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Abstract—Reed-Muller (RM) codes are conjectured to achieve the
capacity of any binary-input memoryless symmetric (BMS) chan-
nel, and are observed to have a comparable performance to that
of random codes in terms of scaling laws. On the negative side,
RM codes lack efficient decoders with performance close to that of
a maximum likelihood decoder for general parameters. Also, they
only admit certain discrete sets of rates. In this paper, we focus on
subcodes of RM codes with flexible rates that can take any code
dimension from 1 to n, where n is the blocklength. We first extend the
recursive projection-aggregation (RPA) algorithm proposed recently
by Ye and Abbe for decoding RM codes. To lower the complexity
of our decoding algorithm, referred to as subRPA, we investigate
different ways for pruning the projections. We then derive the soft-
decision based version of our algorithm, called soft-subRPA, that is
shown to improve upon the performance of subRPA. Furthermore, it
enables training a machine learning (ML) model to search for good
sets of projections that minimize the decoding error rate. Training
our ML model enables achieving very close to the performance of full-
projection decoding with a significantly reduced number of projec-
tions. For instance, our simulation results on a (64, 14) RM subcode
show almost identical performance for full-projection decoding and
pruned-projection decoding with 15 projections picked via training
our ML model. This is equivalent to lowering the complexity by a
factor of more than 4 without sacrificing the decoding performance.

I. INTRODUCTION

Reed-Muller (RM) codes are among the oldest families of error-
correcting codes, and their origin backs to almost seven decades
ago [1], [2]. They have received significant renewed interest
after the breakthrough invention of polar codes [3], given the
close connection between the two classes of codes. The generator
matrices for both RM and polar codes are obtained from the
same square matrices, i.e., the Kronecker powers of a 2 × 2
matrix, though by different rules for selecting rows. In fact, the
construction of polar codes is channel-specific while RM codes
have a universal construction. Additionally, RM codes achieve
the Shannon capacity of binary erasure channels (BECs) at any
constant rate [4], and that of binary symmetric channels (BSCs) at
extremal rates [5]. The long-time belief that RM codes achieve the
capacity of binary-input memoryless symmetric (BMS) channels,
however, still remains an open problem [6]. RM codes are also
conjectured to have characteristics similar to those of random
codes in terms of weight enumeration [7] and scaling laws [8].

Despite their excellent performance with maximum likelihood
decoders, RM codes still suffer from the lack of an efficient
decoding algorithm for general parameters. Among the earlier
works on decoding RM codes [1], [9]–[15], Dumer’s recursive
list decoding algorithm [10]–[12] is capable of achieving close to

Figure 1. Performance comparison of the MAP decoder with full- and pruned-
projection soft-subRPA decoding for a (64, 14) RM subcode.

maximum likelihood decoding performance for large enough, e.g.,
exponential in blocklength, list sizes. Recently, Ye and Abbe [16]
proposed a recursive projection-aggregation (RPA) algorithm for
decoding RM codes. The RPA algorithm first projects the received
corrupted codeword on its cosets. It then recursively decodes the
projected codes to, finally, construct the decoded codeword after
a proper aggregation. Very recently, building upon the projection
pruning idea in [16], a method for reducing the complexity of the
RPA algorithm has also been explored in [17]. Besides lacking
an efficient decoder, the structure of RM codes does not allow
choosing a flexible rate. In fact, as it will be clarified in Section III,
given the code blocklength n, one can only construct RM codes
with 1 + log2 n possible values for the code rate.

This research is inspired by the aforementioned critical issues
of RM codes. More specifically, we target subcodes of RM codes,
and our primary goal is to come up with low-complexity decoders
for them. To this end, we first extend the RPA algorithm to
what we call “subRPA” in this paper. Next, we derive the soft-
decision based version of our algorithm, called “soft-subRPA”,
that improves upon the performance of subRPA. We further inves-
tigate various ways for pruning the projections to reduce the com-
plexity of the proposed algorithms with negligible performance
loss. Enabled by our soft-subRPA algorithm, we train a machine
learning (ML) model to search for good sets of projections. We
also empirically investigate encoding of RM subcodes.

Figure 1 demonstrates the potentials of our ML-aided soft
decoding algorithm, i.e., soft-subRPA with ML-aided projection
pruning, in efficiently decoding RM subcodes. In this case study,



an RM subcode with dimension k = 14 and blocklength n = 64
is considered (Gmin,15, defined in Section III-C, is used as the
generator matrix). Our ML-based pruned-projection decoding,
with only 15 projections, is able to achieve an almost identical
performance to that of full-projection decoding with 63 projec-
tions. This is equivalent to reducing the complexity by a factor of
4, approximately, without sacrificing the performance. Our low-
complexity ML-based pruned-projection decoding has then only
about 0.25 dB gap with the performance of the optimal maximum
a posteriori (MAP) decoding while randomly selecting the subsets
of projections does not often provide a competitive performance.

II. PRELIMINARIES
A. RM Codes

Let k and n denote the code dimension and blocklength, respec-
tively. Also, let m = log2 n. The r-th order RM code of length 2m,
denoted as RM(m, r), is defined by the following set of vectors
as the basis

{vm(A) : A ⊆ [m], |A| ⩽ r}, (1)
where [m] := {1, 2, . . . ,m}, |A| denotes the size of the set A,
and vm(A) is a row vector of length 2m whose components are
indexed by binary vectors z = (z1, z2, . . . , zm) ∈ {0, 1}m and
are defined as vm(A, z) =

∏︁
i∈A zi. It can then be observed from

(1) thatRM(m, r) has a dimension of k :=
∑︁r

i=0

(︁
m
i

)︁
.

According to (1), the (codebook of)RM(m, r) code is defined
as the following set of binary vectors

RM(m, r) :=

{︄ ∑︂
A⊆[m],|A|⩽r

u(A)vm(A) : u(A) ∈ {0, 1}

}︄
. (2)

Therefore, considering a polynomial ring F2[Z1, Z2, . . . , Zm] of
m variables, the components of vm(A) are the evaluations of the
monomial

∏︁
i∈A Zi at points z in the vector space E := Fm

2 .
Moreover, each codeword c = (c(z), z ∈ E) ∈ RM(m, r),
indexed by the binary vectors z, is defined as the evaluations of
an m-variate polynomial with degree at most r at points z ∈ E.

B. RPA Decoding Algorithm
The RPA algorithm is comprised of the following three building

blocks/operations [16].
1) Projection: Considering B as a s-dimensional subspace of

E, with s ⩽ r, the quotient space E/B contains all the cosets of B
in E. Each coset τ has the form τ = z + B for some z ∈ E. The
RPA algorithm then starts by projecting the log-likelihood ratio
(LLR) vector l of the channel output into the subspaces of E. For a
one-dimensional (1-D) subspace B, the projected LLR vector can
be obtained as l/B := (l/B(τ ), τ ∈ E/B), where

l/B(τ )=ln
(︂
exp

(︁∑︂
z∈τ

l(z)
)︁
+1
)︂
−ln

(︂∑︂
z∈τ

exp(l(z))
)︂
. (3)

2) Decoding the Projected Outputs: Once the decoder projects
the channel output, it starts recursively decoding the projected
outputs, i.e., it projects them into new subspaces and continues
until the projected outputs correspond to order-1 RM codes. It
then applies the fast Hadamard transform (FHT) [18] to efficiently
decode order-1 codes. Afterward, the algorithm aggregates the
outputs (as explained next) to decode the codes at a higher layer.
The decoder may also iterate the whole process, at each middle de-
coding step, several times to ensure that the algorithm converges.

3) Aggregation: At each layer in the decoding process (and
each point/node in the decoding tree), the decoder needs to ag-
gregate the output of the channel at that point with the decoding
results of the next (underneath) layer to update the channel output.

The channel output at a given point can be either the actual channel
output or the projected ones, depending on the position of that
point in the decoding tree of the recursive algorithm. Several
aggregation algorithms are presented in [16] for one- and two-
dimensional subspaces.

III. EFFICIENT DECODING OF RM SUBCODES

Let F =

[︃
1 0
1 1

]︃
, and define P n×n = F⊗m, i.e., the m-th

Kronecker power of F . The encoding ofRM(m, r), described in
Section II-A, can be equivalently obtained by choosing the rows of
the square matrix P n×n that have a Hamming weight of at least
2m−r. The resulting generator matrix Gk×n then has exactly

(︁
m
i

)︁
rows with the Hamming weight n/2i, for 0 ⩽ i ⩽ r.

Note that the RM encoder does not allow choosing any desired
code dimension; it should be of the form k =

∑︁r
i=0

(︁
m
i

)︁
for

some r ∈ {0, 1, · · · ,m}. Suppose that we want to construct a
subcode ofRM(m, r) with a dimension k such that kl < k < ku,
where kl :=

∑︁r−1
i=0

(︁
m
i

)︁
, r ∈ [m], and ku :=

∑︁r
i=0

(︁
m
i

)︁
. Given

that the construction of RM codes corresponds to picking rows of
P n×n that have the highest Hamming weights, the first kl rows
of the generator matrix Gk×n will be the same as the generator
matrix of RM(m, r − 1) that has a Hamming weight of at least
2m−r+1. It then remains to pick extra k − kl rows from P n×n.
These will be picked from the additional ku − kl =

(︁
m
r

)︁
rows in

RM(m, r) since they all have the next largest Hamming weight
of 2m−r. In a sense, we limit our attention to RM subcodes
that, roughly speaking, sit between two RM codes of consecutive
orders. More specifically, they are subcodes of RM(m, r) and
also contain RM(m, r − 1) as a subcode, for some r ∈ [m].
The question is then how to choose the extra k − kl rows out of
these

(︁
m
r

)︁
rows of weight 2m−r to construct an RM subcode of

dimension k as specified above? This is a very important question
requiring a separate study and is beyond the scope of this paper. In
the meantime, we provide some insights regarding the encoding
of RM subcodes in Section III-C after describing our decoding
algorithms in Sections III-A and III-B with respect to a generic
generator matrix Gk×n.

A. SubRPA Decoding Algorithm

Before we delve into the description of our decoding algo-
rithms, we first need to emphasize some important facts.
Remark 1. The result of the projection operation corresponds to a
code with the generator matrix formed by merging (i.e., binary
addition of) the columns of the original code generator matrix
indexed by the cosets of the projection subspace. This is clear for
the BSC model, as formulated in [16, Eq. (2)]. Additionally, for
general BMS channels, the objective is to estimate the projected
codewords c/B(τ )’s, τ ∈ E/B, based on the projected LLRs [16];
hence, the same principle follows for any BMS channels.

Proposition 1. Let C be a subcode of RM(m, r) with dimension
k such that kl < k < ku, where kl :=

∑︁r−1
i=0

(︁
m
i

)︁
, r ∈ [m], and

ku :=
∑︁r

i=0

(︁
m
i

)︁
. The projection of this code into s-dimensional

subspaces of E, 1 ⩽ s ⩽ r − 1, results in subcodes of RM(m −
s, r−s). It is also possible for the projected codes to beRM(m−
s, r − s) orRM(m− s, r − 1− s) codes.

Proof: Please refer to [19, Proposition 1].
Hereinafter, for the sake of brevity, we simply state that “the pro-
jections of a subcode of RM(m, r) code into the s-dimensional
subspaces of E are subcodes of RM(m − s, r − s)”; however,



we still mean the precise statement of Proposition 1. Now, we are
ready to present our decoding algorithms for RM subcodes. Our
algorithms are based on 1-D subspaces. However, they can be
easily generalized to larger dimension subspaces.

The subRPA algorithm is very similar to the RPA algorithm. In
short, it first projects the code C, that is a subcode of RM(m, r),
into 1-D subspaces to get subcodes of RM(m − 1, r − 1). It
then recursively applies the subRPA algorithm to decode these
projected codes. Next, it aggregates the decoding results of the
next layer with the output LLRs of the current layer (similar to [16,
Algorithm 4]) to update the LLRs. Finally, it iterates this process
several times to ensure the convergence of the algorithm, and takes
the sign of the updated LLRs to obtain the decoded codewords.

The main distinction between subRPA and RPA, however, is
the decoding of the projected codes at the bottom layer. Based on
Proposition 1, after r − 1 layers of 1-D projections, the decoder
ends up with subcodes ofRM(m− r + 1, 1) at the bottom layer.
These projected codes can have different dimensions though all are
less than or equal to m− r+2. Therefore, the subRPA algorithm,
manageably, applies the MAP decoding at the bottom layer. Given
that the projected codewords at the bottom layer are not all from
the same codes, the MAP decoding should be carefully performed.
Based on Remark 1, the projected codes at the bottom layer can
be obtained from the so-called projected generator matrices of
dimension k × 2m−r+1, after r − 1 times (binary) merging of
the 2m columns of the original generator matrix Gk×n. However,
many of these k rows of the projected generator matrices are
linearly dependent. In fact, all of these matrices have ranks (i.e.,
code dimensions) of less than or equal to m − r + 2. In order
to facilitate the MAP decoding at the bottom layer, we can pre-
compute and store the codebook of each projected code at the
bottom layer. Particularly, let Rt be the rank of the t-th projected
generator matrix G(t)

p at the bottom layer, t ∈ [T ], where T is the
total number of projected codes at that layer (that depends on the
number of layers as well as the number of projections per layer).
Now, we can pre-compute the codebook C(t)p that contains the 2Rt

length-(n/2r−1) codewords c(t)p,it
, it ∈ [2Rt ], of the t-th projected

code at the bottom layer. Finally, given the projected LLR vector
l(t)p of length n/2r−1 at the bottom layer, we pick the codeword
c
(t)
p,i∗ that maximizes the MAP rule for BMS channels [16], i.e.,

ŷt = c
(t)
p,i∗ , s.t. i∗ = argmax

it∈[2Rt ]

⟨l(t)p , 1− 2c
(t)
p,it
⟩, (4)

where ⟨·, ·⟩ denotes the inner (dot) product of two vectors.

B. Soft-SubRPA Algorithm
In this subsection, we derive the soft-decision based version

of the subRPA algorithm, referred to as “soft-subRPA”, which
obtains soft decisions at the bottom layer instead of performing
hard MAP decodings; this process is called “soft-MAP” in this
paper. Additionally, the decoder applies a different aggregation
rule, referred to as “soft-aggregation” in this paper.

The soft-MAP algorithm for making soft decisions on the
projected codes at the bottom layer, that are subcodes of first-
order RM codes, is presented in Algorithm 1 for the case of
additive white Gaussian noise (AWGN) channels. The process
is comprised of two main steps : 1) obtaining the LLRs of the
information bits, and 2) obtaining the soft decisions (i.e., LLRs)
of the coded bits using that of information bits. Note that we
invoke max-log and min-sum approximations, to be clarified later,
in Algorithm 1. For the sake of brevity, let us drop the superscript

Algorithm 1 Soft-MAP Algorithm for AWGN Channels
Input: The LLR vector lp; the generator matrix Gp; the codebook
Cp; and the matrix U of the information sequences
Output: Soft decisions (i.e., the updated LLR vector) l̂

1: Set k equal to the number of rows in Gp

2: Initialize linf as an all-zero vector of length k
3: C̃ ← 1− 2C ▷ C is the codebook matrix (in binary)
4: l̃← lpC̃

T
▷ matrix mul. of lp with the transpose of C̃

5: for i = 1, 2, · · · , k do ▷ obtaining inf. bits LLRs
6: if U(:, i) (the i-th column) is not fixed to 0 or 1 then
7: linf(i)← max

i′∈{i′:U(i′,i)=0}
l̃(i′) − max

i′∈{i′:U(i′,i)=1}
l̃(i′)

8: end if
9: end for

10: Set n′ equal to the number of columns in Gp

11: Initialize lenc as an all-zero vector of length n′

12: L← repeat(lTinf , 1, n
′) ▷ make n′ copies of lTinf

13: V ← L⊙Gp ▷ element-wise matrix multiplication
14: for j = 1, 2, · · · , n′ do
15: v ← vector containing nonzero elements of V (:, j)
16: lenc(j)←

∏︁
j′ sign(v(j

′))×minj′ |v(j′)|
17: end for
18: l̂← lenc
19: return l̂

t. Particularly, Let R be the rank of the projected generator matrix
Gp of a projected code at the bottom layer with codebook Cp.
Also, assume a 2R × k matrix U that lists all 2R length-k
sequences of bits that produce the codebook Cp (through modulo-
2 matrix multiplication UGp). Note that only R indices of these
length-k sequences contain the information bits, and the remaining
indices are always fixed to either 0 or 1. The objective of the
first step is to obtain the LLRs of the R information bits given
the projected LLR vector lp. This is done, using [19, Appendix
A] invoking max-log approximation, as described in Algorithm 1.
Note that the LLRs of the k − R indices that do not contain the
information bits are set to zero.

Once we have the LLRs of the information bits, we can combine
them according to the columns of Gp to obtain the LLRs of the
encoded bits lenc. Note that the codewords in Cp are obtained by
the multiplication of UGp, i.e., each j-th coded bit, j ∈ [n′],
where n′ is the code length, is obtained based on the linear
combination of the information bits ui’s according to the j-th
column of Gp. Therefore, we can apply the well-known min-sum
approximation to calculate the LLR vector of the coded bits as
lenc := (lenc(j), j ∈ [n′]), where

lenc(j) =
∏︂
i∈∆j

sign(linf(i))× min
i∈∆j

|linf(i)|, (5)

where ∆j is the set of indices defining the nonzero elements in the
j-th column of Gp. This process is summarized in Algorithm 1.

Finally, given the soft decisions at the bottom layer, the decoder
needs to properly aggregate them with the (projected) LLRs. In
the following, we first define the “soft-aggregation” scheme as an
extension of the aggregation method in [16, Algorithm 4]. Please
refer to [19] for the details on the derivation of (6).

Definition 1 (Soft-Aggregation). Let l be the vector of the channel
LLRs, with length n = 2m, at a given layer. Suppose that there are
Q 1-D subspaces Bq , q ∈ [Q], to project this LLR vector at the



next layer (in the case of full-projection decoding, there are Q =
n− 1 1-D subspaces). Also, let l̂q’s denote the length-n/2 vectors
of soft decisions of the projected LLRs according to Algorithm 1.
The “soft-aggregation” of l and l̂q’s is defined as a length-n vector
l̃ := (l̃(z), z ∈ Fm

2 ) where

l̃(z) =
1

Q

Q∑︂
q=1

tanh
(︁
l̂q ([z + Bq]) /2

)︁
l(z ⊕ zq). (6)

where zq is the nonzero vector of the 1-D subspace Bq , ⊕ denotes
the coordinate-wise addition in F2, and [z + Bq] is the coset
containing z for the projection into Bq .

It is worth mentioning that one can also apply the following
equation to update the channel LLR as

l̃ls(z) =
1

Q

Q∑︂
q=1

ln

(︄
1 + el̂q([z+Bq ])+l(z⊕zq)

el̂q([z+Bq ]) + el(z⊕zq)

)︄
. (7)

The rationale behind (7) follows the arguments used to derive (6)
in [19] and then deriving the LLR of the sum of two binary random
variables given the LLRs of each of them. Therefore, (7) is an
exact expression assuming independence among the involved LLR
components. Our empirical observations, however, suggest almost
identical results for either aggregation methods. Therefore, given
the complexity of computing expressions like (7), one can reliably
apply our proposed soft-aggregation method in Definition 1.

C. Encoding Insights

In this subsection, we provide some insights on how the design
of the encoder can affect the decoding complexity as well as the
performance1. Throughout the paper, we define the signal-to-noise
ratio (SNR) as SNR := 1/(2σ2) and the ratio of the energy-per-
bit Eb to the noise as Eb/N0 := n/(2kσ2), where σ2 is the noise
variance. Furthermore, all the simulation results are obtained from
more than 105 trials of random codewords. We also iterate the
whole decoding process for our recursive algorithms Nmax = 3
times to ensure their convergence.

Given that the projected codes at the bottom layer can have dif-
ferent dimensions, an immediate approach for encoding RM sub-
codes to achieve a lower decoding complexity is to construct the
code generator matrix such that the projected codes at the bottom
layer have smaller dimensions. In other words, let L :=

∑︁T
t=1 2

Rt

represent a rough evaluation of the (MAP or soft-MAP) decoding
complexity at the bottom layer, i.e., the decoding complexity at
that layer is roughly a constant times L. Then, among all

(︁
ku−kl

k−kl

)︁
possible selections of the generator matrix Gk×n, we can choose
the ones that achieve a smaller L. In order to investigate the effect
of this methodology on the decoding performance, in Figure 2,
we consider four different selections of the generator matrix for
the (64, 14) RM subcode. In particular, Gmax and Gmax2 have
the largest and the second largest values of L = 2568 and 2532,
respectively. Also, Gmin has the minimum value of L = 1482.
And, Gmin,15 has the minimum value of

∑︁
t 2

Rt = 108 on 15
projections but a relatively large value of L = 2412 on all 63
projections. Figure 2 suggests a slightly better performance for the
MAP decoder for larger values of L. However, surprisingly, our
decoding algorithm exhibits a completely opposite behavior, i.e.,

1We also investigated the efficiency of RM subcodes by comparing their MAP
decoding performance with that of time-sharing (TS) between RM codes. We
observed that our RM subcodes with rates 14/64 and 18/64 achieve more than
1 dB and 0.4 dB gains, respectively, compared to the TS counterparts. Please
refer to [19, Figure 2] and the discussions therein for more details.

Figure 2. Simulation results for the (64, 14) RM subcodes with MAP and subRPA
decoders given four different selections of the generator matrix Gk×n.

it achieves a better performance for smaller values of L. This is
then a two-fold gain: a better performance for an encoding scheme
that results in a lower complexity for our decoding algorithm. We
did extensive sets of experiments which all confirm this empirical
observation. However, still, further investigation is needed to
precisely characterize the performance-complexity trade-off as a
result of the encoding process.

D. Projection Pruning
One direction for reducing the complexity of our decoding

algorithms is to prune the number of projections at each layer.
Particularly, let us assume that, at each layer and point in the
decoding tree diagram, the complexity of decoding each branch
(that corresponds to a given projection) is the same. This is not
precisely true given that the projected codes at the bottom layer
may have different dimensions. Also, we assume that the com-
plexity of the aggregations performed at each layer is the same.
Then, pruning the number of projections by a factor β ∈ (0, 1)
is roughly equivalent to reducing the complexity by a factor of β
at each layer. In other words, the projection pruning exponentially
reduces the decoding complexity by a factor of βr−1 in a subcode
of RM(m, r) that has r − 1 layers in the decoding tree. This is
essential to make the decoding of higher order RM subcodes prac-
tical. One can also opt to choose a constant number of projections
per layer to avoid high-degree polynomial complexities.

The projection subspaces should be carefully selected to reduce
the complexity without having a notable effect on the decoding
performance. Our empirical results show that the choice of the sets
of projections can significantly affect the decoding performance.
To see that, in Figure 3, we consider the generator matrix Gmin,15

for encoding a (64, 14) RM subcode. In addition to full-projection
decoding (i.e., 63 1-D subspaces), we also evaluate the perfor-
mance of subRPA and soft-subRPA with 15 projections picked
according to three different projection pruning schemes. First, we
consider a subset of 15 subspaces that results in maximum ranks
for the projected generator matrices at the bottom layer (referred
to as “maxRank” scheme). Figure 3 and our other simulations
with different generator matrices and code parameters demonstrate
that, although it requires a higher complexity for MAP or soft-
MAP decodings at the bottom layer, the maxRank selection fails
to achieve a good performance compared to our other considered
pruning schemes. Next, we select 15 subspaces that result in
minimum ranks for the projected generator matrices (“minRank”
scheme in Figure 3). Surprisingly, despite its lower complexity
compared to the maxRank selection, the minRank selection is ca-



Figure 3. Performance of subRPA and soft-subRPA with full-projection decoding
as well as different projection pruning schemes, i.e., picking according to the
minimum ranks, maximum ranks, and training a machine learning model. The
generator matrix Gmin,15 is considered for the encoding process.

pable of achieving very close to the performance of full-projection
decoding (≈ 0.1 dB gap for both subRPA and soft-subRPA).

In practice, we may prune most of the projections per layer to
allow efficient decoding at higher rates (equivalently, higher order
RM subcodes) with a manageable complexity. In such scenarios,
we may, inevitably, have a meaningful gap with full-projection
decoding, more than what we observed here for the minRank se-
lection. Therefore, one needs to ensure that the sets of the selected
projections are the ones that minimize the decoding error rate, i.e.,
the gap to the full-projection decoding. In the next subsection, we
shed light on how the proposed soft-subRPA algorithm enables
training an ML model to search for optimal sets of projections.
This then establishes that the combination of soft-subRPA with our
ML model enables efficient decoding (in terms of both decoding
error rate and complexity) of RM subcodes. The results of our
decoding algorithms with 15 projections obtained via training our
ML model in Figure 3 demonstrate identical performance to full-
projection decoding, for both subRPA and soft-subRPA, which is
the best one can hope for with the pruned-projection decoding.
Additionally, it is observed that the soft-subRPA algorithm can
almost 0.1 dB improve upon the performance of subRPA.

E. Training an ML Model for Projection Pruning

The goal is to train an ML model to pick a subset of Q0

projections out of total number of Q projections (i.e., prune by
a factor of β = Q0/Q) that minimizes the training loss. To do so,
we assign a weight wq to each q-th projection such that wq ∈ [0, 1]

and
∑︁Q

q=1 wq = 1. Building upon the success of stochastic
gradient descent methods in training complex models, we want
to use gradients for this search. Indeed, the ML model updates the
vector w := (wq, q ∈ [Q]) such that picking the Q0 projections
with the largest weights results in the best performance.

There are two major challenges in training the aforementioned
ML model. First, the MAP decoding that needs to be performed
at the bottom layer is not differentiable, and thus one cannot
apply the gradient-based training methods to our subRPA algo-
rithm. However, the proposed soft-subRPA algorithm overcomes
this issue by replacing the MAP decoder with the differentiable
soft-MAP decoder2. The second issue is that the combinatorial
selection of Q0 largest elements of the vector w is not differ-
entiable. To address this issue, we apply the SOFT (Scalable

2Please refer to [19, Section III-E] for a detailed discussion on why soft-MAP is
differentiable but MAP is not.

Optimal transport-based diFferenTiable) top-k operator, proposed
very recently in [20], to obtain a smoothed approximation of the
top-k operator whose gradients can be efficiently approximated.

Next, the training procedure is briefly explained. We use the
PyTorch library of Python to first implement our soft-subRPA
decoding algorithm in a fully differentiable way for the purpose
of gradient-based training. We initialize the weight vector with
equal weights for all the projections. For each training iteration,
we randomly generate a batch of B codewords of the RM subcode
and compute their corresponding LLR vectors given a carefully
chosen training SNR. Then we input these LLR vectors to our
decoder to obtain the soft decisions at each layer. During the soft-
aggregation step, instead of unweighted averaging of (6), we take
the weighted averages of the soft decisions at all Q projections as
l̃(z) =

∑︁Q
q=1 wq tanh

(︁
l̂q ([z + Bq]) /2

)︁
l(z ⊕ zq). Ideally, the

top-k operator should return nonzero weights only for the top Q0

elements. However, due to the smoothed SOFT top-k operator, all
Q elements of w may get nonzero weights though the weights for
the Q−Q0 smaller elements are very small. Therefore, the above
weighted average is approximately equal to the weighted average
over only the largest Q0 weights (i.e., pruned-projection decod-
ing). Note that we apply the same procedure for all (projected) RM
subcodes at each node and layer while we define different weight
vectors (and also Q0’s) for each sets of projections corresponding
to each (projected) codes. We also consider fixed weight vectors
for decoding all B codewords at each iteration.

The ML model then updates all weight vectors at each it-
eration to iteratively minimize the training loss. We apply the
“Adam” optimization algorithm [21] to minimize the training loss
while using “BCEWithLogitsLoss” [22] as the loss function. By
computing the loss function between the true labels (from the
generated codewords) and the predicted LLRs, the optimizer then
moves one step forward by updating the model, i.e., the weight
vectors. Finally, once the model converges after enough number
of iterations, we save the weight vectors for the sake of optimal
projection pruning. Note that in order to reduce the decoding
complexity and the overload of the training process, we only train
the model for a single SNR point. In fact, once the model is trained,
we fix the subsets of projections according to the largest values of
the trained weight vectors. We then test the performance of our
algorithms given the fixed subsets of projections for all codewords
and all SNR points. One can apply the same procedure to train the
model for each SNR point, or even actively for each LLR vector,
to possibly improve upon the performance of our fixed projection
pruning scheme at the expense of increased training overload.

IV. CONCLUSIONS

In this paper, we designed efficient algorithms for decoding
subcodes of RM codes. More specifically, we first proposed a
general recursive algorithm, called subRPA, for decoding RM
subcodes. Then we derived a soft-decision based version of our
algorithm, called soft-subRPA, that not only improved upon the
performance of the subRPA algorithm but also enabled a differen-
tiable implementation of our decoding algorithm for the purpose of
training a machine learning model. Accordingly, we proposed an
efficient pruning scheme that finds the best subsets of projections
via training a machine learning model. Our simulation results on a
(64, 14) RM subcode demonstrate as good as the performance of
full-projection decoding for our machine learning-aided decoding
algorithms with more than 4 times smaller number of projections.
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