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Abstract—We study private classical communication over
quantum multiple-access channels. For an arbitrary number of
transmitters, we derive a regularized expression of the capacity
region. In the case of degradable channels, we establish a single-
letter expression for the best achievable sum-rate and prove
that this quantity also corresponds to the best achievable sum-
rate for quantum communication over degradable quantum
multiple-access channels. Our achievability result decouples the
reliability and privacy constraints, which are handled via dis-
tributed source coding with quantum side information at the
receiver and distributed hashing, respectively. As a by-product
of independent interest, we derive a distributed leftover hash
lemma against quantum side information that ensures privacy in
our achievability result.

I. INTRODUCTION

The capacity of private classical communication over point-
to-point quantum channels has been characterized in [1], [2].
Moreover, in the case of degradable quantum channels, a
single-letter expression of the capacity is known [3], and
coincides with the coherent information of the channel. In
this paper, we define private classical communication over
quantum multiple-access channels, and determine the capacity
region for an arbitrary number of transmitters. As formally
described in the next sections, we consider message indis-
tinguishability as privacy metric. Our proposed setting can
be seen as a generalization of the classical multiple-access
wiretap channel [4]. Note also that the capacity region of clas-
sical communication over multiple-access quantum channels
without privacy constraint is characterized in [5].
Often, for simplicity and to facilitate the design of codes,

coding for multiple-access channels is reduced to single-
user coding, for instance, with successive decoding or rate-
splitting [6]. However, in the presence of a privacy constraint,
these techniques are challenging to apply. In a successive
decoding approach, the transmitters’ messages are decoded
one after another at the receiver. This approach works well
in the absence of privacy constraints [5] because the capac-
ity region is a polymatroid. Unfortunately, in the presence
of privacy constraints, this task is challenging, even in the
classical case and for only two transmitters [7], because the
capacity region is not known to be a polymatroid in general.
With a rate-splitting approach, again, the presence of privacy
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constraints renders the technique challenging to apply, even
in the classical case and for only two transmitters, because
the rate-splitting procedure may result in negative “rates”
for some virtual users [8]. Instead, our approach relies on
ideas from random binning techniques, first developped in [9]
for classical point-to-point wiretap channels and that have
been succesfully applied to point-to-point classical-quantum
wiretap channels [10] and several other point-to-point wiretap
channel models [11]–[14]. In our approach, reliability and
privacy constraints are decoupled. It allows us to handle the
reliability via distributed source coding with quantum side
information at the receiver, and to handle the privacy constraint
via distributed hashing.
We summarize our main contributions as follows. We derive

(i) a regularized expression for the private classical capacity
region of quantum multiple-access channels for an arbitrary
number of transmitters, and (ii) a single-letter expression of
the best achievable sum-rate for degradable channels. (iii) We
establish that the latter quantity is also equal to the best
achievable sum-rate for quantum communication over degrad-
able quantum multiple-access channels. (iv) As a byproduct
of independent interest, we derive a distributed version of the
leftover hash lemma against quantum side information.
The remainder of the paper is organized as follows. We

formally define the problem in Section III and present our main
results in Section IV. Before we prove our inner bound for the
capacity region in Section VI, we present in Section V pre-
liminary results that will be used in our achievability scheme.
Finally, we provide concluding remarks in Section VII.

II. NOTATION

For x ∈ R, define [x] ≜ [1, ⌈x⌉] ∩ N and [x]+ ≜
max(0, x). For H, a finite-dimensional Hilbert space, let
P(H) be the set of positive definite operators on H. Then,
let S=(H) ≜ {ρ ∈ P(H) : Tr ρ = 1} and S󰃑(H) ≜
{ρ ∈ P(H) : Tr ρ 󰃑 1} be the set of normalized and
subnormalized, respectively, quantum states. Let also B(H)
denote the space of bounded linear operators on H. For any
ρXE ∈ S󰃑(HX ⊗HE) and σE ∈ S=(HE), the min-entropy
of ρXE relative to σE [15] is defined as Hmin(ρXE |σE) ≜
inf

󰀋
λ ∈ R : ρXE 󰃑 2−λIX ⊗ σE

󰀌
, where IX denotes the

identity operator on HX , and the max-entropy of ρE [15]
is defined as Hmax(ρE) ≜ log rank(ρE). For two probability
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distributions p and q defined over the same finite alphabet X ,
define the variational distance between p and q as V(p, q) ≜󰁓

x∈X |p(x)−q(x)|. The power set of a set S is denoted by 2S .

III. PROBLEM STATEMENT

Let L ∈ N∗ and define L ≜ [L]. Consider a quantum
multiple-access channel NA′

L→B :
󰁑

l∈L B(HA′
l
) → B(HB)

with L transmitters, where A′
L ≜ (A′

l)l∈L. Let UN
A′

L→BE be
an isometric extension of the channel NA′

L→B such that the
complementary channel to the environment N c

A′
L→E satisfies

N c
A′

L→E(ρ) = TrB [UN
A′

L→BE(ρ)] for ρ ∈
󰁑

l∈L B(HA′
l
).

Definition 1. An (n, (2nRl)l∈L) private classical multiple-
access code for the channel NA′

L→B consists of

• L message sets Ml ≜ [2nRl ], l ∈ L;
• L encoding maps φl : Ml → B(HA′n

l
), l ∈ L;

• A decoding positive operator-valued measure (POVM)
(ΛmL)mL∈ML , where ML ≜×l∈L

Ml;
and operates as follows: Transmitter l ∈ L selects a message
ml ∈ Ml and prepares the state ρml

A′n
l

≜ φl(ml), which is

sent over NA′n
L →Bn ≜ (NA′

L→B)
⊗n. The channel output is

ωmL
Bn ≜ NA′n

L →Bn(ρmL
A′n

L
) where ρmL

A′n
L

≜
󰁑

l∈L ρml

A′n
l
andmL ≜

(ml)l∈L. The decoding POVM (ΛmL)mL∈ML is then used at
the receiver to detect the messages sent. The complementary
channel output is denoted by ωmL

En ≜ N c
A′n

L →En(ρ
mL
A′n

L
).

Definition 2. A rate-tuple (Rl)l∈L is achievable if there exists
a sequence of (n, (2nRl)l∈L) private classical multiple-access
codes such that for some sequence of constant states (σEn),
we have

lim
n→∞

max
mL∈ML

Tr[(I − ΛmL)ω
mL
Bn ] = 0, (1)

lim
n→∞

max
mL∈ML

󰀂ωmL
En − σEn󰀂1 = 0. (2)

The private classical capacity region CP-MAC of a quantum
multiple-access channel NA′

L→B is defined as the closure of
the set of achievable rate-tuples (Rl)l∈L.

IV. MAIN RESULTS

We first propose a regularized expression for the private
classical capacity region.

Theorem 1. The private classical capacity region CP-MAC of
a quantum multiple-access channel NA′

L→B is

CP-MAC(N ) = cl

󰀣 ∞󰁞

n=1

1

n
P(N⊗n)

󰀤
,

where cl denotes the closure operator and P(N ) is the set of
rate-tuples (Rl)l∈L that satisfy

RS ≜
󰁛

l∈S
Rl 󰃑 [I(XS ;B|XSc)ρ − I(XS ;E)ρ]

+, ∀S ⊆ L,

for some classical-quantum state ρXLA′
L
of the form

ρXLA′
L
≜

󰁒

l∈L

󰀣
󰁛

xl

pXl
(xl) |xl〉 〈xl|Xl

⊗ ρxl

A′
l

󰀤
,

with ρXLBE ≜ UN
A′

L→BE(ρXLA′
L
), UN

A′
L→BE an isometric

extension of NA′
L→B , and XS ≜ (Xl)l∈S for any S ⊆ L.

Proof. The achievability is proved in Section VI. The proof
of the converse is omitted due to space constraints. 󰃈

Remark 1. In the absence of the privacy constraint (2),
one easily has a regularized expression for the best achiev-
able sum-rate from Theorem 1 because {(Rl)l∈L : RS 󰃑
I(XS ;B|XSc)ρ, ∀S ⊆ L} defines a polymatroid [16], [17].
However, for general (or even degradable) channels, it is non-
trivial to obtain a simple regularized expression for the best
achievable sum-rate in CP-MAC, because {(Rl)l∈L : RS 󰃑
[I(XS ;B|XSc)ρ − I(XS ;E)ρ]

+, ∀S ⊆ L} does not describe
a polymatroid in general.

In the next result, for the case of degradable channels, we
propose a single-letter expression for the best achievable sum-
rate in the private classical capacity region.

Theorem 2. Consider a degradable quantum multiple-access
channel NA′

L→B , i.e., there exists a channel DB→E such that
DB→E ◦NA′

L→B = N c
A′

L→E . Define C
sum
P-MAC as the supremum

of all achievable sum-rates in CP-MAC(N ). Then, we have

Csum
P-MAC(N ) = max

ρ
[I(XL;B)ρ − I(XL;E)ρ]

+, (3)

where the maximization is over classical-quantum states that
have the same form as in Theorem 1.

We now propose another characterization of Csum
P-MAC for

degradable channels. We first define the quantity Qsum
MAC.

Definition 3. Consider a quantum multiple-access channel
NA′

L→B . Define Qsum
MAC(N ) ≜ maxφALA′

L
I(AL〉B)ρ, where

the maximization is over states of the form φALA′
L

≜󰁑
l∈L φAlA′

l
with φAlA′

l
, l ∈ L, a pure state, and ρALB ≜

NA′
L→B(φALA′

L
).

Note that by [18], limn→∞
1
nQ

sum
MAC(N⊗n) is a regularized

expression for the largest achievable sum-rate for quantum
communication over quantum multiple-access channels.

Theorem 3. Consider a degradable quantum multiple-access
channel NA′

L→B . Then, we have

Csum
P-MAC(N ) = Qsum

MAC(N ).

The proofs of Theorems 2 and 3 are omitted due to space
constraints. Note that in the case of point-to-point channels
Theorem 3 recovers the result in [3, Th. 2].

V. PRELIMINARY RESULTS

We establish in this section preliminary results that we will
use to show in Section VI the achievability part of Theorem 1.

A. Distributed leftover hash lemma against quantum side
information

Define L ≜ [L]. Consider the random variables XL ≜
(Xl)l∈L, defined over the Cartesian product XL ≜×l∈L

Xl

with probability distribution pXL , and a quantum system E
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whose state depends on XL, described by the following
classical-quantum state:

ρXLE ≜
󰁓

xL∈XL
|xL〉〈xL|⊗ ρxL

E , (4)

where ρxL
E ≜ pXL(xL)ρ̄

xL
E with ρ̄xL

E the state of the sys-
tem E conditioned on the realization xL, and |xL〉〈xL| ≜󰁑

l∈L |xl〉〈xl|. Next, consider Fl : Xl → {0, 1}rl a hash
function chosen uniformly at random in a family Fl, l ∈ L,
of two-universal hash functions [19], i.e.,

∀xl, x
′
l ∈ Xl, xl ∕= x′

l =⇒ P[Fl(xl) = Fl(x
′
l)] 󰃑 2−rl .

For any S ⊆ L, define XS ≜×l∈S
Xl, FS ≜ (Fl)l∈S , FS ≜

×l∈S
Fl, AS ≜×l∈S

{0, 1}rl , and for aS ∈ AS , fS ∈ FS ,
f−1
S (aS) ≜ {xS ∈ XS : f(xl) = al, ∀l ∈ S}. The hash
functions outputs fL(xL), the state of the quantum system,
and the choice of the functions fL are described by

ρFL(XL)EFL

≜ 1

|FL|
󰁛

fL∈FF

󰁛

aL∈AL

|aL〉〈aL|⊗ ρfL,aL
E ⊗ |fL〉〈fL| ,

where |aL〉〈aL| ≜
󰁑

l∈L |al〉〈al|, |fL〉〈fL| ≜
󰁑

l∈L |fl〉〈fl|,
and ρfL,aL

E ≜
󰁓

xL∈f−1
L (aL) ρ

xL
E .

Lemma 1 (Distributed Leftover hash lemma). Let ρU be the
fully mixed state on HFL(XL). Define for any S ⊆ L, rS ≜󰁓

s∈S rs. For any σE ∈ S=(HE), we have

󰀂ρFL(XL)EFL − ρU ⊗ ρEFL󰀂1 󰃑
󰁹󰁸󰁸󰁷

󰁛

S⊆L
S ∕=∅

2rS−Hmin(ρXSE |σE).

Note that a similar lemma is known in the classical case,
e.g., [20], and has found a wide range of applications including
oblivious transfer [20]–[22], many-to-one secret-key genera-
tion [23], biometric authentication with access structures [24],
multiple-access channel resolvability [25], and distributed se-
cret sharing [26]. We will also need the following version of
the distributed leftover hash lemma for product states. The
proof of Lemmas 1, 2 are omitted due to space constraints.

Lemma 2 (Distributed leftover hash lemma for product states).
Consider the product state ρXn

LEn ≜ ρ⊗n
XLE , where ρXLE is

defined in (4). With the same notation as in Lemma 1, we have

󰀂ρFL(Xn
L)EnFL − ρU ⊗ ρEnFL󰀂1

󰃑 2󰂃+

󰁹󰁸󰁸󰁷
󰁛

S⊆L
S ∕=∅

2rS−nH(XS |E)ρ−n(δS(n)+δ(n)),

where δS(n) ≜ (log(|XS |dE + 3))
󰁴

2
n (L+ 1 + log

󰀃
1
󰂃

󰀄
),

δ(n) ≜ (log(dE + 3))
󰁴

2
n (1 + log

󰀃
1
󰂃

󰀄
), with dE ≜ dimHE .

B. Distributed classical data compression with quantum side
information

Consider XL ≜ (Xl)l∈L, defined over XL ≜×l∈L
Xl

with distribution pXL , and a quantum system B whose state

depends on the random variable XL, described by the follow-
ing classical-quantum state ρXLB ≜

󰁓
xL∈XL

|xL〉〈xL|⊗ρxL
B ,

where ρxL
B ≜ pXL(xL)ρ̄

xL
B with ρ̄xL

B the state of the system B
conditioned on the realization xL, and we have used the same
notation as in Section V-A.

Definition 4. A (2nRl)l∈L distributed compression code for a
classical-quantum product state ρ⊗n

XLB consists of
• L sets Cl ≜ [2nRl ], l ∈ L;
• L encoders gl : Xn

l → Cl, l ∈ L;
• One decoder h : S=(HBn)××l∈L

Cl.
A rate-tuple (Rl)l∈L is said to be achievable when the average
error probability satisfies

Pe(n)≜
󰁛

xn
L∈Xn

L

pXn
L
(xn

L)P
󰁫
h(ρ̄

xn
L

Bn , gL(x
n
L)) ∕= xn

L

󰁬
n→∞−−−−→ 0,

where for all xn
L ∈ Xn

L , gL(x
n
L) ≜ (gl(x

n
l ))l∈L.

Let C(ρXLB) be the set of all achievable rate-tuples.

Lemma 3 ( [27]). We have

C(ρXLB) = {(Rl)l∈L : RS 󰃍 H(XS |XScB)ρ, ∀S ⊆ L}.

C. MAC coding from distributed source coding

Consider L finite sets Ul, l ∈ L, such that |Ul|= 2R
U
l

for some RU
l ∈ R+ and define UL ≜ ×l∈L

Ul. Con-
sider a classical-quantum multiple-access channel, i.e., a map
W : UL → S=(HB), which maps uL ∈ UL to the state
ρ̄uL
B ∈ S=(HB). Let ρULB ≜ 1

|UL|
󰁓

uL∈UL
|uL〉 〈uL| ⊗ ρ̄uL

B

describe the input and output of W when the input UL is
uniformly distributed over UL, and where we have used the
notation |uL〉 〈uL| ≜

󰁑
l∈L |ul〉 〈ul|.

Lemma 4 (MAC coding from distributed compression). Con-
sider L uniformly distributed messages (Ml)l∈L ∈ ML ≜
×l∈L

Ml, where Ml ≜ [2nRl ] for some Rl ∈ R+, l ∈ L.
If there exists a (2nR

DC
l )l∈L distributed compression code (as

in Definition 4) for the classical-quantum product state ρ⊗n
ULB ,

then there exist (Rl)l∈L ∈ RL
+, L encoders el : Ml → Un

l ,
l ∈ L, and one decoder d : S=(HBn) → ML such that
Rl = RU

l − RDC
l as n → ∞, l ∈ L, and P[d(ρ̄eL(ML)

Bn ) ∕=
ML]

n→∞−−−−→ 0, where eL(ML) ≜ (el(Ml))l∈L.

The proof of Lemma 4 is omitted due to space constraints.
Note that this lemma generalizes [10, Lemma 2], which treats
the case of point-to-point channels.

VI. ACHIEVABILITY OF THEOREM 1
Consider a classical-quantum multiple-access wiretap chan-

nel, i.e., a map W : XL → S=(HB ⊗ HE), which maps
xL ∈ XL to ρ̄xL

BE ∈ S=(HB ⊗HE). The achievability part of
Theorem 1 follows from another achievability result (with a
slight adaptation of Definitions 1, 2) for this classical-quantum
multiple-access wiretap channel. Specifically, we show in this
section that, for any probability distribution pXL ≜

󰁔
l∈L pXl

,
the following region is achievable

{(Rl∈L) : RS 󰃑 [I(XS ;B|XSc)ρ − I(XS ;E)ρ]
+, ∀S ⊆ L},
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where ρXLBE ≜
󰁓

xL
pXL(xL) |xL〉 〈xL| ⊗ ρ̄xL

BE . Note that,
compared to the setting of Section III, the signal states sent
by the transmitters are now part of the channel definition.
Hence, achievability of this region and regularization lead to
the achievability part of Theorem 1.

A. Coding scheme

The main idea of the coding scheme is to combine dis-
tributed source coding and distributed randomness extraction
to emulate a random binning-like proof.
Step 1: We create a stochastic channel that simulates the

inversion of multiple hash functions while preserving the joint
distribution of the inputs and outputs of the hash functions.
Preserving this joint distribution is crucial for the message
indistinguishability analysis. In the special case of a single
hash function, this operation is referred to as shaping in [10]
and distribution approximation in [12].
Consider Xn

L distributed according to some arbitrary prod-
uct distribution pXn

L
≜

󰁔
l∈L pXn

l
, and L two-universal hash

functions FL uniformly distributed over FL, where we use
the same notation as in Section V-A. The output lengths
(nRU

l )l∈L of the hash functions will be defined later. Let
󰁩WL be the channel described by the conditional probability
distribution pXn

L|FL(Xn
L)FL ≜

󰁔
l∈L pXn

l |Fl(Xn
l )Fl

and 󰁩Wl be
the channel described by the conditional probability distribu-
tion pXn

l |Fl(Xn
l )Fl

, l ∈ L. For l ∈ L, let Un
l be uniformly

distributed over Un
l ≜ [2nR

U
l ] for some RU

l ∈ R+ to be defined
later, and define

󰁨pXn
LMLFL ≜ pXn

L|FL(Xn
L)FLpUn

L
pFL , (5)

where pUn
L

is the uniform distribution over Un
L with the

same notation as in Section V-C. Hence, 󰁨pXn
LMLFL denotes

the joint probability distribution of the input (Un
L , FL) and

output 󰁨Xn
L ≜ 󰁩WL(U

n
L , FL) of the channel 󰁩WL. Note that

FL is uniformly distributed over FL and is interpreted as
local randomness. To simplify notation in the following, we
write 󰁩WL(U

n
L) instead of 󰁩WL(U

n
L , FL) by redefining 󰁩WL and

including the local randomness FL in its definition.
Step 2: Using Lemma 4, we construct a multiple-access

channel code for jointly uniform input distributions (in the
absence of any privacy constraint) for the channel W ◦ 󰁩WL.
Let m ∈ N. By Lemma 3, there exists a (2mnRDC

l )l∈L
distributed compression code (as defined in Definition 4) for
the classical-quantum product state 󰁨ρ⊗m

Un
LBn , where

󰁨ρUn
LBn ≜ 1

|Un
L |

󰁛

un
L∈Un

L

|un
L〉 〈un

L|⊗ ρ̄
󰁩WL(un

L)
Bn , (6)

and where (nRDC
l )l∈L belongs to C(󰁨ρUn

LBn). Then, by
Lemma 4, there exist el : Mm

l → Umn
l , l ∈ L, and d :

S=(HBmn) → Mm
L , where we have defined for l ∈ L,

Mm
l ≜ [2mnRl ] such that Rl = RU

l −RDC
l as m → ∞, and

lim
m→∞

P
󰀗
d

󰀕
ρ̄
󰁩W⊗m

L (eL(Mm
L ))

Bmn

󰀖
∕= Mm

L

󰀘
= 0, (7)

with eL(M
m
L ) ≜ (el(M

m
l ))l∈L.

Step 3: We combine Step 1 and Step 2 to define our en-
coders and decoder for the classical-quantum multiple-access
wiretap channel. Specifically, the encoders are defined as

φl : M
m
l 󰀁→ 󰁩W⊗m

l (el(M
m
l )), l ∈ L, (8)

and the decoder is defined as

ψ : ρ̄
φL(Mm

L )
Bmn 󰀁→ d(ρ̄

φL(Mm
L )

Bmn ), (9)

where φL(M
m
L ) ≜ (φl(M

m
l ))l∈L.

Remark 2. In Step 2, Lemma 3 cannot be directly applied to
󰁨ρUn

LY n as it is not a product state.

B. Coding scheme analysis

1) Average reliability: We have

P
󰁫
ψ(ρ̄

φL(Mm
L )

Bmn ) ∕= Mm
L

󰁬
= P

󰀗
d(ρ̄

󰁩W⊗m
L (eL(Mm

L ))

Bmn ) ∕= Mm
L

󰀘

m→∞−−−−→ 0, (10)

where the equality holds by definition of ψ and (φl)l∈L in (8),
(9), and the limit holds by (7).
2) Average message indistinguishability: To simplify nota-

tion, we use the notation xL ≜ xnm
L , uL ≜ unm

L , fL ≜ fm
L , for

unm
L ∈ Umn

L , xmn
L ∈ Xmn

L , fm
L ∈ Fm

F . According to Step 3 in
Section VI-A, the messages Mm

L and the output of the channel
between the transmitters and the eavesdropper are described
by the classical-quantum state 󰁨ρMm

L EnmFm
L

with

󰁨ρMm
L EmnFm

L
≜

󰁓
fL,uL,xL

󰁨pXmn
L Mm

L Fm
L
(xL,uL, fL)

× |uL〉〈uL|⊗ ρ̄xL
Emn ⊗ |fL〉〈fL| ,

where 󰁨pXmn
L Mm

L Fm
L

≜
󰁔m

i=1 󰁨pXn
LMLFL . Note that ML is uni-

formly distributed over Un
L and, by Lemma 4, eL(Mm

L ) is uni-
formly distributed over Umn

L . Hence, 󰁩W⊗m
L (eL(M

m
L )) is dis-

tributed according to a product distribution, and 󰁨ρMm
L EmnFm

L
is thus a product state, which we can write 󰁨ρMm

L EmnFm
L

=
󰁨ρ⊗m
MLEnFL

, where

󰁨ρMLEnFL ≜
󰁓

fL,un
L,xn

L
󰁨pXn

LMLFL(x
n
L, u

n
L, fL)

× |un
L〉〈un

L|⊗ ρ̄
xn
L

En ⊗ |fL〉〈fL| . (11)

Next, define the following classical-quantum state

ρFL(Xn
L)EnFL ≜

󰁓
fL,un

L,xn
L
pXn

LFL(Xn
L)FL(x

n
L, u

n
L, fL)

× |un
L〉〈un

L|⊗ ρ̄
xn
L

En ⊗ |fL〉〈fL| . (12)

Then, for ρU the fully mixed state on HUn
L
, we have

󰀂󰁨ρMm
L EmnFm

L
− ρ⊗m

U ⊗ 󰁨ρEmnFm
L
󰀂1

= 󰀂󰁨ρ⊗m
MLEnFL

− ρ⊗m
U ⊗ 󰁨ρ⊗m

EnFL
󰀂1

(a)

󰃑 m󰀂󰁨ρMLEnFL − ρU ⊗ 󰁨ρEnFL󰀂1
(b)

󰃑 m(󰀂󰁨ρMLEnFL − ρFL(Xn
L)EnFL󰀂1

+ 󰀂ρFL(Xn
L)EnFL − ρU ⊗ ρEnFL󰀂1
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+ 󰀂ρU ⊗ ρEnFL − ρU ⊗ 󰁨ρEnFL󰀂1)
󰃑 m(2󰀂󰁨ρMLEnFL − ρFL(Xn

L)EnFL󰀂1
+ 󰀂ρFL(Xn

L)EnFL − ρU ⊗ ρEnFL󰀂1)
(c)

󰃑 m(2V(󰁨pXn
LMLFL , pXn

LFL(Xn
L)FL)

+ 󰀂ρFL(Xn
L)EnFL − ρU ⊗ ρEnFL󰀂1)

(d)
= m(2V(pUn

L
pFL , pFL(Xn

L)FL)

+ 󰀂ρFL(Xn
L)EnFL − ρU ⊗ ρEnFL󰀂1)

(e)

󰃑 3m󰀂ρFL(Xn
L)EnFL − ρU ⊗ ρEnFL󰀂1

n→∞−−−−→ 0, (13)

where (a) and (b) hold by the triangle inequality, (c) holds
by strong convexity of the trace distance and the definitions
of 󰁨ρMLEnFL and ρFL(Xn

L)EnFL in (11) and (12), (d) holds
by the definition of 󰁨pXn

LMLFL in (5), (e) holds because
V(pUn

L
pFL , pFL(Xn

L)FL) 󰃑 󰀂ρFL(Xn
L)FL − ρU ⊗ ρFL󰀂1, and

the limit holds by Lemma 2 provided that RU
S 󰃑 H(XS |E)ρ,

∀S ⊆ L as n → ∞.
3) Achievable rate-tuples: Consider the following exten-

sion of the state described in (6)

󰁨ρUn
LXn

LBnFL

≜
󰁓

un
L∈Un

L

󰁓
xn
L∈Xn

L

󰁓
fL∈FF

󰁨pXn
LMLFL(x

n
L, u

n
L, fL)

× |un
L〉 〈un

L|⊗ |xn
L〉 〈xn

L|⊗ ρ̄
xn
L

Bn ⊗ |fL〉〈fL| .

Define also the state

ρUn
LXn

LBnFL

≜
󰁓

un
L∈Un

L

󰁓
xn
L∈Xn

L

󰁓
fL∈FF

pXn
LMLFL(x

n
L, u

n
L, fL)

× |un
L〉 〈un

L|⊗ |xn
L〉 〈xn

L|⊗ ρ̄
xn
L

Bn ⊗ |fL〉〈fL| .

Then, we have

max

󰀕
󰀂󰁨ρXn

LBn − ρXn
LBn󰀂1,max

S⊆L
󰀂󰁨ρUn

SBn − ρUn
SBn󰀂1

󰀖

󰃑 󰀂󰁨ρUn
LXn

LBnFL − ρUn
LXn

LBnFL󰀂1
(a)

󰃑 V(󰁨pXn
LMLFL , pXn

LFL(Xn
L)FL)

(b)
= V(pUn

L
pFL , pFL(Xn

L)FL)

󰃑 󰀂ρFL(Xn
L)FL − ρU ⊗ ρFL󰀂1

󰃑 󰀂ρFL(Xn
L)EnFL − ρU ⊗ ρEnFL󰀂1

n→∞−−−−→ 0 (14)

where (a) holds by strong convexity of the trace distance, (b)
holds by (5), and the limit holds by (13).

Next, by Step 2 in Section VI-A, (nRDC
l )l∈L must belong

to C(󰁨ρUn
LBn). We can choose (nRDC

l )l∈L ∈ C(ρXn
LBn) be-

cause, as proved next, we have C(ρXn
LBn) ⊆ C(󰁨ρUn

LBn). For
(nRDC

l )l∈L in C(ρXn
LBn) and any S ⊆ L, we have

nRDC
S

(a)

󰃍 H(Xn
S |BnXn

Sc)ρ

= H(Xn
LB

n)ρ −H(BnXn
Sc)ρ

= H(Bn|Xn
L)ρ −H(Bn|Xn

Sc)ρ +H(Xn
S )ρ

(b)

󰃍 H(Bn|Xn
L)ρ −H(Bn|Un

Sc)ρ +H(Xn
S )ρ

(c)

󰃍 H(Bn|Xn
L)ρ −H(Bn|Un

Sc)ρ +H(Un
S )ρ

(d)

󰃍 H(Bn|Xn
L)󰁨ρ −H(Bn|Un

Sc)󰁨ρ +H(Un
S )󰁨ρ − o(n)

(e)

󰃍 H(Bn|Un
L)󰁨ρ −H(Bn|Un

Sc)󰁨ρ +H(Un
S )󰁨ρ − o(n)

= H(Un
S |BnUn

Sc)󰁨ρ − o(n),

where (a) holds because (nRDC
l )l∈L in C(ρXn

LBn), (b) holds
by the quantum data processing inequality because, by defini-
tion of ρ, for any S ⊆ L, Un

S is a function of Xn
S , (c) holds

by Lemma 2 because, by definition of ρ, for any S ⊆ L,
Un
S is the output of hash functions when Xn

S is the input, (d)
holds by the Alicki-Fannes inequality and (14), (e) holds by
the quantum data processing inequality because, by definition
of 󰁨ρ, 󰁨Xn

L is a function of Un
L .

Hence, by having chosen (nRDC
l )l∈L ∈ C(ρXn

LBn) and
RU

S 󰃑 H(XS |E)ρ, ∀S ⊆ L in (13), and by using Step 3
in Section VI-A, we have the system

󰀕
RDC

S 󰃍 H(XS |BXSc)ρ, ∀S ⊆ L
RS +RDC

S 󰃑 H(XS |E)ρ, ∀S ⊆ L

󰀖
. (15)

Next, one can show that the set function S 󰀁→ H(XS |E)ρ −
H(XS |BXSc)ρ is submodular. Using this fact and Fourier-
Motzkin elimination, one can then show that the system (15)
reduces to

RS 󰃑 H(XS |E)ρ −H(XS |BXSc)ρ, ∀S ⊆ L. (16)

4) Expurgation: With an expurgation argument that has
a negligible impact on the asymptotic communication rates,
one can show the existence of a code such that for any
codeword mL, we have 󰀂󰁨ρmL

EnmFm
L
− 󰁨ρEnmFm

L
󰀂1

n→∞−−−−→ 0 and

P
󰁫
ψ(ρ̄

φL(ML)
Y mn ) ∕= ML|ML = mL

󰁬
n→∞−−−−→ 0.

VII. CONCLUDING REMARKS

We defined the private capacity region for quantum
multiple-access channels and established a regularized ex-
pression for this capacity region. In the case of degradable
channels, we also derived two single-letter expressions for the
best achievable sum-rate.
Our proof technique for the achievability part emulates a

proof based on random binning. Specifically, our achievability
result decouples the reliability and privacy constraints, which
are handled via distributed source coding with quantum side
information at the receiver and distributed hashing, respec-
tively. Consequently, our proof reduces a multiuser coding
problem into multiple single-user coding problems. Indeed,
distributed source coding with quantum side information at
the receiver can be reduced to single-user source coding
with quantum side information at the receiver (for instance,
via time-sharing), and distributed hashing is, by construction,
performed independently at each transmitter.
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