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Abstract—We study private classical communication over
quantum multiple-access channels. For an arbitrary number of
transmitters, we derive a regularized expression of the capacity
region. In the case of degradable channels, we establish a single-
letter expression for the best achievable sum-rate and prove
that this quantity also corresponds to the best achievable sum-
rate for quantum communication over degradable quantum
multiple-access channels. Our achievability result decouples the
reliability and privacy constraints, which are handled via dis-
tributed source coding with quantum side information at the
receiver and distributed hashing, respectively. As a by-product
of independent interest, we derive a distributed leftover hash
lemma against quantum side information that ensures privacy in
our achievability result.

I. INTRODUCTION

The capacity of private classical communication over point-
to-point quantum channels has been characterized in [1], [2].
Moreover, in the case of degradable quantum channels, a
single-letter expression of the capacity is known [3], and
coincides with the coherent information of the channel. In
this paper, we define private classical communication over
quantum multiple-access channels, and determine the capacity
region for an arbitrary number of transmitters. As formally
described in the next sections, we consider message indis-
tinguishability as privacy metric. Our proposed setting can
be seen as a generalization of the classical multiple-access
wiretap channel [4]. Note also that the capacity region of clas-
sical communication over multiple-access quantum channels
without privacy constraint is characterized in [5].

Often, for simplicity and to facilitate the design of codes,
coding for multiple-access channels is reduced to single-
user coding, for instance, with successive decoding or rate-
splitting [6]. However, in the presence of a privacy constraint,
these techniques are challenging to apply. In a successive
decoding approach, the transmitters’ messages are decoded
one after another at the receiver. This approach works well
in the absence of privacy constraints [5] because the capac-
ity region is a polymatroid. Unfortunately, in the presence
of privacy constraints, this task is challenging, even in the
classical case and for only two transmitters [7], because the
capacity region is not known to be a polymatroid in general.
With a rate-splitting approach, again, the presence of privacy
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constraints renders the technique challenging to apply, even
in the classical case and for only two transmitters, because
the rate-splitting procedure may result in negative “rates”
for some virtual users [8]. Instead, our approach relies on
ideas from random binning techniques, first developped in [9]
for classical point-to-point wiretap channels and that have
been succesfully applied to point-to-point classical-quantum
wiretap channels [10] and several other point-to-point wiretap
channel models [11]-[14]. In our approach, reliability and
privacy constraints are decoupled. It allows us to handle the
reliability via distributed source coding with quantum side
information at the receiver, and to handle the privacy constraint
via distributed hashing.

We summarize our main contributions as follows. We derive
(1) a regularized expression for the private classical capacity
region of quantum multiple-access channels for an arbitrary
number of transmitters, and (ii) a single-letter expression of
the best achievable sum-rate for degradable channels. (iii) We
establish that the latter quantity is also equal to the best
achievable sum-rate for quantum communication over degrad-
able quantum multiple-access channels. (iv) As a byproduct
of independent interest, we derive a distributed version of the
leftover hash lemma against quantum side information.

The remainder of the paper is organized as follows. We
formally define the problem in Section III and present our main
results in Section IV. Before we prove our inner bound for the
capacity region in Section VI, we present in Section V pre-
liminary results that will be used in our achievability scheme.
Finally, we provide concluding remarks in Section VII.

II. NOTATION

For z € R, define [z] £ [1,[z]]N N and [z]t =
max(0,x). For M, a finite-dimensional Hilbert space, let
P(H) be the set of positive definite operators on H. Then,
let S_.(H) = {p € P(H) : Trp = 1} and Sc(H) =
{p € P(H) : Trp < 1} be the set of normalized and
subnormalized, respectively, quantum states. Let also B(H)
denote the space of bounded linear operators on . For any
pxE € S<(Hx ® Hg) and o € S—(HE), the min-entropy
of pxp relative to o [15] is defined as Huin(pxe|op) =
inf{\eR:pxp <2y ®@og}, where Ix denotes the
identity operator on Hx, and the max-entropy of pgp [15]
is defined as H,.x(pr) = logrank(pg). For two probability
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distributions p and ¢ defined over the same finite alphabet X,
define the variational distance between p and ¢ as V(p, q) £
> ex|P(z)—q(z)|. The power set of a set S is denoted by 2°.

III. PROBLEM STATEMENT

Let L € N* and define £ £ [L]. Consider a quantum
multiple-access channel Na, 5 @ Qe B(Ha;) — B(Hp)
with L transmitters, where A%, £ (A));cc. Let UA, _ 5, be
an isometric extension of the channel N AL B sucﬁ that the
complementary channel to the environment N, ., ., satisfies

L
,Z/LHE(P) = TTB[Z/[A//'L*}BE(/))} for p € Qe B(Hay).

Definition 1. An (n, (2"%),c.) private classical multiple-
access code for the channel N A, —p consists of

o L message sets M; = [2"%], [ € L;

o L encoding maps ¢ : My — B(Hapm), 1 € L;

o A decoding positive operator-valued measure (POVM)

(AmL)mgeML’ where M £ Xleﬁ My,

and operates as follows: Transmitter | € L selects a message
m; € M, and prepares the state pZL{n 2 ¢1(my), which is
sent over Nam_, pn = (Nar, )" The channel output is
whE 2 Nap _spn (P’Xﬁz) where pZL,Zi £ Qier p’X;n and mg =
(my)1ec. The decoding POVM (A, )m e, IS then used at
the receiver to detect the messages sent. The complementary

A

channel output is denoted by wiF = N5 g (p745)-
L L

Definition 2. A rate-tuple (R)),c is achievable if there exists
a sequence of (n, (2"%),c ) private classical multiple-access
codes such that for some sequence of constant states (o gn),
we have

. B mey
nl;r& max Te[(I — A, )whs] =0, (1)
lim max ||wgs —opn|1 =0. 2)

n—oomeEMp

The private classical capacity region Cp.vac of a quantum
multiple-access channel N A1, —p Is defined as the closure of
the set of achievable rate-tuples (R})cr.
IV. MAIN RESULTS
We first propose a regularized expression for the private
classical capacity region.

Theorem 1. The private classical capacity region Cp.ac of
a quantum multiple-access channel N, AL B IS

Cpmac(NV) = cl ([j ;P(N@)n)) ;

n=1
where cl denotes the closure operator and P(N) is the set of
rate-tuples (R;)ec that satisfy
Rs 2> R < [[(Xs; Bl Xse), — I(Xs:E),] " VS C L,
les

for some classical-quantum state px . 1, of the form

pxca, =) (prl (20) ) {al x, ®ng> :

lel Ty

~ LA N N . .
with px.pe = U /LHBE(/)XLAA'L)’ UA,LHBE an isometric
extension of N, ,p, and Xs = (Xi)ies for any S C L.

Proof. The achievability is proved in Section VI. The proof
of the converse is omitted due to space constraints. [

Remark 1. In the absence of the privacy constraint (2),
one easily has a regularized expression for the best achiev-
able sum-rate from Theorem 1 because {(R;)icc : Rs <
I(Xs; B|Xsc),, VS C L} defines a polymatroid [16], [17].
However, for general (or even degradable) channels, it is non-
trivial to obtain a simple regularized expression for the best
achievable sum-rate in Cpyac, because {(R})icr @ Rs <
[[(Xs;B|Xse), — I(Xs; E),)",¥S C L} does not describe
a polymatroid in general.

In the next result, for the case of degradable channels, we
propose a single-letter expression for the best achievable sum-
rate in the private classical capacity region.

Theorem 2. Consider a degradable quantum multiple-access
channel N Al B> i.e., there exists a channel Dp_, g such that
DppoNa, s = J\/‘IZ,LHE. Define C"iac as the supremum

of all achievable sum-rates in Cpyac(N). Then, we have

ComacWN) = mgX[I(XL; B), —I(Xz; E),|",  (3)
where the maximization is over classical-quantum states that
have the same form as in Theorem 1.

] 1 sum
We now propose another characterization of Cplyiac

degradable channels. We first define the quantity Q3.

for

Definition 3. Consider a quantum multiple-access channel
A

NA/L%B- Define Q¥xc(N) = maxg, .. I(Az)B),, where
the maximization is over states of the form ¢4, AL
Ricr ba,a; with ga,a;, L € L, a pure state, and pa,p
Nar, p(da,a,)-

Note that by [18], lim, %QSML'&‘C(N@)”) is a regularized
expression for the largest achievable sum-rate for quantum
communication over quantum multiple-access channels.

L

Theorem 3. Consider a degradable quantum multiple-access
channel N A, B Then, we have

Ceac(N) = Qiiac(V).
The proofs of Theorems 2 and 3 are omitted due to space
constraints. Note that in the case of point-to-point channels
Theorem 3 recovers the result in [3, Th. 2].

V. PRELIMINARY RESULTS

We establish in this section preliminary results that we will
use to show in Section VI the achievability part of Theorem 1.

A. Distributed leftover hash lemma against quantum side
information

Define £ = [L]. Consider the random variables X, =
(X1)1ec, defined over the Cartesian product X, = X er X,
with probability distribution px,., and a quantum system E
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whose state depends on X, described by the following
classical-quantum state:

23 e, lwo)(@el @ pif, (4)

where p3f £ px,.(z2)p3F with pf the state of the sys-
tem E conditioned on the realization x., and |z.) (x| £
X lo1) (21|, Next, consider F; : & — {0,1}" a hash
function chosen uniformly at random in a family 7, [ € L,
of two-universal hash functions [19], i.e.,

Vay,x) € X, 1) # 1 = PFi(x;) = Fi(x))] <27
For any S C L, define Xs = Kies N> Fs £ (F)ies. Fs =
Xles}—l’ As £ Xles{o’ 1}, and for as € As, fs € Fs,
fs'(as) & {zs € Xs : f(x) = @,Vl € S}. The hash

functions outputs f(z.), the state of the quantum system,
and the choice of the functions f, are described by

PX,E

pFL(XL)EFE

ol 2 X ledacl @ ol @lfefel

fLGJ:}- ar€AL

Whefef|aﬁ><ac| Qe la)(al, |fe)(fel £
ar A

and pp " = chefa (aL)PE .

Lemma 1 (Distributed Leftover hash lemma). Let py be the
fully mixed state on Hp, (x ). Define for any S C L, rs =
Y scsTs Forany op € S—(HEg), we have

§ 27‘S_Hmin(pXSE‘o'E).

SCr
S#0

®le£ |fl><fl|7

lor.(xe)EF: — PU® pEF|1 <

Note that a similar lemma is known in the classical case,
e.g., [20], and has found a wide range of applications including
oblivious transfer [20]-[22], many-to-one secret-key genera-
tion [23], biometric authentication with access structures [24],
multiple-access channel resolvability [25], and distributed se-
cret sharing [26]. We will also need the following version of
the distributed leftover hash lemma for product states. The
proof of Lemmas 1, 2 are omitted due to space constraints.

Lemma 2 (Distributed leftover hash lemma for product states).
Consider the product state pXREn £ p?}’ZE, where px . is
defined in (4). With the same notation as in Lemma 1, we have

|oFs(xm)EnF, — PU @ pEnF |11
< 2¢ + Z 27“5711H(X5\E‘)pfn((ss(n)+5(n))7
Scr
S#0

where ds(n) = (log(|Xs|dg + 3))\/%(1/ +1+1log(1))
§(n) = (log(dg + 3))y/2(1 +1log(L)), with dg = dim H .

B. Distributed classical data compression with quantum side
information

Consider X, = (X))ier, defined over Xy = XleL X
with distribution px,, and a quantum system B whose state

depends on the random variable X, described by the follow-
ing classical- quantum state px, B = Y., ex, [T2) (@] ©pFF
where p%f £ px,. (z2)p} with pif the state of the system B
conditioned on the realization x -, and we have used the same

notation as in Section V-A.

Definition 4. A (2"1%),. . distributed compression code for a
classical- quantum product state p®" consists of

o Lsets Cp = 2", [ € L;

e L encoders g; : X" = C, l € L;

o One decoder h : S—(Hpn) X Xleﬁ Ci.
A rate-tuple (Ry) e is said to be achievable when the average
error probability satisfies

)& Y pxp(a})P

TEEX]

n—oo

h(pga, 9c (@) # @ — 0,

where for all 27 € X%, gc(2%) £ (qi(z]))1ec-
Let C(px,.p) be the set of all achievable rate-tuples.

Lemma 3 ( [27]). We have

Clpx.) ={(Ri)iec : Rs >
C. MAC coding from distributed source coding

Consider L finite sets U;, | € L, such that |U;|= R’
for some RY € R, and define U, = ><l Lul Con-
sider a c1a551cal -quantum multiple-access channel 1.e., a map
W : Ur — S—(Hp), which maps us € U, to the state
P € S=(Hp). Let pucs = g7 Duseu, luc) (uc| © o
describe the input and output of W when the input U, is
uniformly distributed over U,, and where we have used the

notation |uz) <ug| ®le£ ) (w-

Lemma 4 (MAC coding from distributed compression). Con-
sider L uniformly distributed messages (M) € My =
Xlez: M,, where M; = [2"F] for some R, € Ry, | € L.

If there exists a (Q”RPC)le ¢ distributed compression code ( as
in Definition 4) for the classical-quantum product state pU B
then there exist (R;)icr € R+, L encoders e¢; : M; — U",
l €L, and one decoder d : S_(Hpn) — My such that
R, = RU RPC asn — oo, | € L, and P[d(ﬁ;ﬂ(Mﬁ)) #
Mg] —> 0, where GL(ML) (€l<Ml))le£-

The proof of Lemma 4 is omitted due to space constraints.

Note that this lemma generalizes [10, Lemma 2], which treats
the case of point-to-point channels.

H(Xs|XseB),,¥S C L}.

VI. ACHIEVABILITY OF THEOREM 1

Consider a classical-quantum multiple-access wiretap chan-
nel, i.e., a map W : X - S_(Hp ® Hg), which maps
xp € Xp to iy € S—(Hp ® HE). The achievability part of
Theorem 1 follows from another achievability result (with a
slight adaptation of Definitions 1, 2) for this classical-quantum
multiple-access wiretap channel. Specifically, we show in this
section that, for any probability distribution py, = [Lier Pxis
the following region is achievable

{(Rier) : Rs < [I(Xs; B|Xs¢), — 1(Xs; E),|",VS C L},
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where px,.pr = Y, Px.(¢c)|rc) (xc| ® pify. Note that,

compared to the setting of Section III, the signal states sent
by the transmitters are now part of the channel definition.
Hence, achievability of this region and regularization lead to
the achievability part of Theorem 1.

A. Coding scheme

The main idea of the coding scheme is to combine dis-
tributed source coding and distributed randomness extraction
to emulate a random binning-like proof.

Step 1: We create a stochastic channel that simulates the
inversion of multiple hash functions while preserving the joint
distribution of the inputs and outputs of the hash functions.
Preserving this joint distribution is crucial for the message
indistinguishability analysis. In the special case of a single
hash function, this operation is referred to as shaping in [10]
and distribution approximation in [12].

Consider X} distributed according to some arbitrary prod-
uct distribution p X7 £ Hl e bxps and L two-universal hash
functions F uniformly distributed over F:, where we use
the same notation as in Section V-A. The output lengths
(A@R}J)le[; of the hash functions will be defined later. Let
W, be the channel described by the conditional probability
distribution pxn|r.(x7)Fe = Hleﬁle”\Fz(Xl")Fz and W, be
the channel described by the conditional probability distribu-
tion pxr|k(xpF, | € L. For | € L, let U be uniformly

distributed over U* £ [Z"RP} for some R}’ € Ry to be defined
later, and define

~ A
PXBM Fr = PX2|Fe(X2)FePURPF. s )

where pyr is the uniform distribution over Uy with the
same notation as in Section V-C. Hence, ﬁxg M. F, denotes
the joint probability distribution of the input (U7, Fz) and
output X2 £ W, (UR, Fr) of the channel W,. Note that
Fr is uniformly distributed over F, and is interpreted as
local randomness. To simplify notation in the following, we
write W (U}) instead of W, (U}, Fr) by redefining W, and
including the local randomness Fz in its definition.

Step 2: Using Lemma 4, we construct a multiple-access
channel code for jointly uniform input distributions (in_the
absence of any privacy constraint) for the channel W o Wp.

. DC

Let m € N. By Lemma 3, there exists a (2™ ),

distributed compression code (as defined in Definition 4) for
the classical-quantum product state ﬁ%ﬁBn, where

s L

. 7% un
Pups & g 2 ) wzl@ppe™, ©)

upEUR

and where (nRPS);c. belongs to C(pyzp»). Then, by
Lemma 4, there exist ¢ : M]* — U™, 1€ L, and d :
S—_(Hpmn) — MF, where we have defined for [ € L,
M £ [2mnBi) guch that R, = RY — RPC as m — oo, and

TrRm m
lim P {d (pVBV,,ﬁn (ea(Mz ”) ” MZ”] =0, ()

m—roo

with eg(MZL) ES (el(Mlm))leg.

Step 3: We combine Step 1 and Step 2 to define our en-
coders and decoder for the classical-quantum multiple-access
wiretap channel. Specifically, the encoders are defined as

o M = WE™(e)(M™)),1 € L, (8)
and the decoder is defined as
i g £ o d(peiaE)), ©)
where ¢z (M) £ (ou(M]") )1ec-
Remark 2. In Step 2, Lemma 3 cannot be directly applied to
ﬁUgyn as it is not a product state.
B. Coding scheme analysis
1) Average reliability: We have

WE™ (e (MJ))

P (o) # 0] = 2 [atolfE, ) £ M
7, (10)

where the equality holds by definition of ¢ and (¢;);e. in (8),
(9), and the limit holds by (7).

2) Average message indistinguishability: To simplify nota-
tion, we use the notation x, £ 2™, uz £ u™, fr £ 1, for
up™ e UPm, " € X0, f7t € FFE. According to Step 3 in
Section VI-A, the messages M/ and the output of the channel
between the transmitters and the eavesdropper are described
by the classical-quantum state ﬁMzn grm g With

~ A ~
PMpEmnFR = Y e oo, Pxprmprp (X, ug, fe)
X |ug)(uel ® ppin @ |f2)(Ee]
~ A ~ . .
where Pxprmprp = [T, Pxny.r,- Note that M is uni-
formly distributed over U} and, by Lemma 4, e, (MZL) 18 uni-
formly distributed over U7*". Hence, W2 ™ (e (M) is dis-
tributed according to a product distribution, and pasm prn pre
is thus a product state, which we can write ﬁMZ” Emnpm =
Pyl g g, » Where
~ A ~
PMeEMFe = D pp un an PXpMeFe (T2 up, fr)
7177,
X [uz)(uz| ® pria @ | fo)(fel -

Next, define the following classical-quantum state

Y

pFL(Xg)EnFL 2 ng,uz,wz pX}}Fc(X}})FL(xEU%’fL)
X Jup) (up| © prh @ | fo)(fel. (12)

Then, for py the fully mixed state on HUg, we have

~ ®m ~
||pM£L Em"Fgl — pU ® pEmanL 1

= ||ﬁ%sz Fe g ® P%?FL 1

(a) _ -
< mpygenr, — pU @ pEnE |11

(b) _
< m(lpyEnr, — ng(XZ)E"FLlh

+pre(xpyEnF. — PU @ pEnF. 1
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—pu @ pEnr. 1)

prc(xpEnFe 1

+llpv ® pEnr,
< m(2||ﬁMLE”F£

+ HPFC (X2)EnF, — PU ® PE"FLH )

(¢)
< M2V (DPxn e re s PXpFe(X7)Fe)

+ lpre(xp)EnF, — PU ® pEnF1)

(2V(pU"pF,; yDFo (X7 )Fﬁ)

+ HPFC (XP2)EnF, — PU ® pE"FL”l)

(e)

< SmeFC(Xg)E"FC — pu ® perr. 1
n— oo

— 0, (13)
where (a) and (b) hold by the triangle inequality, (¢) holds
by strong convexity of the trace distance and the definitions
of prppnr, and PFc(xp)EnF, in (11) and (12), (d) holds
by the definition of pxpa,r, in (5), (e) holds because
V(pngFupFL(XZ)FL) < ”pFL(XZ)FL —pu® PFLHI, and
the limit holds by Lemma 2 provided that RE < H(Xs|E),,,
VS C L as n — oo.

3) Achievable rate-tuples: Consider the following exten-
sion of the state described in (6)
PURXRBF,
= Zuzeug ngexg Zlfﬁef; ﬁXzMEFL (xz uz, fr)
X [ug) (ug| @ o) (@] @ pih @ | fo)(fel-

Define also the state
PURX2B"Fr
= Zuzeug ngexg ngef; PXpMeFe (z¢,up, fr)
x Jug) (up| @ 27) (@] © pih @ |fe)(fel

Then, we have
max <5Xan — px7Bn thlgg\lﬁUan — punBn ||1>

< lpvpxpprr. — pupxperr:lh

(a)

< V(pXZMLFupX'EFL(XE)FE)

(®)

= V(pU;;pFung(XZ)Fc)

—pu @ prella

< ||pF£(X2)EnFC —pu ® pEnr

n—oo. (14)

< proxp)re

where (a) holds by strong convexity of the trace distance, (b)
holds by (5), and the limit holds by (13).

Next, by Step 2 in Section VI-A, (nRP€);c, must belong
to C(puzpn). We can choose (nRP)icr € C(pxppn) be-
cause, as proved next, we have C(pxppn) C C(puzpn). For
(nRP)iec in C(pxnpn) and any S C L, we have

(a)
> H(X3B"XZ.),
= H(XZB"),) — H(B"ch)p

nRgC

= H(B"|X2), — H(B"|X3:), + H(X§),

®
> H(B"|XZ), — H(B"|Us:), + H(Xg),

H
S HBXD), - HB|UL), + HUD),
S H(BX2); - HB U5 + HUR); - ofn)
S H(BrUR); - H(BUL )5 + HUL); — oln)
— H(UZ|B"UZ); — o(n),

where (a) holds because (RRPC)c. in C(pxppn), (b) holds
by the quantum data processing inequality because, by defini-
tion of p, for any S C £, UZ is a function of XZ, (c) holds
by Lemma 2 because, by definition of p, for any S C L,
U¥% is the output of hash functions when X% is the input, (d)
holds by the Alicki-Fannes inequality and (14), (e¢) holds by
the quantum data processing inequality because, by definition
of p, X} is a function of Up.

Hence, by having chosen (nRP<)ic. € C(pxzpn) and
RY < H(Xs|E),, VS C L in (13), and by using Step 3
in Section VI-A, we have the system

R H(Xs|BXse),,VS C L
(Rs + R2¢ < H(Xs|E),,¥S C L)
Next, one can show that the set function S — H(Xs|E), —
H(Xs|BXse), is submodular. Using this fact and Fourier-

Motzkin elimination, one can then show that the system (15)
reduces to

Rs < H(Xs|E), —

15)

H(Xs|BXs:),,¥SC L. (16)

4) Expurgation: With an expurgation argument that has
a negligible impact on the asymptotic communication rates,
one can show the existence of a code such that for any
codeword m., we have |05 pn — P ppe |11 272 0 and

_¢pr(M
P [w(p% ) # Mg Mg = mz}

n—00

— 0.

VII. CONCLUDING REMARKS

We defined the private capacity region for quantum
multiple-access channels and established a regularized ex-
pression for this capacity region. In the case of degradable
channels, we also derived two single-letter expressions for the
best achievable sum-rate.

Our proof technique for the achievability part emulates a
proof based on random binning. Specifically, our achievability
result decouples the reliability and privacy constraints, which
are handled via distributed source coding with quantum side
information at the receiver and distributed hashing, respec-
tively. Consequently, our proof reduces a multiuser coding
problem into multiple single-user coding problems. Indeed,
distributed source coding with quantum side information at
the receiver can be reduced to single-user source coding
with quantum side information at the receiver (for instance,
via time-sharing), and distributed hashing is, by construction,
performed independently at each transmitter.
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