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Abstract—Concatenating the state-of-the-art codes at moderate
rates with repetition codes have emerged as practical solutions
deployed in various standards for ultra-low-power devices such as
in Internet-of-Things (IoT) networks. In this paper, we propose
a novel concatenation mechanism for such applications which
need to operate at very low signal-to-noise ratio (SNR) regime.
In the proposed scheme, the outer code is a hybrid polar code
constructed in two stages, one with a binary kernel and another
also with a binary kernel but applied over a binary extension
field. The inner code is a non-binary multiplicative repetition
code. This particular structure inherits low-complexity decoding
structures of polar codes while enabling concatenation with an
inner non-binary multiplicative repetition scheme. The decoding
for the proposed scheme is done using cyclic redundancy check
(CRC) aided successive cancellation list (SCL) decoder over
AWGN channel. Simulation results show that the proposed
scheme outperforms the straightforward binary polar-repetition
scheme at the cost of a negligible increase in the decoding
complexity.

I. INTRODUCTION

The Third Generation Partnership Project (3GPP) has re-
cently introduced Narrow-Band Internet-of-Things (NB-IoT)
and enhanced Machine-Type Communications (eMTC) fea-
tures into the cellular standard protocols. These two narrow-
band and complementary technologies expand the cellular
networks to support low-power, wide-area (LPWA) cellular
connectivity for the IoT use cases [4].

In general, IoT devices need to operate under extreme power
constraints. Consequently, they often communicate at very low
signal-to-noise ratio (SNR), e.g., −13 dB or 0.03 bits per
transmission (translated to capacity) in NB-IoT protocols [4].
Also, they are often not equipped with advanced transceivers
due to cost constraints. Therefore, the solution adopted in the
standard is to use the legacy turbo codes or convolutional
codes at moderate rates, e.g., the turbo code of rate 1/3,
together with many repetitions, e.g., up to 2048 repetitions
in NB-IoT. This implies effective code rates as low as 1.6 ×
10−4 are supported in such protocols. This repetition scheme
has efficient implementations with computational complexity
and latency effectively reduced to that of the outer code.
However, it is expected that repeating a high-rate code to
enable low-rate communication will result in rate loss and
mediocre performance. As a result, studying ultra-low-rate
error-correcting codes for reliable communications in such
low-capacity regimes becomes necessary [1].

In [1], the authors constructed an efficient repetition scheme
with outer polar codes and showed that the proposed polar-
repetition scheme outperforms the Turbo-repetition code, the
proposed code design in the eMTC and NB-IoT (uplink) stan-
dards, over additive white Gaussian noise (AWGN) channel.
In another related work, low-rate codes for binary symmetric
channels were constructed by concatenating high-rate polar
codes with repetitions [5]. Also, non-binary LDPC codes
concatenated with multiplicative repetition codes were intro-
duced in [6]. By multiplicatively repeating the (2, 3)-regular
non-binary LDPC mother code of rate 1/3, they constructed
rate-compatible codes of lower rates 1/6, 1/9, 1/12, . . . which
outperform the best low-rate binary LDPC codes at the cost
of the increase in decoding complexity. Very recently, weakly-
coded binary LDPC type code combined with polar code has
been introduced in [7] which is shown to outperform uncoded
modulation over high noise memoryless channels. However,
the complexity of the proposed scheme in [7] is higher than
that of a repetition-based scheme.

In this paper, we propose an alternative mechanism for
polar-repetition schemes, referred to as hybrid non-binary
multiplicative repetition. In this scheme, the outer code is a
hybrid binary and non-binary polar code constructed in two
stages. The first stage of the outer encoder utilizes Arıkan’s
binary polarization kernel applied recursively, as in original
polar codes [2]. The output bits of the first stage are grouped
into t-tuples and are turned into symbols over the extension
binary field GF (2t). Then Arıkan’s kernel is again applied
recursively. Hence, the output of the outer encoder consists
of symbols over GF (2t). The inner code is a non-binary
multiplicative repetition code. The encoded symbols can be
either turned into binary strings for transmission using a binary
modulation scheme, e.g., binary phase shift keying (BPSK)
or, alternatively, can be sent using a higher order modulation.
The proposed structure allows for i) benefiting from the
multiplicative repetition over an extension field as opposed to
a simple repetition in a straightforward binary polar-repetition
scheme, and ii) keeping the complexity of the encoder/decoder
almost the same as those of the straightforward repetition
scheme. The proposed scheme outperforms the straightforward
repetition under cyclic redundancy check (CRC) aided suc-
cessive cancellation list (SCL) decoder over AWGN channel
at the cost of the negligible increase in encoding/decoding
complexity.



II. BACKGROUND

An (n, k,F), with n = 2m, polar code based on the 2 ×
2 polarization kernel G2 =

(︂
1 0
1 1

)︂
is a linear block code

generated by k rows of Gn = G⊗m
2 , where .⊗m is the m-th

Kronecker power of a matrix [2]. The set of frozen bits F ,
with |F| = n−k, is the set of the indices of sub-channels with
the lowest reliabilities. Arıkan’s polar codes are constructed by
setting entries of the input vector un−1

0
1 indexed by F to zeros

and the remaining k bits are used to transmit the information.
At the decoder side, the successive cancellation (SC) decoder,
makes the decision on ui, based on the previously decoded
bits, ûi−1

0 , and channel output vector, yn−1
0 , according to the

following log likelihood ratio (LLR) rule:

ûi =

⎧⎨⎩1, if i ∈ FC & ln
W (i)

n (ûi−1
0 ,yn−1

0 |ui=0)

W
(i)
n (ûi−1

0 ,yn−1
0 |ui=1)

< 0

0, if otherwise,
(1)

where W
(i)
n is the i-th bit-channel [2]. In order to improve the

error correction performance of the SC decoder, the successive
cancellation list (SCL) decoding algorithm was proposed by
Tal and Vardy in [3]. In SCL decoding, the L most likely paths
ui−1
0 are tracked. When decoding ui, for i ∈ FC , the decoder

extends each path into two paths exploring both possibilities
ui = 0 and ui = 1. If the number of obtained paths exceeds
L, the decoder picks L most likely paths as the surviving
ones and prunes the rest based on a certain Path Metric (PM).
Let ûi[l] denote the estimate of ui in the l-th path, for l ∈
{1, 2, . . . , L} and Si[l] denote its corresponding LLR. Then
the corresponding PM is calculated as follows:

PM
(i)
l =

{︄
PM

(i−1)
l + |Si[l]| if ûi[l] ̸= 1

2 (1− sgn(Si[l]))

PM
(i−1)
l if otherwise,

(2)
where PM

(−1)
l is seto to 0. Finally, the path with the smallest

PM is selected as the estimated bits ûn−1
0 . As the list size

L grows large, the SCL decoder approaches the maximum-
likelihood (ML) decoding performance. To further improve
the performance of the SCL decoder, p-bits cyclic redundancy
check (CRC) are appended to the information bits as an outer
code. The SCL decoder outputs the decoding path with the
smallest PM among the paths which pass the CRC, [3].

In low-capacity applications, repetition code is a simple way
of designing a practical low-rate code. Let r denote the number
of the repetitions and N denote the length of the code. For
constructing the repetition code, first, a smaller outer code
(e.g., a polar code) of length n = N/r is designed and then
each of its code bits is repeated r times.

III. PROPOSED SCHEME

In this section, the proposed hybrid non-binary repeated
polar code scheme is discussed. It is shown how this scheme
can improve the performance of the straightforward repetition
scheme in the low-SNR regime.

1un−1
0 is a row vector (u0, u1, . . . un−1) and ui

0 is its subvector
(u0, u1, . . . ui).

Owing to the recursive structure of the polar codes, one
can consider the polarization transform kernel Gn as the
concatenation of Gn/t and Gt, with Gn = Gn/t ⊗Gt, where
t = 2m

′
,m′ = {1, 2, 3, . . . , }, [9]. Figure 1 (a) shows the block

diagram of the encoder of the polar code with this structure,
where xn−1

0 is the output of the transformation Gt. Figure 1
(c) shows the structure of the straightforward repetition. In this
scheme, the outer code is the polar code depicted in Figure
1 (a) and the inner code is the repetition code which repeats
the output of the outer polar code, zn−1

0 , r times and generate
code Cr as follows.

Cr = {crn−1
0 |c(r−1)n+v = zv,

for v = {0, . . . , n− 1}, c
(r−1)n−1
0 ∈ Cr−1}.

(3)

To improve the performance of the straightforward repetition,
the scheme depicted in Figure 1 (b) and (d) is proposed.
The encoder and decoder of the proposed hybrid non-binary
repeated polar codes are as follows.

A. Encoding of the Proposed Hybrid Non-Binary Repeated
Polar Codes

For encoding the proposed scheme, in the first stage, the
binary input bits un−1

0 are divided into subsets of bits of size
t. Then, each of these n/t t-tuples are encoded with binary
polarization kernel Gt over GF (2) and the output is xn−1

0 . In
the second stage, each of these outputs are grouped together as
a 2t-bit symbol ai, ai = (xit, xit+1, . . . x(i+1)t−1) ∈ GF (2t),
i = {0, 1, . . . , n/t−1}. Then, the symbols an/t−1

0 are encoded
with the binary polarization kernel Gn/t over GF (2t) and
generate code C1 = {zn/t−1

0 ∈ GF (2t)}. Finally, coefficients
ρ
rn/t−1
n/t are chosen at random from GF (2t) \ {0} and are

multiplied by z
n/t−1
0 to generate the code Cr, r > 1, as

follows.

Cr = {crn/t−1
0 |c(r−1)n/t+v = ρ(r−1)n/t+vzv,

for v = {0, . . . , n/t− 1}, c
(r−1)n/t−1
0 ∈ Cr−1}.

(4)

Note that the coefficients ρ
jn/t−1
(j−1)n/t, j = {2, 3, . . . , r} are

the random multiplication coefficients for the j-th repetition.
Algorithm 1 shows the process of encoding the proposed
scheme. The inputs to this algorithm are binary input bits
un−1
0 , t, n and r. The outputs is the code Cr.
The outer encoding only requires standard binary polar

encoding scheme followed by binary to 2t-ary conversion. For
the purpose of decoding, the conversion from binary to 2t-ary
needs to be located to between stage 1 and stage 2.

Note that the authors in [8] constructed mixed kernels over
alphabets of different sizes and improved the polarization
properties of the kernel Gn. However, in this paper, by using
the structure of the kernel Gn, we group the binary bits into
symbols without modifying the polarization kernel Gn.

Example: Figure 2 shows an example for n = 8, r = 3,
t = 2. The polarization kernels of the stage 1 and 2 are G2 =(︂
1 0
1 1

)︂
and G4 = G⊗2

2 , respectively. The output codewords
of this example are c110 = (0, α, 1, α2, 0, α, α, α, 0, α, α2, 1).



Figure 1: (a) Layered factor graph representation of a polar code (b) Layered factor graph representation of the proposed hybrid
non-binary polar code (c) Repetition scheme with outer polar code (d) Hybrid non-binary repeated polar codes scheme.

Algorithm 1: Encoding Algorithm of the Proposed
Hybrid Non-binary Repeated Polar Codes

input : un−1
0 , t, n, r

output: Code Cr

1 Divide un−1
0 into sets of t bits, u(i+1)t−1

it ,
i = {0, 1, . . . , n/t− 1}.

2 for i← 0 to n/t− 1 do
3 x

(i+1)t−1
it ← Encode each sets of bits, u(i+1)t−1

it , with binary
kernel Gt over GF (2).

4 Group x
(i+1)t−1
it together to make a t-bit symbol ai.

5 end
6 C1 = {zn/t−1

0 } ← Encode a
n/t−1
0 symbols with binary kernel

Gn/t over GF (2t).
7 for j ← 2 to r do
8 Cj ← Choose n/t coefficients ρ

jn/t−1
(j−1)n/t

uniformly at random

from GF (2t) \ {0}, multiply them with z
n/t−1
0 .

9 Generate code Cj = (Cj−1, Cj). // append Cj to
Cj−1

10 end
11 return Cr

B. SCL Decoding of the Proposed Hybrid Non-Binary Re-
peated Polar Codes

For decoding the proposed scheme, we use CRC-aided
LLR-based SCL decoder. Algorithm 2 shows the details of
the process. The SCL decoding of the proposed scheme
involves mainly 4 parts, i.e. the initial LLRs, the LLRs of
the multiplicative repetition, the LLRs of the stage 1 and the
LLRs of the stage 2 of the outer polar code. The details of
the LLRs calculations are as follow.

Initial LLRs: The initial LLRs of the i-th symbol, i ∈
{0, 1, . . . , rn/t − 1}, with symbol value s ∈ GF (2t) are
defined as

S
(s)
in,i = ln

W (yi|(ci)M = 0M )

W (yi|(ci)M = sM )
, (5)

where ci is unmodulated codeword, (ci)M is the modulated
codewords ci and y is the received symbol value. Let us denote
Sin,i = {S(s)

in,i}s∈GF (2t), the vector of the i-th initial LLRs for
all possible symbols s over GF (2t).



Figure 2: Example, encoder of the proposed scheme for n = 8, r = 3, t = 2.

LLRs of the multiplicative repetition: Since GF (2t) is a
finite field, the non-zero elements can be expressed as powers
of a primitive element α in the field, i.e., 1, α, . . . , α2t−1.
Therefore, multiplication by an arbitrary non-zero symbols
ρj = ατ , j = {n/t, . . . , rn/t − 1}, can be regarded as
a cyclic shift of the field elements by τ . As a result, the
decoder permutes the LLR vector Sin,i and outputs the vector
πρj

(Sin,i).
Finally, the LLR of an r-tuple consisting of r independent

transmissions of symbols is equal to sum of the LLRs of the
individual channel outcomes after the permutations (see lines
2-8 of the Algorithm 2).

LLRs update of the stage 2: In general, the LLR of the i-th
symbol, i ∈ {0, 1, . . . , n−1} , with symbol value s over kernel
Gn, can be calculated according to the following formula, [2]:

S
(s)
i

∆
= ln

∑︁
un−1
i+1

RGn(û
i−1
0 , 0, un−1

i+1 )∑︁
un−1
t+1

RGn(û
i−1
0 , s, un−1

i+1 )
, (6)

where RGn
(u) = exp(−

∑︁n−1
j=0 S

(xj)
j ) and xj is the j-th index

of the vector xn−1
0 = un−1

0 Gn and s is an element from
GF (2t). One can use the following equation for simplifying
eq. (6).

ln(
∑︂
i

e−fi) ≈ −min
i
(fi).

Now, for our binary kernel G2, consider two input LLR
vectors S+ and S− of size 2t. Then, the output LLR vectors
Ŝ+ and Ŝ− can be derived from (6), as:

Ŝ
(s)

+ ≈ min
u1∈GF (2t)

(S
(s+u1)
+ + S

(u1)
− )

− min
u1∈GF (2t)

(S
(u1)
+ + S

(u1)
− ),

Ŝ
(s)

− ≈ S
(û0+s)
+ + S

(s)
− − S

(û0)
+ − S

(0)
− .

(7)

where S
(i)
+ and S

(j)
− are the i-th and j-th index of the vectors

S+ and S−, respectively and û0 is the previously decoded
symbol, while u1 is the yet to be decoded symbol.

LLRs update of the stage 1: For updating the LLRs of
the stage 1, consider the input non-binary LLR vector Ŝ. The
output binary LLRs Ŝbi , i = {1, 2, . . . , t}, derived from eq.
(6), are as follows.

Ŝbi ≈ min
ut−1
i+1

Ŝ
([v(1)]2t ) −min

ut−1
i+1

Ŝ
([v(0)]2t ), (8)

where [v(k)]2t is the representation of the binary vector v(k) =
(ûi−1

0 , k, ut−1
i+1)Gt as element of GF (2t) for k = {0, 1} and

Ŝ
([vk]2t ) is the [v(k)]2t -th index of the vector Ŝ.
The CRC-aided SCL decoder after updating the LLRs and

calculating the PM for different paths based on the values of
the Ŝbi chooses the path with the smallest PM which passes
the CRC.

IV. ANALYSIS AND NUMERICAL RESULTS

In this section, we first analyze the numerical result of
the proposed scheme and compare it with the straightforward
polar-repetition scheme. Then, we analyze the performance of
the hybrid non-binary repeated polar code. Finally, we provide
complexity analysis of the proposed scheme and the polar-
repetition one.

A. Numerical Analysis

In this subsection, we provide numerical results for the
proposed scheme under the SC and CRC-aided SCL decoder
over AWGN channel with BPSK modulation. Figure 3 com-
pares the performances of the proposed scheme with straight
forward polar-repetition scheme for N = 8192, n = 512,
K = 40, t = 2 and r = 16. It can seen that the performance
of the proposed hybrid non-binary repeated scheme under SC
decoder is almost the same as the performance of the polar-
repetition scheme. However, the proposed scheme under SCL
decoder with L = 32 and 6-bit CRC outperforms the polar-
repetition scheme. Note that the construction for both schemes
is based on the Monte-Carlo simulation.



Algorithm 2: List Decoding Algorithm for the Pro-
posed Hybrid Non-binary Repeated Polar Codes

input : List size L, r, n, t, ρrn/t−1
n/t

and y
rn/t−1
0

output: The estimated bits ûn−1
0

1 Sin,i ← Calculate the initial LLRs with eq. (5) for all
i = {0, 1, . . . , rn/t− 1}.

2 Sinner,i ← Sin,i, i = {0, . . . , n/t− 1} // Init.: Pick the
first n/t elements of Sin,i.

3 for i← n/t to rn/t− 1 do
4 πρi (Sin,i)← Permute the vector Sin,i based on the random

coefficient ρi.
5 end
6 for j ← 2 to r do
7 Sinner,i ← Sinner,i + πρi (Sin,i)[(j − 1)n/t : jn/t− 1].

// Output LLRs of the inner code
8 end
9 for k ← 0 to n− 1 by t do

10 Using the LLRs Sinner,i, for i = {0, . . . , n− 1}, update the
LLRs for stage 2 with eq. (7).

11 for j ← 1 to t do
12 Using the updated LLRs from stage 2, update the LLRs for

stage 1 with eq. (8) and obtain Ŝbj .
13 Calculate the PM for Ŝbj with eq. (2) for each of the L

paths.
14 Update bits for stage 1.
15 end
16 Update the symbols for stage 2.
17 end
18 CRC-aided SCL decoder chooses the path with the smallest PM

which passes the CRC and outputs ûn−1
0 .

19 return ûn−1
0
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Figure 3: Performance comparison of the proposed scheme
with straight forward polar-repetition for N = 8192, n = 512,
K = 40, r = 16, t = 2.

B. Performance Analysis

In this subsection, we analyze the performance of the pro-
posed scheme to gain insight into its better performance under
the CRC-aided SCL decoder. Since the SCL decoder with large
list size achieves performance very close to that of the ML
decoder, we study the performance of the proposed scheme
under ML decoding to have better analytical understanding.

The block error probability under ML decoding can be
estimated via the truncated union bound as follows, [11].

PML
e ≤

n∑︂
i=d

AiQ(
√︁
2iREb/No), (9)

where Ai is the number of the codewords of weight i and d is
the minimum distance of the code. At high SNR, upper bound
on PML

e depends primarily on d and Ad. Hence, to obtain a
good performance under ML decoding, one needs to eliminate
low-weight non-zero (LWNZ) codewords from the code.

To enumerate the LWNZ codewords, we transmit the all-
zero codeword in the extremely high SNR regime under SCL
decoder with very large list size, [10]. In this case, it is
expected that the list most likely contains only the codewords
with the least Hamming weights.

Table I compares the number of the low-weight codewords
of the proposed scheme (on average) with the polar-repetition
ones for L = 215. As it is expected the number of LWNZ
codewords for the proposed scheme is less than the one of the
polar-repetition scheme.

Table I: Number of Low-Weight Codewords

A64×16 A1329 −
A2047

A128×16 A2049 −
A3071

A192×16 A3073 −
A4095

A256×16

Proposed
Sch.

0 < 10 0 < 30 3 < 230 230

Simple
Rep.

105 0 1365 0 5005 0 22819

A4097 −
A5119

A320×16 A5121 −
A6143

A384×16 A6145 −
A7167

A448×16 >
A7169

Proposed
Sch.

< 230 0 < 20 0 0 0 0

Simple
Rep.

0 3003 0 455 0 15 0

C. Complexity Analysis

The complexity of the straightforward polar-repetition
scheme consists of the complexity of the outer polar code
of size n, O(n log n), and the repetition code of size r, nr.
Therefore, the complexity of the total decoding process for the
polar-repetition scheme is O(nr + n log n).

The complexity of the proposed scheme consists of the
complexity of the inner and outer code. The complexity of the
inner multiplicative repetition code is 2trn/t. The complexity
of the outer hybrid non-binary polar code consists of the i)
complexity of the stage 2, O(22tn/t log(n/t)) ii) complexity
of the stage 1, O(2tn/t). Therefore, the complexity of the total
decoding process is O(2trn/t+22t(n/t) log(n/t)+2tn/t). If
t and r be constants, the complexity of the hybrid non-binary
repeated polar code will be O(n log n).

V. CONCLUSION

In this paper, we proposed a new concatenation scheme for
improving the performance of the straightforward repetition at
low-SNR regime. We concatenated the hybrid non-binary polar
code with multiplicative repetition code and showed that the
proposed scheme outperforms the straightforward repetition
under CRC-aided SCL decoder over AWGN channel.
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