
Designing High-Performance MPI Libraries with
On-the-fly Compression for Modern GPU Clusters*

Q. Zhou, C. Chu, N. S. Kumar, P. Kousha, S. M. Ghazimirsaeed, H. Subramoni and D. K. Panda
Department of Computer Science and Engineering, The Ohio State University

{zhou.2595, chu.368, senthilkumar.16, kousha.2, ghazimirsaeed.3, subramoni.1, panda.2}@osu.edu

Abstract—While the memory bandwidth of accelerators such
as GPU has significantly improved over the last decade, the com-
modity networks such as Ethernet and InfiniBand are lagging in
terms of raw throughput creating. Although there are significant
research efforts on improving the large message data transfers
for GPU-resident data, the inter-node communication remains
the major performance bottleneck due to the data explosion
created by the emerging High-Performance Computing (HPC)
applications. On the other hand, the recent developments in GPU-
based compression algorithms exemplify the potential of using
high-performance message compression techniques to reduce the
volume of data transferred thereby reducing the load on an al-
ready overloaded inter-node communication fabric. The existing
GPU-based compression schemes are not designed for “on-the-
fly” execution and lead to severe performance degradation when
integrated into the communication libraries.

In this paper, we take up this challenge and redesign the
MVAPICH2 MPI library to enable high-performance, on-the-fly
message compression for modern, dense GPU clusters. We also
enhance existing implementations of lossless and lossy compres-
sion algorithms, MPC and ZFP, to provide high-performance, on-
the-fly message compression and decompression. We demonstrate
that our proposed designs can offer significant benefits at the
microbenchmark and application-levels. The proposed design
is able to provide up to 19% and 37% improvement in the
GPU computing flops of AWP-ODC with the enhanced MPC-
OPT and ZFP-OPT schemes, respectively. Moreover, we gain
up to 1.56x improvement in Dask throughput. To the best of
our knowledge, this is the first work that leverages the GPU-
based compression techniques to significantly improve the GPU
communication performance for various MPI primitives, MPI-
based data science, and HPC applications.

Index Terms—GPU, Compression, GPU-Aware MPI, HPC,
Dask

I. INTRODUCTION

Message Passing Interface (MPI) [1] is a popular par-
allel programming model for developing parallel scientific
applications. HPC and data science applications usually use
communication libraries such as MPI to efficiently parallelize
the code and achieve high throughput. Although the well-
designed GPU-aware MPI libraries can efficiently leverage
massive parallelism and high-bandwidth memory on modern
GPU architectures to progress a large amount of data, the data
movement is still the performance bottleneck on these systems.
Over the last decade, the researchers have significantly opti-
mized data transfers in MPI for GPU-resident data [2]–[5].
However, it has reached the limit since the interconnect and

*This research is supported in part by NSF grants #1818253, #1854828,
#1931537, #2007991, #2018627, and XRAC grant #NCR-130002.

!"#$%&'

!" !"

()*+,-#./01,2#
345#6"7'8

9)":'
3;<#6"7'8

=)*+,-#>%!-#6-,<
3?;#6"7'8

!,@1,1A+,B#CDE#
3?FG5#6"7'8

#!$% #!$& #!$' #!$(

>HIJ#K >HIJ#?

Fig. 1. Disparity between intra-node and inter-node GPU communication on
Sierra OpenPOWER supercomputer. P9: IBM POWER9 processor. IB HCAs:
InfiniBand Host Channel Adapters. Courtesy [9]

network components have not kept up the same pace with
processing power and communication bandwidth provided by
the modern GPU architectures. The latest NVIDIA Ampere
GPU architecture provides up to 1,555 GB/s peak memory
bandwidth and more than 75 GB/s intra-node communication
bandwidth [6]. However, the fastest commodity network such
as Mellanox InfiniBand (IB) HDR, which is widely used in
top supercomputers [7], can only achieve 25 GB/s bandwidth.
Figure 1 depicts the situation on Sierra supercomputer [8].
Although the network interconnects can handle small mes-
sages, they become a bottleneck for large message transfers.
These architectural issues prevent us from efficiently scaling
HPC and data science applications to larger GPU systems.
Therefore, it is vital to explore new techniques to improve the
performance of large message transfers between GPUs.

A. Motivation and Challenges

Figure 2(a) shows the inter-node communication bandwidth
with two state-of-the-art MPI libraries: Spectrum MPI and
MVAPICH2-GDR. As can be seen in this figure, these li-
braries are well optimized to saturate the bandwidth of the IB
network [5], [9] for large messages. Although MPI libraries
are well optimized to saturate the network bandwidth, the
communication time at the application-level is still one of the
main bottlenecks for the performance of many HPC and data
science applications. To clarify this, Figure 2(b) shows compu-
tation versus communication time for a representative sample
application, AWP-ODC [10]. As can be seen in this figure,
the communication time is still significant as we conduct
experiments with larger problem sizes and more GPUs. Since
the inter-node communication bandwidth is already saturated,
we should seek other ways to reduce the communication

���

�����*&&&�*OUFSOBUJPOBM�1BSBMMFM�BOE�%JTUSJCVUFE�1SPDFTTJOH�4ZNQPTJVN�	*1%14

978-1-6654-4066-0/21/$31.00 ©2021 IEEE
DOI 10.1109/IPDPS49936.2021.00053

20
21

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
ist

rib
ut

ed
 P

ro
ce

ss
in

g
Sy

m
po

siu
m

 (I
PD

PS
) |

 9
78

-1
-6

65
4-

40
66

-0
/2

0/
$3

1.
00

 ©
20

21
 IE

EE
 | D

O
I:

10
.1

10
9/

IP
D

PS
49

93
6.

20
21

.0
00

53

Authorized licensed use limited to: The Ohio State University. Downloaded on September 23,2021 at 23:08:55 UTC from IEEE Xplore. Restrictions apply.

(a) Inter-node D-D Bandwidth (b) AWP-ODC time breakdown
Fig. 2. Motivating Example: production-quality and optimized CUDA-Aware
MPI libraries can saturate IB EDR network while the communication time
remains a significant bottleneck for HPC applications e.g. AWP-ODC. The
message range for AWP-ODC is 2M to 16M as shown in Figure (a).

time of the HPC applications. This leads up to the following
challenge: What are the other techniques—besides improving
the communication bandwidth—that can be used to reduce
the communication time of the HPC and data science
applications on modern, dense GPU clusters?

One way to improve communication performance is by
taking advantage of compression techniques. Compression
provides the opportunity to reduce the data size being trans-
ferred. This way, we can lower the pressure on the network and
the interconnect with limited bandwidth. Various compression
techniques have been proposed in the literature. They are
divided into two groups: CPU-based algorithms and GPU-
based algorithms. The first four rows of Table I show CPU-
based algorithms with no GPU support. These algorithms have
low throughput compared to GPU-based designs [11]–[14]. On
the other hand, existing GPU-based compression schemes such
as GFC [11], MPC [12], SZ [13], and ZFP [14] are typically
focusing on achieving high compression ratio and not absolute
high performance. In this paper, we address this question:
What are the significant overhead of existing GPU-based
compression algorithms that make them inefficient for HPC
and data science applications?

Some works in literature [15], [16] try to improve the
communication performance of HPC applications by integrat-
ing compression mechanisms into MPI libraries. The main
limitation of these efforts is that they only consider CPU-
based compression techniques. As mentioned earlier, these
techniques usually have low throughput. There have also been
some works [11], [12], [17], [18] that study the efficiency and
applicability of GPU-based compression algorithms for HPC
applications. However, these designs are inefficient as they
do not perform on-the-fly message compression and impose
significant overhead in the critical path of communications.
As can be seen in the last column of Table I, GPU-based
compression schemes such as GFC, MPC, SZ, and ZFP
do not have efficient support for MPI applications. These
limitations—in the current compression schemes—motivate us
to address this question in our paper: How can we design
efficient on-the-fly message compression schemes to improve
the performance of HPC and data science applications on
the modern GPU clusters?

TABLE I
COMPARISON BETWEEN DIFFERENT COMPRESSION TECHNIQUES

Compression Designs Lo
ss

le
ss

Lo
ss

y

G
PU

Su
pp

or
t

Si
ng

le
Pr

ec
is

io
n

D
ou

bl
e

Pr
ec

is
io

n

H
ig

h
Th

ro
ug

hp
ut

M
PI

Su
pp

or
t

FPC [19] ! " " " ! " !
fpzip [20] ! ! " ! ! " "

ISOBAR [21] ! " " ! ! " "
SPDP [22] ! " " ! ! " "
GFC [11] ! " ! " ! ! "
MPC [12] ! " ! ! ! ! "

SZ [13] " ! ! ! ! ! "
ZFP [14] " ! ! ! ! ! "

Proposed MPC-OPT ! " ! ! ! ! !
Proposed ZFP-OPT " ! ! ! ! ! !

B. Contribution
In this paper, we take up these challenges and redesign the

MVAPICH2 MPI library to enable high-performance, on-the-
fly message compression for modern GPU clusters. To the
best of our knowledge, this is the first work that leverages
GPU-based compression techniques to significantly improve
the GPU communication performance for various MPI prim-
itives, and MPI-based data science and HPC applications. To
summarize, this paper makes the following main contributions:

• We conduct a thorough analysis of the state-of-the-art
GPU-based compression algorithms, including the loss-
less and lossy algorithms and analyze the effectiveness
of the two GPU-based compression schemes, MPC and
ZFP, on the modern GPU systems.

• We propose a framework to integrate GPU-based com-
pression algorithms to the communication library MVA-
PICH2. Later, we evaluate the critical overheads of these
algorithms and identify regions that degrade the perfor-
mance when they are integrated into MPI libraries.

• We propose enhancements to the MPC lossless compres-
sion scheme (MPC-OPT), to tackle the limitations of the
MPC when it is integrated into MPI library. The proposed
MPC-OPT scheme improves the GPU utilization by per-
forming on-the-fly compression and avoiding expensive
memory allocation and extra copies in MPC.

• We propose enhancements to the lossy ZFP compression
scheme (ZFP-OPT), to tackle the limitations of ZFP when
it is integrated into MPI library. The proposed ZFP-
OPT scheme takes advantage of a caching mechanism
to reduce the number of CUDA function calls.

• We use OSU Microbenchmark suite to evaluate the point-
to-point communication and show that the compression
design can achieve up to 83% improvement. We also
enhance the Microbenchmark to use real data set and get
up to 85% improvement for collective operations.

• We evaluate the effectiveness of MPC-OPT and ZFP-OPT
through various application studies and show up to 19%
and 37% improvement of GPU computing flops in the
AWP-ODC application with MPC-OPT and ZFP-OPT,
respectively. We also show up to 1.56× improvement in
Dask throughput.

���

Authorized licensed use limited to: The Ohio State University. Downloaded on September 23,2021 at 23:08:55 UTC from IEEE Xplore. Restrictions apply.

II. ANALYSIS OF GPU COMPRESSION ALGORITHMS

In this section, we discuss the analytic models to realize how
on-the-fly message compression can benefit communication
and what are key factors to benefit from it. Next, we assess
the existing GPU-based lossless and lossy compressors on the
modern GPU clusters and provide insights into their features.

A. Analytical Models
We present the cost models based on the ones discussed

in [15]. Table II summarizes the notations used in this paper.
TABLE II

NOTATIONS USED IN THIS PAPER

Symbol Definition
T Overall latency of GPU communication (seconds)
T ′ Overall latency of GPU communication with compression

(seconds)
Ts Setup time for communication (seconds)
Tcompr Execution time of compression kernel (seconds)
Tdecompr Execution time of decompression kernel (seconds)
Toh compr Overheads related to compression (seconds)
Toh decompr Overheads related to decompression (seconds)
Sm Size of original message (Bytes)
S′m Size of compressed message (Bytes)
B Network Bandwidth between GPUs (GB/s)
CR Compression ratio

A typical communication cost can be realized as follows:

T = Ts +
Sm

B
(1)

With compression, the cost of message transfer is reduced.
But there are overheads of compression and decompression
kernels and related overheads such as extra memory allocation
for compressed data. In other words, we have:

T ′ = Ts +Tcompr +Toh compr +
S′m
B

+Tdecompr +Toh decompr

= Ts +Tcompr +Toh compr +
Sm

CR×B
+Tdecompr +Toh decompr

(2)

Ideally, if the overheads related to compression and decom-
pression can be small enough to be ignored, the communica-
tion cost can be simplified to equation (3) below:

T ′ = Ts +Tcompr +
Sm

CR×B
+Tdecompr (3)

Based on these models, we summarize the key factors
addressed in this paper to achieve high-performance on-the-fly
message compression as follows.

• Intuitively, a higher compression ratio implies a smaller
message size to be exchanged over the network.

• Lower overhead in the compression and decompression
processes can better utilize the GPU resources and help
benefit communication even with low compression ratio.

B. Assessment of Existing Compression Libraries
In this paper, we pick two publicly available GPU-based

compression libraries that have proven applicable for sci-
entific applications. First, Massively Parallel Compression
(MPC) [12], an open-source GPU-based algorithm, is used

to represent the lossless compression algorithm. The key
technique of MPC is to determine the similarity between
consecutive floating-point numbers and compress them ac-
cordingly. A dimensionality value is used to determines the
position of the prior value in the same chunk to predict the
current value [12]. Recent studies [17], [23] also demonstrate
that error-bounded lossy compression methods are acceptable
for many HPC applications. In this work, we use ZFP [14]
as it provides a rich set of interfaces, and support parallel
compression using GPUs. The current parallel implementation
in ZFP supports CUDA-enabled fixed-rate compression. In
the fixed-rate mode, each d-dimensional array value is de-
constructed into 4d independent blocks. The fixed compressed
bits (i.e., rate) per block are amortized over these blocks to
achieves a compressed rate in bits/value. For instance, 16
bits/value for 32-bit single-precision floating-point data can
yield a compression ratio of 2, i.e., half the data size. Next,
we used eight representative HPC datasets, reported in [12],
with single-precision floating-points, various data sizes, and
unique value distribution to understand the performance and
compression ratio of MPC and ZFP on the modern GPU
architecture, an NVIDIA V100 GPU.

Table III shows the best compression ratio of MPC achieved
on the eight datasets with fine-tuned dimensionality. MPC
yields a compression ratio of less than 2, i.e., the reduced size
is less than 50%, for most of the datasets, which matches the
results reported in [12]. Nonetheless, the lowest throughput of
compressor and decompressor is 168.91 Gb/s that is sufficient
to be used for the commodity network as mentioned before.

TABLE III
PERFORMANCE AND COMPRESSION RATIO OF MPC AND ZFP

Dataset Size
(MB)

Unique
vals
(%)

T Pcompr
ZFP
(Gb/s)

T Pdecompr
ZFP
(Gb/s)

CR-
ZFP

T Pcompr
MPC
(Gb/s)

T Pdecompr
MPC
(Gb/s)

CR-
MPC

msg bt 128 92.9 469.29 735.56 2 206.01 189.14 1.339
msg lu 93 99.2 451.48 743.52 2 211.88 191.05 1.444
msg sp 16 98.9 421.88 709.34 2 204.93 174.58 1.352

msg sppm 16 10.2 280.36 395.08 2 199.68 174.31 8.951
msg sweep3d 60 89.8 334.65 571.19 2 207.14 211.25 1.537

obs error 30 18.0 447.22 717.36 2 209.25 187.35 1.301
obs info 9.1 23.9 536.88 739.07 2 194.18 168.91 1.440

num plasma 17 0.3 585.80 822.01 2 197.94 185.52 1.348

For ZFP, we used the 1D array type with the number of total
floating-point values as dimension size. Table III exhibits the
achieved performance and compression ratio using ZFP for the
same eight datasets. Here, we used the rate 16 to compress the
data where each 32-bit floating-point value can be compressed
to only 16 bits. As expected, a fixed compression ratio and
high compression and decompression throughput are observed.

III. PROPOSED GPU-BASED ON-THE-FLY MESSAGE
COMPRESSION FRAMEWORK

In this section, we describe the framework that integrates
GPU-based compression algorithms into the MPI communi-
cation middleware.

A. Proposed Compression Framework
Figure 3 depicts the high-level framework for integrating

compression algorithms into a communication middleware.
For GPU communication, the original and compressed data

���

Authorized licensed use limited to: The Ohio State University. Downloaded on September 23,2021 at 23:08:55 UTC from IEEE Xplore. Restrictions apply.

reside in GPU memory on both the sender and receiver sides.
As discussed in Section II, the GPU-based compression algo-
rithms generate and process information of control parameters
to launch the compression and decompression kernels with
desired configurations. In the proposed framework, the sender
keeps the information as a header on the system memory
and forwards it to the receiver. Hence, the receiver can only
perform decompression once the header is received. This
requirement incurs one extra message exchange between the
sender and receiver. For the standard rendezvous protocol
commonly used in modern communication middleware, there
is a handshake between the sender and receiver before the
real data transfer. Specifically, the sender sends a Request-
To-Send (RTS) packet, and the receiver may respond to a
Clear-To-Send (CTS) packet, then the sender can initiate the
data transfer. In the proposed framework, we piggyback the
compression-related header information into the RTS packet
to avoid extra message exchanges. The header carries various
information such as whether the compression is used or not,
used compression algorithm on the sender side, compressed
data size, and so on. Accordingly, a receiver can perform
the decompression with corresponding kernel modules and
configurations. In short, the CPU is responsible for pro-
cessing control/header information, synchronizing with the
GPU compression/decompression kernels, and progressing the
communication while GPU is performing compression and
decompression.

!"#$%&''(") *&+"#$%&''(")

,&)-&% .&+&(/&%
Fig. 3. Framework of integrating compression algorithms into MPI library.
Compression algorithm MPC and ZFP are integrated into the MPI library.
Rendezvous protocol is used to send the header data and compressed data.

Figure 4 depicts the detailed data flow in the proposed
framework. There are seven steps involved in point-to-point
communication as follows. In #, on the sender side, if the
data to be sent resides in GPU memory, and the data size
exceeds a pre-defined threshold, the sender process launches
the compression kernel on GPU with the desired control
parameters specific to a compression algorithm. For example,
MPC’s control parameters include the total number of floating-
point values and dimensionality [12]. For ZFP, the control
parameters include the rate, i.e., compressed bits per floating-
point value, and dimensions of data array [14]. Also, ZFP
has well-defined APIs and data structures, such as data field
zfp field and bitstream zfp stream, to contain the required
control parameters. Accordingly, the proposed framework con-
structs such information and passes it to the ZFP’s interface
zfp compress to launch the compression kernel on GPU.

As shown in Figure 4, the control parameters are repre-

B AA B

Compress

CPU

GPU

CPU

GPU

1

2

3

4

5

6

7

Orignal data

Header data Header data

Sender Receiver

Decompress

Fig. 4. Data flow of GPU communication with compression. There are
seven steps: 1) Launch compression kernel with control parameters 2) Run
compression kernel on GPU 3) Returned compressed size 4) Send header data
with RTS packet 5) Send compressed GPU data 6) Launch decompression
kernel with header data 7) Run decompression kernel to restore the data.

sented as A in the header data. In step $, GPU executes
the desired compression kernel to compress the original data.
Note that a temporary intermediate buffer is required to store
the compressed data on GPU. Also, MPC requires an extra
buffer d off, which stores a temporary array with initial value
”-1” used for synchronization between GPU thread blocks.
Thus, the number of elements of this array is equal to the
number of GPU thread blocks used in compression. The
values in the array are used as flags inside the compression
kernel to indicate whether each thread block has finished
compression. Upon the completion of the compression kernel,
extra information is generated to decompress and restore the
data. In step %, the kernel returns the compressed data size,
and we concatenate such information, i.e., represented as B,
in the header data. Note that MPC uses naive data copy
schemes such as cudaMemcpy to copy this information from
compressed GPU buffer to the header on the host memory.
For ZFP, the compression interface zfp compress returns com-
pressed size without an extra copy as the compression ratio
is predictable [14]. Once the compression is completed, the
sender piggybacks the header data in the RTS packet and sends
it to the receiver.

Algorithm 1 provides a high-level overview of the compres-
sion framework on the sender side. First, we extract compres-
sion algorithm L from A (Line 1). If the compression algorithm
is MPC, we launch MPC kernel MPC compress() and give
S, A, and d o f f as its input (Line 6). If the compression
algorithm is ZFP, we create instances of z f p stream and
z f p f ield and attach control parameters to them (Lines 8
and 9). Then, we launch ZFP kernel ZFP compress() with
S, z f p stream, and z f p f ield as input (Line 10). The outputs
of both MPC and ZFP are the compressed data M and the
size of compressed data B. Finally, we attach compression
information (A,B) to RT S (Line 11).

Upon receiving the RTS packet with compression control
information, the receiver stores the header data in a receive
request data structure. If the header indicates that the data
is compressed, the receiver prepares a temporary buffer on
the GPU with the corresponding size to receive the incoming

���

Authorized licensed use limited to: The Ohio State University. Downloaded on September 23,2021 at 23:08:55 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: On-the-fly Compression Framework: Sender
Input : Send buffer S, control parameters A, RT S without

compression information
Output: Compressed data M, RT S with compression information

1 Extract compression algorithm L from A;
2 Allocate GPU buffer for M;
3 if L==MPC then
4 Allocate GPU buffer for d o f f ;
5 Initialize d o f f to -1;
6 (B,M)=MPC compress(S,A,d o f f);

7 else if L=ZFP then
8 Construct z f p stream and z f p f ield;
9 Attach A to z f p stream and z f p f ield;

10 (B,M)=ZFP compress(S,z f p stream,z f p f ield);

11 Attach compression information (A, B) to RT S;

compressed data. In step &, the sender sends the compressed
data to the target remote address using existing communication
protocol [2], [5], [24] once a CTS packet is received.

Once the receiver collects all the data from the sender,
it launches the desired decompression kernel with the cor-
responding configuration according to the control parameters
suggested in the header (in step '). For MPC, similar to the
compression kernel, the decompression kernel needs an extra
device buffer d off for intra-kernel synchronization purposes.
Finally, in step (, the decompression kernel decompresses the
received data and restores the original data on the user buffer,
and the communication with on-the-fly message compression
completes. Algorithm 2 shows the high-level design of the
compression framework on the receiver size.

Algorithm 2: On-the-fly Compression Framework: Receiver
Input : received RT S, received compressed data M
Output: received data O

1 Extract control parameters A from RT S;
2 Extract compression algorithm L from A;
3 Allocate GPU buffer for O;
4 if L==MPC then
5 Allocate GPU buffer for d o f f ;
6 Initialize d o f f to -1;
7 O=MPC decompress(A,d o f f);

8 else if L==ZFP then
9 Construct z f p stream and z f p f ield based on control

parameter B;
10 O = ZFP decompress(A,z f p stream,z f p f ield);

B. Analysis of the Compression Framework
First, we evaluate the proposed compression framework

using the OSU Micro-Benchmark suite (OMB) on the TACC
Longhorn cluster. As shown in Figure 5, we can observe poor
performance from the naı̈ve integration. Here, the overhead
of the compression and decompression process outweighs the
reduced communication time. As suggested in equation (2), we
would like to reduce the overhead Toh compr and Toh decompr as
much as possible to reduce the overall latency incurred by
the compression and decompression process. Therefore, we
investigate the possible overheads in using the existing GPU-
based compression libraries and summarize them as follows.

In the proposed naı̈ve integration, using existing compres-
sion libraries incur overheads when preparing the compression

Fig. 5. Latency of naively integrating the compression algorithms.

(a) MPC-Original (b) MPC-OPT

Fig. 6. Breakdown of overall inter-node latency using MPC before and after
optimization on Longhorn.

and decompression kernel. For instance, existing compression
algorithms require allocating a temporary device buffer to store
the compressed data on both the sender and receiver sides,
which brings significant overhead. For MPC, extra overheads
exist for allocating a device buffer d off array, as indicated
above. Furthermore, MPC uses cudaMemcpy to retrieve the
compressed data size from GPU to the host memory.

In the following sections, we tackle these issues and propose
two compression schemes, MPC-OPT and ZFP-OPT, that
integrate well with the communications libraries and achieve
high-performance on-the-fly message compression.

IV. PROPOSED MPC-OPT SCHEME

Towards overcoming the challenges identified above, we
propose several optimizations to mitigate the overheads in-
curred by the existing GPU compression libraries when used
for on-the-fly message compression.

A. Profiling of the Compression Framework with MPC

First, we report the performance profiling of inter-node
GPU communication with the proposed naive integration using
MPC algorithm as shown in Figure 6(a). As shown in the
figure, memory allocations, such as cudaMalloc calls, occupy
83.4% and 28.3% of overall time for 256KB and 32MB
messages, respectively. The compression and decompression
kernels take from 11.7% to 46.3% of the entire process.
As indicated in Section III-A, MPC requires copying the
compressed data size, which is a 4-bytes unsigned integer
number, from GPU memory to host, using API like cudaMem-
cpy, that consistently spends nearly 20us due to the driver
and synchronization overhead. These extra costs in memory
allocations and data movements are far exceeding the benefits
of transferring the compressed message using MPC.

���

Authorized licensed use limited to: The Ohio State University. Downloaded on September 23,2021 at 23:08:55 UTC from IEEE Xplore. Restrictions apply.

B. Proposed Optimization Metrics in MPC-OPT

Based on the profiling result, we propose the following
optimizations to reduce the overheads discussed previously.

1) To avoid the overheads of allocating temporary device
buffers, we build a pre-allocated GPU buffer pool. Such
GPU buffers are allocated at the initialization phase, e.g.,
MPI Init, to remove it from the critical communication
paths. On the sender side, each send operation picks
an available device buffer in the pool to store the com-
pressed message and returns the resource into the buffer
pool when the send request is completed. Similarly, the
receiver also gets the free buffer from the pool for the
decompression process. Note that such a buffer pool
can be dynamically increased and decreased on demand
to satisfy the application’s requirement. Currently, the
buffer size is fixed in the memory pool. To make the
memory more efficient, such a memory pool could
be further enhanced to support varying buffer sizes to
accommodate different message sizes in the future.

2) Similarly, we build a buffer pool to avoid the memory
allocation for d off used in MPC. Sender and receiver
can re-use the GPU buffers from their pools for d off.

3) To eliminate expensive memory copies using APIs
like cudaMemcpy, we employ low-latency GDRCopy
schemes [25] to copy the information of compressed
data size from GPU memory to host. This can reduce
the cost from 20µs to 1-5µs.

Note that the optimization methods mentioned above can
be applied to any compressor including ZFP. Moreover, we
propose an advanced optimization solution for MPC to hide
compression latency by overlapping kernels. MPC, by design,
always exploits the maximum GPU thread blocks, i.e., Stream-
ing Multiprocessors (SM), to execute the compression and
decompression kernels for any data size. However, it wastes
the GPU resources and occurs higher scheduling overhead.
For example, we observed that on the datasets shown in
Table III, the compression/decompression runtime of using
half of the available SMs is roughly the same as using full
GPU. Based on our study, this design would result in a higher
overhead when using more thread blocks in a single kernel as
MPC kernels employ the busy waiting scheme for intra-kernel
synchronization between the thread blocks. To mitigate such
synchronization overhead, we propose the data partitioning
and multi-stream flow to decompose the compression and
decompression kernels. Figure 7 depicts an example of four
streams to illustrate the kernel decomposition that executes
multiple compression kernels for four independent data parti-
tions. Here, each kernel only uses one-fourth of the maximum
GPU thread blocks, and this is adjustable. As a result, multiple
kernels can still utilize GPU resources in parallel with lower
intra-kernel synchronization overhead. After all the kernels
are done with compression, the compressed data of each
partition are merged in a single contiguous buffer. To avoid
conflicts, as shown in Figure 7, these combine operations
follow a fixed order because we only realize the compressed

Compress

Combine

Original
Data

Compressed
Data

1 2 3

Original
Data

Decompress

Stream0 Stream1 Stream2 Stream3

Data Partitioning + Multi-stream Flow

Stream0 Stream1 Stream2 Stream3

Timeline

Fig. 7. Data partitioning and multi-stream flow for MPC.

size and corresponding offsets upon the kernel completion. In
the proposed framework, we store the number of partitions as
well as compressed data sizes of all partitions in the header
and piggyback it with the RTS packet. Hence, the receiver
can use the same number of streams to decompress the data
in parallel for each partition.

Algorithm 3: Proposed MPC-OPT Scheme: Sender side
Input : Send buffer S, control parameters A, RT S without

compression information, Preallocated buffer pool P,
number of partitions N

Output: Compressed data M, RT S with compression information
1 Extract compression algorithm L from A;
2 if L==MPC then
3 Get preallocated GPU buffer from P for M;
4 Get preallocated GPU buffer from P for d o f f ;
5 Initialize d o f f to -1;
6 [S1, ..., SN]= divide S to N partitions;
7 (Bi,Mi)=MPC compress(Si,Ai,d o f fi); //Runs in parallel with

CUDA Streams
8 M = combine [M1, ...,MN];
9 Attach N and [B1, ...,BN] to control parameters A;

10 Attach compression information (A, B) to RT S;

Note that we have verified that such partitioning has a
negligible impact on the final compression ratio. Algorithm
3 shows a high-level design of MPC-OPT on the sender side.
This algorithm is similar to Algorithm 1 except that it avoids
extra memory allocations and instead, uses preallocated buffer
P (Lines 3 and 4). Moreover, it parallelizes data compression
by data partitioning and using CUDA streams (Lines 6 and
7). As discussed earlier, we do the same optimizations on
the receiver side for decompression in MPC-OPT. To achieve
better performance, we fine-tune the number of partitions used
for different message sizes based on the experimental results.

As shown in Figure 6(b), the compression and decom-
pression time gets reduced significantly after applying the
proposed optimization methods. We observe up to 4X im-
provement compared to the naive integration in Figure 5.

V. PROPOSED ZFP-OPT SCHEME

A. Profiling of the Compression Framework with ZFP
In addition to applying optimization methods described in

the previous section, we report the profile results when using
ZFP for message compression, as depicted in Figure 8(a), to

���

Authorized licensed use limited to: The Ohio State University. Downloaded on September 23,2021 at 23:08:55 UTC from IEEE Xplore. Restrictions apply.

(a) ZFP-Original (b) ZFP-OPT

Fig. 8. Breakdown of overall inter-node latency using ZFP before and after
optimization on Frontera Liquid.

illustrate the performance issues. In this experiment, we used
16 bits/value rate and one-dimensional array type for com-
pression. The creation of zfp stream and zfp field using CPU
processes on both the sender and receiver sides only takes 9us.
The dominant overhead comes from the get max grid dims
function, which is used to determine the GPU hardware config-
uration such as the number of available SMs. In this function,
cudaGetDeviceProperties is called per message to retrieve the
maximum grid dimension supported. Such CUDA call incurs
significant driver overhead that takes nearly 1840µs. However,
this information is static for a given GPU architecture.

B. Proposed Optimization Methods in ZFP-OPT

The CUDA API cudaGetDeviceProperties returns all the
device properties, which is a time-consuming operation. How-
ever, as ZFP kernel only requires the maximum grid dimen-
sions information, which is static for a given GPU at runtime.
Therefore, we modify the function to use cudaDeviceGetAt-
tribute to get the required information only once and cache
the information as static values. As a result, the run time of
this function gets reduced to only approximately 1µs from
4,000µs. Figure 8(b) shows the significantly reduced overall
latency after applying all the proposed optimization schemes.
As can be seen, the majority of time is spent on compression,
decompression, and reduced communication. Moreover, we
can observe that ZFP yields significantly low decompression
time since it is a lossy algorithm.

VI. MICROBENCHMARK RESULTS AND ANALYSIS

We conduct experiments on four GPU-enabled clusters,
Longhorn and Liquid subsystems, on the Texas Advanced
Computing Center (TACC) Frontera supercomputer, Lassen
system in Lawrence Livermore National Laboratory, and the
RI2 cluster of The Network Based Computing Lab at The
Ohio State University. Longhorn, Lassen and RI2 systems are
equipped with NVIDIA Tesla V100 GPUs whereas Frontera
Liquid is equipped with NVIDIA Quadro RTX 5000 GPUs.
The detailed specifications of Longhorn [26], Liquid sub-
merged systems [27] and Lassen [28] systems are available
in their respective specification sheets. The RI2 cluster is
equipped with Xeon Broadwell E5-2680 v4, 2.4GHz Nodes
with 14 Cores/Socket and 128GB of CPU Memory per node.
Each Node is equipped with 1 NVIDIA Tesla V100 GPU

that is connected to the CPU via the PCIe Host Bridge.
The nodes on RI2 are interconnected with IB-EDR(one way
100Gb/s). The proposed framework was implemented on top
of MVAPICH2-GDR [29], a highly-optimized GPU-Aware
MPI library. We used osu latency in OSU Micro-Benchmark
suite (OMB) to evaluate the intra-node and inter-node point-to-
point communications. We run osu bcast and osu allgather to
evaluate collective communications. We reported the average
latency over 1,000 iterations with 100 warm-up runs.

A. Point-to-Point Communication Enhancements
1) Inter-node GPU Communication: Figure 9(a) shows

the inter-node latency of message size 256KB to 32MB
on Longhorn between two V100 GPUs across the IB EDR
network. Since we focus on compression for large message
transfer, we do not show the result for messages smaller than
256KB. MPC-OPT shows benefits compared to the baseline
from 1MB message and achieves up to 62.5% reduced latency
for 32MB. ZFP-OPT(rate:4) can achieve up to 78.3% reduced
latency at 32MB. Figure 9(b) shows the inter-node latency
between two RTX GPUs over FDR network on Frontera
Liquid system. MPC-OPT yields reduced latency up to 77.1%
at 32MB while ZFP-OPT(rate:4) can reduce the overall latency
up to 83.1% at 32MB.

2) Intra-node GPU communication: Next, we evaluate the
performance of the proposed schemes on faster interconnects
such as PCIe and NVLink. Figure 9(c) shows the intra-node
latency between two V100 GPUs with NVLink on Longhorn.
Using MPC-OPT has not yielded any benefit because the high-
speed 3-lane NVLink used here can transfer the raw data
faster than the entire compression and decompression proce-
dure. Although the performance of ZFP-OPT is significantly
better than MPC-OPT, it only improves the communication
of message size larger than 8MB. More specifically, ZFP-
OPT(rates:4/8) improves performance up to 40.5% and 27.7%
at 32MB, respectively. Figure 9(d) shows the intra-node la-
tency between two RTX GPUs with PCIe bus on Frontera
Liquid. Unlike NVLink, the bandwidth of PCIe link between
GPUs is lower than the throughput of compression using
MPC-OPT and ZFP-OPT. Hence, MPC-OPT and ZFP-OPT
can reduce the latency up to 60.6% and 79.8%, respectively.

3) Latency breakdown: Figure 10(a) and Figure 10(b) show
the inter-node latency breakdown of compression, decompres-
sion and communication for MPC-OPT and ZFP-OPT(rate:4)
on Frontera Liquid. The compression/decompression time in-
cludes all overheads on the sender/receiver side. These over-
heads increase with the message size in MPC-OPT. However,
for ZFP-OPT, the decompression time is nearly constant from
256KB to 32MB. The compression/decompression time in
ZFP-OPT is lower than that of MPC-OPT since ZFP-OPT has
higher throughput. In MPC-OPT, due to the high compression
ratio on dummy data, the communication time is lower than
that of ZFP-OPT.

Based on these experiments, we can summarize that ZFP-
OPT can successfully reduce the traffic pressure on almost
all interconnects with all message sizes except the high-speed

���

Authorized licensed use limited to: The Ohio State University. Downloaded on September 23,2021 at 23:08:55 UTC from IEEE Xplore. Restrictions apply.

(a) Longhorn - Inter node (b) Frontera Liquid - Inter node (c) Longhorn - Intra Node (d) Fronter Liquid - Intra Node

Fig. 9. Inter-node and Intra-node point-point latency of GPU communication on Longhorn and Frontera Liquid. On Frontera Liquid, MPC-OPT and ZFP-OPT
start to show benefits from 512KB for inter-node latency. With a lower rate, ZFP-OPT can achieve better improvement due to a higher compression ratio.
For intra-node, such threshold is around 2MB for MPC-OPT and 1MB for ZFP-OPT. On Longhorn, inter-node latency shows a similar trend. For intra-node,
ZFP-OPT(rate:4/8) shows improvement from message size larger than 8M. MPC-OPT does not show improvement between 256KB and 32MB due to the
relatively low throughput of MPC kernel compare to intra-node interconnect.

(a) MPC-OPT (b) ZFP-OPT

Fig. 10. Inter-node latency breakdown of compression, decompression and
communication time for MPC-OPT and ZFP-OPT(rate:4) on Frontera Liquid.
The number shown in the bars are the latency results for corresponding parts.

NVLink. On the other hand, MPC-OPT can be useful for input
data that yields a high compression ratio over slow IB and
PCIe networks.

B. Collective Communication Enhancements
This section evaluates the impact of the proposed framework

on the performance of collective operations. We modified
OMB to transfer data from real datasets in Table III.

1) MPI Bcast: Figure 11(a) shows the latency of
MPI Bcast on 8 nodes with 2 ppn (2GPUs/node) on Frontera
Liquid. MPC-OPT reduces the latency from 15% on msg bt to
57% on msg sppm. The maximum improvement is due to the
highest compression ratio on msg sppm. ZFP-OPT achieves
nearly the same improvement for different datasets with a
given rate. ZFP-OPT(rate:4) reduces the latency by 85%.

2) MPI Allgather: Figure 11(b) shows the latency of
MPI Allgather for GPU data for 8 nodes with 2 ppn on
Frontera Liquid. MPC-OPT can improve the performance from
20% on msg bt to 30% on msg sppm. ZFP-OPT provides
nearly constant improvement for a given rate and it reduces
the latency up to 73%. We observed the same trends for
MPI Bcast and MPI Allgather with four nodes and 1 ppn.
However, due to lack of space, we do not include the graphs.

VII. APPLICATION RESULTS AND ANALYSIS

A. AWP-ODC
We use the Anelastic Wave Propagation software (AWP-

ODC-OS) which is a GPU-enabled application to simulate
wave propagation in a 3D viscoelastic or elastic solid [10].
We make minor modifications to the application to enable
using CUDA-Aware MPI primitives, e.g., passing device buffer

(a) MPI Bcast(8node,2ppn) (b) MPI Allgather(8node,2ppn)

Fig. 11. Latency of MPI Bcast and MPI Allgather for 8 nodes, 2ppn on
Frontera Liquid.

directly to MPI Isend without an explicit copy. In our exper-
imental analysis, we use a single moment source as the input
along with a mesh file of dimensions 320x320x2048. AWP-
ODC-OS reports the averaged run time per time step and GPU
computing flops. We show weak scaling results in this section.

Figure 12 depicts the results on the Frontera Liquid. ZFP-
OPT(rate:8) is able to achieve up to 37% improvement com-
pared to the baseline over 64 GPUs with 4 GPU/node. We
also observe that more speedup can be achieved for ZFP-
OPT with a lower rate due to a higher compression ratio.
However, it would generate incorrect output as it exceeds the
lowest precision AWP-ODC can tolerate. On the other side,
MPC-OPT can achieve up to 19% improvement compared
to the baseline on 64 GPUs with 4 GPUs/node. This result
demonstrates that MPC-OPT can provide a high compression
ratio for the data produced by AWP-ODC. In our experiments,
we observed that MPC-OPT can yield the compression ratio
as low as 3 and as high as 31. The highest compression ratio
is achieved at the initialization steps when the elements in the
data are highly duplicated. On Lassen cluster, we test larger
scale up to 512 GPUs on 128 nodes shown in Figure 13.
In Figure 13(a), MPC-OPT achieves 18% improvment on
512 GPUs with 4 GPUs/node. ZFP-OPT(rate:8) achieves 35%
improvement on 128 GPUs with 4 GPUs/node. Figure 13(b)
depicts the similar improvement for run time per time step.
With MPC-OPT, the run time improves by 15% on 512 GPUs
with 4 GPUs/node. ZFP-OPT(rate:8) improves the run time
by 26% on 128 GPUs with 4 GPUs/node. This result shows
the scalability of the proposed framework.

���

Authorized licensed use limited to: The Ohio State University. Downloaded on September 23,2021 at 23:08:55 UTC from IEEE Xplore. Restrictions apply.

(a) 2GPUs/node (b) 4GPUs/node

Fig. 12. Weak scaling of AWP-ODC on Frontera Liquid (higher is better).

(a) GPU Computing Flops (TFlops)
(higher is better)

(b) Run time per time step (ms)
(lower is better)

Fig. 13. Weak scaling of AWP-ODC with 4GPUs/node on Lassen. The scaling
trends are similar for 1 GPU/node and 2 GPUs/node. The graphs are not
included to avoid redundancy.

B. Data Science using Dask
Dask [30] is a popular Python-based parallel and distributed

computation framework that enables high-performance data
science. The MVAPICH2-GDR library can be used to sup-
port communication between Dask workers using GPUs as
computing devices. Dask typically exchanges large amounts
of data between workers—typically messages range between
8MB to 1GB. We use a modified version of Dask with a new
communication backend MPI4Dask [31] over MVAPICH2-
GDR. We show the benefits of compression in a Dask-based
application benchmark. This benchmark creates a cuPy array
and distributes its chunks across Dask workers. The bench-
mark then adds these distributed chunks to their transpose,
forcing the GPU data to move over the network. The following
operations are performed:

y = x+ x.T ; y = y.persist(); wait(y); (4)

(a) Execution Time-1GPU/node
(Lower is better)

(b) Aggregate Throughput-
1GPU/node (Higher is better)

Fig. 14. Sum of cuPy Array and its Transpose (cuPy Dims: 10K×10K, Chunk
size: 1K): Performance Comparison between Dask w/ MVAPICH2-GDR and
Dask w/ MVAPICH2-GDR + ZFP-OPT(rate: 8/16) on the RI2 Cluster.

Results for the application benchmark—sum of cuPy array
with its transpose—are shown in Figure 14. Figure 14(a)
shows execution time where we observe an average speedup of
1.18× for 2− 8 Dask workers when using ZFP-OPT(rate:8).
Throughput comparison in Figure 14(b) depicts that with ZFP-
OPT(rate:8) we achieve an aggregate throughput of 297.4
GB/s, outperforming the baseline by 1.56× for 8 dask workers.

To summarize, we show that MPC-OPT is suitable for
applications—that exchange large messages with high com-
pression ratio like the AWP-ODC. For ZFP-OPT, the fixed
compression ratio helps to predict the reduced message size
and can benefit more applications not only from the traditional
HPC domain, but also for emerging workloads from data
science. Nevertheless, one must carefully select the appropriate
rate value to obtain the optimal reduced communication while
maintaining acceptable accuracy.

VIII. RELATED WORK

To reduce communication latency, researchers have de-
veloped CPU-based online data compression. Jeannot et al.
[32], [33] proposed an online CPU-based compression li-
brary AdOC for Gbits Ethernet. Other researchers have co-
designed the MPI library with the CPU-based lossless com-
pression algorithms. Ke et al. [15] designed a cMPI library
that compresses the messages using CPU inside the MPI
library. Filgueira et al. [16] designed a CoMPI library that
integrated several compression algorithms into the MPI library
for various primitives and demonstrates the efficacy of on-the-
fly message compression for many CPU-based applications.
Camata et al. [34] accelerated the MPI broadcast primitive
using FPC compressor [19]. Shan et al. [35] has improved
MPI Reduce on many-core architecture with two parallel data
compression schemes using OpenMP. With the high com-
puting power of advanced GPU architectures, many lossless
compression algorithms have significantly accelerated with the
enhanced GPU version [11] [12]. However, they are only
applied for offline processing and have not been integrated
with communication libraries. On the other side, the lossy
compression algorithms, SZ [13] and ZFP [14] have shown
error-bounded accuracy and high compression throughput for
the very large-scale HPC applications in recent study [17].

IX. CONCLUSION

In this paper, we present a high-performance framework to
leverage GPU-based compression algorithms, including loss-
less and lossy compressors, to perform GPU-assisted on-the-fly
message compression. We integrate the proposed framework
into the MVAPICH2-GDR library to benefit the HPC and data
science applications. Moreover, we optimize the framework
and existing GPU-based compression implementations by de-
composing and overlapping the compression/decompression
kernels to achieve the low-overhead on-the-fly message com-
pression. The proposed framework demonstrates up to 85%
reduced latency at the benchmark-level on the Frontera Liquid
subsystem with NVIDIA RTX 5000 GPUs and IB FDR net-
works. At the application-level evaluation, the proposed design

���

Authorized licensed use limited to: The Ohio State University. Downloaded on September 23,2021 at 23:08:55 UTC from IEEE Xplore. Restrictions apply.

yields up to 37% higher GFLOPs for the AWP-ODC, and up
to 1.56x improvement in Dask throughput. As future work, we
plan to explore the dynamic design to automatically determine
the use of compression or selection of different algorithms for
specific communication calls base on the compression costs
and communication time assisted by real-time monitor like
OSU INAM [36]. Also, we plan to study various GPU-based
compression algorithms and explore the designs to accelerate
various communication patterns like Alltoall and Allreduce.

ACKNOWLEDGMENT

The authors thank Prof. Yifeng Cui for guiding conduct-
ing experiments with AWP-ODC. We thank our colleague
Kawthar Shafie Khorassani for helping enable AWP-ODC
using CUDA-Aware MPI primitives. We also thank Dr. Aamir
Shafi for guiding conducting experiments with Dask.

REFERENCES

[1] “MPI-3 Standard Document,” http://www.mpi-forum.org/docs/mpi-3.1/
mpi31-report.pdf.

[2] S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy, and D. K. Panda,
“Efficient Inter-node MPI Communication Using GPUDirect RDMA
for InfiniBand Clusters With NVIDIA GPUs,” in 42nd International
Conference on Parallel Processing (ICPP), 2013.

[3] C.-H. Chu, P. Kousha, A. A. Awan, K. S. Khorassani, H. Subramoni,
and D. K. Panda, “NV-Group: Link-Efficient Reduction for Distributed
Deep Learning on Modern Dense GPU Systems,” in Proceedings of the
34th ACM International Conference on Supercomputing, 2020.

[4] X. Luo, W. Wu, G. Bosilca, T. Patinyasakdikul, L. Wang, and J. Don-
garra, “ADAPT: An Event-based Adaptive Collective Communication
Framework,” in Proceedings of the 27th International Symposium on
High-Performance Parallel and Distributed Computing, 2018.

[5] S. S. Sharkawi and G. A. Chochia, “Communication protocol optimiza-
tion for enhanced GPU performance,” IBM Journal of Research and
Development, vol. 64, no. 3/4, pp. 9:1–9:9, 2020.

[6] NVIDIA, “Whitepaper: NVIDIA A100 Tensor Core GPU Architecture,”
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/
nvidia-ampere-architecture-whitepaper.pdf, 2020, Accessed: March 2,
2021.

[7] E. Strohmaier, J. Dongarra, H. Simon, and M. Meuer, “TOP 500
Supercomputer Sites,” http://www.top500.org, 1993, Accessed: March
2, 2021.

[8] Lawrence Livermore National Laboratory, “Sierra,” https://computation.
llnl.gov/computers/sierra, 2018, Accessed: March 2, 2021.

[9] K. S. Khorassani, C.-H. Chu, H. Subramoni, and D. K. Panda, “Per-
formance Evaluation of MPI Libraries on GPU-enabled OpenPOWER
Architectures: Early Experiences,” in International Workshop on Open-
POWER for HPC (IWOPH 19) at the 2019 ISC High Performance
Conference, 2018.

[10] Y. Cui, K. B. Olsen, T. H. Jordan, K. Lee, J. Zhou, P. Small, D. Roten,
G. Ely, D. K. Panda, A. Chourasia, J. Levesque, S. M. Day, and
P. Maechling, “Scalable earthquake simulation on petascale supercom-
puters,” in SC ’10: Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2010, pp. 1–20.

[11] M. A. O’Neil and M. Burtscher, “Floating-Point Data Compression at
75 Gb/s on a GPU,” in Fourth Workshop on General Purpose Processing
on Graphics Processing Units, March 2011.

[12] A. Yang, H. Mukka, F. Hesaaraki, and M. Burtscher, “MPC: A Massively
Parallel Compression Algorithm for Scientific Data,” in IEEE Cluster
Conference, September 2015.

[13] S. Di and F. Cappello, “Fast Error-bounded Lossy HPC Data Com-
pression with SZ,” in International Parallel and Distributed Processing
Symposium(IPDPS), 2016.

[14] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, 08 2014.

[15] Jian Ke, M. Burtscher, and E. Speight, “Runtime Compression of MPI
Messanes to Improve the Performance and Scalability of Parallel Ap-
plications,” in SC ’04: Proceedings of the 2004 ACM/IEEE Conference
on Supercomputing, 2004, pp. 59–59.

[16] R. Filgueira, D. Singh, A. Calderón, and J. Carretero, “CoMPI: Enhanc-
ing MPI Based Applications Performance and Scalability Using Run-
Time Compression,” in European Parallel Virtual Machine/Message
Passing Interface Users’ Group Meeting, Sep. 2009, pp. 207–218.

[17] S. Jin, P. Grosset, C. M. Biwer, J. Pulido, J. Tian, D. Tao, and J. P.
Ahrens, “Understanding GPU-Based Lossy Compression for Extreme-
Scale Cosmological Simulations,” ArXiv, vol. abs/2004.00224, 2020.

[18] K. Zhao, S. Di, X. Liang, S. Li, D. Tao, Z. Chen, and F. Cappello,
“Significantly Improving Lossy Compression for HPC Datasets with
Second-Order Prediction and Parameter Optimization,” in Proceedings
of the 29th International Symposium on High-Performance Parallel and
Distributed Computing, 2020, p. 89–100.

[19] M. Burtscher and P. Ratanaworabhan, “High Throughput Compression
of Double-Precision Floating-Point Data,” in 2007 Data Compression
Conference, 2007.

[20] P. Lindstrom and M. Isenburg, “Fast and efficient compression of
floating-point data,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, pp. 1245–1250, 2006.

[21] E. R. Schendel, Y. Jin, N. Shah, J. Chen, C. S. Chang, S. Ku, S. Ethier,
S. Klasky, R. Latham, R. Ross, and N. F. Samatova, “Isobar precondi-
tioner for effective and high-throughput lossless data compression,” in
2012 IEEE 28th International Conference on Data Engineering, 2012,
pp. 138–149.

[22] S. Claggett, S. Azimi, and M. Burtscher, “SPDP: An Automatically
Synthesized Lossless Compression Algorithm for Floating-Point Data,”
in 2018 Data Compression Conference, 2018, pp. 335–344.

[23] G. Sun, S. Kang, and S.-W. Jun, “BurstZ: A Bandwidth-Efficient
Scientific Computing Accelerator Platform for Large-Scale Data,” in
Proceedings of the 34th ACM International Conference on Supercom-
puting, 2020.

[24] R. Shi, S. Potluri, K. Hamidouche, J. Perkins, M. Li, D. Rossetti, and
D. K. Panda, “Designing Efficient Small Message Transfer Mechanism
for Inter-node MPI Communication on InfiniBand GPU Clusters,” in
2014 21st International Conference on High Performance Computing
(HiPC), Dec 2014, pp. 1–10.

[25] Davide Rossetti, “A fast GPU memory copy library based on NVIDIA
GPUDirect RDMA technology,” https://github.com/NVIDIA/gdrcopy,
Accessed: March 2, 2021.

[26] “Longhorn - Texas Advanced Computing Center Frontera - User Guide,”
https://portal.tacc.utexas.edu/user-guides/longhorn.

[27] “Liquid Submerged System - Texas Advanced Computing Center, Fron-
tera - Specifications,” https://www.tacc.utexas.edu/systems/frontera.

[28] Lawrence Livermore National Laboratory, “Lassen — high perfor-
mance computing,” https://hpc.llnl.gov/hardware/platforms/lassen, 2018,
Accessed: March 2, 2021.

[29] Network-Based Computing Laboratory, “MVAPICH: MPI over Infini-
Band, Omni-Path, Ethernet/iWARP, and RoCE,” http://mvapich.cse.
ohio-state.edu/, 2001, Accessed: March 2, 2021.

[30] M. Rocklin, “Dask: Parallel computation with blocked algorithms and
task scheduling,” in Proceedings of the 14th Python in Science Confer-
ence, K. Huff and J. Bergstra, Eds., 2015, pp. 130 – 136.

[31] “MPI4Dask User Guide,” http://hibd.cse.ohio-state.edu/static/media/
hibd/dask/mpi4dask-0.1-userguide.pdf.

[32] E. Jeannot, B. Knutsson, and M. Bjorkman, “Adaptive online data
compression,” in Proceedings 11th IEEE International Symposium on
High Performance Distributed Computing, 2002, pp. 379–388.

[33] E. Jeannot, “Improving middleware performance with adoc: an adaptive
online compression library for data transfer,” in 19th IEEE International
Parallel and Distributed Processing Symposium, 2005.

[34] J. Camata, M. Burtscher, W. Barth, and A. Coutinho, “Accelerating
MPI Broadcasts using Floating-Point Compression,” Aug. 2010.
[Online]. Available: https://www.academia.edu/12231991/Accelerating
MPI Broadcasts using Floating Point Compression

[35] H. Shan, S. Williams, and C. W. Johnson, “Improving MPI Reduction
Performance for Manycore Architectures with OpenMP and Data Com-
pression,” in 2018 IEEE/ACM Performance Modeling, Benchmarking
and Simulation of High Performance Computer Systems (PMBS), 2018,
pp. 1–11.

[36] P. Kousha, B. Ramesh, K. Kandadi Suresh, C. Chu, A. Jain,
N. Sarkauskas, H. Subramoni, and D. K. Panda, “Designing a profil-
ing and visualization tool for scalable and in-depth analysis of high-
performance gpu clusters,” in 2019 IEEE 26th International Conference
on High Performance Computing, Data, and Analytics (HiPC), 2019,
pp. 93–102.

���

Authorized licensed use limited to: The Ohio State University. Downloaded on September 23,2021 at 23:08:55 UTC from IEEE Xplore. Restrictions apply.

