
Scalable Spatio-Temporal Top-k Community InteractionsQuery
Abdulaziz Almaslukh∗

King Saud University
Riyadh, Saudi Arabia

aalmaslukh@ksu.edu.sa

Yongyi Liu
University of California, Riverside

Riverside, California
yliu786@ucr.edu

Amr Magdy∗∗
University of California, Riverside

Riverside, California
amr@cs.ucr.edu

ABSTRACT
The excessive amount of data that online users produce through
social media platforms provides valuable insights about users and
communities at scale. Existing techniques have not fully exploited
such data to help practitioners perform a deep analysis of large
online communities. Lack of scalability hinders analyzing commu-
nities of large sizes and requires tremendous system resources and
unacceptable runtime. This paper introduces a new analytical query
that reveals the top-𝑘 posts of interest of a given user community
over a period of time and in a certain location. We propose a novel
indexing framework that captures the interactions of community
users to provide a low query latency. Moreover, we propose effi-
cient query algorithms that utilize the index content to prune the
search space. The extensive experimental evaluation on real data
has shown the superiority of our techniques and their scalability
to support large online communities.

CCS CONCEPTS
• Information systems → Information retrieval query processing;
Data management systems.

KEYWORDS
community, query processing, spatio-temporal query

ACM Reference Format:
Abdulaziz Almaslukh, Yongyi Liu, and Amr Magdy. 2021. Scalable Spatio-
Temporal Top-k Community Interactions Query. In 29th International Con-
ference on Advances in Geographic Information Systems (SIGSPATIAL ’21),
November 2–5, 2021, Beijing, China. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3474717.3483962

1 INTRODUCTION
Online communities have become more popular with the advance-
ment of user-generated data platforms. They are rich with useful
and important data. The research community has paid significant
attention to detecting [7] and searching communities [5] that are

∗The work has been performed while the first author is at the University of California,
Riverside
∗∗This work is partially supported by the National Science Foundation, USA, under
grants IIS-1849971, SES-1831615, and CNS-2031418.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGSPATIAL ’21, November 2–5, 2021, Beijing, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8664-7/21/11. . . $15.00
https://doi.org/10.1145/3474717.3483962

homogeneous and have shared characteristics in common. Never-
theless, analyzing a single community has got very little attention.
For example, a social scientist might analyze the US teenagers on
Facebook to find out what they interacted with during the last week
on different topics such as bullying, youth suicide, and COVID-19
pandemic. This kind of analysis is crucial in understanding, mak-
ing the right decisions, and offering better services to the target
community. In fact, there are tens of online communities with multi-
million users [1], each of them has lots of large sub-communities,
and it is recognized that analyzing these communities is of high
importance in various applications [2, 6]. However, existing query-
ing techniques are not scalable to perform such analysis on large
online communities that involve millions of users.

In this work, we propose a spatio-temporal community query
that finds the top-𝑘 posts with which the given community has
interacted during a given time and within a given spatial range.
The query helps practitioners to understand the interests of differ-
ent communities over different temporal and spatial ranges. How-
ever, processing this query using traditional indexing techniques,
e.g., classical RDBMS, requires a tremendous amount of system
resources and CPU time. In specific, the main challenge is that the
community users’ interactions with the posts are huge in number
and constantly increasing. For instance, Facebook users upload on
average 240K photos/min and generate 4M likes/min [3]. Therefore,
digesting this information is a major challenge to reduce the query
latency and minimize the system resources overhead.

To address the challenge, we devise novel scalable indexing and
query processing that deal with communities as whole units instead
of processing individual users’ data. The extensive experimental
evaluation of our proposed techniques on real data has shown
the efficiency of our indexing framework and query processing
techniques. Our contributions are summarized as follows:

• We introduce a new analytical query over online communi-
ties that returns the top-𝑘 posts a community has interacted
with.

• We propose a novel indexing paradigm with multiple com-
ponents to efficiently support established communities.

• We develop different query processing techniques to effi-
ciently process the query.

• We provide an extensive experimental evaluation on real
data to show the superiority of our proposed techniques.

The rest of this paper is organized as follows. Section 2 presents
the problem definition. Sections 3 and 4 detail the proposed com-
munity indexing and query processing techniques, respectively.
Section 5 experimentally evaluate our techniques. Finally, Section 6
concludes the paper.

https://doi.org/10.1145/3474717.3483962
https://doi.org/10.1145/3474717.3483962

SIGSPATIAL ’21, November 2–5, 2021, Beijing, China Abdulaziz Almaslukh, Yongyi Liu, and Amr Magdy

Figure 1: CSTIQ Framework

2 PROBLEM DEFINITION
We evaluate community queries on a dataset 𝐷 that consists

of posts 𝑃 generated by the users. Each post 𝑝 ∈ 𝑃 is represented
with four main attributes (𝑜𝑖𝑑 , 𝑘𝑤 , 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 , 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛), where
𝑜𝑖𝑑 is a unique identifier of the object, 𝑘𝑤 is a set of keywords
that represent the textual description of the object, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 is
the time when the object is posted, and 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 is a tuple that
represents the geographical location, i.e., latitude and longitude
coordinates, of the object when it is posted. In this work, we use
the terms post and object interchangeably. A virtual community
(𝐶) is defined as a set of users {𝑢1, 𝑢2, 𝑢3, ..., 𝑢𝑛} where |𝐶 | = 𝑛 is
the community size. An interaction is a specific action that a user
𝑢 performs on a post 𝑝 , such as like, reply, or share. We formally
define our community query as follows.

Community Spatio-Temporal Interaction Query (CSTIQ):
given a virtual community𝐶 , a time interval𝑇𝑞=[𝑡1,𝑡2], an integer
𝑘 , an optional point location 𝑐 and a spatial range 𝑟 , and an optional
set of keywords𝑊 , CSTIQ query finds a set of 𝑘 posts 𝑃𝑜 so that
each post 𝑝 ∈ 𝑃𝑜 satisfies the following: (1) 𝑝.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 lies within a
spatial range centered at 𝑐 with radius 𝑟 , (2) 𝑝.𝑘𝑤 ∩𝑊 ≠ ∅, i.e., 𝑝
contains one or more of the query keywords, and (3) 𝑝 is ranked
top with respect to a ranking function 𝐹 (𝐶, 𝑝,𝑇𝑞) that is defined as
follows:

𝐹 (𝐶, 𝑝,𝑇𝑞) =
∑
∀𝑢∈𝐶

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑢, 𝑝,𝑇𝑞)

Where 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑢, 𝑝,𝑇𝑞) is the total number of interactions that
a community user 𝑢 makes with a post 𝑝 during a time interval 𝑇𝑞 .
𝐹 ranks posts based on total interaction from the given community
𝐶 , so the query outputs the top-𝑘 posts that have been most popular
in𝐶 during the query time period. Both keywords and locations are
optional, which enables the query to be flexible in different aspects.

3 CSTIQ INDEXING
In this section, we introduce Community Spatio-Temporal In-

dexing Query (CSTIQ) framework to serve our query as defined
in Section 2. Figure 1 shows an overview of CSTIQ framework. It
consists of two indexing components. The first component is the
community index that indexes interactions in established commu-
nities where the community users are already known in advance.
This index aggregates the interactions of all users within the com-
munity. Thus, it will expedite the query processing by dealing with
the whole community as one unit instead of millions of individual
users. This index has efficient hash insertion 𝑂 (1) and temporally

Figure 2: Community Index Structure

sliced to handle an excessive volume of interactions. The commu-
nity index stores only post ids and locations. These ids are used to
retrieve data from a second indexing component, called the master
index, that stores all available information about posts, e.g., user
profile or keywords.

The community index has two identical indexing components;
memory-based index and disk-based index. The former is mainly
for the most recent community interactions to enable light and
efficient digestion for excessive recent data. The latter is for the
relatively old interactions that are evicted from the main memory
and usually receive much fewer updates. Both components are
divided into non-overlapping time slices [𝑇0,𝑇1,𝑇2, ...,𝑇𝑛𝑜𝑤]. These
time slices are equal in size and of user-defined length. They can
be set to cover any period of time, e.g., 24hrs, 12hrs, or 1hr, based
on available system resources and data size. Whenever the current
time slice has passed, a new time slice is created and marked to be
𝑇𝑛𝑜𝑤 . All interactions happening within the current time interval
are indexed into the 𝑇𝑛𝑜𝑤 slice. Each time slice includes two data
structures: (1) a master hash structure (𝐻𝑚) where the post id is a
key and the value is the post location and total interactions. (2) an
inverted index (𝐼) where every entry represents a keyword, and
each keyword points to a hash structure (𝐻𝑖) similar to the master
hash structure. Any query that does not have a keyword, 𝐻𝑚 data
structure will be utilized. On the other hand, for the query that
specifies keyword parameter, 𝐼 will be used to process the query
efficiently.

Figure 2 shows the structure of an example community index.
The figure shows one time slice labeled as 𝑇0. 𝑇0 has 𝐻𝑚 which
stores object ids, locations, and the counts of interaction from this
community such as 𝑜1 has 66 community interactions and location
coordinates (30.26,−97.74). In addition,𝑇0 has 𝐼 which stores Pizza
keyword which points to𝐻𝑖 that has two posts, 𝑜3, and 𝑜4, and their
count values are 40, and 15 community interactions and locations
(41.87,−87.62) and (33.98,−117.37), respectively.

Index Update. Whenever a user in community𝐶 interacts with
an object 𝑜𝑖𝑑 , 𝐶’s corresponding index is updated accordingly. The
in-memory index updates two data structures: the master hash
index 𝐻𝑚 and the inverted index 𝐼 . First, 𝑜𝑖𝑑 is looked up in 𝐻𝑚 . If
𝑜𝑖𝑑 is found, its count is incremented by one; otherwise, it is inserted
with count set to one and location set to 𝑜𝑖𝑑.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, marking the
first interaction from 𝐶’s users to 𝑜𝑖𝑑 . Then, the inverted index
𝐼 will index 𝑜𝑖𝑑’s keywords. For every associated keyword, it is

Scalable Spatio-Temporal Top-k Community InteractionsQuery SIGSPATIAL ’21, November 2–5, 2021, Beijing, China

added to 𝐼 if not existing. Then, its 𝐻𝑖 hash structure is updated in
a similar way to 𝐻𝑚 .

Once the current time slice expires, both𝐻𝑚 and 𝐼 are concluded,
and a new time slice is initiated with empty structures.𝐻𝑚 and each
𝐻𝑖 of the concluded time slice are sorted based on the number of
interactions in descending order. After the total designated memory
budget is consumed, the least recently used time slices are evicted
from the in-main index to the corresponding in-disk index.

4 QUERY PROCESSING
This section describes the query processing of CSTIQ query defined
in Section 2 utilizing the indexing framework introduced in Sec-
tion 3. We propose two algorithms to process CSTIQ query namely
baseline ComCQ and fast ComCQ. The rest of this section introduces
a high-level query processing framework that is utilized for both
algorithms, and then we detail the specifics for both.

4.1 Query Processing Framework
This section introduces a two-step query processing framework.
The first step is shared among both baseline ComCQ and fast ComCQ,
while the second step differs based on the algorithm. Every CSTIQ
query takes a community 𝐶 parameter as an input. We retrieve the
Community 𝐶 index and feed it to the following steps:

(1) Step 1: Temporal and keyword filtering. Given the com-
munity 𝐶 index, the query processor retrieves the time slices that
overlap with the query time interval 𝑇=[𝑡1,𝑡2] and stores a copy
of each slice in in-memory list 𝐿𝑗 that corresponds to interval 𝑗 .
A list 𝐿𝑗 stores the entries of its time slice in descending order of
their total interactions. These entries are already ordered as part of
the indexing process, so it adds no sorting overhead. The exception
to this is the most recent slice 𝑇𝑛𝑜𝑤 that is not ordered, so it is
copied and the corresponding list 𝐿𝑛𝑜𝑤 is sorted on the spot if it
lies within the query time. If the query has keywords, the query
processor retrieves 𝐻𝑖 hash structures that are corresponding to
every query keywords and merge them in one list 𝐿𝑗 ordered by
total interactions. The merged list holds the union of the posts and
the total interactions of each post. If the query does not have any
keywords, the query processor just copies the master hash structure
𝐻𝑚 . To reduce the overhead of reading back and forth from the disk,
all lists are stored in an in-memory buffer. When the in-memory
buffer is full, the least recently used (LRU) policy is adopted to evict
data to continue serving incoming queries. Finally, the lists 𝐿𝑗 are
fed to Step 2.

(2) Step 2: Spatio-temporal aggregation. Given the lists of
posts that are retrieved in Step 1, these lists are processed to return
the top-𝑘 posts that the community 𝐶 interacted with during the
query time interval and within the query spatial range. We have
two different variations of our query processing technique where
the first one is the naive processing technique and the second is
the optimized processing technique. The following sections detail
both.

4.2 Baseline ComCQ
In case of small data sizes, we provide a baseline algorithm, called
baseline ComCQ (B-ComCQ), that performs straightforward aggre-
gation to process CSTIQ query and returns exact results. B-ComCQ’s

input is the lists 𝐿𝑗 that are retrieved in Step 1. B-ComCQ creates a
new hash structure𝐻𝐴 that is similar in structure to𝐻𝑚 and𝐻𝑖 . The
purpose of 𝐻𝐴 is aggregating the total of interactions for each post.
For each list 𝐿𝑗 , B-ComCQ iterates over all entries in its correspond-
ing hash structure. For each entry, it checks if the post 𝑝 lies within
the query 𝑞’s spatial range, i.e., 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑞.𝑐) < 𝑞.𝑟 . If
so, its total interactions are added to 𝐻𝐴 . After processing all lists,
𝐻𝐴 has all the aggregated entries. Finally, B-ComCQ sorts 𝐻𝐴 , and
the top-𝑘 entries of the sorted 𝐻𝐴 are returned as the final answer.

4.3 Fast ComCQ
B-ComCQ performs exhaustive search to find the top-𝑘 posts. This
is inefficient when the number of time slices or the number of
entries is even moderate. Therefore, we develop an efficient, yet
exact, algorithm that is inspired by Fagin’s TA algorithm [4] called
fast ComCQ (F-ComCQ). F-ComCQ does not need to access every
entry in every list 𝐿𝑗 . Instead, it smartly prunes entries that surly
have no chance to be in the top-𝑘 posts. Thus, this will save many
unnecessary searches. For each list 𝐿𝑗 that is fed from Step 1, F-
ComCQ performs five steps:

(a) Initialization with spatial filtering. F-ComCQ iterates
items of 𝐿𝑗 in order until the first item that lies within the query
spatial range is found. This item is then inserted into a priority
queue 𝑄 with priority score equals to the number of interactions
of the item. This repeats to every list 𝐿𝑗 , so 𝑄 is initialized with
the most popular post from each time slice. An ordered list 𝐴𝑛𝑠
is initialized to keep track the top-𝑘 items found so far in every
iteration. A variable 𝑆𝑢𝑚𝑄 is initialized with the sum of priority
scores in 𝑄 .

(b) Top item pickup with spatial filtering. If the priority
queue is not empty, remove the top entry 𝑒𝑄 of the queue 𝑄 , and
insert into 𝑄 the next entry that lies within the query spatial range
from the same time slice of 𝑒𝑄 , and update 𝑆𝑢𝑚𝑄 accordingly. We
maintain a pointer in each list 𝐿𝑗 that always points to the first
entry that has not been visited so far to facilitate iterating over
items of the same time slice.

(c) Temporal aggregation. Using the hash structures 𝐻𝑚 and
𝐻𝑖 of each time slice, this step calculates the total interactions of 𝑒𝑄
in all time slices. We check if 𝑒𝑄 exists in 𝐻𝑚 or 𝐻𝑖 , and we add its
interactions to the summation variable. After iterating over all hash
structures, the summation variable includes the total interactions
of 𝑒𝑄 in all time slices.

(d) Top-𝑘 answer update. If size of 𝐴𝑛𝑠 list < 𝑘 , insert 𝑒𝑄 into
the ordered list 𝐴𝑛𝑠 . Once the size of 𝐴𝑛𝑠 grows to 𝑘 and larger,
we maintain 𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 as the k𝑡ℎ , i.e., lowest, score in 𝐴𝑛𝑠 . If
total interactions of 𝑒𝑄 > 𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 , we remove the k𝑡ℎ item
in 𝐴𝑛𝑠 and insert 𝑒𝑄 in order, otherwise, 𝑒𝑄 is discarded. Then
𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 is updated with the new lowest score in 𝐴𝑛𝑠 .

(e) Search termination. If 𝐴𝑛𝑠 size ≥ 𝑘 and
𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 ≥ 𝑆𝑢𝑚𝑄 , then the search stops and 𝐴𝑛𝑠 is the
final answer. Otherwise, we repeat steps b through d.

Picking up top popular items first and termination based on
existing𝐴𝑛𝑠 scores eliminate any unnecessary processing and speed
up the search significantly as shown in our experiments.

SIGSPATIAL ’21, November 2–5, 2021, Beijing, China Abdulaziz Almaslukh, Yongyi Liu, and Amr Magdy

5 EXPERIMENTAL EVALUATION
This section presents the experimental evaluation of the indexing
framework and the ComCQ algorithms as discussed in the previous
sections. Section 5.1 explains the experimental settings and the
evaluation datasets. Sections 5.2 evaluates query latency.

5.1 Experimental Setup
We evaluate the proposed indexing framework and query process-
ing for query latency. Table 1 summarizes the evaluation parameters
with default values marked as bold. All experiments are based on
Java 14 implementation and using an Intel Xeon(R) server with
CPU E5-2637 v4 (3.50 GHz) and 128GB RAM running Ubuntu 16.04.
Each index time slice represents 1 day.

Parameter Settings
𝑘 10, 50, 100, 500, 1000
Time Interval (days) 1, 7, 14, 28, 56, 84

Table 1: Parameters Values
Evaluation data. We have collected historical tweets from public
Twitter APIs of size 80 million tweets. These tweets are posted by
5.5M unique users and distributed equally to cover 12 weeks (84
days) period. Each Tweet is represented with id, keywords, and
the number of interactions based on the number of likes, retweets,
replies, and quotes. The total number of interactions in this dataset
is 1904𝑀 . A random word from the tweet text is attached as a
keyword. A synthetic location for each tweet is generated uniformly
as a random point within the bounding rectangle of New York City
to simulate a compact community spatial proximity. In order to
simulate the community interactions with the tweets, a portion of
the interactions is being randomly distributed to the community
users calculated based on its size to the total number of users. In
this experiment, we set the community size to be 2𝑀 , the spatial
range to be 10𝑘𝑚, and the number of keywords to be 2.
Query workloads. We generate the query set based on the time
interval size. For example, if the time interval size is 7 days, we ran-
domly generate all the possible queries with time intervals having 7
continuous days. Then, we generate keywords query list randomly
chosen from the inverted index in each time slice, these keywords
must appear in at least 5000 tweets to avoid rare keywords that are
rarely searched. The query center is generated as a random point
within the bounding rectangle of New York City.

5.2 Query Evaluation
This section evaluates the proposed algorithms to process CSTIQ
queries. The query latency includes the I/O time to load the data
from disk and the query processing in main memory.

Effect of varying 𝑘 . Figure 3 shows the effect of varying 𝑘 on
CSTIQ queries. Figure 3a shows the latency when varying 𝑘 on
CSTIQ queries with no keyword. F-ComCQ is 7 times faster than
B-ComCQ due to the efficient pruning. The effect of changing 𝑘 on
query latency is slight, since for a specific time interval, the number
of I/O needed is fixed, regardless of 𝑘 . When 𝑘 takes a larger value,
the query processor takes more time to rank the top-𝑘 entries.
However, the I/O time dominates the query time. Consequently,
the query latency is only slightly affected by 𝑘 . Figure 3b shows
the latency of the two algorithm when varying 𝑘 on CSTIQ queries

 0

 5

 10

 15

 20

 25

 30

10 50 100 500 1000

Q
u

e
ry

 L
a

te
n

c
y
 (

s
e

c
)

k

B−ComCQ

F−ComCQ

(a) Latency - no Keywords

 0

 50

 100

 150

 200

 250

 300

10 50 100 500 1000

Q
u

e
ry

 L
a

te
n

c
y
 (

m
s
e

c
)

k

B−ComCQ

F−ComCQ

(b) Latency - Keywords

Figure 3: Varying 𝑘

 0

 50

 100

 150

 200

 250

1 7 14 21 28 54 84

Q
u

e
ry

 L
a

te
n

c
y
 (

s
e

c
)

Days

B−ComCQ

F−ComCQ

(a) Latency - no Keyword

 0

 500

 1000

 1500

 2000

 2500

 3000

1 7 14 21 28 54 84

Q
u

e
ry

 L
a

te
n

c
y
 (

m
s
e

c
)

Days

B−ComCQ

F−ComCQ

(b) Latency - Keyword

Figure 4: Varying time intervals
with keywords. The query latency is significantly less for the same
queries without keywords as shown in Figure 3a because of the
effcient utilization of the inverted index.

Effect of varying time interval length. Figure 4 shows the
effect of varying rime interval length on 𝐶𝑆𝑇 𝐼𝑄 queries. Figure 4a
depicts the query latency with no keyword. Both algorithms en-
counter longer query latency when the query time interval in-
creases. This is because a longer time interval incurs more I/Os
and more entries to process in the ranking of the query. F-ComCQ
performs 5-8 times faster than B-ComCQ. Thus, F-ComCQ demon-
strates better scalability over large time periods. Figure 4b shows
the latency on CSTIQ queries with keywords. Clearly, the query
latency is much less than the same query without keywords as
shown in Figure 4a. The reason is efficiently utilizing the equipped
inverted index to reduce the search space.

6 CONCLUSION
This paper has introduced community-centric query that returns
the top-𝑘 objects that a specific community interacted the most
given a time interval, an optional spatial range and a set of keywords.
We proposed a novel indexing framework and query algorithms
that efficiently process the community queries. We evaluated the
proposed techniques on real Twitter dataset and have shown their
efficiency to handle large communities.

REFERENCES
[1] List of Virtual Communities with More Than 1 Million Users. http:

//www.worldheritage.org/articles/eng/List_of_virtual_communities_with_
more_than_1_million_users, 2019.

[2] R. Baltezarevic, B. Baltezarevic, P. Kwiatek, and V. Baltezarevic. The Impact of
Virtual Communities on Cultural Identity. Symposion, 6(1):7–22, 2019.

[3] 53 Incredible Facebook Statistics and Facts.
https://www.brandwatch.com/blog/facebook-statistics/, 2019.

[4] R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation Algorithms for Middleware.
Journal of computer and system sciences, 66(4):614–656, 2003.

[5] Y. Fang, X. Huang, L. Qin, Y. Zhang, W. Zhang, R. Cheng, and X. Lin. A Survey of
Community Search Over Big Graphs. The VLDB Journal, 29(1):353–392, 2020.

[6] G. Fisher. Online Communities and Firm Advantages. Academy of Management
Review, 44(2):279–298, 2019.

[7] B. S. Khan and M. A. Niazi. Network Community Detection: A Review and Visual
Survey. arXiv preprint arXiv:1708.00977, 2017.

http://www.worldheritage.org/articles/eng/List_of_virtual_communities_with_more_than_1_million_users
http://www.worldheritage.org/articles/eng/List_of_virtual_communities_with_more_than_1_million_users
http://www.worldheritage.org/articles/eng/List_of_virtual_communities_with_more_than_1_million_users

	Abstract
	1 Introduction
	2 Problem Definition
	3 CSTIQ Indexing
	4 Query Processing
	4.1 Query Processing Framework
	4.2 Baseline ComCQ
	4.3 Fast ComCQ

	5 EXPERIMENTAL EVALUATION
	5.1 Experimental Setup
	5.2 Query Evaluation

	6 Conclusion
	References

