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Abstract—We consider secret sharing where a dealer wants
to share a secret with several participants such that predefined
subsets of participants can reconstruct the secret and all other
subsets of participants cannot learn any information about the
secret. To this end, the dealer and the participants have access
to samples of correlated random variables and a one-way (from
the dealer to the participants), authenticated, public, and rate-
limited communication channel. For this problem, we propose
the first constructive and low-complexity coding scheme able to
handle arbitrary access structures. Our construction relies on
a vector quantization coupled with distribution approximations
with polar codes to handle the reliability constraints, followed
by universal hashing to handle the security constraints. We
stress that our coding scheme does not require symmetry or
degradation assumptions on the correlated random variables,
and does not need a pre-shared secret among the participants
and dealer. Our result is also optimal in the special case of rate-
unlimited public communication when all the participants are
needed to reconstruct the secret.

I. INTRODUCTION

Secret sharing has been introduced in [1] and [2]. Basic
secret sharing models consist of a dealer that distributes a
secret among a set of participants with the constraint that
only pre-defined sets of participants can recover the secret,
while any other sets of colluding participants cannot learn any
information about the secret. In this paper, unlike in [1], [2],
we consider a secret sharing problem where noisy resources
are available to the dealer and the participants. Specifically, the
participants and dealers have access to samples of correlated
random variables. Additionally, we do not assume that secure
channels are available, but only assume that a one-way (from
the dealer to the participants), authenticated, public, and rate-
limited communication channel is available. Such secret shar-
ing models that rely on noisy resources have been introduced
in [3] for wireless channels and for source models in [4]–[6].
Channel models, e.g., [3], are similar to compound wiretap
channel models [7], while source models, e.g., [4], [5] are
related to compound secret-key generation, e.g., [8], [9], and
biometric systems with a multiuser access structure [10].

In this paper, we propose the first constructive and low-
complexity secret sharing scheme for source models with
arbitrary access structures and rate-limited public communi-
cation in the asymptotic regime, i.e., when the number of
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source samples observed by the users approaches infinity.
Our construction relies on vector quantizations coupled with
distribution approximations (implemented with polar codes)
to handle the reliability constraints, followed by universal
hashing to handle the security constraints. We do not make any
assumptions on the correlation of the random variables, e.g.,
symmetry or degradation assumptions on the source, and do
not need a pre-shared secret among the participants and dealer.

While no constructive coding scheme has been proposed in
the literature for secret sharing with arbitrary access structures,
several works have focused on the simpler problem of secret-
key generation between two parties from correlated random
variables and public communication [11], [12]. Specifically,
constructive coding schemes that achieve optimal secret-key
rates for this problem have been developed in the case of
rate-unlimited public communication by successively handling
the reliability requirement and the secrecy requirement by
means of source coding with side information and universal
hashing, respectively [13]–[15]. While such methods lead to
low-complexity coding schemes for unlimited public com-
munication, their application to rate-limited public commu-
nication [16], [17] requires vector quantization for which,
the construction of low-complexity schemes is challenging.
For this reason and the fact that the secret sharing problem
in this paper involves more than two parties, these works
do not provide a constructive solution to the secret sharing
problem with rate-limited public communication considered in
this paper. Going back to the problem of secret-key generation
between two parties, another approach that jointly handles
the reliability and secrecy requirements via polar codes also
yields optimal secret-key rates for rate-unlimited communica-
tion [18], [19] and rate-limited communication [18]. For arbi-
trary source correlations, [18], [19] only consider two parties
and, unfortunately, these works do not seem to easily extend
to the secret sharing problem in this paper. Additionally, a pre-
shared seed is also required for known polar coding schemes
to ensure strong secrecy. While this pre-shared secret has a
negligible rate, such a resource is forbidden in this paper.
Finally, note that constructive coding schemes for secret-key
generation involving more than two parties have also been
proposed in [18], [20]–[22] but only when the correlations of
the random variables observed by the participants have specific
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structures. Hence, these works cannot be applied to our setting
as we consider a source with arbitrary correlations. We can,
however, highlight that a recent construction in [23] provides
a low-complexity and constructive coding scheme for a secret
sharing channel model.

The remainder of the paper is organized as follows. We
state the problem in Section III. We present our main results
in Section IV. In Sections V and VI, we introduce an auxiliary
result and its proof, respectively. We sketch the proofs of the
main results in Sections VII and VIII. Finally, we provide
concluding remarks in Section IX.

II. NOTATION

For a, b ∈ R, define [a] , [1, dae]∩N, Ja, bK , [bac, dbe]∩
N, and [a]+ , max(0, a). The components of a vector X1:N

of length N ∈ N are denoted with superscripts, i.e., X1:N ,
(X1, X2, . . . , XN ). For any set A ⊂ [N ], let X1:N [A] be the
components of X1:N whose indices are in A. For a probability
distribution pX defined over the alphabet X , define µpX ,
minx∈X pX(x). For a set S, let 2S denote the power set of S.
In this paper, all the logarithms are taken base two. Finally,
let× denote the Cartesian product.

III. PROBLEM STATEMENT

Consider a dealer and J participants. Let Y[J] ,

×j∈[J] Yj be the Cartesian product of J finite alphabets
(Yj)j∈[J]. Consider a discrete memoryless source ((X ×
Yj)j∈[J], (pXYj )j∈[J]) with X , {0, 1}. (pXYj )j∈[J] is known
to all parties. Let A be a set of subsets of [J ] such that for any
T ⊆ [J ], if T contains a set that belongs to A, then T also
belongs to A, i.e., A is a monotone access structure [24]. We
also define E , 2[J]\A as the set of all colluding subsets of
users who must not learn any information about the secret.
In the following, for any E ∈ E and A ∈ A, we use
the notation Y 1:N

E , (Y 1:N
j )j∈E and Y 1:N

A , (Y 1:N
j )j∈A.

Moreover, the dealer can communicate with the participants
over an authenticated, one-way, rate-limited, noiseless, and
public communication channel.

Definition 1. A (2NRs , Rp,A, N) secret sharing strategy is
defined as follows:

1) The dealer observes X1:N and Participant j ∈ J ob-
serves Y 1:N

j ;
2) The dealer transmits M , f(X1:N ) subject to the

communication constraint H(M) ≤ NRp;
3) The dealer computes a secret S ∈ [2NRs ] from X1:N ;
4) Any subset of participants A ∈ A can compute an

estimate Ŝ(A) of S from their observations (Y 1:N
j )j∈A

and M .

Definition 2. (Rp, Rs) is said achievable if there exists a se-
quence of (2NRs , Rp,A, N) secret sharing strategies such that

lim
N→+∞

max
A∈A

P[Ŝ(A) 6= S] = 0 (Reliability), (1)

lim
N→+∞

max
E∈E

I(S;MY 1:N
E ) = 0 (Strong Security), (2)

lim
N→+∞

log|S|−H(S) = 0 (Secret Uniformity). (3)

(1) means that any subset of participants in A is able to
recover the secret, (2) means that any subset of participants
in E cannot obtain information about the secret, while (3)
means that the secret is nearly uniform, which is meant to
maximize the uncertainty of guessing S by the subsets of
participants in E. The secret capacity is defined as Cs(Rp) ,
sup{Rs : (Rp, Rs) is achievable}.

IV. MAIN RESULTS

Theorem 1. The secret rate

Rs = max
U

U−X−Y[J]

[
min
A∈A

I(U ;YA)−max
E∈E

I(U ;YE)

]+
subject to Rp = max

A∈A
I(U ;X|YA)

is achievable with an encoder and decoders that operate over t
blocks of source observation sequences of length N , and have
complexity T (tN), where T (tN) is the complexity of field mul-
tiplication in GF(2tN ). Note that T (tN) = O(tN log(tN))
for a wide range of values of tN [25, App. D].

Theorem 2. The secret rate

Rs = max
U,V

U−V−X−Y[J]

[
min
A∈A

I(V ;YA|U)−max
E∈E

I(V ;YE |U)

]+
subject to Rp = max

A∈A
I(U ;X|YA) + max

A∈A
I(V ;X|UYA)

is achievable with an encoder and decoders that operate over
t blocks of source observation sequences of length N , and
have complexity T (tN).

Note that the achievable rates in Theorems 1 and 2 could
be obtained from [8]. However, [8] only provides an existence
result and not a constructive coding scheme.

Next, we have the following corollary for rate-unlimited
public communication and when all the participants are needed
to reconstruct the secret, i.e., any strict subsets of participants
in [J ] must not learn any information about the secret.

Corollary 1. When Rp = +∞ and A = {[J ]}, the secret
capacity

lim
Rp→+∞

Cs(Rp) = min
E([J]

I(X;Y[J]|YE)

is achievable with an encoder and decoders that operate over
t blocks of source observation sequences of length N , and
have complexity T (tN).

V. AUXILIARY RESULT

In this section, we use the same notation as in Section III
and provide an auxiliary result to construct a coding scheme
for the secret sharing problem described in Section III. Specif-
ically, we consider a setting similar to the one in Section III
with the following modifications. Instead of considering the
constraints (1), (2), and (3), the dealer creates a quantized
version Ũ1:N of the source observations X1:N , with the
requirements that (i) Ũ1:N follows a pre-determined product
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distribution, and (ii) any subsets of participants in the access
structure can reconstruct Ũ1:N . This result is formalized in
Theorem 3 and will be used to prove Theorem 1.

Consider a discrete memoryless source ((X ×
YA)A∈A, (pXYA)A∈A) with X , {0, 1}. Define the joint
probability distribution pXUYA

, pXYA
pU |X , A ∈ A.

Theorem 3. Let N , 2n, n ∈ N. For any ε, δ > 0, there exist
k, n0 ∈ N such that for any n ≥ n0, there exist an encoder

f : X kN → UkN ×M,

and |A| decoders

gA :M×YkN
A → UkN ,∀A ∈ A,

such that the public communication rate satisfies

RM ≤ max
A∈A

I(U ;X|YA) + δ, (4)

the probability of error at Decoder A ∈ A satisfies

P[Ũ1:N
1:k 6= gA(M,Y 1:N

A,1:k)] < ε,∀A ∈ A, (5)

where X1:N
1:k , (X1:N

i )i∈[k] is the source observation at the
encoder with X1:N

i , i ∈ [k], a sequence of length N , Y 1:N
A,1:k ,

(Y 1:N
A,i )i∈[k] is the source observation at Decoder A ∈ A,

and (Ũ1:N
1:k ,M) , f(X1:N

1:k ). X1:N
1:k and Y 1:N

A,1:k are distributed
according to pX1:N

1:k U1:N
1:k Y 1:N

A,1:k
,
∏Nk

i=1 pXUYA , A ∈ A. The
joint probability distribution induced by the encoding scheme
p̃U1:N

1:k X1:N
1:k

satisfies

D
(
p̃U1:N

1:k X1:N
1:k

∥∥∥pU1:N
1:k X1:N

1:k

)
≤ δ(1)N , (6)

where

δ
(1)
N , k

3
2N log

(
µ−1pUX

)√
2 ln 2

[√
NδN +

√
NδN + δ

(2)
N

]
,

δ
(2)
N , 2

√
2 ln 2

√
NδN log

(
|U|2N |X |N/

[√
2 ln 2

√
NδN

])
,

δN , 2−N
β

, β ∈]0, 1
2
[.

Moreover, the complexity of the encoder and decoders is
O(kN logN).

Note that Theorem 3 recovers [26, Th. II.1] in the absence
of vector quantization and the constraint (6).

VI. PROOF OF THEOREM 3

A. Notation

Let N , 2n, n ∈ N. Let Gn ,
[
1 0

1 1

]⊗n
be the

source polarization matrix defined in [27]. Fix a sequence
of joint probability distribution (pUXYA)A∈A. Define U1:N ,
V 1:NGn. For δN , 2−N

β

, β ∈]0, 12 [ define the following sets

HU ,
{
i ∈ [N ] : H(V i|V 1:i−1) ≥ δN

}
,

VU |X ,
{
i ∈ [N ] : H(V i|V 1:i−1X1:N ) ≥ 1− δN

}
,

HU |YA ,
{
i ∈ [N ] : H(V i|V 1:i−1Y 1:N

A ) ≥ δN
}
,A ∈ A.

We refer to [28], [29] for an interpretation of these sets in
terms of randomness extraction, source coding, and source

resolvability. We write the access structure as A = {Aj ⊆
[J ] : j ∈ [|A|]}, and adopt, for convenience, in our coding
scheme and its analysis a slightly different notation than in the
statement of Theorem 3. Specifically, we define Bj , YAj and
B1:N

j,1:k , Y 1:N
Aj ,1:k. This notation is convenient as the analysis

of our coding scheme is done by induction over the number
of decoders, i.e., the cardinality of A. Then, for a finite set
of integers S ⊆ [|A|], consider the following notation for a
set of |S| decoders (g1:kNS,j )j∈S . The superscript indicates the
length of the output, the first subscript S indicates that all
the decoders are indexed by S, the second subscript j ∈ S
indicates that g1:NS,j is the decoding function for the decoder
indexed by j ∈ S, i.e., the decoder that has access to the
source observations B1:N

j,1:k = Y 1:N
Aj ,1:k. Similarly, consider

the following notation for an encoder f1:kNS . The superscript
indicates the length of the input, the subscript S indicates that
all the decoders are indexed by S.

B. Preliminary Results

Algorithm 1 describes the construction of Ũ1:N
1:k from the

random variables X1:N
1:k and a vector R1 of |VU |X | uniformly

distributed bits. For N large enough, one can prove that

D
(
p̃U1:N

1:k X1:N
1:k
‖pU1:N

1:k X1:N
1:k

)
≤δ(1)N , (7)

where δ(1)N is defined in Theorem 3. The proof is omitted due
to space constraints. Note that in Line 4 of Algorithm 1, some
of the random drawings can be simplified by deterministic
decisions similar to [30].

Algorithm 1 Construction of Ũ1:N
1:k

Require: Source observations (X1:N
i )i∈[k], where X1:N

i is of
length N and corresponds to Block i ∈ [k]; a vector R1

of |VU |X | uniformly distributed bits.
1: for Block i = 1 to k do
2: Ri ← R1

3: Ṽ 1:N
i [VU |X ]← Ri

4: Given X1:N
i , successively draw the remaining

bits of Ṽ 1:N
i according to p̃V 1:N

i X1:N
i

,∏N
j=1 p̃V ji |V

1:j−1
i X1:N

i
pX1:N with

p̃V ji |V
1:j−1
i X1:N

i
(vji |Ṽ

1:j−1
i X1:N

i )

,

{
pV j |V 1:j−1X1:N (vji |Ṽ

1:j−1
i X1:N

i ) if j ∈ HU\VU |X ,
pV j |V 1:j−1(vji |Ṽ

1:j−1
i ) if j ∈ Hc

U .

5: Construct Ũ1:N
i , Ṽ 1:N

i Gn

6: end for
7: return Ũ1:N

1:k , (Ũ1:N
i )i∈[k]

C. Proof of Equations (4), (5), and (6)

This proof is by induction over the cardinality of A. Assume
that |A|= 1. The encoder and decoder for the case |A|= 1 are
defined in Algorithms 2 and 3, respectively. One can prove
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Algorithm 2 Encoding when |A|= 1

Require: Source observations X1:N
1:k , (X1:N

i )i∈[k], where
X1:N

i is of length N and corresponds to Block i ∈ [k]; a
vector R1 of |VU |X | uniformly distributed bits

1: Transmit R1 to Bob over the public channel
2: Construct Ũ1:N

1:k using Algorithm 1 with input the random
variables X1:N

1:k and R1

3: Define

M , (Ṽ 1:N
i [HU |B1

\VU |X ])i∈[k].

4: Transmit M to Bob over the public channel
5: Define f1:kN{1} (X1:N

1:k ) , (Ũ1:N
1:k ,M)

Algorithm 3 Decoding when |A|= 1

Require: Source observations B1:N
1,1:k , (B1:N

1,i )i∈[k], where
B1:N

1,i is of length N and corresponds to Block i ∈ [k];
the message M and R1.

1: for Block i = 1 to k do
2: Form Ṽ 1:N

i [HU |B1
] from M and R1

3: Create Û1:N
1,i , an estimate of Ũ1:N

i , from
(Ṽ 1:N

i [HU |B1
], B1:N

1,i ) using the successive cancellation
decoder of [27].

4: end for
5: Define Û1:N

1,1:k , (Û1:N
1,i )i∈[k]

6: Define g1:kN{1},1(M,B1:N
1,1:k) , Û1:N

1,1:k

that the communication rate satisfies

lim
N→+∞

R{1} = I(U,X|B1) +
H(U |X)

k
.

The proof is omitted due to space constraints.
Next, by considering a coupling [31] between p̃U1:N

i
and

pU1:N , i ∈ [k], such that P[Ei ] = V(p̃U1:N
i

, pU1:N ), where
Ei , {Ũ1:N

i 6= U1:N}, one can show that

P[Û1:N
1,1:k 6= Ũ1:N

1:k ] ≤ k(
√
2 log 2

√
NδN +NδN ).

The proof is omitted due to space constraints.
Finally, since Ũ1:N

1:k is constructed with Algorithm 1 as
indicated in Line 2 of Algorithm 2, Equation (6) holds by (7).
This proves the theorem for |A|= 1.

Now suppose that the theorem holds for |A|= L. Fix ε > 0
and δ > 0. By the induction hypothesis, there exist k1, n1 such
that for any n ≥ n1, there is an encoder

f1:k1N
[L] : X k1N → Uk1N ×M[L],

and L decoders

g1:k1N
[L],l :M[L] × Yk1N

l → Uk1N ,∀l ∈ [L],

such that, the communication rate satisfies

R[L] ≤ max
l∈[L]

I(U ;X|Bl) +
δ

2
,

and for k2 large enough such that(
1 + k−12

)(
max

l∈[L+1]
I(U ;X|Bl) +

δ

2

)
+ k−12 H(U |X)

≤ max
l∈[L+1]

I(U ;X|Bl) + δ,

the probability of error satisfies

P[Ũ1:N
1:k1
6= g1:k1N

[L],l (M[L], B
1:N
l,1:k1

)] ≤ ε

k2
,∀l ∈ [L],

where (Ũ1:N
1:k1

,M[L]) , f1:k1N
[L] (X1:N

1:k1
). Next, define, as in the

case |A|= 1, the encoder

f1:k1N
{L+1} : X

k1N → Uk1N ×M{L+1},

and the decoder

g1:k1N
{L+1},L+1 :M{L+1} × Yk1N

L+1 → U
k1N .

From the case |A|= 1, there exists n2 such that for n ≥ n2,
the communication rate satisfies

R{L+1} ≤ I(U ;X|BL+1) +
δ

2
,

and the probability of error satisfies

P[Ũ1:N
1:k1
6= g1:k1N
{L+1},L+1(M{L+1}, B

1:N
L+1,1:k1

)] ≤ ε

k2
,

where (Ũ1:N
1:k1

,M{L+1}) , f1:k1N
{L+1}(X

1:N
1:k1

). We now describe
the encoder and decoders for the case |A|= L + 1. Let
k , k1k2, n0 , max(n1, n2). The encoder is defined in
Algorithm 4, the first L decoders and Decoder L+1 are defined
in Algorithms 5 and 6, respectively. With this construction, one
can show that (4), (5), and (6) hold. The proof is omitted due
to space constraints.

Algorithm 4 Encoding for the case |A|= L+ 1

Require: Source observations X1:k1N
1:k2

, (X1:k1N
i )i∈[k2],

where X1:k1N
i is of length k1N and corresponds to

Block i ∈ [k2]; a vector R1 of |VU |X | uniformly dis-
tributed bits

1: Transmit R1 to Bob over the public channel
2: Construct Ũ1:k1N

1:k2
using Algorithm 1 from the random

variables X1:k1N
1:k2

and R1

3: Define (·,M[L],i) , f1:k1N
[L] (X1:k1N

i ) for i ∈ [k2]

4: Define (·,M{L+1},i) , f1:k1N
{L+1}(X

1:k1N
i ) for i ∈ [k2]

5: Define

M[L+1]

,
[
M[L],1, (M[L],i+1 ⊕M{L+1},i)

k2−1
i=1 ,M{L+1},k2

]
,

where ⊕ denotes bitwise modulo two addition. If the
two sequences in the sum have different length, then the
shorter sequence is padded with zeros.

6: Transmit M to Bob over the public channel
7: Define f1:kN[L+1](X

1:k1N
1:k2

) , (Ũ1:k1N
1:k2

,M[L+1])
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Algorithm 5 Decoding at Decoder l ∈ [L]

Require: Source observations B1:k1N
l,1:k2

, (B1:k1N
l,i )i∈[k2],

where B1:k1N
l,i is of length k1N and corresponds to

Block i ∈ [k2]; the message M[L+1] and R1

1: Create an estimate of Ũ1:k1N
1

Û1:k1N
l,1 , g1:k1N

[L],l (M[L],1, B
1:k1N
l,1 ),

where M[L],1 is contained in M[L+1]

2: for Block i = 1 to k2 − 1 do
3: Define (·, M̂{L+1},i) , f1:k1N

{L+1}(Û
1:k1N
l,i )

4: Since M[L+1] contains M[L],i+1 ⊕ M{L+1},i, the de-
coder can form

Û1:k1N
l,i+1

, g1:k1N
[L],l

(
M[L],i+1 ⊕M{L+1},i ⊕ M̂{L+1},i, B

1:k1N
l,i+1

)
5: end for
6: Define Û1:k1N

l,1:k2
, (Û1:k1N

l,i )i∈[k2]

7: Define g1:kN[L+1],l(M[L+1], B
1:k1N
l,1:k2

) , Û1:k1N
l,1:k2

Algorithm 6 Decoding at Decoder L+ 1

Require: Source observations B1:k1N
L+1,1:k2

, (B1:k1N
L+1,i )i∈[k2],

where B1:k1N
L+1,i is of length k1N and corresponds to

Block i ∈ [k2]; the message M[L+1] and R1

1: Create an estimate

Û1:k1N
L+1,k2

, g1:kN{L+1},L+1(M{L+1},k2
, B1:k1N

L+1,k2
),

where M{L+1},k2
is contained in M[L+1]

2: for Block i = k2 − 1 to 1 do
3: Define (·, M̂[L],i+1) , f1:k1N

[L] (Û1:k1N
L+1,i+1)

4: Since M[L+1] contains M{L+1},i ⊕ M[L],i+1, the de-
coder can form

Û1:k1N
L+1,i , g1:k1N

{L+1},L+1,i

(
M{L+1},i ⊕M[L],i+1⊕

M̂[L],i+1, B
1:k1N
L+1,i

)
5: end for
6: Define Û1:k1N

L+1,1:k2
, (Û1:k1N

L+1,i )i∈[k2]

7: Define g1:kN[L+1],L+1(M[L+1], B
1:k1N
L+1,1:k2

) , Û1:k1N
L+1,1:k2

VII. PROOF SKETCH OF THEOREM 1

We only describe the coding scheme, its analysis is omit-
ted due to space constraints. Using Theorem 3, consider a
coding scheme C that achieves the public communication
rate Rp = maxA∈A I(U ;X|YA) for the joint probability
distribution (pUXYA)A∈A , (pU |XpXYA)A∈A. For A ∈ A,
let p̃U1:NX1:NY 1:N

A M be the probability distribution of the
random variables (Ũ1:N , X1:N , Y 1:N

A ,M) induced by the cod-
ing scheme C. Repeat t times and independently the coding
scheme C. For these t repetitions, the first outputs of the
encoder are denoted by Ũ1:tN , and the estimate of Ũ1:tN at
Decoder A ∈ A is denoted by Û1:tN

A .

Consider a hash function F : R×{0, 1}tN −→ {0, 1}tNRs ,
where Rs is the secrecy rate (that can be shown to be the
rate in Theorem 1). The encoder forms S , F (R, Ũ1:tN ),
where R represents the uniformly random choice of the hash
function in a family of two-universal hash functions and is
transmitted over the public communication channel. Hence,
R is made available to all parties. Note that by an hybrid
argument, e.g., [32], the communication rate associated with
the transmission of R can be made negligible. Finally, Decoder
A ∈ A forms Ŝ(A) , F (R, Û1:tN

A ) for A ∈ A.
Note that F can be implemented with complexity

T (tN) [33], where T (tN) is the complexity of field multi-
plication in GF(2tN ).

VIII. PROOF SKETCH OF THEOREM 2

The proof of Theorem 2 largely relies on the proof of The-
orem 1. The proof idea is as follows. First, using Theorem 3,
we construct a coding scheme CU where the dealer generates
Ũ1:N and the message MU with rate

RU = max
A∈A

I(U ;X|YA)

from the source observation X1:N such that any subset of
the participants A ∈ A can form Û1:N

A from (MU , Y
1:N
A )

and limN→∞ P[Ũ1:N 6= Û1:N
A ] = 0. Next, using a slightly

modified version of Theorem 3 we construct a coding scheme
CV , where the dealer generates Ṽ 1:N and the message MV

with rate
RV = max

A∈A
I(V ;X|UYA)

from the source observation X1:N such that any subset of the
participants A ∈ A can form V̂ 1:N

A from (MV , Y
1:N
A , Ũ1:N )

and limN→∞ P[Ṽ 1:N 6= V̂ 1:N
A ] = 0.

Then, similar to the proof sketch of Theorem 1, consider
a hash function F : R × {0, 1}tN −→ {0, 1}tNRs , where
Rs is the secrecy rate (that can be shown to be the rate in
Theorem 2). The encoder forms S , F (R, Ṽ 1:tN ), where R
represents the uniformly random choice of the hash function
in a family of two-universal hash functions and is transmitted
over the public communication channel. Finally, Decoder A ∈
A forms Ŝ(A) , F (R, V̂ 1:tN

A ) for A ∈ A.

IX. CONCLUSION

We considered secret sharing from correlated random vari-
ables and rate-limited public communication. For this prob-
lem, we proposed the first constructive and low-complexity
coding scheme able to handle arbitrary access structures.
Our construction relies on a vector quantization coupled with
distribution approximations with polar codes to handle the reli-
ability constraints, followed by universal hashing to handle the
security constraints. We stress that our coding scheme does not
require symmetry or degradation assumptions on the correlated
random variables, and does not need a pre-shared secret among
the participants and dealer. Our result is also optimal in the
special case of rate-unlimited public communication when all
the participants are needed to reconstruct the secret.
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