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Abstract. We study the problem of selling a good to a group of bidders
with interdependent values in a prior-free setting. Each bidder has a
signal that can take one of k different values, and her value for the good
is a weakly increasing function of all the bidders’ signals. The bidders
are partitioned into ¢ expertise-groups, based on how their signal can
impact the values for the good, and we prove upper and lower bounds
regarding the approximability of social welfare and revenue for a variety
of settings, parameterized by k and ¢. Our lower bounds apply to all
ex-post incentive compatible mechanisms and our upper bounds are all
within a small constant of the lower bounds. Our main results take the
appealing form of ascending clock auctions and provide strong incentives
by admitting the desired outcomes as obvious ex-post equilibria.
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1 Introduction

We study the problem of selling a good to bidders with interdependent values,
which has received a lot of attention in economics (e.g., see [12, Chapters 6 and
10]), and recently also in computer science (e.g., [3,4,6-9,19,20]). In contrast to
the private values model, where each bidder knows her value for the good being
sold, the interdependent value literature assumes that each bidder has some
private signal regarding the value of the good, e.g., through some research or
technical expertise, and the actual value of the good to each bidder is a function
of all the bidders’ signals. For instance, a common motivating example for this
problem involves firms competing over the mineral rights of a piece of land [23]:
each firm has conducted some tests, trying to estimate the land’s capacity in
desired minerals, but each of these tests may provide only partial evidence, and
the best estimate can be inferred by appropriately aggregating all the test results,
e.g., by computing the average across all of these measurements.
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The main difficulty when designing auctions for bidders with interdependent
values arises from the fact that the bidders’ signals are not known to the auction-
eer, or to the other bidders. Therefore, the auctioneer needs to elicit these signals
before deciding who should win the item and what the price should be. But, why
would any bidder reveal her true signal to the auctioneer? A sealed-bid auction
is said to be ez-post incentive compatible if truth-telling, i.e., reporting the true
signal to the auctioneer, is an equilibrium for all the bidders. Designing ex-post
incentive compatible auctions with non-trivial welfare or revenue guarantees has
been a central goal of this line of research.

Prior work has considered several different ways in which the bidders’ values
can depend on the vector of signals. For example, in the common value model all
the bidders have the same value for the good but, even in this special case, the
design of ex-post incentive compatible auctions is a non-trivial problem. This
problem becomes even harder when the bidders’ values can differ. To enable
the design of efficient incentive compatible mechanisms, prior work has intro-
duced useful restrictions on the structure of these valuation functions, such as
submodularity over signals (SOS) [1,7], or constraints across pairs of valuation
functions, such as the single-crossing property [16,17].

In this paper, we consider a variety of settings with interdependent values
that are not captured by (approximate) SOS or the single-crossing property. We
let k£ be the number of possible values that a bidder’s signal can have, and we
partition the bidders into ¢ expertise-groups, depending on the type of infor-
mation that their signals provide regarding the good being sold. Using these
parameters, we prove upper and lower bounds, parameterized by k£ and ¢, on
the extent to which auctions can approximate the optimal welfare or revenue.
All our proposed auctions are ex-post incentive compatible, but our main results
also satisfy stronger incentive guarantees: they can be implemented not only as
direct-revelation mechanisms (sealed-bid auctions), but also as ascending clock
auctions, and they admit the desired outcomes as obvious ex-post equilibria [14]
which are easy for the bidders to verify, thus leading to more practical solutions.

1.1 Our Results

We begin, in Sect.3, by considering the interesting case where each bidder’s
signal regarding the quality of the good can take two possible values, either
“low” or “high”, and each bidder’s value is a weakly increasing function of these
signals. If the valuation function of each bidder is symmetric, i.e., every bidder’s
signal matters the same, then we provide a clock auction that achieves a 5-
approximation of the optimal social welfare, and a variation of that auction that
guarantees revenue that is a 10-approximation of the optimal social welfare. We
then generalize these results to non-symmetric functions, where the bidders are
partitioned into ¢ groups based on their expertise, and signals from different
groups may have different impact on the values. Our generalization achieves a
5¢-approximation for social welfare and a 10¢-approximation for revenue.

In Sect.4, we go beyond the case of binary signals and consider problem
instances with k distinct signal value options, {0,1,...,k — 1}, allowing for the
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bidders’ signals regarding the quality of the good to be more refined. The valua-
tion of each bidder can be an arbitrary weakly increasing function of the average
quality estimate of each group. Using a reduction to the binary case, we design
a clock auction that achieves a 5¢(k — 1)-approximation for social welfare and a
104(k — 1)-approximation for revenue. To complement these positive results, we
also prove a lower bound of ¢(k — 1) + 1 for the welfare approximation ratio of
ex-post incentive compatible auctions.

Our auctions in these two sections achieve signal discovery using random
sampling, while minimizing the probability of rejecting the highest value bidder.
Unlike prior work, our random sampling process is adaptive, depending on prior
signal discovery. Thus, our auction gradually refines our estimate of the item’s
quality as perceived by the bidders and eventually decides who to allocate to,
aiming to achieve high welfare and revenue. Apart from matching the lower
bound up to small constants, these auctions crucially also guarantee improved
incentives: they admit the desired outcome not just an ex-post equilibrium, but
as an obvious ex-post equilibrium, making our upper bounds stronger.

Finally, in Sect.5 we consider the most general setting with any number of
signals k > 2 and arbitrary quality functions per expert type. We first prove a
stronger lower bound of E(g) + 1 for the welfare approximation of ex-post incen-
tive compatible auctions. Then we prove the existence of a universally incentive
compatible and individually rational auction that matches this bound.

Due to space constraints, the proofs of some theorems (particularly those
which are similar to previous proofs) have been deferred to the full version.

1.2 Related Work

In an interdependent values setting, a bidder’s value for a good may depend on
how much others value it. This idea is formally captured by the canonical inter-
dependent values model given by Milgrom and Weber [17]. The interdependent
values setting has been well-studied in the economics literature for its descriptive
ability to capture many real-world scenarios. Noted examples in the literature
include the mineral rights [23] and common value (e.g., “wallet game”) models
[11] discussed above, and the resale model [18] in which the value a bidder has
for a good (e.g., a painting) depends on her own value for the good and the
amounts others may be willing to pay on its resale.

A common assumption when studying the interdependent values setting in
both the computer science and economics literature is that the valuations of the
bidders satisfy a single-crossing condition. Following the definition of Roughgar-
den and Talgam-Cohen [20], a set of valuation functions satisfies single-crossing
if for all bidders 7 and j

(9’01'(51', S—i) > (91}]‘ (Sz’, S—i)
0s; - 0s; '

Loosely speaking, single-crossing states that a bidder is more sensitive to her
own signal than anyone else is. Using this assumption, many strong results can
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be obtained for both welfare and revenue. For example, Dasgupta and Maskin
[5] demonstrated that the celebrated Vickrey-Clarke-Groves (VCG) mechanism
can be adapted and extended into the common value setting to obtain optimal
welfare given single-crossing. Ausubel [2] demonstrated that a generalized Vick-
rey auction can achieve efficiency in a multi-unit setting with single-crossing
valuations. For revenue, Li [15] and Roughgarden and Talgam-Cohen [20] gave,
independently, auctions extracting near optimal revenue in the interdependent
values model for any matroid feasibility constraint when the valuations satisfy
single-crossing and the signals are drawn from distributions with a regularity-
type condition. Chawla et al. [3] gave an alternative generalization of the VCG
auction with reserve prices and random admission which approximates the opti-
mal revenue in any matroid setting without conditions on signal distributions.

On the other hand, it is well-known that without single-crossing, achiev-
ing the optimal welfare becomes impossible [5,10]. There have thus been recent
efforts to approximate the optimal welfare when the single-crossing assumption
is relaxed. Eden et al. [6] suggested a notion called “c-single-crossing” wherein
each bidder is at most a factor ¢ times less sensitive to changes in her own
signal than any other bidder is (exact single-crossing has ¢ = 1). They gave
a 2c-approximate randomized mechanism when valuation functions are con-
cave and satisfy c-single-crossing. Eden et al. [7] proposed an alternative notion
termed “submodularity over signals” (SOS) which, loosely speaking, stipulates
that a valuation function must be less sensitive to increases in any particular
signal when the other signals are high. The authors then gave a randomized 4-
approximate mechanism for all single-parameter downward-closed settings when
valuation functions are SOS; this factor was very recently improved to 2 for
the case of binary signals by Amer and Talgam-Cohen [1]. We note that the
valuations studied in this paper satisfy neither c-single-crossing nor (approxi-
mate) SOS, in general. Our work proposes alternative parameterizations of the
valuation functions and it provides another step toward a better understanding
of interdependent values beyond the classic, and somewhat restrictive, single-
crossing assumption.

In accordance with some recent work in computer science (e.g., see [6,7]), and
unlike much of the existing economics literature, we consider a prior-free setting
where there is no distributional information regarding the signals of the bidders.
Thus, our results are in consistent with “Wilson’s doctrine” [22], which envisions
a mechanism design process that is less reliant on the assumption of common
knowledge. Our results are independent of an underlying distribution and do not
assume that the auctioneer or the bidders have any information regarding each
other’s signals.

2 Preliminaries

We consider a setting where a set N of n bidders is competing to receive a good.
Each bidder ¢ € N has a private signal s; regarding the good being sold, which
can take one of k publicly known different values. Her valuation of the good, v;(s),
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is a publicly known weakly increasing function of the vector of all the bidders’
signals, s = (s1, 82, ..., Sy,). In many settings of interest it is natural to assume
that this is a symmetric function over the signals, e.g., when all the bidders have
the same access to information, or the same level of expertise. However, we also
consider the case when the signal of some bidders may have a different impact
than others’. To capture this case we partition the bidders into ¢ > 1 groups
and assume that each group has different types of expertise. In this case, the
valuation functions v;(s) are symmetric with respect to the signals of bidders
with the same type of expertise, but arbitrarily non-symmetric across bidders
with different types of expertise. Note that this captures arbitrary monotone
valuation functions when ¢ = n, and it also captures several classes of instances
where the valuations of different bidders are not (even approximately) single-
crossing or SOS. We call a bidder optimal for some signal vector s if i is a
highest value bidder for that signal profile, i.e., i € argmax;en{v;(s)}. We use
h(s) to refer to an optimal bidder for signal vector s, breaking ties arbitrarily
but consistently if there are multiple optimal bidders for s.

In interdependent value settings, a direct-revelation mechanism receives the
bidders’ signals as input and outputs a bidder to serve and a vector of prices p(s)
which each bidder is charged. For any bidder 4, the utility w;(s) = v;(s) — p;(s)
if ¢ is served and u;(s) = —p;(s), otherwise. A mechanism is ez-post individually
rational if u;(s) > 0 for all ¢, assuming all bidders report their true signals. A
mechanism is ez-post incentive compatible if the utility that bidder i receives
by reporting her true signal is at least as high as the utility she would obtain
by reporting any other signal, assuming all the other bidders report their true
signals, i.e., u;(s;,8-;) > u;(s},s_;) for all i,s_;. If a mechanism uses random-
ization, we say that it is universally ex-post individually rational and ex-post
incentive compatible (universally IC-IR) if it is a distribution over deterministic
ex-post individually rational and ex-post incentive compatible mechanisms.

We look to design universally IC-IR randomized mechanisms that aim to
serve the bidder with highest realized value given the signal profile. We measure
the expected performance of these mechanisms against the optimal solution given
full information. Given some instance I, let A(I) denote the bidder served by
auction A. We then say that A achieves an a-approximation to the optimal
welfare for a family of instances 7 if

sup maXieN{Ui (S)}
rex Evamn(s)]

where the expectation is taken over the random coin flips of our mechanism. In
terms of revenue, note that for mechanisms that are individually rational (like
the ones that we propose in this paper), we know that the revenue of these
mechanisms is always a lower bound for their social welfare. We therefore use
the optimal social welfare as an upper bound for the optimal revenue and say
that A achieves an a-approximation of revenue for a family of instances Z if

sup maXieN{Ui(S)}

<
rezr E[pau(s)] ¢
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Our main results in this paper take the form of clock auctions over signals. A
clock auction over signals is a multi-round dynamic mechanism in which bidders
are faced with personalized ascending signal clocks. Throughout the auction,
the clocks are non-decreasing and, at any point in the auction, a bidder may
choose to permanently exit the auction (thereby losing the good permanently).
When a bidder is declared the winner, she is offered a price (greater than or)
equal to the value implied by the final clock signals for all bidders. In a clock
auction, a bidder exits the auction if and only if her signal clock is greater than
her true signal, we refer to this as consistent bidding. In particular, we seek to
design clock auctions where consistent bidding is an obvious ex-post equilibrium
(OXP) strategy profile [13]. A strategy profile is an OXP of an auction if for
any bidder ¢, holding all other bidders’ strategies fixed (and assuming they are
acting truthfully), the best utility ¢ can obtain by deviating from her truthful
strategy under any possible type profile of the other bidders consistent with the
history (i.e., their clock signals) is worse than the worst utility ¢ can obtain
by following her truthful strategy under any possible type profile of the other
bidders consistent with the history.

3 Instances with Binary Signal Values

In this section, we consider the natural case where the signal of each bidder
regarding the good can take one of two possible values, e.g., “low quality” and
“high quality”. We first focus on instances where the bidders’ valuation func-
tions are symmetric over the signals, and we provide a clock auction which
admits an ex-post obvious equilibrium and 5-approximation to the optimal social
welfare. We then extend this result to general valuation functions, achieving a
5¢-approximation to the optimal social welfare. This auction is then also used
as a building block for the results of the next section, which considers a setting
with k > 2 signal values.

3.1 A Clock Auction for Symmetric Valuation Functions

A central result of this paper is the signal discovery auction, which is presented
as a sealed-bid auction below (see Mechanism 1), but can also be implemented
as a clock auction (see Theorem 3). This auction aims to discover how many
bidders have a high signal, while minimizing the probability that the optimal
bidder is rejected during the discovery process. Throughout the execution of the
auction, the set A includes the bidders that remain active, i.e., the ones that
have not been rejected yet. The variables ¢, and gmq. provide a lower and an
upper bound, respectively, for the number of bidders that have a high signal,
based on the signals discovered up to that point. Note that ¢, is initialized
to 0 and ¢p,q. is initialized to n, corresponding to all bidders having signal 0 or
signal 1, respectively. The set R* contains all the bidders that have been rejected,
without first verifying that they are not optimal.

The auction uses randomized sampling in order to initiate this discovery
process: it chooses one of the active bidders uniformly at random, it rejects that
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bidder, and then uses its signal value to narrow down the range [¢min, Gmaz]- We
refer to this as a “costly” signal discovery, because it may lead to the rejection of
the highest value bidder. Then, this discovery leads to a sequence of “free” signal
discoveries, by using this information to identify active bidders that cannot be
optimal, rejecting them, and then using their signal to further narrow down the
[min, Gmaz] Tange. When no additional free signal discoveries are available, the
auction removes any bidder of R* that is now verified to be non-optimal, and
executes another costly signal discovery.

This process continues until there is only one active bidder, at which point
this bidder is declared the winner. We say that a signal profile s is consistent
with some ¢ € [¢min, @maz] if it contains a number of “high” signals equal to
g. If this bidder i is optimal for a signal profile s consistent with exactly one
q € [@mins Gmaz), then the bidder is awarded the good at price p = v;(s); if the
bidder is optimal for multiple signal profiles consistent with distinct numbers
of “high” signal bidders in [¢min, Gmaz], she is awarded the good at the price
corresponding to a signal profile with the fewest number of “high” signal bidders.

Mechanism 1: Signal discovery auction for binary signal values

1 Let A« N, R* — 0, gmin +— 0, and ¢maz < 1

2 while |[A] > 1 do
// A ‘‘costly’’ signal discovery
3 Select a bidder i € A uniformly at random
4 Let A «— A\{i} and R* — R* U {i}
5 if s; =0 then
6 ‘ Gmaz < Qmaz — 1
7 else
8 | Gmin — Qmin + 1
// A sequence of ‘‘free’’ signal discoveries
9 while 35 € A that is not optimal for any s consistent with some
qc [Qmina qmam] do
10 A — A\{j}
11 if s; =0 then
12 ‘ dmaz < Qmaz — 1
13 else
14 ‘ dmin < Qmin —+ 1
15 while 3j € R* that is not optimal for any s consistent with some
qe [qmim qmal'] do
6 | | R R\{j}

17 Let ¢ be the single bidder in A

18 Let s be the smallest signal such that 7 is optimal for (s,s_;)
19 if v;(s) > vi((s},s—i)) then

20 ‘ Award the good to i at price v;((s},s-;))

The following lemma shows that the size of R* is never more than 2, which
allows us to bound the probability that the auction identifies the optimal bidder.
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Lemma 1. Throughout the execution of the signal discovery auction, the size
of R* is never more than 2.

Proof. We first note that, throughout the auction, the only bidders in A U R*
are the potentially optimal bidders (i.e., those which correspond to some possible
signal profile) since bidders are removed from AU R* when they are determined
to be non-optimal. Initially R* is empty and at the beginning of each iteration
of the outer while-loop, one randomly sampled active bidder 7 is added to this
set, increasing its size by one. The signal of bidder ¢ is then used to update
either ¢min O Qmaz; if s; = 0 the auction can infer that ¢4, is not the true
number of high signal bidders, and if s; = 1 the auction can infer that ¢, is
not the true number of high signal bidders. In both of these cases, some possible
symmetric signal profile is ruled out, and this may lead to a sequence of “free”
signal discoveries, as discussed below.

Whenever a symmetric signal profile s is ruled out, there are four possibilities
regarding the bidder who is optimal for that level, i.e., the bidder h(s):

1. If h(s) is in A and is not optimal for any other s’ consistent with some
number ¢ of high signal bidders in the updated interval [¢min, ¢maz], then the
first inner-while loop of the auction will remove that bidder from A and use
its signal to rule out one more quality level.

2. If h(s) is in A and is also optimal for some other s’ consistent with some
number ¢ of high signal bidders in the updated interval [¢nin, Gmaz], then the
iteration of the outer while-loop terminates without any additional operations
and we proceed to the next iteration.

3. If h(s) is in R*, and is not optimal for any other s’ consistent with some
number ¢ of high signal bidders in the updated interval [¢nin, Gmaz], then the
second inner while-loop removes h(s) from R* and we proceed to the next
iteration of the outer while-loop.

4. If h(s) is in R*, and is also optimal for some other s’ consistent with some
number g of high signal bidders in the updated interval [¢min, ¢maz], then the
iteration of the outer while-loop terminates without any additional operations
and we proceed to the next iteration.

Considering these four possibilities, note that while the first case arises,
the execution remains in the first inner while-loop and the size of R* remains
unchanged. When the third case arises, the size of R* is first reduced by one
(because the auction enters the second inner while-loop) and then proceeds to
the next iteration of the outer while-loop, which may bring this up to the same
size again. As a result, the third case does not increase the size of R* either.

On the other hand, both cases 2 and 4 may lead to an increase in the size of
R* by 1, since they terminate the current iteration of the outer while-loop and
may proceed to the next one, which would add one more bidder to R*.

However, at the end of each iteration of the outer while-loop, A and R*
contain only bidders that are optimal for some s consistent with some number
of high signal bidders ¢ in [¢min, ¢maz] (all the others are removed from A in
the first inner while-loop and from R* in the second inner while-loop). Also, at
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the end of each iteration of the outer while-loop, we have ¢maz = qmin +|A4|. To
verify this fact note that the signal of everyone not in A has already been used
to update the interval [¢min, ¢maz] and the only signals not used yet are those
of the bidders in A. If all the bidders in A have a low signal, then the true s has
Gmin bidders with high signals. If they all have a high signal (adding |A| bidders
with high signal), the true s has ¢4, bidders with high signals.

Therefore, we know that at the end of each iteration of the outer while-loop,
every bidder in A and R* is optimal for some possible symmetric signal profile
with a number of high value bidders in [¢min, @maz] and there are at most |A|+1
such distinct signal profiles. If R* is empty at that point, this means that there
can be at most one bidder in A that is optimal for two distinct signal profiles.
If |[R*| = 1, then there are |A| + 1 optimal bidders and |A| 4+ 1 distinct signal
profiles, so there is no bidder in A or R* that is optimal for more than one such
profile. This means that in the next iteration of the outer while-loop, cases 2
and 4 listed above cannot arise, and therefore the size of R* cannot be strictly
more than 1 at the end of any iteration of the outer while loop. a

Theorem 1. The signal discovery auction achieves a 5-approzimation of the
optimal welfare for instances with binary signals.

Proof. Let i* be the optimal bidder and ¢* be the true number of high signals.
We first observe that a bidder is removed from A U R* only if they are determined
to be non-optimal. Thus, we know that i* € AU R* throughout the running of
the algorithm. By Lemma 1 we know that |R*| < 2 throughout the running of
the algorithm. There are then at most 5 distinct bidders who can be in AUR* at
the end of the algorithm: ¢* and the (up to) four other bidders optimal for signal
profiles corresponding to ¢* — 2, ¢* — 1, ¢* + 1, or ¢* + 2 high signal bidders.
Provided that these four other bidders enter R* (or are eliminated) before i* is
added to R* we then obtain the optimal welfare. We conclude by noting that,
since the choices of the bidder to be added to R* is made uniformly at random,
we can envision the order in which bidders are added to R* as a uniform at
random permutation over the bidders fixed at the outset. In a uniform random
permutation, i* follows these four bidders with probability 1/5. a

The signal discovery auction, as presented, achieves no interesting worst-case
approximation for revenue when the benchmark is the ex-post optimal welfare.
In particular, if there is a single optimal bidder for all the signal profiles corre-
sponding to numbers of high signal bidders in [gmin, ¢maz], and the true number
of high signal bidders is ¢4z, the mechanism charges the winner ¢ a price of
v;(s’) where s’ is the signal profile obtained by her signal being 0 (corresponding
t0 @min high signal bidders). If the true signal profile s” corresponds to having
Gmaz bidders of high signal, the ex-post optimal welfare is v;(s”), which can
be arbitrarily higher than v;(s’). To address this issue, our next result shows
that if we slightly modify the pricing rule of the mechanism, then we can achieve
revenue which is a 10-approximation of the ex-post optimal welfare (which simul-
taneously also implies that the welfare we obtain is a 10-approximation).
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Theorem 2. The pricing rule of the signal discovery auction can be adjusted to
achieve revenue which is a 10-approzimation of the optimal welfare for instances
with binary signals.

Proof. If in line 18 of Mechanism 1 we instead select a s for which ¢ is optimal
consistent with some random ¢’ € [gmin, Gmaz] and s is the true signal profile,
we extract all of the welfare as revenue. Since ¢ is the only bidder with unknown
signal value, there are at most two levels for which 7 is optimal so we select the
signal profile with probability 1/2, yielding the 10-approximation. Note that in
line 20 we only allocate the item if the price is below the true value of i, so we
preserve ex-post IC-IR with this modification. a

We conclude this section by verifying that the outcome of the signal discovery
auction can be implemented as an obvious ex-post equilibrium [13].

Theorem 3. The signal discovery auction can be implemented as an ascending
clock auction over the signals wherein consistent bidding is an obvious ex-post
equilibrium.

Proof. Rather than asking bidders to report their signals we may instead equip
each bidder with a signal clock. The clocks of all bidders begin at 0 and when
bidder ¢ would have her signal discovered by the above mechanism, we instead
raise the clock of 7 to 1. If 7 rejects the new clock signal level (i.e., permanently
exits the auction), she cannot win the item regardless of her beliefs about the
signals of the remaining bidders.

If the true signal of i is 1, for any profile of signals of the remaining bidders
(assuming these signals are true) the worst utility ¢ can obtain by accepting the
increased clock signal level is 0 (by losing the item or by winning the item and
being charged exactly her welfare). Thus, at any point in the auction, regardless
of the history, when ¢ is approached to increase her clock signal level, the best
utility ¢ can obtain by not accepting the increased clock signal level (thereby
necessarily losing the good) is weakly less than the worst utility 4 can obtain by
accepting the increased clock signal level. On the other hand, if the true signal of
i is 0, for any profile of signals of the remaining bidders (assuming these signals
are true) if she instead accepts the increased clock signal level she either will
continue to lose the auction (thereby obtaining a utility of 0) or win the auction
at a quality level higher than the actual underlying quality of the good. Since the
threshold signal of i would then be 1, she would necessarily be charged a price
weakly higher than her value for the good and she would obtain non-positive
utility. Thus, in either case, truthfully responding whether or not the clock signal
level is above a bidder’s signal is an obvious ex-post equilibrium. a

Corollary 1. The version of the signal discovery auction which obtains revenue
guarantees can also be implemented as an ascending clock auction over the signals
wherein consistent bidding is an obvious ex-post equilibrium.

Proof. The proof follows exactly as above except we raise the clock signal level
of the winning bidder to the one corresponding to the randomly selected signal
profile (effectively setting a take-it-or-leave-it price at this signal). a
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3.2 A Clock Auction for General Valuation Functions

In this section, we demonstrate how our auction for symmetric valuation func-
tions, i.e., the case where ¢ = 1, above, can be easily extended to handle general
valuation functions over binary signals, leading to approximation bounds that
depend on the number of expert-groups, ¢.

The mechanism first uniformly at random selects some ¢ € {1,2,...,¢}, and
then assumes that the optimal bidder belongs to expertise type #'. The mecha-
nism rejects all bidders outside expertise-group ¢’ and “learns” their signals. The
auction then knows all the signals of bidders not in ¢’ and the problem reduces
to also discovering the number of bidders in ¢ that have a high signal. We can
therefore run Mechanism 1 among the bidders in ¢ to decide the winner among
them, and the price offered to her.

Theorem 4. The above mechanism yields a 5¢-approrimation of the optimal
welfare for instances with binary signals.

Proof. The probability that the optimal bidder does, indeed, belong to the
expertise-group ¢ is 1/¢. If the mechanism guesses the value of ¢ correctly,
then the rejection of all the other bidders comes at no cost, and it reduces the
problem to finding the optimal bidder within the group ¢'. But, since we now
know all the signal values of bidders outside the group ¢, we can use Mechanism
1 to discover the optimal bidder with probability at least 1/5 (by Theorem 1).
Combining these observations, the above mechanism allocates to the optimal
bidder with probability at least 1/(5¢). O

Theorem 5. The pricing rule of the above mechanism can be adjusted to achieve
revenue which is a 10¢-approximation of the optimal welfare for instances with
binary signals.

4 Shared Quality Functions over k Signal Values

We now move beyond instances with binary signals and consider a class of valua-
tion functions over k > 2 signal values. Each bidder i’s signal can take any value
s; € {0,1,...,k—1} and the average of these signals determines the quality of the
good q¢ =),y Si (note that the average of the signals can be directly inferred
from the sum, so we use the sum for simplicity of notation).! This captures a
variety of settings where each bidder has some estimate regarding the quality,
but the true quality is best approximated by averaging over all the bidders’ sig-
nals (e.g., see the wisdom of the crowds phenomenon [21]). Each bidder 4’s value
for the good is provided by some (arbitrary) weakly increasing function v;(q),
which depends only on ¢, quantifying how much each bidder values quality.
Apart from these symmetric valuation functions, we also consider non-
symmetric ones involving ¢ different classes of experts. The bidders are par-
titioned into sets Ny, Na, ..., Ny, depending on their expertise, and the quality

! Note that the actual k signal values need not be {0,1,...,k—1}, but we need them
to be equidistant for our results to hold.
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estimate from each expert group ¢’ is their average signal, i.e., g = ), N, Si-
In this case, the quality of the good is captured by the shared quality vector
a = (q1,92,.-.,qe), and each bidder’s valuation is a function v;(q). The only
restriction on the valuation function is that it is weakly increasing with respect
to the underlying signals, but it can otherwise arbitrarily depend on the quality
vector. For instance, this allows us to model settings where the signals of each
group of experts imply the quality of the good with respect to some dimension,
and each bidder can then synthesize this information into a quite complicated
valuation function, depending on the aspects that she cares about the most.

In this section, we first provide a lower bound for the approximability of the
optimal social welfare by universally ex-post IC-IR auctions, parameterized by
k and ¢. We then provide a way to leverage the ideas from the previous section
to achieve essentially matching upper bounds using clock auctions and ensuring
incentive guarantees even better than ex-post IC-IR.

4.1 Approximation Lower Bound for Ex-Post IC-IR Auctions

We first prove a lower bound for the welfare approximation that one can achieve
for the class of instances of this section involving ¢ types of experts with k signal
values each. It is worth noting that the construction for this lower bound is
based on a simple class of valuation functions that only depend on the weighted
average of the bidder’s signals (with each expert group having a different weight
coefficient). Also, for the case k = 2, i.e., the binary case considered in the
previous section, this implies a lower bound of ¢ + 1.

Theorem 6. No ex-post incentive compatible auction with £ types of experts and
shared quality functions can achieve better than an ¢(k — 1) 4+ 1-approximation
to the optimal welfare.

Proof. We consider a particularly simple setting, in which the quality of the
good can be summarized as a weighted average of all the bidders’ signals (with
bidders from different expertise classes given different weights). Note that this is
readily captured by the model described above. It follows that when we reduce
the signal of i by d > 0, the quality of the good changes by dw;. Note that d can
be at most k£ — 1 different values. We construct a valuation function as follows.
For each j € {0,1,...,¢£— 1}, we define the valuation function of bidder ¢ where
(k—=1)-j+1<i<(k—1)-(j+1) as follows:
wi(®) = {Ai if £2 8= (= (k=1)-])-w,
0  otherwise.

Finally, for bidder ¢/ = (k — 1) - £ + 1 (who has signal 0 in s), vy (t) = Ay when
t > S and vy (t) = 0 otherwise. We let Ay =1 and Vi > 1, A; = HA,_y (H is
arbitrarily large). In other words, at any of these qualities, we must allocate the

good to the optimal bidder with probability 1/« to obtain an c-approximation to
the optimal welfare in the worst case. To obtain a £(k — 1)+ 1 — € approximation
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for € > 0, it then must be that we allocate the good to the optimal bidder at all
of these qualities with probability at least 1/(¢(k—1) +1 —€). But then we have
that for all d € {1,2,...,k— 1} and w € {1, k,...,k*"!} if we allocate the good
to the optimal bidder ¢ when the quality is S — dw with probability p, we must
continue to allocate the good to ¢ with probability p when the quality is S in
order to maintain universal ex-post incentive compatibility (by monotonicity of
an allocation rule). Finally, since there are £(k — 1)+ 1 qualities identified above,
each of the distinct optimal bidders at these qualities must be allocated the good
with probability at least 1/(¢(k — 1) +1 — €) at quality S, a contradiction. O

4.2 A Clock Auction for Instances with Shared Quality Functions

We now provide a way to reduce this problem to the case of binary signals,
while losing only a k — 1 factor in our bounds. As a result, the induced upper
bounds closely approximate the lower bound provided above. The majority of
this section discusses how Mechanism 2 achieves this reduction for the case where
¢, and then briefly explain how to generalize our bounds for instances with ¢ > 1.

Similarly to Mechanism 1 in the binary setting, whose goal is to discover
the number of signals that are high, Mechanism 2 aims to discover the value
of the sum of the signals. Throughout its execution, the auction maintains an
interval [¢min, @maz] such that the true sum ¢ is guaranteed to be in that interval.
It gradually refines this range by discovering bidder signals as in the binary
setting. The main difference is that we now need to be more careful in order to
ensure that the size of R* remains low. To achieve this, the auction chooses some
m € {0,1,...,k — 2} uniformly at random and assumes that ¢ mod (k — 1) =
m. It thus randomly reduces the number of values of ¢ that it considers from
n(k —1) 41 (since the sum can initially range from 0 to n(k — 1)) to just n+1
(which is equal to the length of the [¢min, Gmaz] interval in the case of binary
signals). Importantly, the values of ¢ that are considered after this sampling are
spaced apart by k — 1, allowing us to upper bound the size of R*.

Lemma 2. The set of R* in Mechanism 2 is never more than 2.

Theorem 7. The signal discovery auction achieves a 5(k —1) approzimation of
the optimal welfare for instances with shared quality functions.

Theorem 8. The pricing rule of the signal discovery auction can be adjusted to
achieve revenue which is a 10(k — 1) approzimation of the optimal welfare for
instances with shared quality functions.

Theorem 9. Mechanism 2 can be implemented as an ascending clock auction
over the signals wherein consistent bidding is an obvious ex-post equilibrium.

Theorem 10. Mechanism 2 can be modified to yield a 5(k — 1){-approximation
of the optimal welfare and achieve revenue which is a 10(k — 1)¢-approzimation
of the optimal welfare for shared quality functions with £ expertise types.
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Mechanism 2: Signal discovery auction for k signal values

1 Let A« N, R" — 0, gmin — 0, and ¢maz <— n(k — 1)

2 Choose some m € {0,1,...,k — 2} uniformly at random
3 S« {q € [gmin, @maz] | ¢ mod (k —1) =m}

4 while |[A] > 1 do

// A ‘‘costly’’ signal discovery

Select a bidder i € A uniformly at random

Let A+ A\{i} and R* — R* U {i}

Qmaz <~ Qmaz — (k —-1- 5i)

Qmin < Qmin + Si

// A sequence of ‘‘free’’ signal discoveries
9 while 3j € A that is not optimal for any ¢ € S N [gmin, ¢maz] do

o N o o

10 A — A\{j}
11 (Imaa:<_qmaz+5j_k+1
12 qmin < Qmin + Sj

13 while 3j € R* that is not optimal for any g € S N [gmin, ¢maz] dO

14 | R* — R"\{j}

15 Let ¢ be the single bidder in A

16 Choose the smallest quality level ¢ € S N [gmin, @maz] for which i is optimal
17 if v;(g(s)) > vi(¢') then

18 ‘ Award the good to 7 at price v;(q")

5 General Valuation Functions and Signal Values

We now turn to the more general case where the quality of the good is any weakly
increasing function of the signals that treats bidders with the same expertise type
symmetrically. We provide an approximation lower bound for any allocation
function that is monotone: a necessary condition of ex-post IC. We conclude our
results by proving that there exists a universally IC-IR auction that matches
the approximation ratio lower bound. We can adjust the mechanism to achieve
revenue that is k - (£ (g) + 1) approximation of the welfare.

Theorem 11. No ex-post incentive compatible auction can get more than a
é(g) + 1l-approximation to the optimal welfare. Also, no universally ex-post IC-IR

auction can obtain revenue more than a E(’;) + 1 fraction of the revenue.

Theorem 12. There exists a universally ex-post IC-IR auction that achieves a
E(g) + 1-approximation to the optimal welfare.

Theorem 13. There exists a universally ex-post IC-IR auction that obtains rev-
enue that is a k - (6(’;) + 1) approzimation to the social welfare.
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