time t. For example, in Fig. 1, there
are deliveries at times 27, 31, and 35, but the delivery at time
27 will not be useful at time 40. Thus, we have ui(27, 40) = 0
and ui(31, 40) = ui(35, 40) = 1. By this definition of ui(τ, t),
we have Ui(t) =

∑t
τ=t−Ti+1 ui(τ, t).

Theorem 1. For any t > Ti,

Ui(t) =

t∑
τ=t−Ti+1

xi(τ)

− sup
t−Ti+1≤s≤t

[ s∑
τ=t−Ti+1

xi(τ)−
s∑

τ=t−Ti+1

ai(τ)
]+
(1)

Proof. We first show that:

d∑
τ=t−Ti+1

ui(τ, t)

=

d∑
τ=t−Ti+1

xi(τ)

− sup
t−Ti+1≤s≤d

[ s∑
τ=t−Ti+1

xi(τ)−
s∑

τ=t−Ti+1

ai(τ)
]+
, (2)

for any t− Ti + 1 ≤ d ≤ t by induction.
First, consider the case d = t−Ti+1. Any updates generated

before time d will become stale by time t. Hence, flow i can
deliver an update at time d that will remain useful at time t,
and hence have ui(d, t) = 1, only if both of the following
conditions are satisfied: flow i generates an update at time d,
that is, ai(d) = 1, and flow i delivers an update at time d, that
is, xi(d) = 1. Hence, When d = t− Ti + 1, (2) holds.

Next, suppose (2) holds when d = k, we then consider the
case when d = k + 1. At time k + 1, ui(k + 1, t) = 1 only if
the following two conditions are satisfied: First, there is one
successful delivery at time k+1, that is xi(k+1) = 1; Second,
there is at least one undelivered update that will be useful at
time t. Since only information updates after time t − Ti will
be useful at time t, the number of useful updates that flow i
has generated on or before time k + 1 is

∑k+1
τ=t−Ti+1 ai(τ).

Before time k + 1, flow i has delivered
∑k
τ=t−Ti+1 ui(τ, t)

information updates. Hence, the number of undelivered up-
dates that will be useful at time t is

∑k+1
τ=t−Ti+1 ai(τ) −∑k

τ=t−Ti+1 ui(τ, t). In summary, we have: ui(k + 1, t) =

min{xi(k),
∑k+1
τ=t−Ti+1 ai(τ)−

∑k
τ=t−Ti+1 ui(τ, t)}.

We now derive
∑k+1
τ=t−Ti+1 ui(τ, t) from the induction

hypothesis.
k+1∑

τ=t−Ti+1

ui(τ, t) =

k∑
τ=t−Ti+1

ui(τ, t) + ui(k + 1, t)

= min
{
xi(k + 1) +

k∑
τ=t−Ti+1

ui(τ, t),

k+1∑
τ=t−Ti+1

ai(τ)
}

= min
{ k+1∑
τ=t−Ti+1

xi(τ)− sup
t−Ti+1≤s≤k

[ s∑
τ=t−Ti+1

xi(τ)

−
s∑

τ=t−Ti+1

ai(τ)
]+
,

k+1∑
τ=t−Ti+1

ai(τ)
}

=

k+1∑
τ=t−Ti+1

xi(τ)−max
{ k+1∑
τ=t−Ti+1

xi(τ)−
k+1∑

τ=t−Ti+1

ai(τ),

sup
t−Ti+1≤s≤k

[ s∑
τ=t−Ti+1

xi(τ)−
s∑

τ=t−Ti+1

ai(τ)
]+}

=

k+1∑
τ=t−Ti+1

xi(τ)

− sup
t−Ti+1≤s≤k+1

[ s∑
τ=t−Ti+1

xi(τ)−
s∑

τ=t−Ti+1

ai(τ)
]+

(3)

Hence, by induction, (2) holds for any t− Ti + 1 ≤ d ≤ t.
Since Ui(t) =

∑t
τ=t−Ti+1 ui(τ, t), the theorem holds.

IV. REFLECTED BROWNIAN MOTION APPROXIMATION

Thm. 1 has shown that Ui(t) can be explicitly expressed
as a function of the update arrival and delivery processes,
{ai(τ)} and {xi(τ)}. In this section, we further show that,
if the employed scheduling policy is ergodic, then Ui(t) can
be approximated by a random variable whose distribution can
be expressed in closed-form.

We first study the approximation of the accumulated number
of update deliveries, Xi(t) :=

∑t
τ=1 xi(τ). Under any ergodic

scheduling policy, the delivery process {xi(1), xi(2), . . . } can
be modeled as a positive recurrent Markov chain with finite
states. By the Law of Large Numbers, the limit X̄i :=
limt→∞

Xi(t)
t exists. Further, by the central limit theorem of

Markov chains [2], X̂i := limt→∞
Xi(t)−tX̄i√

t
is a Gaussian

random variable with mean 0 and some finite variance, which
we denote by σ2

i with σi ≥ 0. Hence, we can approximate
Xi(t)−Xi(t−Ti) =

∑t
τ=t−Ti+1 xi(τ) as a Gaussain random

variable with mean TiX̄i and variance Tiσ2
i for any sufficiently

large Ti. Such an approximation is called a Brownian motion
process, and we denote it by Xi(t) ≈ BM(X̄i, σ

2
i ).

Next, we consider the random process Yi(t) := Ai(t) −
Xi(t). Recall that Ai(t) is the accumulated number of update
arrivals and that flow i generates one update every mi slots.
Thus, we have b Timi c ≤ Ai(t)−Ai(t− Ti) ≤ d

Ti
mi
e, for any t

and Ti. Yi(t)− Yi(t− Ti) =
[
Ai(t)−Ai(t− Ti)

]
−
[
Xi(t)−



Xi(t− Ti)
]

can then be approximated by a Gaussian random
variable with mean Ti(

1
mi
− X̄i) and variance Tiσ2

i for any
sufficiently large Ti. We express this approximation by saying
Yi(t) ≈ BM( 1

mi
− X̄i, σ

2
i ).

From Thm. 1, we have Ui(t) =
[
Ai(t) − Ai(t − Ti)

]
−[

Yi(t)− Yi(t− Ti)
]

+ supt−Ti+1≤s≤t
[
Yi(s)− Yi(t− Ti)

]+
.

When we fix d and apply the approximation Yi(t) ≈
BM( 1

mi
− X̄i, σ

2
i ), the random process Yi(t+ d)−Yi(d) can

still be approximated by BM( 1
mi
− X̄i, σ

2
i ), and the random

process Qi(t) := Yi(t + d)− Yi(d)− sup0≤s≤t
[
Yi(s + d)−

Yi(d)
]+

is called a reflected Brownian process and is denoted
by RBM( 1

mi
− X̄i, σ

2
i ).

When X̄i > 1
mi

, Qi(t) has a stationary distribution of

an exponential variable with mean σ2
i

2(X̄i− 1
mi

)
[3], and we

say Qi(t) ∼ EXP
( 2(X̄i− 1

mi
)

σ2
i

)
. When X̄i < 1

mi
, Chen

and Yao [4] propose to approximate Qi(t) by a Brownian
motion process Qi(t) ≈ BM( 1

mi
− X̄i, σ

2
i ). In this case,

when t is fixed, Qi(t) is approximated by a Gaussian random
variable with mean Ti( 1

mi
− X̄i) and variance Tiσ2

i , denoted
by N

(
Ti(

1
mi
− X̄i), Tiσ

2
i

)
.

We note that Ui(t) ∼
[
Ai(t)−Ai(t−Ti)

]
−Qi(Ti). Thus,

we can approximate Ui(t) as the following:

Ui(t) ≈


Ti
mi
− EXP

(2(X̄i − 1
mi

)

σ2
i

)
, if X̄i >

1

mi

Ti
mi
−N

(
Ti(

1

mi
− X̄i), Tiσ

2
i

)
, if X̄i <

1

mi

(4)

Eq. (4) shows that Ui(t) can be approximated by random
variables whose distributions depend on the mean and variance
of the delivery process, that is, X̄i and σi. Thus, the long-term
average LoC, which depends on the distributions of [Ui(t)],
can be viewed as a function of [X̄i] and [σi].

V. OPTIMIZATION PROBLEM FORMULATION

Section IV has shown that the problem of minimizing
the total long-term average LoC can be viewed as an opti-
mization problem of choosing the optimal [X̄1, X̄2, . . . , X̄N ]
and [σ1, σ2, . . . , σN ]. In this section, we first establish the
fundamental constraints of [X̄i] and [σi]. We then formulate
the problem as an optimization problem and discuss finding
the optimal [X̄i] and [σi].

A. System Constraints

We first discuss the constraints on [X̄i]. Hou and Kumar
[5] has shown that, under any work-conserving policy that
schedules a transmission in each time slot, we have for all t:

E[

N∑
i=1

Xi(t)−Xi(t− 1)

pi
] = 1. (5)

Thus, we have, under any work-conserving and ergodic
scheduling policies,

N∑
i=1

X̄i

pi
= 1. (6)

.
Next, we derive the constraint for σ2

i . By (5), the se-
quence of {

∑N
i=1

Xi(t)
pi
− t|t = 1, 2, . . . } is a martingale.

By the martingale central limit theorem [6], X̂TOT :=

limk→∞

∑N
i=1

Xi(k)

pi
−k

√
k

is a Gaussian random variable with
mean 0 and variance

σ2
[X̄i]

:= lim
k→∞

1

k

[ k∑
t=1

( N∑
i=1

Xi(t)−Xi(t− 1)

pi

)2]− 1. (7)

Suppose the AP schedules a transmission for flow j
in slot t, then Xj(t) − Xj(t − 1) equals 1 with proba-
bility pj and equals 0 with probability 1 − pj . Further,
Xi(t) − Xi(t − 1) = 0 for all other flows i 6= j. Hence,∑N
i=1

Xi(t)−Xi(t−1)
pi

equals 1
pj

with probability pj , and equals
0 with probability 1 − pj . Further, let γi(t) be the proba-
bility that the system schedules flow i in slot t. Then we
can derive that limk→∞

1
k

[∑k
t=1

(∑N
i=1

Xi(t)−Xi(t−1)
pi

)2]
=

limk→∞
1
k

[∑k
t=1

∑N
i=1 γi(t)

1
pi

]
. Note that, since every trans-

mission for flow i is successful with probability pi, we have
limk→∞

∑k
t=1 γi(t)

k = X̄i
pi

. Therefore, (7) can be written as:

σ2
[X̄i]

=

N∑
i=1

X̄i

p2
i

− 1. (8)

Recall the definition of X̂i := limt→∞
Xi(t)−tX̄i√

t
, we have

X̂TOT =
∑N
i=1

X̂i
pi

, and the variance of X̂i
pi

is
(
σi
pi

)2
. By

Cauchy-Schwarz Inequality, we have:

( N∑
i=1

σi
pi

)2
=
( N∑
i=1

√
V ar(

X̂i

pi
)
)2

=

N∑
i=1

V ar(
X̂i

pi
)

+ 2

N∑
l=1

N∑
m=l+1

√
V ar(

X̂l

pl
)V ar(

X̂m

pm
)

≥
N∑
i=1

V ar(
X̂i

pi
) + 2

N∑
l=1

N∑
m=l+1

Cov(
X̂l

pl
,
X̂m

pm
)

=V ar(

N∑
i=1

X̂i

pi
) = σ2

[X̄i]
, (9)

where V ar(X) denotes the variance of X and Cov(X,Y )
denotes the covariance. Thus, we have the constraint for σi
as:

n∑
i

σi
pi
≥ σ[X̄i] =

√√√√ n∑
i

X̄i

p2
i

− 1. (10)



B. Optimization Problem Formulation

From (4), the distribution Ui(t) is very different in two
different regimes, the regime X̄i > 1

mi
and the regime

X̄i <
1
mi

. When X̄i >
1
mi

, then the rate of delivery is larger
than the rate of update arrival. Hence, we say that the system
operates in the under-sampled regime when X̄i >

1
mi

for all
i. Conversely, we say that the system operates in the over-
sampled regime when X̄i <

1
mi

for all i.
We first discuss the under-sampled regime. From (6), we

know that it is possible to operate in the under-sampled regime
if and only if

∑N
i=1

1
pimi

< 1. In this case, Ui(t) is approxi-

mated by Ti
mi
−EXP (

2(X̄i− 1
mi

)

σ2
i

). Let Θλ(z) := 1− e−λz be
the Cumulative Distribution Function (CDF) of an exponential
variable with mean 1

λ . Then we have

lim
k→∞

∑N
i=1

∑k+Ti
t=Ti+1 Ci

(
qiTi − Ui(t)

)
k

(11)

= lim
k→∞

N∑
i=1

E
[
Ci
(
qiTi − Ui(t)

)]
(12)

≈
N∑
i=1

E
[
Ci

(
qiTi −

Ti
mi

+ EXP
(2(X̄i − 1

mi
)

σ2
i

))]
(13)

=

N∑
i=1

∫
z

Ci
(
z − (

1

mi
− qi)Ti

)
dΘ 2(X̄i−

1
mi

)

σ2
i

(z). (14)

The problem of minimizing the total LoC in the under-
sampled regime is to find [X̄i] and [σi] that minimize (14),
subject to (6) and (10).

Next, we discuss the over-sampled regime, which can hap-
pen when

∑N
i=1

1
pimi

> 1. In this case, Ui(t) is approximated
by Ti

mi
−N

(
Ti(

1
mi
−X̄i), Tiσ

2
i

)
. Let φ(z) represents the CDF

of a random variable under standard Normal distribution, then
the CDF of {Ûi(t)− TiX̄i} is φ( z√

Tiσ2
i

). Then we have:

lim
k→∞

∑N
i=1

∑k+Ti
t=Ti+1 Ci

(
qiTi − Ui(t)

)
k

(15)

= lim
k→∞

N∑
i=1

E
[
Ci
(
qiTi − Ui(t)

)]
(16)

≈
N∑
i=1

E
[
Ci

(
qiTi − TiX̄i + TiX̄i −N

(
TiX̄i, Tiσ

2
i

))]
(17)

=

N∑
i=1

∫
z

Ci
(√

Tiσ2
i z − (X̄i − qi)Ti

)
dφ(z). (18)

The problem of minimizing the total LoC in the over-
sampled regime is to find [X̄i] and [σi] that minimize (18),
subject to (6) and (10).

C. Obtaining the Optimal Solution

A challenge in finding the optimal [X̄i] and [σi] is that the
objective functions (14) and (18) both involve integrals. We
propose using the Monte Carlo Method (MCM) [7] to address

this challenge. For the under-sampled regime, since the rate λi
of EXP (λi) of each flow i involves both the control variables
X̄i and σi, we further convert (14) into the following form to
obtain EXP (1):

N∑
i=1

∫
z

Ci
(
z − (

1

mi
− qi)Ti

)
dΘ 2(X̄i−

1
mi

)

σ2
i

(z)

=

N∑
i=1

∫
y

Ci
( yσ2

i

2(X̄i − 1
mi

)
− (

1

mi
− qi)Ti

)
dΘ1(y), (19)

where y =
2(X̄i− 1

mi
)

σ2
i

z. Then we can apply the Monte
Carlo Method and generate K random numbers using the
exponential distribution with rate 1 for each 1 ≤ i ≤ N , which
are denoted by yi,1, yi,2, . . . , yi,K . The objective function (19)
can then be approximated by

∑N
i=1

1
K

∑K
k=1 Ci(

yi,kσ
2
i

2(X̄i− 1
mi

)
−

( 1
mi
− qi)Ti), and the problem of minimizing the total LoC

can be written as

Min
N∑
i=1

1

K

K∑
k=1

Ci
( yi,kσ

2
i

2(X̄i − 1
mi

)
− (

1

mi
− qi)Ti

)
(20)

s.t.

N∑
i=1

X̄i

pi
= 1 (21)

N∑
i=1

σi
pi
≥ σ[X̄i] =

√√√√ N∑
i=1

X̄i

p2
i

− 1 (22)

X̄i ≥ 0 and σi ≥ 0, ∀i. (23)

The above problem is a well-defined optimization problem,
and we can apply standard techniques to find the optimal [X̄i]
and [σi].

Similarly, for the over-sampled regime, we generate K ran-
dom numbers using the Normal distribution N (0, 1) for each
1 ≤ i ≤ N , which are denoted again by zi,1, zi,2, . . . , zi,K .
Then we approximate (18) by

∑N
i=1

1
K

∑K
k=1 Ci

(√
Tiσ2

i zi,k−
(X̄i − qi)Ti

)
. The problem of minimizing the total LoC can

be written as

Min

N∑
i=1

1

K

K∑
k=1

Ci
(√

Tiσ2
i zi,k − (X̄i − qi)Ti

)
(24)

s.t.

N∑
i=1

X̄i

pi
= 1 (25)

N∑
i=1

σi
pi
≥ σ[X̄i] =

√√√√ N∑
i=1

X̄i

p2
i

− 1 (26)

X̄i ≥ 0 and σi ≥ 0, ∀i. (27)

VI. ONLINE SCHEDULING POLICY

Section V has shown how to find the optimal [X̄i] and [σi]
to minimize the total LoC. Let [X̄∗i ] and [σ∗i ] be the optimal
solution. It remains to find a scheduling policy that ensures
that the mean and the variance of the update delivery process
Xi(t) are indeed X̄∗i and σ∗2i . In this section, we propose such
an online scheduling policy.



We first introduce some notations before we propose and
analyze our policy. Let di(t) := tX̄i

∗−Xi(t)
pi

denote the deficit
of flow i in slot t. Consequently, we define ∆di(t) := di(t+

1)− di(t) =
X̄∗i
pi
− Xi(t+1)−Xi(t)

pi
as the change of the deficit

in a slot.
We are now ready to propose our policy, which is called

Variance-Weighted-Deficit-First (VWDF) policy. The VWDF
policy assigns a weight of vi := pi

σ∗i
to each flow i. In each

time slot t, the VWDF policy schedules the client with the
largest vidi(t) for transmission.

Let D(t) :=
∑N
i=1 di(t)∑N
i=1 1/vi

be the weighted average of vidi(t).
We first establish the following theorem.

Theorem 2. Under VWDF policy, the Markov process with
state vector {vidi(t)−D(t)} is positive recurrent.

Proof. By the design of our VWDF policy, at the beginning
of each time slot t, the flow with largest vidi(t) will be
transmitted at this slot. We use rt to represent the flow that
has the largest vidi(t) at time t, hence this flow rt has
vrtdrt(t) ≥ vidi(t) for all i. Since a transmission for flow rt is
successful with probability prt , we have ∆drt(t) =

X̄∗rt
prt
− 1
prt

with probability prt and ∆drt(t) =
X̄∗rt
prt

with probability

1−prt . For all other flows i 6= rt, ∆di(t) =
X̄∗i
pi

. Then we have

the expectation as E[∆drt(t)] =
X̄∗rt
prt
−1 and E[∆di(t)] =

X̄∗i
pi

for i 6= rt. This also gives:

N∑
i=1

E
[
∆di(t)

]
=

N∑
i=1

X̄∗i
pi
− 1 = 0. (28)

Similarly, let ∆D(t) := D(t + 1) − D(t). Following the
above result, we also have:

E
[
∆D(t)

]
= E

[∑N
i=1(di(t+ 1)− di(t))∑N

i=1
1
vi

]
= 0. (29)

Define the Lyapunov function L(t) = 1
2

∑N
i=1

1
vi

(vidi(t)−
D(t))2, and we have the derivation for the Lyapunov drift
when given the state at t:

∆L(t) = E[L(t+ 1)− L(t)]

= E
[1

2

N∑
i=1

1

vi

(
vidi(t+ 1)−D(t+ 1)

)2
− 1

2

N∑
i=1

1

vi

(
vidi(t)−D(t)

)2
]

= β + E
[ N∑
i=1

vidi(t)∆di(t)−
N∑
i=1

D(t)∆di(t)
]

− E
[
∆D(t)

N∑
i=1

di(t)−∆D(t)

N∑
i=1

di(t)
]

(30)

where β is a bounded positive number, and (30) is from the
definition of D(t).

Since we have E[∆drt(t)] =
X̄∗rt
prt
−1, E[∆di(t)] =

X̄∗i
pi

for

i 6= rt,
∑N
i=1E[∆di(t)] = 0, and E[∆di(t)] = 0, we further

have:

∆L(t) ≤ β +

N∑
i=1

X̄∗i
pi

(
vidi(t)− vrtdrt(t)

)
. (31)

By the design of VWDF policy, vrtdrt(t) ≥ vidi(t), for all
i 6= rt. Suppose, at time t, max1≤i≤N |vidi(t) − D(t)| >
δ, for some positive δ. Then, there exists a flow i′t with

vi′tdi′t(t) − vrtdrt(t) < −δ, and hence ∆L(t) < β − δ
X̄∗
i′t

pi′t
.

By choosing δ to be larger than 2βpi
X̄∗i

, we have ∆L(t) < −β
if max1≤i≤N |vidi(t) − D(t)| > δ. Therefore, by Foster-
Lyapunov Theorem, we have {vidi(t) − D(t)} is positive
recurrent.

Since the Markov process {vidi(t) − D(t)} is pos-
itive recurrent, it has a stationary distribution. Hence,
limk→∞

vidi(k)−D(k)
k → 0, and limk→∞

vidi(k)−D(k)√
k

→ 0,
for all i.

Moreover,

lim
k→∞

D(k)

k
= lim
k→∞

∑N
i=1

kX̄∗i −Xi(k)
pi

k
∑N
i=1

1
vi

= lim
k→∞

∑N
i=1

X̄∗i
pi
−
∑N
i=1

Xi(k)
kpi∑N

i=1
1
vi

= 0. (32)

Then, we have the following:

lim
k→∞

vidi(k)

k
= lim
k→∞

vi
kX̄∗i −Xi(k)

kpi

= vi
X̄∗i
pi
− vi lim

k→∞

Xi(k)

kpi
= 0, (33)

and hence, X̄i = X̄∗i .
Next, recall the definition X̂i := limk→∞

Xi(k)−kX̄i√
k

and

X̂TOT := limk→∞

∑N
i=1

Xi(k)

pi
−k

√
k

. Hence, we have:

lim
k→∞

vidi(k)√
k

= lim
k→∞

vi
(
kX̄∗i −Xi(k)

)
pi
√
k

= −vi
pi
X̂i, (34)

and

lim
k→∞

D(k)√
k

= lim
k→∞

∑N
i=1 di(k)

√
k
∑N
i=1

1
vi

= lim
k→∞

∑N
i=1

kX̄∗i
pi
−
∑N
i=1

Xi(k)
pi√

k
∑N
i=1

1
vi

= − lim
k→∞

∑N
i=1

Xi(k)
pi
− k

√
k
∑N
i=1

1
vi

= − X̂TOT∑N
i=1

1
vi

. (35)

By definition, the variance of (34) is v2
i

p2
i
σ2
i =

σ2
i

σ∗2i
and the

variance of (35) is
σ2

[X̄i]

(
∑N
i=1

1
vi

)2 =
σ2

[X̄i]

(
∑N
i=1

σ∗
i
pi

)2
. Since [X∗i ] and

[σ∗i ] is the optimal solution to the optimization problem of
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Fig. 2. The over-sampled and heavily-loaded system

minimizing either (14) or (18), subject to (6) and (10) and the
objective function is increasing in [σ∗i ], we have

∑N
i=1

σ∗i
pi

=
σ[X̄i], and the variance of (35) is 1. As (34) and (35) have the
same variance, we have σi = σ∗i , for all i.

In summary, we have:

Theorem 3. Under the VWDF policy, X̄i = X̄∗i and σi = σ∗i ,
for all i. �

Since [X̄∗i ] and [σ∗i ] are the optimal vectors that minimize
system-wide total LoC under the Brownian approximation,
Theorem 3 implies that the VWDF policy is the optimal
scheduling policy. We note that the VWDF policy makes
scheduling decisions only based on the deficit of each flow.
In particular, the VWDF policy does not keep track of the
number of undelivered useful updates that each flow has.
Such a feature makes it very easy to implement the VWDF
policy. It is also surprising that the VWDF policy is able to
minimize the total LoC, which depends on the number of
useful information updates, without any knowledge about the
usefulness of individual updates.

VII. SIMULATION RESULTS

We present our simulation results in this section. We have
tested our VWDF policy and compared it with with two other
state-of-the-art policies in NS-2 simulation. All simulations
are performed under 802.11 MAC protocol with 54Mbps data
rate. Simulations show that the time needed for the AP to
schedule a transmission and receive an information update is
813µs. All results presented in this paper are average in 100
runs.

We compare our VWDF policy against two other policies.
The first policy is the Largest Debt First (LDF) policy from [5],
[8], which schedules the flow withe largest qit−Xi(t) in each
time slot. The main difference between the LDF policy and our
VWDF policy is that the LDF policy does not weigh the deficit
of each flow by its variance. The second policy is a policy
aiming to minimize AoI under some throughput constraints
[9]. Under our model, the policy schedules the flow with the
largest sum of qit−Xi(t) and AoI in each time slot. Hence,
we call this policy MW-AoI in the following simulations. In
all policies, each flow sends status updates using LIFO.

In our simulations, there are eight wireless flows, which are
divided into two groups. The first four flows are in the first

group with Ci(qiTi − Ui(t)) = (qiTi − Ui(t))
2. The other

four flows are in the second group with Ci(qiTi − Ui(t)) =
eqiTi−Ui(t) − (qiTi − Ui(t))− 1.

We evaluate the performance under four scenarios operating
in very different regimes:

• Over-sampled and heavily-loaded system: This setting
has X̄i <

1
mi

, for all i, and
∑N
i=1

qi
pi

= 1. Specifically,
we choose [pi] = [0.65, 0.65, 0.7, 0.7, 0.75, 0.75, 0.8, 0.8],
[qi] = [0.13, 0.065, 0.14, 0.07, 0.075, 0.075, 0.08, 0.08],
[mi] = [5, 5, 5, 5, 8, 8, 8, 8], and [Ti] =
[200, 200, 200, 200, 500, 500, 500, 500].

• Over-sampled and over-loaded system: This setting has
X̄i <

1
mi

, for all i, and
∑N
i=1

qi
pi

= 1.1 > 1. Specifically,
we choose [pi] and [mi] to be the same as the first system,
[qi] = [0.1625, 0.0975, 0.14, 0.07, 0.075, 0.075, 0.08, 0.08],
and [Ti] = [400, 400, 400, 400, 300, 300, 300, 300].

• Over-sampled and under-loaded system: This setting has
X̄i <

1
mi

, for all i, and
∑N
i=1

qi
pi

= 0.95 < 1. Specifically,
we choose [pi] and [mi] to be the same as the first system,
[qi] = [0.0975, 0.065, 0.14, 0.07, 0.075, 0.075, 0.08, 0.08],
and [Ti] = [400, 400, 400, 400, 300, 300, 300, 300].

• Under-sampled system: This setting has X̄i >
1
mi

, for all
i. Specifically, we choose pi = 0.52, qi = 0.0625, mi = 16,
and Ti = 400, for all i.

For all these four systems, we evaluate the average total
LoC incurred in every 100 time slots. We also plot the target
optimal value obtained by solving the optimization problems.
Moreover, to evaluate whether our VWDF converges to the
desirable X̄∗i and σ∗i , we also evaluate the total deviation
from the desirable values, namely, 1

N

∑N
i=1 |

X̄i−X̄∗i
X̄∗i

| and
1
N

∑N
i=1 |

σi−σ∗i
σ∗i
|.

The simulation results for the four systems are shown in
Fig. 2, 3, 4, and 5. It can be observed that our VWDF policy
achieves the smallest total LoC among all three evaluated
policies in all systems. The total LoC of VWDF is also very
close to the target optimal value. Moreover, it can be observed
that the empirical values of X̄i and σi converge to the target
values X̄∗i and σ∗i typically within 500 time slots, which,
under our network setting, is less than 0.5 second. These result
suggest that VWDF not only has good performance but also
fast convergence rate.

Next, we evaluate the performance of VWDF under differ-
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ent queueing disciplines. In addition to LIFO, we also evaluate
two other queueing discipline. The first one is First-In-First-
Out (FIFO), where each flow sends the oldest undelivered
status update every time it receives a POLL message. The
second is a variation of FIFO where each flow drops status
updates that have become stale, and sends the oldest useful
status update every time it receives a POLL message. This
discipline, which we call FIFO-useful-only, is effectively the
same as the Earliest-Deadline-First (EDF) policy.

We evaluate these queueing discipline under the four sys-
tems describe above. The results are shown in Fig. 6. Clearly,
LIFO significantly outperforms the other two queueing disci-
pline. It is well-known that the EDF policy is optimal when
the goal is to maximize the number of timely deliveries in
real-time wireless networks. The result that FIFO-useful-only
performs so poorly also highlight that there are fundamental
differences between real-time wireless networks and informa-
tion update systems.

VIII. RELATED WORK

Information update systems have gained a lot of research
interests in the recent years, as many emerging wireless
applications require real-time status updates. One state-of-the-
art performance metric is Age-of-Information (AoI), which
focuses on the elapsed time of last delivery. There have been
a lot of studies on the optimizaiton of AoI. Kadota et.al
[10] consider the multiple real-time flows with unreliable
channel. Further, Kadota, Sinha and Modiano [9] propose
a scheduling policy to optimize the AoI when guaranteeing
some throughput requirements. Zheng, Zhou and Niu [11]
model the estimation error along timeliness and propose the
Urgency of Information (UoI) as a new performance metric
that can be viewed as the non-linear AoI problems. Li, Li
and Hou [12] analyze different sampling behavior and propose
a guideline for AoI minimizing policy in general sampling
and remote estimation problems. Kam et al. in [13] and [14]
propose the concept of Effective AoI to capture the estimation
error extended from AoI for a Markov source. Yin et al.
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Fig. 6. The LoC of Three Buffer Strategies

[15] propose a proactive scheduling policy that takes some
user‘s request patterns into account. Tsai and Wang [16]
propose a framework for controller side AoI problem and
sensor side remote estimation problem under random 2-way
delay. However, the AoI only focuses on the information from
the last delivery. On the contrary, our work considers not only
the freshness of the information but also the quantity of fresh
information updates.

Another related performance metric is timely-throughput,
which is defined as the long-term average of timely deliveries.
Hou, Borkar and Kumar [5] first propose a frame-based model
for the real-time wireless networks and captures the delay
constraints of wireless flows. This model has been extended
into many directions. Tsanikidis and Ghaderi [17] recently
propose a randomized policy to improve the deliver ratio in the
frame-based model. Chen and Huang [18] derive a Markov De-
cision Process solution for optimizing the timely-throughput
and quantify the improvement when applying the predictive
scheduling policy. An important limitation of these studies
is that they only consider the long-term average of timely
deliveries and ignore short-term fluctuations. Capturing short-
term fluctuations is in particular relevant to information update
systems. Singh, Hou and Kumar [19] study the fluctuation
of the timely-throughput. Hou [20] and Guo and Hou [21]
consider systems where the instantaneous performance of a
flow depends on the number of recent timely deliveries, and
propose scheduling policies that aim to optimize the system.

IX. CONCLUSION

We have studied a remote sensing problem and built a model
to catch the estimation accuracy when the control center needs

to make a estimation of current status then make a appropriate
decision. This model considers both the freshness of the
information update and the quantity requirements of real-
time wireless flows. Through Brownian motion approximation,
we approximate the process of the fresh information update
as a Reflected Brownian motion. Moreover, the model of
the real-time estimation accuracy is described as an opti-
mization problem with the constrains in the averages and
temporal variances of the delivery process. We then propose
a simple online scheduling policy that employs the optimal
averages and variances to achieve the optimal system-wide
performance. We also perform comprehensive simulations to
show that our scheduling policy converges fast to the optimal
averages and variances and outperforms the other two state-
of-the-art policies: the LDF policy and the MW-AoI policy.
Moreover, our policy does not require any knowledge about
the freshness of each information update, and is shown to
successfully capture the estimation performance depends on
data freshness.
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