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Abstract—The problem of channel polarization for an arbitrary
sequence {Wi}?:_ol of 7 independent channels, referred to as a non-
stationary sequence of channels, is considered. Also, each of the
channels is used only once for communication. We consider a gen-
eral framework for polarization of non-stationary channels and
aim at optimizing the framework toward obtaining the best po-
larization. This framework includes permuting channels before
Arikan’s pairwise channel combining operations are applied at
each polarization level and skipping certain combining operations.
We define an explicit optimization problem with the objective of
finding the best permutation and indices of skipped operations
in order to minimize a certain measure of polarization in one-
level polarization. We then provide a complete solution to this op-
timization problem in the case of non-stationary binary erasure
channels (BECs). We also propose a greedy method for polarizing
non-stationary BECs, based on our solution for one-level polar-
ization. Numerical results confirm the superiority of our method,
in terms of various performance metrics, for constructing polar
codes in certain non-stationary settings compared to prior work.

I. INTRODUCTION

Polar codes were introduced by Arikan in [1]]. They are the
first family of codes for the class of binary-input symmetric
discrete memoryless channels that are provable to be capacity-
achieving with low encoding and decoding complexity [1]. In
the past decade, channel polarization and polar coding paradigm
have been extended to more general scenarios including chan-
nels with non-binary discrete inputs [2]]—[4]], asymmetric chan-
nels [5], channels with memory [6f, [7], and, more recently,
non-stationary channels [8]—[10]. In this paper, we consider
the problem of non-stationary channel polarization and design
methods towards optimal channel combining strategies.

In a non-stationary communication setting, an arbitrary se-
quence of independent channels {Wi}?z_ol is given. A coher-
ent communication over these channels is assumed, i.e., the se-
quence is assumed to be completely known to both the trans-
mitter and the receiver. This sequence is referred to as a non-
stationary sequence of channels or simply non-stationary chan-
nels [8], [9]]. The non-stationary channel coding scenario is then
described as follows. It is assumed that each channel W; is used
once, i.e., a code with block length # is to be constructed and
then the i-th coded bit is transmitted through W;.

Besides the theoretical motivation to study polar coding and
channel polarization beyond the scenario originally considered
by Arikan [1]], there are practical applications indicating non-
stationary scenarios are emerging in wireless systems [9]. Also,
in data storage systems such as resistive memories, channel
coding over non-stationary channels becomes relevant [[10]].

The channel polarization problem for non-stationary chan-
nels was first considered in [8]. In particular, it is shown in
[8]] that polarization happens by applying Arikan’s polarization
transform. However, the proposed proof method in [8] is not

powerful enough to conclude anything about the speed of polar-
ization and, consequently, an achievability scheme. In [9] sev-
eral modifications to Arikan’s channel polarization transform
are proposed leading to polarization of non-stationary channels
while lower bounding the speed of polarization. Then, polar
coding schemes are constructed that achieve the average capac-
ity of non-stationary channels while bounding the finite-length
scaling exponent [9]]. The modifications to Arikan’s channel
polarization transform introduced in [9] include permuting the
channels and skipping certain channel combining operations. In
another related work [[10], the problem of finding the best per-
mutation for non-stationary channels is studied. As opposed to
the approach in [9]], the permutation is only applied once in [[10]]
before applying the polarization transform. Various numerical
results are shown in [10]] indicating that the bit-reversal permu-
tation leads to a better performance for the constructed polar
code compared to the ordered permutation, where the channels
are ordered according to their capacity, and several randomly
selected permutations.

In this paper we consider a general framework for channel
polarization and polar coding in non-stationary settings. This
framework includes permutations of channels at each polariza-
tion level and skipping channel combining operations. In this
work, we aim at optimizing the framework toward obtaining
the best polarization. Our paper can be regarded as a first step
towards the optimal non-stationary polar code construction un-
der the considered framework. In order to measure how polar-
ized a non-stationary sequence of channels is, we suggest to use
a certain metric which we call the polarization measure. Then
we define an explicit optimization problem with the objective
of finding the best permutation and indices of skipped opera-
tions in order to minimize the polarization measure in one level
of polarization. In this paper, we provide a complete solution to
this optimization problem in the case of non-stationary BECs.
We also propose a greedy method for polarizing non-stationary
BEC:s, based on our solution for one-level polarization. We then
show that in certain settings, our greedy construction outper-
forms the construction based on the bit-reversal permutation,
proposed in [10]], in terms of various performance metrics.

II. CONSTRUCTION OF NON-STATIONARY POLAR CODES

In conventional polar coding [1]], the polar transform is a
channel combining operation that takes two independent copies
of a binary memoryless symmetric (BMS) channel W, and gen-
erates two new BMS channels {W—, W*}. This operation can
be also applied to a pair of two different channels as well. Let
Wi :{0,1} - Yy and W, : {0,1} — )% be two independent
BMS channels. The polar transform operation can take Wy and
W, as a pair of inputs, and generate two new BMS channels
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Figure 1. Construction framework for a length-8 non-stationary polar
code.
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forall y; € V1, y2 € Yy, and uq, up € {0,1}.

Now, suppose that an arbitrary sequence of non-stationary
BMS channels {Wi}?:_()l is given. We refer to this sequence
as a non-stationary sequence of BMS channels or simply non-
stationary channels, keeping in mind that the channels are BMS.
As mentioned earlier, it is shown in [8] that polarization hap-
pens by applying Arikan’s polarization transform recursively to
this sequence. A modified scheme for non-stationary polariza-
tion is proposed in [9] to construct capacity-achieving codes.
Later, similar modifications, e.g., permuting channels, is ex-
plored in [[10] with a different objective of optimizing the code
performance. To summarize these construction methods, we
next describe a general framework that we follow in this paper
for non-stationary channel polarization and polar coding.

Let {Wi}?:_ol be a sequence of # independent BMS channels
where 7 is a power of 2. For 0 < m < log,(n), let {W,,, ; ?:_01
denote the sequence of channels after m levels of polarization.
The polarization is initialized at level O by setting Wy ; = W; for
0 < i < n—1. Then a permutation 71 g is applied to {Wo,i}?:_ol
followed by applying the polar transform channel combining
operation or skipping it for all the pairs of consecutively in-
dexed channels in order to obtain channels at level 1. Note that
not all the pairs of channels are necessarily combined. A binary
sequence {bg o, Y i /2 0_ of length 71/2 is used to indicate the in-
dices where the channel combining operation is skipped. The
three sub-indices of b denote the level of polarization, the index
of the sub-block, explained later, and the index of the chan-
nel pair within this sub-block. For 0 < k < n/2, if byor =
0, then the polar transform is applied to the pair of channels
Wo, 7,0 (2k) and Wy 7T0 o(2k+1)» and the resulting channels are in-
dexed as Wy x and W, /24K 1€y

Wik = (Wo, 0,0 (2k)r Wo, g (2Kk+1))
Wi 24k = Wo,mg0(2k) Wo o0 2k+1))

If by = 1, then this combining operation is skipped and we
have

Wi ok = Wo, g o2k): Wins2ek = Womg o(2k+1)-

In the second level of polarization, the same procedure is ap-

plied to the sub-blocks {W; }" 21 and {Wi}l’,:nl/2 separately. In

general, at level m, the sequence {Wm,i}?:_ol is split into 2™ sub-
blocks of consecutively indexed channels, each of length 11/2™.

The sub-blocks are indexed by numbers from 0 to (2" — 1) For
instance, consider the j-th sub-block {W,, l}lﬁ/ i ZSJH) at the

m-th level of polarization. The channels in thls su{) block are
permuted using the permutation 77,, ;. Note that 71, J is applied
only on channels indexed from (1/2™)j to ((n/2™)(j + 1) — 1).
Then for 0 < k < (n/2m+1), if bm,]-,k = 0, we have

Wm+l,(n/2’”)j+k =

Wi, ((n/2m)j+26) Wan, (/242410

Wm+1,(n/2m)j+(n/2m+1)+k =

Wi, /2m)j426)r Wi, ((n/2m) JEETARIY A

Otherwise, b, x = 1 and this combining operation is skipped,
ie.,

Wint1,(njzmyjrk = Win,m,, i((n/2m)j+26)

Winst, (n/2m)j+(nj2m+1) 1k = Wi, ((n/27)j+2k4+1)

This general construction framework is illustrated for length-8
non-stationary polar coding in Figure|T]

Now, given the aforementioned general framework for non-
stationary polarization, the main question is how to optimize it
for a given sequence of non-stationary channels, i.e., what are
the best choices for the permutations 7z, ;’s and the skipped
operations indicated by bm,j,k’S? Before proceeding further, we
need to define a metric that can be used to measure how polar-
ized a sequence of channels is. To this end, we introduce a po-
larization measure for a set of BMS channels in the next section.
That measure will serve as our primary metric for designing op-
timal schemes for non-stationary polarization in this paper.

III. A MEASURE OF POLARIZATION

In this section, we introduce a polarization measure for a set
of BMS channels. Polarization is, in general, an asymptotic no-
tion. However, in a non-asymptotic regime, a measure to quan-
tify the level of polarization in a finite set of channels is needed.
One such a measure, that we use throughout this paper, is de-
fined next.

Definition 1. For a set of BMS channels {Wi}?:_l, and «,B €
(0,1], the («, B)-polarization measure of this set, denoted by
Ma,/;({Wi}?:_Ol), is defined as

ucﬁ({w n— 1 def1 Z Z (Wl))ﬁ,

where Z(W;) is the Bhattacharyya parameter of the channel
W;.

Accordingly, for a fixed « and B, we say a set of channels
is more polarized than another set, if the former has a smaller
(«, B)-polarization measure than the latter.



In this paper, we focus only on the case witha = f = 1
and adopt M 1 as the measure of polarization. Therefore, for
the sake of notation convenience, we simply use M to denote
M; 1 through the rest of this paper. Note that the expression
Z(W)(1 — Z(W)) first appeared in [1] in the proof of channel
polarization theorem. The aforementioned polarization measure
also appears in several works studying finite-length scaling ex-
ponent of polar codes, see, e.g., [9], [11]. In the remainder of
this section, we justify our choice of this polarization measure
from another perspective.

It can be also observed that for a non-stationary sequence
of channels, this polarization measure gives an upper bound on
the number of unpolarized channels in the sequence, specified
as follows. Let € > 0 be fixed. Then any channel W; with € <
Z(W;) < 1 — e, is referred to as an unpolarized channel with
respect to €. The following lemma relates the polarization mea-
sure with the number of unpolarized channels corresponding to
a parameter €.

Lemma 1. For a set of BMS channels {Wi}l’fz_ol, we have

Hize<Z(W) <1—e}| MW
n e(l—e)

Proof. Note that for each i with e < Z(W;) < 1 — €, we have
M(W;) > e(1—e).

The proof then follows by this together with the definition of
M{Wi=)). H

Roughly speaking, Lemmal[l] implies that if the polarization
measure for a collection of channels is close to 0, the fraction
of unpolarized channels with respect to a fixed € will also be
close to 0.

IV. AN OPTIMAL SOLUTION FOR ONE-LEVEL
POLARIZATION OF BECs

Given the polarization measure in Section[lII|and motivated
by the problem of optimizing non-stationary polarization dis-
cussed in Section[[l} we pose the following optimization prob-
lem: Given an arbitrary sequence of non-stationary channels,
how to pick the collection of permutations 7t’s and skipping op-
erations specified by b’s to minimize the polarization measure
for the resulting channels? Answering this question in general
seems to be a formidable task. In this section, we provide a
complete solution to this problem for the case with one-level
polarization applied to a sequence of non-stationary BECs. We
first give a precise description of the optimization problem for
one-level polarization on BECs, and then provide the complete
solution to it.

We start by providing a precise description of one-level po-
larization. For a sequence of channels {Wi}?z_ol with even n,
one-level polarization refers to the operation that we first per-
mute W;’s according to a permutation 77 and then combine a
certain subset of the set of all consecutive channel pairs, i.e.,
the pairs {Wy(ox), Wrak41)}s for 0 < k < n/2, and apply
the channel combining operation to them resulting in a new se-
quence of non-stationary channels. Note that the operation that
results in obtaining {Wl,i}?z_ol from {Wo,i}?z_l, as specified in
Section[Il} is one-level polarization.

For non-stationary channels, different choices of 7t and skip-
ping operations specified by {b,}lni %_1 may result in different
outcomes of one-level polarization. We aim at finding the best
choices for them in the sense that they minimize the polariza-
tion measure of {eri}?:_ol. Next, this optimization problem is
stated, which we aim to solve:

Optimization Problem A. Ler {Wi}?;ol be an arbitrary se-
quence of non-stationary BECs, where n is even. Let {W ; ;1:—01
be the sequence of channels after one-level polarization. What
is the permutation 70 and the binary sequence {bl}z %_1 that
minimize the polarization measure M({W ; ?:_01) ?

We first show that in Optimization Problem [A] it’s always
better to apply the polar transform to all the channel pairs. In
other words, in the solution to Optimization Problem E], we
have b; = 0 for all 0 < i < n/2. This is shown in the following

proposition.
Proposition 1. For any two BECs Wy and W5, we have
M(Wl, Wz) = M(<W1, W2>_, <W1, W2>+).

Proof. Let the erasure probabilities of Wy and W, be denoted
by z1 and zp, respectively. Then we have

M(W1, Wp)—M({Wy, Wa) ™, (Wi, Wp)™)
=2z122(1 =z1)(1 - 22) =2 0,
which completes the proof. O

By Proposition[I] one can observe that for any two BECs, ap-
plying the polar transform to them is always better than not ap-
plying it when the goal is to minimize the polarization measure.
Therefore, to minimize the polarization measure after one-level
polarization, we should always include all the BECs for chan-
nel combining operations. Therefore, in order to find the best
permutation, i.e., the solution to Optimization Problem @ we
assume all the BECs are paired for channel combination.

Note that there are many permutations that are equivalent
to each other in one-level polarization. For instance, when we
split a sequence of BECs {Wi}l’.lz_o1 into 1/2 channel pairs, the
order of channels within each pair doesn’t change the resulting
channels. Separately, one can swap the channel pair {Wy, W}
with the channel pair {W3, Wy}, and yet obtain the same set
of polarized channels after one-level polarization. In that sense,
we call two permutations equivalent, if we can obtain one of
them from the other one, by flipping the channel indices that
are paired, and/or changing the order of the channel index pairs.
It can be observed that this is a well-defined equivalence rela-
tion. Hence, one can partition Sy, the set of all permutations
on {0,1,---,n — 1}, into equivalence classes of size (%) 1211/2
according to this equivalence relation. When searching for the
optimal permutation as the solution to Optimization Problem
[Al it is sufficient to only search over the equivalence classes.
In the prior work [10], there are similar discussions regarding
the equivalence classes of permutations. However, the authors
in [[10] consider this for multiple levels of polarization, while
we focus on one-level polarization in this section.

We are now ready to define the proximity-to-half permuta-
tion, that are crucial in solving Optimization Problem[A] as fol-
lows.



Definition 2. Given an arbitrary sequence of BECs { Wi}?:_ol
with erasure probabilities zg,z1, -+ ,Zy—1, we call a permuta-
tion 1T € Sy, a proximity-to-half permutation for this sequence,
if for the permuted sequence of channels {Wn(l-) }?:_01, the val-
ues

‘Z”(O) - 1/2 7Zr(1) — 1/2 ot Er(n=1) T 1/2‘

are in an ascending order.

Notice that for a set of BECs, if z; = z;j or z; = 1-— zj for
some 0 < i < j < n, then there will be more than one per-
mutations in S, that satisfy the condition of being proximity-
to-half. We will prove that all such permutations will give us
the same polarization measure after one-level polarization, and
that measure is also the minimum among all possible permu-
tations. Consequently, this shows that the equivalence classes
containing proximity-to-half permutations are the optimal ones,
thereby providing a complete solution to Optimization Problem

Al
n—1

Theorem 1. Given an arbitrary sequence of BECs {W;}i—;,
with n being even, a permutation 7T € S, together with setting
b; =0, for all 0 < i < n/2, is an optimal solution for Opti-
mization Problem[Alif and only if 7t is equivalent to a proximity-
to-half permutation.

The rest of this Section is devoted to the proof of Theorem|[T}
which is the main result of this paper. We first prove that The-
orem [I] holds for the case with four BECs. Then we generalize
our result into n BECs to complete the proof.

A. Proof for four BECs
Lemma 2. Theorem[llholds when n = 4.
Proof. Suppose that we have four BECs Wy, Wy, W, and W3

with erasure probabilities zg, z1, zo and z3, respectively. With-
out loss of generality assume that

‘zo _ 1/2‘ < ‘21 — 1/2‘ < ‘Zz _ 1/2‘ < ‘23 . 1/2‘ o

Note that for one-level polarization of four BECs, we can par-
tition S4 into three equivalence classes, and only compare three
representatives, one from each class. Denote the three repre-
sentative permutations as 711, 77, and 713. We can pick 711 to
be the identity permutation, 77, that permutes the channels to
be Wy, W, Wi, W3, and 73 that permutes the channels to be
Wo, W3, Wi, W,. Also denote the polarization measures after
one-level polarization following those three permutations as M,
M, and M3 respectively:

Ml = M<{<W0r Wl>_r <W0r Wl>+r <W2r W3>_r <W2r W3>+ })
My = M({{Wo, W)™, (Wo, Wa) ™, (Wq, W)™, (Wi, W3)™})
M3 = M({(Wo, W5)~,{Wo, Wa)™, (Wy, Wo) ™, (W, Wo) T })

To compare My with My, notice that 2(M; — Mj) is factored
as:

— [(Zl — 1/2)2 - (Zz - 1/2)2] [(Zo - 1/2)2 - <23 — 1/2)2] .
Hence M1 < M», and the equality holds if and only if

‘Zl — 1/2‘ = ’Zz — 1/2‘ . 2

Similarly, 2(M, — M3) is factored as:

) = )| (o) - (- a)

So we have M, < M3, and the equality holds if and only if
’Zo — 1/2‘ = ‘Zl — 1/2’ or )Zz — 1/2‘ = ‘23 — 1/2‘ . 3
Next, in order to complete the proof, we consider three different
cases depending on whether (2) and/or (3)) hold or not:
1) Case 1: (2) doesn’t hold.
In this case, we have

)zo — 1/2‘ < ‘zl - 1/2‘ < ‘zz - 1/2‘ < )23 - 1/2‘ .

Hence, 717 is the only proximity-to-half permutation. Then

Theorem [T] holds here since we have M; < My < Mj3.
2) Case 2: (2) holds but (3) doesn’t hold.

In this case, we have

‘Zo - 1/2‘ < ‘Z] — 1/2‘ = ‘Zz - 1/2‘ < )23 — 1/2‘ .

Hence, both 717 and 71, are proximity-to-half permuta-
tions, while 7t3 is not. In this case, Theorem also E]holds
since we have M1 = My < M3.

3) Case 3, both (2) and (@) hold.
In this case, we have

‘Zo - 1/2‘ = ‘21 - 1/2‘ = ‘Zz - 1/2}
’21 — 1/2‘ = ‘22 — 1/2) = ‘23 — 1/2‘ .

Hence, 711, 712, and 713 will all be proximity-to-half per-
mutations. Then we have My = M, = Mj3, implying
that Theorem [T holds in this case as well.

]

B. Proof for n BECs

This section is devoted to the proof of Theorem[I]for the gen-
eral even number n. We first prove that if a permutation 77 € Sy,
is not equivalent to any proximity-to-half permutation, then it
cannot be an optimal solution to Optimization Problem [A]

Suppose that 7t is not equivalent to any proximity-to-half
permutation for one-level polarization. Then there should exist
four channels W;, Wj, Wi and W) with erasure probabilities z;,
zj, zx and zj, respectively, where

7

Zi — 1/2‘ < ‘zj - 1/2‘ < ‘zk — 1/2‘ < ‘zl - 1/2

and, also, W; is paired with Wy and W; is paired with W, af-
ter the permutation 7t is applied. We refer to such a couple of
channel pairs as a cross pair, as illustrated in Figure [2] When
we order the channels such that the values

20— 1)), [z1 =112+ [z =179

are in an ascending order, there must be at least one cross pair,
as described above, with i < j < k < [ in the channel pairing
following 77. Next, by invoking Lemma[2} we show that 77 can-
not be optimal. Note that the permutation 77 can be altered such
that the resulting channel pairing is altered only for those four
channels from {{Wi, Wk}, {VV], Wl}} to {{Wi, W]}, {Wk, Wl}}

, Sy,
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Figure2. A cross pair in the channel pairing for a permutation that is
not equivalent to any proximity-to-half permutation.

In that case, by Lemma[2] the altered permutation has a smaller
polarization measure establishing that 7t cannot be optimal.

Next, we prove that if two permutations are both proximity-
to-half, then their corresponding polarization measures are equal.
Consider two proximity-to-half permutations 711 and 7p. Then
we have

\me - 1/2\ = \anu) —12
Let M;jx; denote the polarization measure after one-level polar-
ization for two channel pairings {{W;, W;}, {Wy, Wi}}, i.e.,

Mijig = M(W;, W™, (Wi, Wi ™, (Wi, Wi ™, (Wi, W)

, foralli=0,1,---n—1

Then, as shown in the proof of Lemma@ we have

M, iy (i41) 1 (i42) 1 (143) = Moy (i) o (i41) o (i42) o (43)
fori =0,2,...,n— 2, where the indices are considered mod-
ulo 1. Now, let M, and M, be the polarization measures af-
ter one-level polarization corresponding to permutations 771 and
779, respectively. Then we have

+---+ 4Mn2(n72)7r2

Hence, M, = My, and we conclude that all proximity-to-half
permutations, and permutations in their equivalence classes, re-
sult in equal polarization measures after one-level polarization.
Furthermore, this is the minimum value of polarization measure
that can be obtained by one-level polarization. Hence, they are
all optimal. This together with Proposition([T|provide a complete
solution to Optimization Problem [A]

V. A GREEDY CONSTRUCTION

In Section[IV] we provided a solution to Optimization Prob-
lem [A] which concerns with one-level polarization, assuming
all channels in the non-stationary sequence are BECs. How-
ever, finding the optimal solution for permutations and indices
of skipped operations under the general construction framework
in Section[I] still remains open. In this Section, we propose a
greedy method toward optimizing non-stationary polarization,
where we repeatedly use proximity-to-half permutations for ev-
ery block in all polarization levels. We compare the resulting
construction with the one proposed in [[10] and show that our
greedy construction is better in certain numerical settings.

Next, our proposed greedy method is described. Recalling
the discussion in Section we first set b; ;. = 0 for all 0 <
i<log,n0<j< 2 and 0 < k < n/2i+1. Then we set 77; ;’s
to be one of the proximity-to-half permutations for their corre-
sponding blocks, for each 0 <7 <log,nand 0 < j < 20 Ttis
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Figure3. Greedy construction example.

shown in Section[[V]that a proximity-to-half permutation mini-
mizes the polarization measure for the underlying one-level po-
larization. Roughly speaking, our greedy method is based on
the idea that we recursively use the proximity-to-half permuta-
tions that minimize the polarization measure at the level i + 1
given prior polarization levels up to level i, for i between 0 and
log, 1. Note that when there is more than one choices for the
proximity-to-half permutation, we pick one of them arbitrarily.

An example of our greedy method is shown in Figure 3] In
this example, a sequence of 8 non-stationary BECs with era-
sure probabilities shown on the right of Figure [3]is assumed.
The greedy method with 3 levels of polarization results in a
sequence of 8 channels with erasure probabilities shown on the
left of Figure 3] In this example, the polarization measure of the
resulting 8 channels is 0.1064. Now, suppose that a polar code
of rate 1/2 needs to be constructed. Then, among these 8 chan-
nels, we choose 4 of them with the smallest erasure probabili-
ties (colored blue in Figure[3) to obtain a rate 1/2 non-stationary
polar code.

In [10], an alternative metric is used to optimize the con-
struction of non-stationary polar codes. The optimization crite-
rion in [10] is motivated from the code construction perspec-
tive. More specifically, the authors of [10] propose to maxi-
mize [ [;,c7 I(W;), where Z is the set of selected channel in-
dices for code construction according to a certain given rate,
and I(W;) is the symmetric capacity of bit channel W;. Note
that I(W;) is equal to the capacity of W; when W; is a BMS
channel. We refer to this metric as the sum-capacity metric.
Note that when the non-stationary channels are BECs, we can
accurately compute the frame error rate (FER) of Arikan’s suc-
cessive cancellation decoding, denoted by FERgc, as FERgc =
1 —[T;ez(1 — Z(W;)). For the example shown in Figure 3| we
compare our numerical results with the construction proposed
in [10] that is based on the bit-reversal permutation. The com-
parison between the two methods, both used to construct codes
of rate 1/2, is shown in Table[l]

polarization measure | sum-capacity metric | FERgc
greedy 0.1064 3.7753 0.1082
bit-reversal 0.1072 3.7413 0.1254

Tablel. Comparison between two constructions for rate 1/2 code given
the channels shown in Figure [3}

It can be observed that in this example, our greedy construc-
tion outperforms the scheme suggested in [[10] based on the bit-
reversal permutation in terms of various metrics, i.e., our sug-
gested polarization measure, the sum-capacity metric suggested
in [10], and the FERg.
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