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Bypassing the computational bottleneck of quantum-embedding theories
for strong electron correlations with machine learning
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A cardinal obstacle to performing quantum-mechanical simulations of strongly correlated matter is that,
with the theoretical tools presently available, sufficiently accurate computations are often too expensive to be
ever feasible. Here we design a computational framework combining quantum-embedding (QE) methods with
machine learning. This allows us to bypass altogether the most computationally expensive components of QE
algorithms, making their overall cost comparable to bare density functional theory. We perform benchmark
calculations of a series of actinide systems, where our method accurately describes the correlation effects,
reducing by orders of magnitude the computational cost. We argue that, by producing a larger-scale set of training
data, it will be possible to apply our method to systems with arbitrary stoichiometries and crystal structures,
paving the way to virtually infinite applications in condensed matter physics, chemistry, and materials science.
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I. INTRODUCTION

The atomic energy scales emerging in “strongly correlated”
systems [1–3] can induce a broad spectrum of spectacular
effects, ranging from arresting the electronic motion [1] to
causing high-temperature superconductivity [4], unlocking
access to new topological phases and dramatically influencing
the potential-energy surfaces (PES) of molecules and solids
[5–10]. Therefore, the need and the potential effects for sci-
ence and society of extending to strongly correlated systems
the computational materials-by-design paradigm can hardly
be overstated [2]. The substantial progress achieved in the
past decade in calculating the electronic structure of strongly
correlated materials is largely owed to the idea of combining
mean-field (MF) theories, such as approximations to density
functional theory (DFT) [11–17] with quantum-embedding
(QE) [2,18,19] theoretical frameworks. Well-known examples
are dynamical mean-field theory (DMFT) [20–27] and den-
sity matrix embedding theory (DMET) [28,29]. As shown
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in Ref. [30], also the multiorbital Gutzwiller approximation
(GA) [30–34], which is a variational framework [equivalent
to the rotationally invariant slave boson (RISB) [35–37] at the
MF level [38,39]], can be formulated as a QE scheme fea-
turing recursive ground-state calculations of impurity models
with a finite bath called “embedding Hamiltonians” (EHs).
Therefore, even if the principles underlying E = DMFT, GA,
RISB, DMET are very different, the concept of QE allows us
to formalize and implement these techniques from a unified
perspective [30,40,41].

The fundamental idea underlying all QE theoretical frame-
works consists in replacing the original (typically unfeasible)
problem of directly simulating these systems with the more
manageable task of solving equations for a series of EHs,
composed by fractions of the material (impurities) and
effective-medium degrees of freedom (self-consistently deter-
mined for describing the interaction of the impurities with
their environment). The current state-of-the-art approach to
tackle QE simulations is based on solving the EH equations
recursively utilizing many-body techniques [42–45]. On the
other hand, due to the quantum-mechanical nature of the EH,
its solution ultimately has a computational cost that grows ex-
ponentially with the number of impurity degrees of freedom.
Because of this reason, the practical application of these tools
to complex materials is often too computationally demanding
to ever be feasible.

Here we show that this problem can be efficiently tackled
from a completely different perspective: capitalizing on the
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fact that the form of the EH is universal (i.e., it does not
depend on the specific stoichiometry and crystal structure of
the material considered), we bypass altogether the computa-
tionally expensive recursive solution of the EH by “training
a machine” to solve this problem once and for all. To ac-
complish this goal, we develop a computational framework
combining machine-learning (ML) techniques, such as ‘kernel
ridge regression” (KRR), with a mathematical method named
“n-mode representation” [46,47]—previously used for effec-
tively reducing the dimensionality of large-scale regression
problems (e.g., for reducing the number of points required
for constructing high-dimensional PESs in quantum chemistry
[48,49]).

Note the fundamentally different nature of our method,
which employs ML inside the solution of the full quantum
problem, with respect to the many current uses of ML for
learning preexisting solutions [50] (e.g., for applications to
different materials and structures).

We illustrate the power of our method by performing
benchmark calculations of a series of actinides. In particular,
utilizing our method, we were able to calculate—at a com-
putational cost comparable to bare DFT—the discontinuous
behavior of the equilibrium volumes of the actindes as a func-
tion of their atomic number Z (actinide transition) [51], which
is a phenomenon originated by a complex interplay between
structural degrees of freedom, relativistic effects, atom- and
orbital-selective electron correlations [30,52–55].

II. QE ALGORITHMIC STRUCTURE

The problem of applying QE methodologies (such as the
DFT+E methods) to realistic solids and molecules ultimately
reduces to solving recursively multiorbital Hamiltonians rep-
resented as follows:

Ĥ =
∑
k

η∑
i j=1

Mi∑
α=1

Mj∑
β=1

ε
αβ

k,i j c
†
kiαck jβ +

∑
Ri

Ĥloc
Ri ; (1)

where k is the momentum conjugate to the unit-cell label
R, the electronic shells of the atoms within the unit cell are
labeled by i, j = 1, . . . , η, and the corresponding spin or-
bitals are labeled by α = 1, . . . ,Mi, β = 1, . . . ,Mj . For later
convenience, with no loss of generality, we assume that the
first term is nonlocal (i.e., that

∑
k εk,ii = 0 ∀ i) and that Ĥloc

includes both the one-body and the two-body local parts of Ĥ:

Ĥloc
Ri =

Mi∑
αβ=1

[Ei]αβ c
†
RiαcRiβ + Ĥint

Ri[Ui, Ji], (2)

where Ei describe the on-site energies [such as the crystal-
field energies and the spin-orbit coupling (SOC)] and Ĥint

Ri
depends on the Slater-Condon parameters [56], i.e., the
Hubbard interaction strength Ui and the Hund’s coupling
constant Ji.

The basic algorithmic structure of all QE methods to solve
the Hamiltonian [Eq. (1)] is schematically illustrated in the
left side of Fig. 1. A series of EHs, represented as

Ĥemb
Ri [Ui, Ji,Ei, xi] = Ĥloc

Ri [Ui, Ji,Ei] + B̂Ri(xi ), (3)

FIG. 1. Algorithmic structure of QE implementations. Standard
approach (left): each iteration requires one to solve numerically the
EH and calculate the observables F (X ) for different descriptors X .
Proposed approach (right): a ML algorithm, previously trained to
learn the universal function F (X ), allows us to bypass the compu-
tation of the EH.

is constructed for describing the coupling of the impurity
with its environment in a MF fashion. Here B̂Ri(xi ) represents
an effective medium coupled with the subsystem (impurity)
[Eq. (2)], which is encoded in a series of parameters xi.
Determining the self-consistent parameters xi requires one to
calculate multiple times a series of quantities (varying for
different QE methodologies) for the Hamiltonian in Eq. (3),
that we schematically represent as Fi.

For concreteness, here we focus on the GA. As shown
in Refs. [30,37] (see also the Supplemental material [57],
including Refs. [58,59]), this method can be regarded as a QE
framework where

B̂Ri =
Mi∑

aα=1

(
[Di]aαc

†
iα fia + H.c.

) +
Mi∑

ab=1

[
λc
i

]
ab fib f

†
ia, (4)

Di, λ
c
i are complex Mi × Mi matrices encoding the environ-

ment of the impurity i, the latin labels a, b correspond to the
bath degrees of freedom f , and the output function Fi is the
single-particle density matrix:

[Fi]AB = 〈�i|[ψ†
i ]A[ψi ]B|�i〉, (5)

where |�i〉 is the ground state of Eq. (3),

ψi = (
ci1, . . . , ciMi , fi1, . . . , fiMi

)
(6)

and the labels A,B = 1, . . . , 2Mi run over both the impurity
and the bath degrees of freedom. Therefore, consistently with
the general algorithmic structure schematically represented
in the left side of Fig. 1, solving the GA equations requires
one to evaluate recursively Eq. (5) as a function of the EH
descriptors:

Xi = (Ui, Ji,Ei, xi ), (7)

xi = (Di, λ
c
i ). (8)

To simplify the notation, from now on we will omit the
electronic-shell label i.
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Computational complexity of the EH problem

In GA ab initio calculations it is typically necessary to
deal with impurities consisting of M = 10 degrees of freedom
(for d-electron shells) or M = 14 degrees of freedom (for
f -electron shells). Since the bath of the EH has the same
number of degrees of freedom as the impurity [see Eq. (4)],
the dimension of the EH space is D = 22M .

Note that the dimension of the EH system scales as D =
22M also in DMET. In fact, the differences between these two
methods stem exclusively from their different self-consistency
conditions [30,40,41]. Within the ghost GA framework (g-
GA), which is a more accurate extension of the GA [34],
the number of effective-medium degrees of freedom is still
finite, but larger than bare GA. Therefore, the dimension D
of the EH system is exponentially higher. Finally, in DMFT
[20] the number of effective-medium degrees of freedom (and,
therefore, the EH dimension D) is infinite.

In all of the theoretical tools mentioned above, the com-
putational bottleneck is solving recursively the EH equations.
In fact, this is the only reason why the cost of QE methods
generally exceeds by orders of magnitude the cost of mean-
field approaches, such as classic approximations to DFT. The
computational framework described in the next section will
allow us to bypass altogether this problem.

III. COMBINING ML WITH THE N-MODE
REPRESENTATION

Rather than trying to develop more efficient computational
tools for solving the EH equations, in this work we will cap-
italize on the universality of the function [Eq. (5)], utilizing
KRR and the n-mode expansion for learning it once and for
all (see the right side of Fig. 1).

The strategy of utilizing ML for bypassing expensive cal-
culations of universal maps, often referred to as “surrogate
modeling,” is widely used in physics, chemistry, and materials
science [60–66]. The main obstacle to applying classic ML
algorithms (such as KRR) for learning multivariable functions
is that it requires a number of training data points that scales
as

N ∼ md , (9)

where d is the number of input variables and m is the number
of mesh subdivisions for each dimension. This problem is
often referred to as the “exponential curse.” Without use of
symmetry, the number of input variables in F (X ) in Eq. (5)
is d = 1 + 4M2, which is 401 for d-electron shells and 785
for f -electron shells. Therefore, direct applications of ML
methods would be extremely costly for learning this function.

To overcome this problem, here we combine KRR with
the “n-mode representation,” which is a technique previously
explored in different contexts (and under different names),
e.g., for reducing the number of points required to construct
high-dimensional PESs [46,48,49,67] and for facilitating the
solution of the Schrödinger equation in quantum chemi-
cal methods [68,69]. The basic idea underlying the n-mode
representation is to construct approximations to the high-
dimensional function F (X ) in terms of the so-called “cut

FIG. 2. Representation of the proposed nKRR approach. The
universal EH function F (X ) is approximated with the n-mode rep-
resentation up to the desired order n (e.g., n = 2 in the picture). The
KRR method is used to fit the corresponding lower-dimensional cut
functions, which are recombined into an approximation to F (X ).

functions,” such as

F 0 = F (0, 0, . . . , 0, 0, 0, . . . , 0, 0, 0, . . . , 0),

F 1
i (Xi ) = F (0, 0, . . . , 0,Xi, 0, . . . , 0, 0, 0, . . . , 0),

F 2
i j (Xi,Xj ) = F (0, 0, . . . , 0,Xi, 0, . . . , 0,Xj, 0 . . . , 0), (10)

which are the restrictions of F (X ) to hyperplanes where sub-
sets of the components of X are set to 0. At a given order
n of the expansion, F (X ) is approximated utilizing only cut
functions of up to n variables. The exact function is recovered
when n equals the total number of variables d , and the series
converges very rapidly as a function of n in many relevant
cases [46,48,49,67–69].

Within our context of application, the main consequence of
the n-mode expansion is that, since the effective dimensional-
ity is limited to that of the needed order n, the input-output
mapping can be determined with a number of data points that
scales only as

N (n) ∼ dn, (11)

i.e., it scales polynomially as a function of d , rather than ex-
ponentially [Eq. (9)]. Specifically, the hereby proposed nKRR
methodology consists of the following steps:

(1) Breaking down the universal functions F (X ) in lower-
dimensional cut functions, using the n-mode expansion.

(2) Learning the corresponding lower-dimensional cut
functions, up to the desired order, using KRR.

(3) Combining the cut functions into the desired n-mode
approximation.

A schematic representation of this approach is shown in
Fig. 2. For completeness, a short introduction to the KRR
method and the n-mode representation is provided in the
Supplemental Material [57] (including Refs. [70–74]).

We point out that, as opposed to other dimensionality-
reduction techniques (where the number of input variables is
decreased), the nKRR method allows us to take into account
from the outset all descriptors of the EH system, in a manner
such that the effective dimensionality is substantially reduced.
In the next section we will also capitalize on general physical
arguments inherent in the specific structure of Eq. (4). This
will allow us to derive a convenient parametrization of the
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EH in DFT+GA calculations, dramatically speeding up the
convergence of the n-mode representation.

We want to point out that, besides the GA, the nKRR
methodology described above could as well be implemented
in combination with DMET or more accurate QE methods,
such as the g-GA [34] and DMFT.

IV. APPLICATION TO ACTINIDE SYSTEMS

Here we describe in detail our implementation of the nKRR
method for actinide systems. For simplicity, we will focus on
the case of a generic EH consisting of f -electron shells in an
isotropic medium, which is typically a good approximation
for actinide systems, where the dominant role of the SOC
allows us to average over the crystal-field splittings. Under
these assumptions, using group-theoretical considerations, it
can be shown [37,75] that the 14 × 14 matrices E ,D, λc are
diagonal and fully determined by their respective j = 5/2 and
j = 7/2 components Ej,D j, λ

c
j , where j is the label of the

total angular momentum for an f -electron shell. Furthermore,
as discussed in the Supplemental Material [57], the conserva-
tion of the total number of electrons implies that the trace of
the single-particle density matrix of the EH is M. Therefore,
the only independent descriptors of the EH are the interaction
parameters U, J and the following variables:

X1 = 1
4

(
E5/2 + E7/2 + λc

5/2 + λc
7/2

)
,

X2 = 1
2 (E5/2 − E7/2),

X3 = 1
2

(
λc

5/2 − λc
7/2

)
,

X4 = D5/2,

X5 = D7/2. (12)

In fact, with no loss of generality, we can set
∑

j∈{5/2,7/2}(Ej −
λc
j ) = 0, as changing this variable corresponds to applying a

chemical-potential shift in Eq. (4) (which would be redundant,
as the number of electrons M in the EH is fixed).

Furthermore, the behavior of F (X ) [Eq. (5)] is fully deter-
mined by the following functions:

F1 = 1

4

∑
j=5/2,7/2

j∑
jz=− j

(〈
ĉ†
j jz
ĉ j jz

〉 − 〈
f̂ †
j jz
f̂ j jz

〉)
,

F2 = 1

2

⎛
⎝

5/2∑
jz=−5/2

〈
ĉ†

(5/2) jz
ĉ(5/2) jz

〉 −
7/2∑

jz=−7/2

〈
ĉ†

(7/2) jz
ĉ(7/2) jz

〉
⎞
⎠,

F3 = 1

2

⎛
⎝

5/2∑
jz=−5/2

〈
f̂ †
(5/2) jz

f̂(5/2) jz

〉 −
7/2∑

jz=−7/2

〈
f̂ †
(7/2) jz

f̂(7/2) jz

〉
⎞
⎠,

F4 = 1

2

⎛
⎝

5/2∑
jz=−5/2

〈
ĉ†

(5/2) jz
f̂(5/2) jz

〉 +
7/2∑

jz=−7/2

〈
ĉ†

(7/2) jz
f̂(7/2) jz

〉
⎞
⎠,

F5 = 1

2

⎛
⎝

5/2∑
jz=−5/2

〈
ĉ†

(5/2) jz
f̂(5/2) jz

〉 −
7/2∑

jz=−7/2

〈
ĉ†

(7/2) jz
f̂(7/2) jz

〉
⎞
⎠,

(13)

FIG. 3. Behavior of F1(X1, 0, . . . , 0), representing the occupa-
tion of the impurity for an EH disentangled from the bath site. The
mid values of X1 of the plateaus are used to set the values of x̄1 for
all actinides considered.

where jz is the quantum label of the third component of the
total angular momentum for each j.

Consistently with Ref. [30], here we set the screened Hub-
bard interactionU = 4.5 eV and the Hund’s coupling constant
J = 0.36 eV. Therefore, the only free embedding descriptors
are X1, . . . ,X5.

Parametrization of F(X ) and training data set

In this section we describe in detail our procedure for
setting up the nKRR method that we are going to utilize for
performing DFT+GA calculations of systems involving Pa,
U, Np, Pu, and Am.

As pointed out in the Supplemental Material [57], the
speed of convergence of the n-mode representation can be im-
proved by a suitable change of variables, as (by construction)
the accuracy of the approximation tends to be higher in the
proximity of the domain of the cut functions utilized at the
chosen order of truncation. Furthermore, it is pivotal to ensure
that the grid of training data points utilized for learning the cut
functions [Eq. (10)] is sufficiently large, as ML methods can
be predictive only within the training-data range.

It is particularly convenient for our applications to exploit
the possibility of expressing the function of Eq. (13) in terms
of shifted variables:

Y = X − X̄ . (14)

For setting up the components of X̄ and the training data set
we utilized the following procedure, which is based on phys-
ical considerations inherent in the properties of the atomic
impurities of interest.

To determine X̄1, we have precalculated the behavior of
F1 as a function of X1, at fixed Xj = 0 ∀ j = 2, . . . , 5. Note
that, in this limit, the impurity Ĥloc is isolated from the bath.
Therefore, the values of F1 are quantized and correspond to the
nominal (integer) f -electron occupations along the actinide
series. For each actinide, we have set X̄1 as the middle point
of the interval of X1 values such that F1(X1, 0, . . . ., 0) equals
the corresponding nominal occupation (see Fig. 3). We note
that X2 describes the impurity SOC, which is essentially an
atomic property, i.e., it is typically almost independent of the
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FIG. 4. Panel (a): GA+nKRR (n = 3) and GA+ED equilibrium volumes of the low-temperature allotropes of Pa, U, Np, Pu, Am; in
comparison with bare LDA and the experimental values. Panels (b1)–(b5): Corresponding GA+nKRR (n = 1, 2, 3), GA+ED, and LDA
energy-volume curves. The vertical blue dashed lines indicate the experimental equilibrium volumes. Within the discrete mesh of volumes
considered, the GA+nKRR (n = 3) and GA+ED minima correspond to the same equilibrium points [panel (a)].

environment in DFT and DFT+GA calculations. Therefore,
for each actinide we have set X̄2 based on the nominal atomic
values, which we precalculated using the local-density ap-
proximation (LDA). Since X3,X4,X5 describe the EH bath
and its coupling with the impurity, their range is generally
system dependent. Therefore, the choice of X̄3, X̄4, X̄5 is es-
sentially arbitrary. In our calculations we have set them based
on a single DFT+GA calculation of δ-Pu at its experimental
equilibrium volume.

The range of the training data set was estimated by per-
forming LDA+GA calculations of δ-Pu at ±35% of its
experimental equilibrium volume. This choice proved to be
sufficient for performing all calculations performed in this
work. Note that our implementation interactively queries the
user if EH parameters beyond the training range are explored
in a calculation. Whenever this happens, new training data can
be generated and stored in a database. This type of iterative
supervised learning, which is often called “active learning
procedure,” allows one to assess the validity of the simulations
and to extend systematically the range of applicability of the
nKRR algorithm.

The numerical results reported in the section below were
obtained using the following amount of training data for each
order of the n-mode expansion: 65 data for n = 1, 1626 data
for n = 2, and 19 346 for n = 3. Additional details, such as the
numerical values of the components of X̄ and the data mesh
of the components of Y , obtained with the procedure outlined
above, are reported in the Supplemental Material [57].

V. BENCHMARK CALCULATIONS

To assess the power of our method, we performed
LDA+GA benchmark calculations of different actinide solids,
utilizing the nKRR method described above to solve the
EH Hamiltonian. We will refer to this framework as the
GA+nKRR, while we will call GA+ED the standard
DFT+GA approach resulting from using ED as an EH solver.

A. Actinide transition

A particularly interesting property of the actinide series
is the anomalous dependence of their equilibrium volumes
as a function of the atomic number. In fact, while the equi-
librium volume of the lighter actinides varies continuously
as a function Z (from Pa to Pu), it displays a pronounced
discontinuity between Pu and Am. This volume anomaly is
often called actinides transition [51,76], and it is originated
by a complex interplay between structural degrees of freedom,
SOC, atom- and orbital-selective electron correlations [30,52–
55]. Therefore, capturing this behavior constitutes a very strict
benchmark of our method.

In Fig. 4(a) we show the equilibrium volumes of the
low-temperature allotropes of Pa, U, Np, Pu, and Am.
The GA+nKRR (n = 3) and GA+ED calculations (per-
formed at U = 4.5 eV and J = 0.36 eV, as in Ref. [30])
are shown in comparison with LDA and the experiments
[52,77]. In Figs. 4(b1)–4(b5) we also show the corresponding
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FIG. 5. Comparison between GA+ED and GA+nKRR (n = 3) calculations of the Pu1−xAmx alloys, with x = 0, 1
4 , 1

2 , 3
4 . (a) Behavior of

the entanglement entropy of the Pu-5 f degrees of freedom. The GA+ ED results obtained by constraining the volume to the experimental
value of pure δ-Pu are marked in red, while those obtained varying the volume as a function of x, consistently with the experimental expansion
[79,80] are marked in yellow, and those for pure δ-Pu are marked in blue. The corresponding results calculated with GA+nKRR (n = 3)
are marked in gray. (b)–(h) Eigenvalues of the “reduced density matrix” of a Pu-5 f impurity (see the main text) computed with GA+ED
(histograms), in comparison with GA+nKRR (n = 3) (blue diamonds). In the pictures of the crystal structures, the Pu atoms are in blue while
the Am atoms are in green.

energy-volume curves, whose minima are the points shown
in Fig. 4(a). Remarkably, for all systems considered, the
GA+nKRR method is substantially more accurate than DFT
already for n = 2, while it becomes essentially as accurate as
GA+ED for n = 3.

We point out that each ED solution of the EH Hamiltonian
takes about 10 min and requires 10 GB of RAM on average,
while it takes only about 0.1 s and 50 MB of RAM within
the nKRR framework. Because of this reason, our GA+nKRR
method is essentially as expensive as bare DFT. In particular,
the cost in terms of computational time and RAM is mainly
determined by the EH solver within the GA+ED framework.
Instead, within GA+nKRR the computational bottleneck is
determined by the DFT operations, such as constructing the
Kohn-Sham Hamiltonian and calculating the electron density
at each iteration (see the Supplemental Material [57]). For
the calculations performed in this work, where the DFT part
was performed using the all-electron scheme implemented
in WIEN2K [78], utilizing the nKRR method for solving the
EH equations reduced the computational time by a factor of
10–100 (depending on the system). The relative computa-
tional gain of applying our methodology would presumably
be even higher by utilizing less computationally demanding
implementations of DFT.

B. Local-moment screening in Pu1−xAmx alloys

An important advantage of our computational framework is
that it uses ML as a tool for accelerating the simulation itself,

rather than for learning the behavior of a single quantity at the
time (such as the total energy or the corresponding forces).
In fact, since the mathematical structure of the EH (and, in
particular, the number of descriptors necessary for specifying
it) is identical for homogeneous and heterogeneous systems,
the nKRR predictions are expected to be equally accurate
in both cases. Furthermore, once the GA+nKRR equations
are solved, all of the observables accessible to the GA can
be computed, simultaneously. To illustrate explicitly these
points, in this section we perform benchmark calculations of
a series of Pu1−xAmx alloys.

Interestingly, in spite of the fact that alloying Pu with
Am results in a considerable volume expansion, the Pu local
moments of these systems remain well screened, indicating
that the Pu degrees of freedom are in a mixed-valent state,
as in pure Pu. As previously shown in Ref. [79] utilizing
DFT+DMFT, a physical effect hampering the formation of
a local moment is that the Am impurities effectively increase
the hybridization between the Pu-5 f degrees of freedom near
the Fermi level and the itinerant spd electrons.

Here we revisit the analysis of the Pu1−xAmx alloys from
a DFT+GA perspective, using the n = 3 nKRR method for
speeding up the calculations. For simplicity, as in Ref. [79],
we consider the Pu1−xAmx translationally invariant fcc struc-
tures represented in Fig. 5, corresponding to x = 0, 1

4 , 1
2 , 3

4 .
Therefore, we neglect entirely the influence of disorder. In
particular, we compare the GA+ED and GA+nKRR (n = 3)
calculations for the following cases (see Fig. 5): bare δ-Pu
at its equilibrium volume (point A), a series of Pu1−xAmx
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structures at the equilibrium volume of δ-Pu (points B,D,F),
and the same structures at the experimental volumes [80]
(points C,E,G).

To quantify the influence of the Am doping on the mixed-
valent behavior of Pu, we calculate the behavior of the
entanglement entropy of the Pu-5 f degrees of freedom:

SPu = Tr
[
ρ̂Pu
f ln

(
ρ̂Pu
f

)]
(15)

(see Fig. 5), where ρ̂Pu
f is the “reduced density matrix” of a Pu-

5 f impurity, formally obtained from the GA wave function by
tracing out all other degrees of freedom of the system. In Fig. 5
we also show the most relevant eigenvalues of ρ̂Pu

f and the
corresponding quantum labels N (number of electrons) and J
(total angular momentum).

As expected, the entanglement entropy of δ-Pu decreases
monotonically as a function of the volume. In fact, increas-
ing the distance between the atoms amounts to reducing
the interatomic interactions. Consistently with previous work
[54,79,81], we find that the largest eigenvalue of ρ̂Pu

f is a
sixfold degenerate 5 f 5 configuration with total angular mo-
mentum J = 5

2 , while the 5 f 6 singlet has a smaller probability
weight. On the other hand, the Pu electronic structure remains
in a mixed-valent state for all volumes considered, with entan-
glement entropy substantially larger than ln(6) ∼ 1.8 (which
is the value that the system would have if the probability
weight of the 5 f 5 configuration was 1). In agreement with the
experiments [82,83], the Pu-5 f electronic structure remains
in a mixed-valent state also in the Pu1−xAmx alloys, as the
Am atoms induce only minor variations in the ρ̂Pu

f probability
weights, and the corresponding entanglement entropy remains
much larger than ln(6) for all of the volumes and Am concen-
trations considered.

Remarkably, the GA+ED and GA+nKRR (n = 3) cal-
culations of the entanglement entropy and the eigenvalues
of ρ̂Pu

f are in very good agreement. We point out that all
of the calculations above have been performed using the
same nKRR solver previously constructed for investigating
the actinide transition, without any additional training. This
confirms that, as expected (because of the general theoretical
reasons discussed above), the QE+nKRR framework is highly
transferable and, in particular, it is equally applicable to sto-
ichiometrically homogeneous and inhomogeneous systems.
Therefore, the current implementation of our method can be
used to tackle a broad spectrum of important problems, such
as accelerating dramatically the molecular-dynamics simu-
lations of real f -electron materials, taking into account the
strong-correlation effects [84]. Future extensions will allow
us to lift the approximation of averaging over the crystal-field
splittings, extending even further the range of applicability of
our method.

VI. CONCLUSIONS

In summary, in this work we proposed a computational
framework for simulating strongly correlated electron sys-
tems, which offers the possibility of substantially stepping
up the accuracy with respect to mean-field theories (such
as classic approximations to DFT and DFT+U [56]), at a
comparable computational cost. This was accomplished by
combining QE theoretical frameworks with a fit-for-purpose
ML technique (the nKRR), where the learning problem is
facilitated by the n-mode expansion. Based on our results,
we argue that our method is already applicable to a broad
spectrum of problems inherent in f -electron materials, such as
dramatically speeding up molecular-dynamics simulations or
performing calculations of disordered systems. In fact, these
types of calculations require one to solve the EH a very large
number of times, which is very problematic with standard
tools. The fact that our method reduces the complexity of
the learning problem from exponential to polynomial makes it
realistically possible to extend it also to systems with arbitrary
symmetry, stoichiometry, and crystal structures. Realizing
this program will pave the way to virtually infinite applica-
tions in condensed matter physics, chemistry, and materials
science.
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I. THE GA METHOD

For completeness, here we briefly summarize the equations underlying the formulation of the GA as a QE scheme,
which was previously derived in Refs. [1, 2].

The GA solution is obtained by calculating the saddle-points of the following Lagrange function [2]:

LN [U, J,E; Φ, Ec,R, λ, µ,D, λc,∆] =

1

N

[
〈Ψ0| Ĥqp[R, λ;µ] |Ψ0〉+ E(1−〈Ψ0|Ψ0〉)

]
+
∑
i

[
〈Φi| Ĥemb

i [Di, λci ] |Φi〉+ Eci (1− 〈Φi|Φi〉)
]
−

−
∑
i

[ Mi∑
ab=1

(
[λi]ab + [λci ]ab

)
[∆i]ab +

Mi∑
caα=1

(
[Di]aα [Ri]cα

[
∆i(1−∆i)

] 1
2

cα
+ c.c.

)]
+ µN , (1)

where:

Ĥqp =
∑
k

η∑
ij=1

Mi∑
a=1

Mj∑
b=1

[
Ri εk,ijR

†
j + λi − µ

]
ab
f†kiafkib (2)

Ĥemb
i = Ĥloc

i [Ui, Ji, Ei] +

Mi∑
aα=1

(
[Di]aα ĉ

†
iαf̂ia + H.c.

)
+

Mi∑
ab=1

[λci ]ab f̂ibf̂
†
ia , (3)

R,D, λ, λc,∆ are complex block-matrices whose respective Mi ×Mi blocks are Ri,Di, λi, λci ,∆i, where Ri, λi, λci are
hermitian, µ is the chemical potential, N is the total number of electrons in the system (normalized to the number of

k-points N ), εk,ij are matrices constituted by Mi ×Mj blocks labeled by i, j with entries εαβk,ij and |Ψ0〉 is the most

general single-particle wavefunction within the space of Ĥqp, see Eq. (2). By construction [1], the “embedding states”

|Φi〉 are assumed to lie within the Mi-particle subspace of Ĥemb
i , see Eq. (3), i.e., they satisfy the following equation:[∑

a

ĉ†iαĉiα +
∑
a

f̂†iaf̂ia
]
|Φi〉 = Mi |Φi〉 . (4)

Physical observables can be calculated from the parameters of the theory realizing the saddle-point of Eq. (1). In
particular, the total energy of the system equals the saddle-point value of LN . The expectation values of any local

operator Ô
[
{c†Riα, cRiα}

]
can be calculated as follows [1]:

〈Ô
[
{c†Riα, cRiα}

]
〉 = 〈Φi|Ô

[
{ĉ†iα, ĉiα}

]
|Φi〉 , (5)

where |Φi〉 is the ground state of the self-consistent EH Ĥemb
i [Ui, Ji, Ei,Di, λci ]. The local self energy, instead, is

expressed in terms of the self-consistent parameters Ri and λi as follows [3]:

Σi(ω) = −(ω + µ)
[
1−R†iRi

][
R†iRi

]−1
+R−1i λiR†−1i . (6)

The most expensive operation necessary for obtaining the saddle-point of Eq. (1) is to compute recursively the
ground-state of the EH, see Eq. (3). The nKRR methodology proposed in this work allows us to bypass altogether
this operation.

GA+DFT

Within DFT+GA, the Kohn-Sham parameters εk,ij and E are updated at each charge iteration and determined self-
consistently. Evaluating these parameters and calculating the electron density at each charge iteration is essentially
as expensive as in all classic DFT implementations.

Our LDA and LDA+GA calculations were performed utilizing the DFT code WIEN2k [4]. The LDA+GA solver was
implemented following Ref. [2]. The LAPW interface between WIEN2k and the RISB was implemented as described
in Ref. [5], utilizing the fully-localized limit (FFL) double-counting functional [6]. All calculations were performed
setting RKmax = 9. The convergence with respect to the number of k-points was verified for all systems considered.



3

II. THE n-MODE REPRESENTATION

As mentioned in in the main text, applying directly KRR for learning a multivariate function F (X1, X2, . . . , Xd)
from data built on a mesh with m data points per axis requires N ∼ md function evaluations. Therefore, the
complexity of the learning problem grows exponentially as a function of the number of variables d.

The basic idea underlying the n-mode representation is to represent a high-dimensional function F in terms of the
following lower-dimensional functions:

F̄ 1
i (Xi) = F 1

i (Xi)− F 0 (7)

F̄ 2
ij(Xi, Xj) = F 2

ij(Xi, Xj)− F̄ 1
i (Xi)− F̄ 1

j (Xj)− F 0

F̄ 3
ijk(Xi, Xj , Xk) = F 3

ijk(Xi, Xj , Xk)− F̄ 2
ij(Xi, Xj)− F̄ 2

ik(Xi, Xk)− F̄ 2
jk(Xj , Xk)− F̄ 1

i (Xi)− F̄ 1
j (Xj)− F̄ 1

k (Xk)− F 0 ,

etc.., where:

F 0 = F (0, 0, . . . , 0, 0, 0, . . . , 0, 0, 0, . . . , 0)

F 1
i (Xi) = F (0, 0, . . . , 0, Xi, 0, . . . , 0, 0, 0, . . . , 0)

F 2
ij(Xi, Xj) = F (0, 0, . . . , 0, Xi, 0, . . . , 0, Xj , 0 . . . , 0) , (8)

etc.., are the so-called “cut-functions,” which are restrictions of F (X) to hyperplanes where subsets of the components
of X are set to 0. Specifically, the n-mode representation of F (X) is given by the following equation:

F (X1, X2, . . . , Xd) = F 0 +
d∑
i=1

F̄ 1
i (Xi) +

d∑
j>i=1

F̄ 2
ij(Xi, Xj) +

d∑
k>j>i=1

F̄ 3
ijk(Xi, Xj , Xk) + ... (9)

It can be readily verified that, when all terms are retained, Eq. (9) is an exact identity (which is a major advantage
compared to other approximations such as the Taylor expansion). Truncating this series up to a given order n < d
provides us with an approximation that is exact only over the domains of the order-n cut-functions, while elsewhere
it is an approximation that tends to be more accurate in the proximity of the domains of the order-n cut functions.

By inspecting Eq. (9) we note that, building a mesh of training data with m points per axis, the nKRR method up
to order n requires only the following number of data points:

N (n) =

(
n

d

)
·mn , (10)

which scales polynomially (as dn) as a function of d, rather than exponentially.
Note that, as opposed to other dimensionality-reduction methods —where the number of effective input variables

is decreased,— the n-mode expansion includes from the outset all variables.

Variable shifts

Whenever it is possible to estimate the range of input values where F has to be evaluated for a particular application
(e.g., based on physical arguments inherent in the particular context of application), performing a suitable change
of variables X = v(Y ) can reduce significantly the necessary truncation order n. In fact, a change of variables can
be designed in such a way that the relevant range of input values is as close as possible to the domains of the cut
functions of G(Y ) = F (v(Y )), where the n-mode expansion is more accurate (by construction).

In particular, in the main text we have exploited this freedom to shift the origin with a change of variables of the
form:

Y = X − X̄ , (11)

which improved considerably the speed of convergence of the n-mode expansion, facilitating the learning problem.
The numerical values of the components of X̄1 and X̄2 are reported in Table I, while X̄3, X̄4, X̄5 have been all set to
−0.694 eV (based on a single DFT+GA calculation of δ-Pu at its experimental equilibrium volume).
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Table I. Pre-calculated values of the components of X̄ (eV)

Pa U Np Pu Am

X̄1 -1.497 -4.218 -6.939 -9.660 -12.381

X̄2 -0.422 -0.422 -0.490 -0.558 -0.558

Previous applications of the n-mode representation

While in this work we have applied the n-mode representation within the context of quantum embedding methods,
this method has been originally designed and explored in different contexts (and under different names). In particular,
as mentioned in the main text, the n-mode representation has recently gained significant attention for representing
and computing potential energy surfaces (PES) of molecules [7–10].

Also the so-called “incremental method” [11] and “many-body expansion” for computing electronic energies of
molecules can be considered as a variations to the n-mode expansions [10]. These tools have both been exploited for
obtaining and representing accurate electronic energies of large molecules and molecular clusters [12]. Furthermore, the
incremental method has also been applied previously with a focus on strong electron correlation [13, 14]. Specifically,
these works applied the incremental expansion directly to the solution of the Schrödinger equation for solving specific
chemical problems. The incremental methods for single point electronic energies has been also combined with the
PES n-mode expansion to obtain a double incremental expansion of the PES paving the way for obtaining linear
scaling construction of PESs —an otherwise hard-to-imagine result [10]. Finally, the n-mode representation can be
seen as one variant of high-dimensional model representation (HDMR) and is sometimes denoted cut-HDMR. In
turn, HDMR is closely related to the ANOVA method of statistics [15], and it has been applied, from this side, for
sparse-grid methods in high-dimensional problems [16]. Recently cut-HDMR is receiving significant attention in other
fields, for example machine learning in engineering [17].

III. IMPLEMENTATION OF KRR METHOD

Kernel ridge regression (KRR) is a non-parametric form of regression. Here we describe the specific procedure
utilized in the calculations presented in this work.

Given a continuous function F (X), the KRR method provides us with an approximation represented as follows:

F̃σ(X) =

N∑
l=1

αl kσ(Xl, X) , (12)

where X ∈ Rd, {Xl ∈ Rd | l = 1, . . . , N} is a set of points belonging to the domain of F (known as “feature vectors”),
and k is the so-called “kernel” function. Specifically, in this this work we utilized the so-called the “radial basis
function (RBF)” kernel (also known as the Gaussian kernel), which is defined as follows:

kσ(A,B) = exp

(
−‖A−B‖

2

2σ2

)
, (13)

where ‖X‖2 =
∑N
m=1 |Xm|2 is the standard Euclidean norm.

The procedure for determining the coefficients αl and the kernel width parameter σ is the following:

• A “training data” set {Yl = F (Xl) ∈ Rd | l = 1, . . . , N} is constructed by evaluating F on the feature vectors
{Xl ∈ Rd | l = 1, . . . , N}.

• The following minimization is performed:

ᾱ(σ, λ) = argmin
α′∈Rd

 N∑
m=1

(
N∑
l=1

α′l(σ) kσ(Xl, Xm)− Ym

)2

+ λ
N∑

l,m=1

α′l kσ(Xl, Xm)α′m

 (14)

= [Kσ + λI]−1Y , (15)

where [Kσ]lm = kσ(Xl, Xm) is the kernel matrix, [Y ]m = Ym is the training-data-set vector and the right
member of Eq. (14) is called the “cost function”.
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• The coefficients αl of Eq. (12) are:

αl = [ᾱ(σ, λ)]l , (16)

where σ and λ, typically named “hyperparameters,” are determined using the so-called “cross-validation” (CV)
method, that is an empirical protocol designed to optimize the predictive power of the KRR model. In particular,
λ is a regularization parameters that can be used to remove singularities in Eq. (15) and avoiding over-fitting.

The standard k-fold procedure consists in dividing the data set into a finite number b of batches (folds) with similar
size. The ML solver is trained using b − 1 of these batches at a given pair of λ and σ values. The (trained) ML
solver is subsequently used for predicting the data points in the excluded fold, and the errors in the predictions are
measured. This procedure is repeated, excluding each fold once and keeping a running total of the error for the given
pair of hyperparameters. A mesh of possible combinations of λ and σ are tested as described above, and the pair that
yields the smallest error is chosen.

In our work we employed a variation to the classic k-fold CV outlined above. Specifically, we have restricted the
optimization of the hyperparameters λ and σ to values such that ‖λ‖ > 10−6. The purpose of this cutoff was to
reduce spurious high-frequency components in the KRR function approximation [Eq. (12)]. This improved the overall
stability of the GA+nKRR algorithm, without compromising the accuracy of the nKRR solver.

Data-set mesh

By construction, the meshes of the EH input variables Yi —utilized in our calculations for training the KRR
solver— are symmetric around 0. The respective number of data points per axis mi, as well as the minimum Y min

i

and maximum Y max
i values of the corresponding intervals, are reported in Table II.

Table II. Parameters of the training data mesh for the components Yi of Y

Y min
i (eV) Y max

i (eV) mi

Y1 -0.340 0.340 9

Y2 -0.068 0.068 5

Y3 -0.136 0.136 17

Y4 -0.136 0.136 17

Y5 -0.136 0.136 17
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