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Abstract—The problem of channel polarization for an arbitrary
sequence tWiu

n´1
i“0 of n independent channels, referred to as a non-

stationary sequence of channels, is considered. Also, each of the
channels is used only once for communication. We consider a gen-
eral framework for polarization of non-stationary channels and
aim at optimizing the framework toward obtaining the best po-
larization. This framework includes permuting channels before
Arıkan’s pairwise channel combining operations are applied at
each polarization level and skipping certain combining operations.
We define an explicit optimization problem with the objective of
finding the best permutation and indices of skipped operations
in order to minimize a certain measure of polarization in one-
level polarization. We then provide a complete solution to this op-
timization problem in the case of non-stationary binary erasure
channels (BECs). We also propose a greedy method for polarizing
non-stationary BECs, based on our solution for one-level polar-
ization. Numerical results confirm the superiority of our method,
in terms of various performance metrics, for constructing polar
codes in certain non-stationary settings compared to prior work.

I. INTRODUCTION

Polar codes were introduced by Arıkan in [1]. They are the
first family of codes for the class of binary-input symmetric
discrete memoryless channels that are provable to be capacity-
achieving with low encoding and decoding complexity [1]. In
the past decade, channel polarization and polar coding paradigm
have been extended to more general scenarios including chan-
nels with non-binary discrete inputs [2]–[4], asymmetric chan-
nels [5], channels with memory [6], [7], and, more recently,
non-stationary channels [8]–[10]. In this paper, we consider
the problem of non-stationary channel polarization and design
methods towards optimal channel combining strategies.

In a non-stationary communication setting, an arbitrary se-
quence of independent channels tWiu

n´1
i“0 is given. A coher-

ent communication over these channels is assumed, i.e., the se-
quence is assumed to be completely known to both the trans-
mitter and the receiver. This sequence is referred to as a non-
stationary sequence of channels or simply non-stationary chan-
nels [8], [9]. The non-stationary channel coding scenario is then
described as follows. It is assumed that each channel Wi is used
once, i.e., a code with block length n is to be constructed and
then the i-th coded bit is transmitted through Wi.

Besides the theoretical motivation to study polar coding and
channel polarization beyond the scenario originally considered
by Arıkan [1], there are practical applications indicating non-
stationary scenarios are emerging in wireless systems [9]. Also,
in data storage systems such as resistive memories, channel
coding over non-stationary channels becomes relevant [10].

The channel polarization problem for non-stationary chan-
nels was first considered in [8]. In particular, it is shown in
[8] that polarization happens by applying Arıkan’s polarization
transform. However, the proposed proof method in [8] is not

powerful enough to conclude anything about the speed of polar-
ization and, consequently, an achievability scheme. In [9] sev-
eral modifications to Arıkan’s channel polarization transform
are proposed leading to polarization of non-stationary channels
while lower bounding the speed of polarization. Then, polar
coding schemes are constructed that achieve the average capac-
ity of non-stationary channels while bounding the finite-length
scaling exponent [9]. The modifications to Arıkan’s channel
polarization transform introduced in [9] include permuting the
channels and skipping certain channel combining operations. In
another related work [10], the problem of finding the best per-
mutation for non-stationary channels is studied. As opposed to
the approach in [9], the permutation is only applied once in [10]
before applying the polarization transform. Various numerical
results are shown in [10] indicating that the bit-reversal permu-
tation leads to a better performance for the constructed polar
code compared to the ordered permutation, where the channels
are ordered according to their capacity, and several randomly
selected permutations.

In this paper we consider a general framework for channel
polarization and polar coding in non-stationary settings. This
framework includes permutations of channels at each polariza-
tion level and skipping channel combining operations. In this
work, we aim at optimizing the framework toward obtaining
the best polarization. Our paper can be regarded as a first step
towards the optimal non-stationary polar code construction un-
der the considered framework. In order to measure how polar-
ized a non-stationary sequence of channels is, we suggest to use
a certain metric which we call the polarization measure. Then
we define an explicit optimization problem with the objective
of finding the best permutation and indices of skipped opera-
tions in order to minimize the polarization measure in one level
of polarization. In this paper, we provide a complete solution to
this optimization problem in the case of non-stationary BECs.
We also propose a greedy method for polarizing non-stationary
BECs, based on our solution for one-level polarization. We then
show that in certain settings, our greedy construction outper-
forms the construction based on the bit-reversal permutation,
proposed in [10], in terms of various performance metrics.

II. CONSTRUCTION OF NON-STATIONARY POLAR CODES

In conventional polar coding [1], the polar transform is a
channel combining operation that takes two independent copies
of a binary memoryless symmetric (BMS) channel W, and gen-
erates two new BMS channels tW´, W`u. This operation can
be also applied to a pair of two different channels as well. Let
W1 : t0, 1u Ñ Y1 and W2 : t0, 1u Ñ Y2 be two independent
BMS channels. The polar transform operation can take W1 and
W2 as a pair of inputs, and generate two new BMS channels
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Figure1. Construction framework for a length-8 non-stationary polar
code.

xW1, W2y´ and xW1, W2y` where

xW1, W2y´py1, y2|u1q “
1
2

ÿ

u2Pt0,1u

W1py1|u1 ‘ u2qW2py2|u2q,

xW1, W2y`py1, y2, u1|u2q “
1
2

W1py1|u1 ‘ u2qW2py2|u2q,

for all y1 P Y1, y2 P Y2, and u1, u2 P t0, 1u.
Now, suppose that an arbitrary sequence of non-stationary

BMS channels tWiu
n´1
i“0 is given. We refer to this sequence

as a non-stationary sequence of BMS channels or simply non-
stationary channels, keeping in mind that the channels are BMS.
As mentioned earlier, it is shown in [8] that polarization hap-
pens by applying Arıkan’s polarization transform recursively to
this sequence. A modified scheme for non-stationary polariza-
tion is proposed in [9] to construct capacity-achieving codes.
Later, similar modifications, e.g., permuting channels, is ex-
plored in [10] with a different objective of optimizing the code
performance. To summarize these construction methods, we
next describe a general framework that we follow in this paper
for non-stationary channel polarization and polar coding.

Let tWiu
n´1
i“0 be a sequence of n independent BMS channels

where n is a power of 2. For 0 ď m ď log2pnq, let tWm,iu
n´1
i“0

denote the sequence of channels after m levels of polarization.
The polarization is initialized at level 0 by setting W0,i “ Wi for
0 ď i ď n ´ 1. Then a permutation π0,0 is applied to tW0,iu

n´1
i“0

followed by applying the polar transform channel combining
operation or skipping it for all the pairs of consecutively in-
dexed channels in order to obtain channels at level 1. Note that
not all the pairs of channels are necessarily combined. A binary
sequence tb0,0,iu

n{2´1
i“0 of length n{2 is used to indicate the in-

dices where the channel combining operation is skipped. The
three sub-indices of b denote the level of polarization, the index
of the sub-block, explained later, and the index of the chan-
nel pair within this sub-block. For 0 ď k ă n{2, if b0,0,k “

0, then the polar transform is applied to the pair of channels
W0,π0,0p2kq and W0,π0,0p2k`1q, and the resulting channels are in-
dexed as W1,k and W1,n{2`k, i.e.,

W1,k “ xW0,π0,0p2kq, W0,π0,0p2k`1qy´,

W1,n{2`k “ xW0,π0,0p2kq, W0,π0,0p2k`1qy`

If b0,0,k “ 1, then this combining operation is skipped and we
have

W1,2k “ W0,π0,0p2kq, W1,n{2`k “ W0,π0,0p2k`1q.

In the second level of polarization, the same procedure is ap-
plied to the sub-blocks tWiu

n{2´1
i“0 and tWiu

n´1
i“n{2 separately. In

general, at level m, the sequence tWm,iu
n´1
i“0 is split into 2m sub-

blocks of consecutively indexed channels, each of length n{2m.
The sub-blocks are indexed by numbers from 0 to p2m ´ 1q. For
instance, consider the j-th sub-block tWm,iu

pn{2mqpj`1q´1
i“pn{2mqj at the

m-th level of polarization. The channels in this sub-block are
permuted using the permutation πm,j. Note that πm,j is applied
only on channels indexed from pn{2mqj to ppn{2mqpj ` 1q ´ 1q.
Then for 0 ď k ă pn{2m`1q, if bm,j,k “ 0, we have

Wm`1,pn{2mqj`k “

xWm,πm,jppn{2mqj`2kq, Wm,πm,jppn{2mqj`2k`1qy´,

Wm`1,pn{2mqj`pn{2m`1q`k “

xWm,πm,jppn{2mqj`2kq, Wm,πm,jppn{2mqj`2k`1qy`.

Otherwise, bm,k “ 1 and this combining operation is skipped,
i.e.,

Wm`1,pn{2mqj`k “ Wm,πm,jppn{2mqj`2kq,

Wm`1,pn{2mqj`pn{2m`1q`k “ Wm,πm,jppn{2mqj`2k`1q.

This general construction framework is illustrated for length-8
non-stationary polar coding in Figure 1.

Now, given the aforementioned general framework for non-
stationary polarization, the main question is how to optimize it
for a given sequence of non-stationary channels, i.e., what are
the best choices for the permutations πm,j’s and the skipped
operations indicated by bm,j,k’s? Before proceeding further, we
need to define a metric that can be used to measure how polar-
ized a sequence of channels is. To this end, we introduce a po-
larization measure for a set of BMS channels in the next section.
That measure will serve as our primary metric for designing op-
timal schemes for non-stationary polarization in this paper.

III. A MEASURE OF POLARIZATION

In this section, we introduce a polarization measure for a set
of BMS channels. Polarization is, in general, an asymptotic no-
tion. However, in a non-asymptotic regime, a measure to quan-
tify the level of polarization in a finite set of channels is needed.
One such a measure, that we use throughout this paper, is de-
fined next.

Definition 1. For a set of BMS channels tWiu
n´1
i“0 , and α, β P

p0, 1s, the pα, βq-polarization measure of this set, denoted by
Mα,βptWiu

n´1
i“0 q, is defined as

Mα,βptWiu
n´1
i“0 q

def
“

1
n

n´1
ÿ

i“0

ZpWiq
αp1 ´ ZpWiqqβ,

where ZpWiq is the Bhattacharyya parameter of the channel
Wi.

Accordingly, for a fixed α and β, we say a set of channels
is more polarized than another set, if the former has a smaller
pα, βq-polarization measure than the latter.



In this paper, we focus only on the case with α “ β “ 1
and adopt M1,1 as the measure of polarization. Therefore, for
the sake of notation convenience, we simply use M to denote
M1,1 through the rest of this paper. Note that the expression
ZpWqp1 ´ ZpWqq first appeared in [1] in the proof of channel
polarization theorem. The aforementioned polarization measure
also appears in several works studying finite-length scaling ex-
ponent of polar codes, see, e.g., [9], [11]. In the remainder of
this section, we justify our choice of this polarization measure
from another perspective.

It can be also observed that for a non-stationary sequence
of channels, this polarization measure gives an upper bound on
the number of unpolarized channels in the sequence, specified
as follows. Let ϵ ą 0 be fixed. Then any channel Wi with ϵ ă

ZpWiq ă 1 ´ ϵ, is referred to as an unpolarized channel with
respect to ϵ. The following lemma relates the polarization mea-
sure with the number of unpolarized channels corresponding to
a parameter ϵ.

Lemma 1. For a set of BMS channels tWiu
n´1
i“0 , we have

|ti : ϵ ă ZpWiq ă 1 ´ ϵu|

n
ă

MptWiu
n´1
i“0 q

ϵp1 ´ ϵq
.

Proof. Note that for each i with ϵ ă ZpWiq ă 1 ´ ϵ, we have

MpWiq ą ϵp1 ´ ϵq.

The proof then follows by this together with the definition of
MptWiu

n´1
i“0 q.

Roughly speaking, Lemma 1 implies that if the polarization
measure for a collection of channels is close to 0, the fraction
of unpolarized channels with respect to a fixed ϵ will also be
close to 0.

IV. AN OPTIMAL SOLUTION FOR ONE-LEVEL
POLARIZATION OF BECS

Given the polarization measure in Section III and motivated
by the problem of optimizing non-stationary polarization dis-
cussed in Section II, we pose the following optimization prob-
lem: Given an arbitrary sequence of non-stationary channels,
how to pick the collection of permutations π’s and skipping op-
erations specified by b’s to minimize the polarization measure
for the resulting channels? Answering this question in general
seems to be a formidable task. In this section, we provide a
complete solution to this problem for the case with one-level
polarization applied to a sequence of non-stationary BECs. We
first give a precise description of the optimization problem for
one-level polarization on BECs, and then provide the complete
solution to it.

We start by providing a precise description of one-level po-
larization. For a sequence of channels tWiu

n´1
i“0 with even n,

one-level polarization refers to the operation that we first per-
mute Wi’s according to a permutation π and then combine a
certain subset of the set of all consecutive channel pairs, i.e.,
the pairs tWπp2kq, Wπp2k`1qu, for 0 ď k ă n{2, and apply
the channel combining operation to them resulting in a new se-
quence of non-stationary channels. Note that the operation that
results in obtaining tW1,iu

n´1
i“0 from tW0,iu

n´1
i“0 , as specified in

Section II, is one-level polarization.

For non-stationary channels, different choices of π and skip-
ping operations specified by tbiu

n{2´1
i“0 may result in different

outcomes of one-level polarization. We aim at finding the best
choices for them in the sense that they minimize the polariza-
tion measure of tW1,iu

n´1
i“0 . Next, this optimization problem is

stated, which we aim to solve:

Optimization Problem A. Let tWiu
n´1
i“0 be an arbitrary se-

quence of non-stationary BECs, where n is even. Let tW1,iu
n´1
i“0

be the sequence of channels after one-level polarization. What
is the permutation π and the binary sequence tbiu

n{2´1
i“0 that

minimize the polarization measure MptW1,iu
n´1
i“0 q?

We first show that in Optimization Problem A, it’s always
better to apply the polar transform to all the channel pairs. In
other words, in the solution to Optimization Problem A, we
have bi “ 0 for all 0 ď i ă n{2. This is shown in the following
proposition.

Proposition 1. For any two BECs W1 and W2, we have

MpW1, W2q ě MpxW1, W2y´, xW1, W2y`q.

Proof. Let the erasure probabilities of W1 and W2 be denoted
by z1 and z2, respectively. Then we have

MpW1, W2q´MpxW1, W2y´, xW1, W2y`q

“ z1z2p1 ´ z1qp1 ´ z2q ě 0,

which completes the proof.

By Proposition 1, one can observe that for any two BECs, ap-
plying the polar transform to them is always better than not ap-
plying it when the goal is to minimize the polarization measure.
Therefore, to minimize the polarization measure after one-level
polarization, we should always include all the BECs for chan-
nel combining operations. Therefore, in order to find the best
permutation, i.e., the solution to Optimization Problem A, we
assume all the BECs are paired for channel combination.

Note that there are many permutations that are equivalent
to each other in one-level polarization. For instance, when we
split a sequence of BECs tWiu

n´1
i“0 into n{2 channel pairs, the

order of channels within each pair doesn’t change the resulting
channels. Separately, one can swap the channel pair tW1, W2u

with the channel pair tW3, W4u, and yet obtain the same set
of polarized channels after one-level polarization. In that sense,
we call two permutations equivalent, if we can obtain one of
them from the other one, by flipping the channel indices that
are paired, and/or changing the order of the channel index pairs.
It can be observed that this is a well-defined equivalence rela-
tion. Hence, one can partition Sn, the set of all permutations
on t0, 1, ¨ ¨ ¨ , n ´ 1u, into equivalence classes of size

` n
2

˘

!2n{2

according to this equivalence relation. When searching for the
optimal permutation as the solution to Optimization Problem
A, it is sufficient to only search over the equivalence classes.
In the prior work [10], there are similar discussions regarding
the equivalence classes of permutations. However, the authors
in [10] consider this for multiple levels of polarization, while
we focus on one-level polarization in this section.

We are now ready to define the proximity-to-half permuta-
tion, that are crucial in solving Optimization Problem A, as fol-
lows.



Definition 2. Given an arbitrary sequence of BECs tWiu
n´1
i“0

with erasure probabilities z0, z1, ¨ ¨ ¨ , zn´1, we call a permuta-
tion π P Sn a proximity-to-half permutation for this sequence,
if for the permuted sequence of channels tWπpiqu

n´1
i“0 , the val-

ues
ˇ

ˇ

ˇ
zπp0q ´ 1{2

ˇ

ˇ

ˇ
,
ˇ

ˇ

ˇ
zπp1q ´ 1{2

ˇ

ˇ

ˇ
, ¨ ¨ ¨ ,

ˇ

ˇ

ˇ
zπpn´1q ´ 1{2

ˇ

ˇ

ˇ

are in an ascending order.

Notice that for a set of BECs, if zi “ zj or zi “ 1 ´ zj for
some 0 ď i ă j ă n, then there will be more than one per-
mutations in Sn that satisfy the condition of being proximity-
to-half. We will prove that all such permutations will give us
the same polarization measure after one-level polarization, and
that measure is also the minimum among all possible permu-
tations. Consequently, this shows that the equivalence classes
containing proximity-to-half permutations are the optimal ones,
thereby providing a complete solution to Optimization Problem
A.

Theorem 1. Given an arbitrary sequence of BECs tWiu
n´1
i“0 ,

with n being even, a permutation π P Sn together with setting
bi “ 0, for all 0 ď i ă n{2, is an optimal solution for Opti-
mization Problem A if and only if π is equivalent to a proximity-
to-half permutation.

The rest of this Section is devoted to the proof of Theorem 1,
which is the main result of this paper. We first prove that The-
orem 1 holds for the case with four BECs. Then we generalize
our result into n BECs to complete the proof.

A. Proof for four BECs

Lemma 2. Theorem 1 holds when n “ 4.

Proof. Suppose that we have four BECs W0, W1, W2 and W3
with erasure probabilities z0, z1, z2 and z3, respectively. With-
out loss of generality assume that

ˇ

ˇ

ˇ
z0 ´ 1{2

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
z1 ´ 1{2

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
z2 ´ 1{2

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
z3 ´ 1{2

ˇ

ˇ

ˇ
. (1)

Note that for one-level polarization of four BECs, we can par-
tition S4 into three equivalence classes, and only compare three
representatives, one from each class. Denote the three repre-
sentative permutations as π1, π2, and π3. We can pick π1 to
be the identity permutation, π2 that permutes the channels to
be W0, W2, W1, W3, and π3 that permutes the channels to be
W0, W3, W1, W2. Also denote the polarization measures after
one-level polarization following those three permutations as M1,
M2 and M3 respectively:

M1 “ MptxW0, W1y´, xW0, W1y`, xW2, W3y´, xW2, W3y`uq

M2 “ MptxW0, W2y´, xW0, W2y`, xW1, W3y´, xW1, W3y`uq

M3 “ MptxW0, W3y´, xW0, W3y`, xW1, W2y´, xW1, W2y`uq

To compare M1 with M2, notice that 2pM1 ´ M2q is factored
as:

´

„

´

z1 ´ 1{2
¯2

´

´

z2 ´ 1{2
¯2

ȷ„

´

z0 ´ 1{2
¯2

´

´

z3 ´ 1{2
¯2

ȷ

.

Hence M1 ď M2, and the equality holds if and only if
ˇ

ˇ

ˇ
z1 ´ 1{2

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
z2 ´ 1{2

ˇ

ˇ

ˇ
. (2)

Similarly, 2pM2 ´ M3q is factored as:

´

„

´

z0 ´ 1{2
¯2

´

´

z1 ´ 1{2
¯2

ȷ„

´

z2 ´ 1{2
¯2

´

´

z3 ´ 1{2
¯2

ȷ

.

So we have M2 ď M3, and the equality holds if and only if
ˇ

ˇ

ˇ
z0 ´ 1{2

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
z1 ´ 1{2

ˇ

ˇ

ˇ
or

ˇ

ˇ

ˇ
z2 ´ 1{2

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
z3 ´ 1{2

ˇ

ˇ

ˇ
. (3)

Next, in order to complete the proof, we consider three different
cases depending on whether (2) and/or (3) hold or not:

1) Case 1: (2) doesn’t hold.
In this case, we have

ˇ

ˇ

ˇ
z0 ´ 1{2

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
z1 ´ 1{2

ˇ

ˇ

ˇ
ă

ˇ

ˇ

ˇ
z2 ´ 1{2

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
z3 ´ 1{2

ˇ

ˇ

ˇ
.

Hence, π1 is the only proximity-to-half permutation. Then
Theorem 1 holds here since we have M1 ă M2 ď M3.

2) Case 2: (2) holds but (3) doesn’t hold.
In this case, we have

ˇ

ˇ

ˇ
z0 ´ 1{2

ˇ

ˇ

ˇ
ă

ˇ

ˇ

ˇ
z1 ´ 1{2

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
z2 ´ 1{2

ˇ

ˇ

ˇ
ă

ˇ

ˇ

ˇ
z3 ´ 1{2

ˇ

ˇ

ˇ
.

Hence, both π1 and π2 are proximity-to-half permuta-
tions, while π3 is not. In this case, Theorem also 1 holds
since we have M1 “ M2 ă M3.

3) Case 3, both (2) and (3) hold.
In this case, we have

ˇ

ˇ

ˇ
z0 ´ 1{2

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
z1 ´ 1{2

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
z2 ´ 1{2

ˇ

ˇ

ˇ

or
ˇ

ˇ

ˇ
z1 ´ 1{2

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
z2 ´ 1{2

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
z3 ´ 1{2

ˇ

ˇ

ˇ
.

Hence, π1, π2, and π3 will all be proximity-to-half per-
mutations. Then we have M1 “ M2 “ M3, implying
that Theorem 1 holds in this case as well.

B. Proof for n BECs

This section is devoted to the proof of Theorem 1 for the gen-
eral even number n. We first prove that if a permutation π P Sn
is not equivalent to any proximity-to-half permutation, then it
cannot be an optimal solution to Optimization Problem A.

Suppose that π is not equivalent to any proximity-to-half
permutation for one-level polarization. Then there should exist
four channels Wi, Wj, Wk and Wl with erasure probabilities zi,
zj, zk and zl , respectively, where

ˇ

ˇ

ˇ
zi ´ 1{2

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
zj ´ 1{2

ˇ

ˇ

ˇ
ă

ˇ

ˇ

ˇ
zk ´ 1{2

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
zl ´ 1{2

ˇ

ˇ

ˇ
,

and, also, Wi is paired with Wk and Wj is paired with Wl , af-
ter the permutation π is applied. We refer to such a couple of
channel pairs as a cross pair, as illustrated in Figure 2. When
we order the channels such that the values

ˇ

ˇ

ˇ
z0 ´ 1{2

ˇ

ˇ

ˇ
,
ˇ

ˇ

ˇ
z1 ´ 1{2

ˇ

ˇ

ˇ
, ¨ ¨ ¨ ,

ˇ

ˇ

ˇ
zn´1 ´ 1{2

ˇ

ˇ

ˇ

are in an ascending order, there must be at least one cross pair,
as described above, with i ă j ă k ă l in the channel pairing
following π. Next, by invoking Lemma 2, we show that π can-
not be optimal. Note that the permutation π can be altered such
that the resulting channel pairing is altered only for those four
channels from ttWi, Wku, tWj, Wluu to ttWi, Wju, tWk, Wluu.
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Figure2. A cross pair in the channel pairing for a permutation that is
not equivalent to any proximity-to-half permutation.

In that case, by Lemma 2, the altered permutation has a smaller
polarization measure establishing that π cannot be optimal.

Next, we prove that if two permutations are both proximity-
to-half, then their corresponding polarization measures are equal.
Consider two proximity-to-half permutations π1 and π2. Then
we have

ˇ

ˇ

ˇ
zπ1piq ´ 1{2

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
zπ2piq ´ 1{2

ˇ

ˇ

ˇ
, for all i “ 0, 1, ¨ ¨ ¨ n ´ 1

Let Mijkl denote the polarization measure after one-level polar-
ization for two channel pairings ttWi, Wju, tWk, Wluu, i.e.,

Mijkl “ MpxWi, Wjy
´, xWi, Wjy

`, xWk, Wly
´, xWk, Wly

`q

Then, as shown in the proof of Lemma 2, we have

Mπ1piqπ1pi`1qπ1pi`2qπ1pi`3q “ Mπ2piqπ2pi`1qπ2pi`2qπ2pi`3q

for i “ 0, 2, . . . , n ´ 2, where the indices are considered mod-
ulo n. Now, let Mπ1 and Mπ2 be the polarization measures af-
ter one-level polarization corresponding to permutations π1 and
π2, respectively. Then we have

2nMπ1 “ 4Mπ1p0qπ1p1qπ1p2qπ1p3q ` 4Mπ1p2qπ1p3qπ1p4qπ1p5q

` ¨ ¨ ¨ ` 4Mπ1pn´2qπ1pn´1qπ1p0qπ1p1q

“ 4Mπ2p0qπ2p1qπ2p2qπ2p3q ` 4Mπ2p2qπ2p3qπ2p4qπ2p5q

` ¨ ¨ ¨ ` 4Mπ2pn´2qπ2pn´1qπ2p0qπ2p1q

“ 2nMπ2 .

Hence, Mπ1 “ Mπ2 and we conclude that all proximity-to-half
permutations, and permutations in their equivalence classes, re-
sult in equal polarization measures after one-level polarization.
Furthermore, this is the minimum value of polarization measure
that can be obtained by one-level polarization. Hence, they are
all optimal. This together with Proposition 1 provide a complete
solution to Optimization Problem A.

V. A GREEDY CONSTRUCTION

In Section IV, we provided a solution to Optimization Prob-
lem A, which concerns with one-level polarization, assuming
all channels in the non-stationary sequence are BECs. How-
ever, finding the optimal solution for permutations and indices
of skipped operations under the general construction framework
in Section II still remains open. In this Section, we propose a
greedy method toward optimizing non-stationary polarization,
where we repeatedly use proximity-to-half permutations for ev-
ery block in all polarization levels. We compare the resulting
construction with the one proposed in [10] and show that our
greedy construction is better in certain numerical settings.

Next, our proposed greedy method is described. Recalling
the discussion in Section II, we first set bi,j,k “ 0 for all 0 ď

i ă log2 n, 0 ď j ă 2i, and 0 ď k ă n{2i`1. Then we set πi,j’s
to be one of the proximity-to-half permutations for their corre-
sponding blocks, for each 0 ď i ă log2 n and 0 ď j ă 2i. It is
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Figure3. Greedy construction example.

shown in Section IV that a proximity-to-half permutation mini-
mizes the polarization measure for the underlying one-level po-
larization. Roughly speaking, our greedy method is based on
the idea that we recursively use the proximity-to-half permuta-
tions that minimize the polarization measure at the level i ` 1
given prior polarization levels up to level i, for i between 0 and
log2 n. Note that when there is more than one choices for the
proximity-to-half permutation, we pick one of them arbitrarily.

An example of our greedy method is shown in Figure 3. In
this example, a sequence of 8 non-stationary BECs with era-
sure probabilities shown on the right of Figure 3 is assumed.
The greedy method with 3 levels of polarization results in a
sequence of 8 channels with erasure probabilities shown on the
left of Figure 3. In this example, the polarization measure of the
resulting 8 channels is 0.1064. Now, suppose that a polar code
of rate 1{2 needs to be constructed. Then, among these 8 chan-
nels, we choose 4 of them with the smallest erasure probabili-
ties (colored blue in Figure 3) to obtain a rate 1{2 non-stationary
polar code.

In [10], an alternative metric is used to optimize the con-
struction of non-stationary polar codes. The optimization crite-
rion in [10] is motivated from the code construction perspec-
tive. More specifically, the authors of [10] propose to maxi-
mize

ś

iPI IpWiq, where I is the set of selected channel in-
dices for code construction according to a certain given rate,
and IpWiq is the symmetric capacity of bit channel Wi. Note
that IpWiq is equal to the capacity of Wi when Wi is a BMS
channel. We refer to this metric as the sum-capacity metric.
Note that when the non-stationary channels are BECs, we can
accurately compute the frame error rate (FER) of Arıkan’s suc-
cessive cancellation decoding, denoted by FERSC, as FERSC “

1 ´
ś

iPI p1 ´ ZpWiqq. For the example shown in Figure 3, we
compare our numerical results with the construction proposed
in [10] that is based on the bit-reversal permutation. The com-
parison between the two methods, both used to construct codes
of rate 1{2, is shown in Table I.

polarization measure sum-capacity metric FERSC
greedy 0.1064 3.7753 0.1082

bit-reversal 0.1072 3.7413 0.1254

TableI. Comparison between two constructions for rate 1/2 code given
the channels shown in Figure 3.

It can be observed that in this example, our greedy construc-
tion outperforms the scheme suggested in [10] based on the bit-
reversal permutation in terms of various metrics, i.e., our sug-
gested polarization measure, the sum-capacity metric suggested
in [10], and the FERSC.
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