q

Check for
updates

Designing a ROCm-Aware MPI Library
for AMD GPUs: Early Experiences

Kawthar Shafie Khorassani, Jahanzeb Hashmi®™, Ching-Hsiang Chu®™,
Chen-Chun Chen®™) | Hari Subramoni®™, and Dhabaleswar K. Panda(®)

The Ohio State University, Columbus, OH 43210, USA
{shafiekhorassani.1,hashmi.29,chu.368,chen.10252}@osu.edu,
{subramon,panda}@cse.ohio-state.edu

Abstract. Due to the emergence of AMD GPUs and their adoption in
upcoming exascale systems (e.g. Frontier), it is pertinent to have sci-
entific applications and communication middlewares ported and opti-
mized for these systems. Radeon Open Compute (ROCm) platform is an
open-source suite of libraries tailored towards writing high-performance
software for AMD GPUs. GPU-aware MPI, has been the de-facto stan-
dard for accelerating HPC applications on GPU clusters. The state-of-
the-art GPU-aware MPI libraries have evolved over the years to sup-
port NVIDIA CUDA platforms. Due to the recent emergence of AMD
GPUs, it is equally important to add support for AMD ROCm plat-
forms. Existing MPI libraries do not have native support for ROCm-
aware communication. In this paper, we take up the challenge of design-
ing a ROCm-aware MPI runtime within the MVAPICH2-GDR library.
We design an abstract communication layer to interface with CUDA
and ROCm runtimes. We exploit hardware features such as PeerDirect,
ROCm IPC, and large-BAR mapped memory to orchestrate efficient
GPU-based communication. We further augment these mechanisms by
designing software-based schemes yielding optimized communication per-
formance. We evaluate the performance of MPI-level point-to-point and
collective operations with our proposed ROCm-aware MPI Library and
Open MPI with UCX on a cluster of AMD GPUs. We demonstrate 3—
6x and 2x higher bandwidth for intra- and inter-node communication,
respectively. With the rocHPCG application, we demonstrate approxi-
mately 2.2x higher GFLOPs/s. To the best of our knowledge, this is
the first research work that studies the tradeoffs involved in designing a
ROCm-aware MPI library for AMD GPUs.

Keywords: ROCm - AMD GPUs - MPI

1 Introduction

Modern High-Performance Computing (HPC) systems are equipped with
state-of-the-art accelerators including Graphics Processing Units (GPUs).

This research is supported in part by NSF grants #1818253, #1854828, #1931537,
#2007991, #2018627, and XRAC grant #NCR-130002.
© Springer Nature Switzerland AG 2021

B. L. Chamberlain et al. (Eds.): ISC High Performance 2021, LNCS 12728, pp. 118-136, 2021.
https://doi.org/10.1007/978-3-030-78713-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-78713-4_7

Designing a ROCm-Aware MPI Library for AMD GPUs: Early Experiences 119

Such systems are currently fueling the next generation of Artificial Intelligence
(AI) and scientific applications. This trend is timely to avert the challenges
presented by the end of Moore’s law [15], which sustained performance growth
for the last several decades. The use of GPUs is prevalent in many modern
HPC and cloud systems for driving scientific applications and Machine Learning
workloads. However, it is important to innovate further by evolving and expand-
ing the support provided by GPUs to meet the ever-increasing computational
requirements of next-generation applications.

The landscape of accelerator-based computing is currently dominated by
NVIDIA GPUs. However, other alternatives like Radeon Instinct devices (GPUs)
from AMD and Xe GPU from Intel have recently started emerging. In particu-
lar, AMD GPUs offer a promising platform that has been adopted by upcoming
next-generation exascale systems such as Frontier [3] and El Capitan [6]. In addi-
tion to these up-and-coming systems, a current compute platform, the Corona
cluster at Lawrence Livermore National Laboratory [2], is also equipped with
291 nodes consisting of AMD Mi50 and AMD Mi60 GPUs. Of these nodes, 123
of them are equipped with AMD EPYC 7002 series CPU nodes, with each node
consisting of 8 AMD Radeon Instinct MI50 GPU accelerators.

Prior to the emergence of AMD GPUs, NVIDIA GPU platforms have been
the defacto standard for exploiting GPUs within applications for communication
and computation tasks. NVIDIA GPUs rely on NVIDIAs in-house toolkit called
Compute Unified Device Architecture (CUDA) to support GPU-accelerated
high-performance applications. In the past, applications wanting to use AMD
GPUs often had to rely on the OpenCL library, which made it difficult to port
applications while CUDA as a programming system was much more developed.
Recent efforts by AMD has resulted in Radeon Open Compute (ROCm) soft-
ware stacks that offer seamless support for high-performance libraries required
for efficient computation and communication on modern AMD GPU hardware.
ROCm is an open-source toolkit provided by AMD consisting of libraries, pro-
filers, and APIs used in the development of high-performance software for AMD
GPUs. An important feature offered by ROCm is HIP [14]—a C++ Runtime
APIT and kernel language that allows developers to create portable applications
for AMD and NVIDIA GPUs. In most cases, HIP offers one-to-one mappings of
API calls between CUDA and ROCm and provides tools for automatic trans-
lation from CUDA to HIP code. This source-to-source translation, also referred
to as hipification, has helped in seamlessly porting application codes to AMD
hardware.

The Message Passing Interface (MPI) standard, is considered a defacto API
for writing parallel programs on modern HPC systems. In order to accelerate
large-scale high-performance applications on GPU clusters, GPU-aware MPI has
been the widely adopted programming model in use. The state-of-the-art MPI
libraries have evolved over the years to incorporate GPU-aware communication
support at the MPI layer. This is also referred to as CUDA-aware MPI as it
entails support for NVIDIA CUDA platforms due to the dominance of NVIDIA
GPUs in the hardware configuration of GPU-enhanced clusters. The emergence

120 K. Shafie Khorassani et al.

of AMD GPUs and their adoption in upcoming exascale systems makes it impor-
tant to have support for AMD ROCm platforms in modern MPI libraries. Cur-
rent MPI implementations do not have native support for direct communication
between device resident data on AMD GPUs or ROCm-aware communication.
In order to accelerate scientific applications, Machine Learning workloads, and
to have parallel applications ready to scale on next-generation exascale systems
with AMD GPU hardware configurations, it is crucial to have the appropriate
support at the middleware level by designing a ROCm-aware MPI runtime.

In this paper, our goal is to design a ROCM-aware MPI runtime
which brings about the following challenges: 1) How can we design an
abstract and extensible communication layer for MPI libraries that interfaces
with both the CUDA and the ROCm run-times? 2) Can we appropriately make
use of the various features supported by ROCm including ROCm IPC, ROCm-
RDMA (PeerDirect), etc., and identify the ranges in which each of these fea-
tures is optimal for data transfer? 3) How can we utilize unified memory and
AMD’s Large Bar mapped memory feature to optimize the performance of MPI
operations?

1.1 Contributions

In this paper, we design a ROCm-aware implementation of MPI developed over
MVAPICH2-GDR by delving into the details and challenges of utilizing existing
hardware and software. The challenge here is to properly extend the native
support within the MPI library to run with ROCm on AMD GPUs. We design
a communication layer that is able to interface with both CUDA for NVIDIA
GPUs and ROCm for AMD GPUs and derive MPI operations seamlessly. We
evaluate the proposed ROCm-aware MPI implementation against Open MPI
with UCX as the ROCm-aware communication backed on the Corona Cluster
at the benchmark-level and with ROCm-enabled applications. In summary, the
paper incorporates the following contributions:

— Design an abstract and extensible communication layer in the MPI runtime
to interface with both CUDA and ROCm run-times to drive MPI communi-
cation.

— Identify challenges with utilizing existing hardware and software configura-
tions for enabling ROCm-aware MPI communication.

— Propose new designs in the MPI library to exploit AMD GPUs using ROCm
libraries and features e.g., ROCm PeerDirect, ROCm IPC, and unified mem-
ory.

— Incorporate tuning based selection of ROCm designs for MPI protocols (e.g.,
eager vs. rendezvous) for appropriate message ranges.

— Comprehensive evaluation of MPI point-to-point and collective operations for
GPU resident data and comparing our proposed ROCm-aware MPI imple-
mentation against state-of-the-art communication libraries (Open MPI +
UCX).

Designing a ROCm-Aware MPI Library for AMD GPUs: Early Experiences 121

— Evaluate the efficacy of our proposed ROCm-aware MPI using various appli-
cations such as a 3DStencil, and HPCG and compare the performance against
Open MPI + UCX on the LLNL Corona cluster.

To the best of our knowledge, this is the first research work that
studies and analyzes the tradeoffs involved in designing a ROCm-
aware MPI library for AMD GPUs.

2 Background

2.1 Radeon Open Compute (ROCm)

ROCm [5] is an open-source software platform tailored towards high-performance
computing and Machine Learning on AMD GPUs. It consists of tools for devel-
opment on GPUs, APIs, and drivers that support AMD GPUs. ROCm also has
support for various programming models such as OpenMP, OpenCL, and HIP.
It has recently been integrated with many scientific applications such as HPCG,
NAMD, GRID, and GROMACS and Machine Learning frameworks including
TensorFlow, Pytorch, RAJA, and Kokkos.

2.2 ROCm Remote Direct Memory Access (RDMA)

ROCm RDMA enables third-party devices such as the Mellanox Infiniband HCA
device to have a direct peer-to-peer data path with GPU memory. This removes
CPU intervention from communications between GPUs across the network, fur-
ther enhancing communication latency between GPU-GPU transfers.

2.3 Inter-Process Communication (IPC)

IPC is used to address overheads associated with data transfer between GPUs
within a node. The ROCm platform has support for the IPC interface allowing a
process to expose its GPU buffer to a remote process, optimizing the movement
of data between GPUs. This allows for directly implementing an MPI call over
GPU device memory. A remote process could directly call deviceMemCpy on the
exposed IPC handle from the sender process leading to optimized data transfer
between GPUs.

2.4 Message Passing Interface (MPI)

The Message Passing Interface (MPI) is a programming paradigm used to enable
communication amongst processes for parallel applications. There are multiple
communication primitives within MPI including one-sided, point-to-point, and
collective operations. One-sided communication, also referred to as remote mem-
ory access (RMA), involves one process communicating with another without
any intervention from the remote process. A process sends data to a receiv-
ing process without requiring synchronization, eliminating this step from the

122 K. Shafie Khorassani et al.

data transfer process. Point-to-point operations involve direct communication
between a sender process and a receiver process, and unlike the non-blocking
nature of one-sided communication, it requires some synchronization between
the two processes involved. Collective communication refers to multiple processes
communicating with one or many processes.

In this work, we focus on point-to-point and collective communication and
what factors to consider when making these operations ROCm-aware. Through
CUDA-aware MPI functionality in various MPI libraries such as MVAPICH2-
GDR [16] and Open MPI [11], these operations can be run on NVIDIA GPUs.
They utilize various schemes to optimize and enhance the GPU-based communi-
cation through GPUDirect RDMA and IPC. In order to extend these operations
to run on AMD GPUs, we require a ROCm-aware implementation of MPI. We
evaluate Open MPI + Unified Communication X (UCX) [7] against our proposed
development, where UCX is used as the ROCm-aware communication backend
to support AMD GPU runs since Open MPI is not a stand-alone ROCm-aware
MPI library.

2.5 Protocols for High-Performance Communication in MPI

Figures 1(b) and 1(b) depict how the eager and rendezvous protocol respectively
are typically implemented. The eager protocol consists of four steps—1) copying
the data from the application buffer to buffers internal to the MPI library, 2)
initiating the data transfer to the remote process, 3) detecting the reception of
data in buffers internal to the MPI library and, 4) copying the data back to the
application buffer. With most high-performance networks like InfiniBand, the
network itself takes care of the actual data transfer. Thus, initiating the data
transfer at the sender and detecting the reception of the data at the receiver
are low overhead tasks. So, apart from the time to transfer data over the net-
work, the main costs involved in an eager transfer are the memory copies at the
sender /receiver. Note that steps #1 and #2 happen inside the send function call
itself. With a rendezvous protocol on the other hand (Fig. 1(b)), MPI designers
take advantage of the RDMA feature that high-performance interconnects like
InfiniBand offers and transfers data directly from the source application buffer
to the target application buffer (with the appropriate exchange of control infor-
mation), thereby avoiding the extra large memory copies from the application
buffer to internal communication buffers within the library.

3 Designing and Implementation of ROCm-Aware MPI

3.1 Overview of Technologies Offered by NVIDIA and AMD for
GPU Based Communication

As discussed earlier, the state-of-the-art GPU-aware MPI libraries have sup-
ported NVIDIA GPUs and hence, the communication designs employed by these
MPI libraries were highly CUDA specific. For example, two popular GPU-aware

Designing a ROCm-Aware MPI Library for AMD GPUs: Early Experiences 123

MPI_Send Application MPI_Recv Sender Receiver
Process Process
Application Buffer Application Buffer
Register Send
= Buffer
g § Request To Seng (RTS)
£]
3 2 2 8 Register Recv
S 3 o s Buffer, Post
= . [TS) Recvto HCA
o oz send (C
5 | Library Registered MPI Library ' [Library Registered 5 %
E Buffer Buffer 8 Post Send
3 o . o} 10 HCA
© S A bbb RDMA Transfer
<3\ ST e R
6% prael
\
3 3. Copy over Network /v{t Finished Transmission (FIN)
High Performance Network . f

(a) Eager Protocol (b) Rendezvous Protocol

Fig. 1. Point-to-point communication protocols in MPI

MPI libraries MVAPICH2-GDR and Open MPI supported NVIDIA’s GPUDi-
rect technology for communicating GPU resident data over RDMA networks.
However, with the newer AMD GPU and ROCm stacks offering similar tech-
nologies, the MPI libraries have to go through the same route by evaluating
various technologies offered by ROCm. We summarize the key communication
technologies offered by both the vendors and their similarities/differences in
Table 1 below:

Table 1. Similarities and differences between CUDA and ROCm communication fea-
tures used by GPU-aware MPI libraries

Technology Dependency
NVIDIA | AMD NVIDIA AMD
RDMA Support | GPUDirect ROCmRDMA | nv_peer_mem ROCm Driver
RDMA (PeerDirect) | Kernel Module | (no kernel
module)
Peer-to-peer CUDA ROCm IPC CUDA ROCr
IPC Runtime Runtime
Mapped Copy | GDRCopy | Large BAR GDRCopy ROCm Driver
BAR1 Feature Kernel Module | (no kernel
module)

As demonstrated, most of the features provided by AMD are integrated into
the ROCm driver or the ROCr runtime while NVIDIA often requires separate
modules to enable features like GDRCopy and GPUDirect RDMA. The unified
package offered by AMD is advantageous since most HPC centric clusters often
do not install separate kernel modules due to security concerns.

124 K. Shafie Khorassani et al.

3.2 Designing Unified Device Abstraction Interface for
Accelerator-Aware MPI

In order to avoid the duplication of efforts when designing ROCm-aware MPI,
we propose a unified device abstraction interface (UDI) in the MPI runtime. The
purpose of this abstraction is to seamlessly interface with vendor-specific APIs
without requiring the change in the MPI level designs. There are mainly two
approaches used to interface with AMD GPUs; 1) low-level HSA APIs, and 2)
high-level HIP APIs. Due to the similarities and one-to-one mappings between
CUDA APIs and HIP APIs, we used HIP in our UDI layer to interface with AMD
GPUs. Figure 2 shows the high-level architecture of our GPU-aware MPI runtime
with UDI abstraction layer. We move all the protocol level advanced designs in
the UDI layer. For instance, one of the major designs employed by our MPI
library for peer-to-peer IPC transfers is to amortize the overheads of registering
handles by caching the registered handles for subsequent communications. By
moving this design to UDI, we avoid redundancy and the same designs are used
for both CUDA IPC as well as ROCm IPC. As later shown in Fig.4 these
designs lead to significant performance improvement for both CUDA-aware and
ROCm-aware MPI communication.

Scientific and Deep Learning Applications

MPI Runtime

[Point-to-point][Collectives][One-sided]

[Eager Protocol] [Rendezvous Protocol]

Unified Device Abstraction Interface (UDI)
{ Pipelined Staging [CPU Mapped Copy][Peer-to-peer][RDMA]

(
[Pointer Cache][IPC Cache][IB Reg. Cache] GPU Kernels
(

CUDA APIs) ROCm APIs (HIP)]

Accelerator Hardware

[NVIDIA GPUs] [AMD GPUs]

Fig. 2. A high-level overview of the proposed designs in accelerator-aware MPI. We
propose a Unified Device abstraction Interface (UDI) layer in MPI that abstracts the
common operations in a GPU-aware MPI runtime. The modular design makes it easy
to interface with vendor-specific backend implementations such as CUDA or ROCm
(HIP) APIs.

3.3 PeerDirect

Network adapters can directly access device-resident data through ROCm-
RDMA, enabling direct memory access for 3rd party PCle devices. For AMD

Designing a ROCm-Aware MPI Library for AMD GPUs: Early Experiences 125

GPUs, ROCmRDMA, or PeerDirect support, is available through the ROCm
driver. AMD GPUs large-bar configuration allows for the entire GPU memory
to be exposed, enabling peer-to-peer DMA access. The ROCm-aware PeerDirect
approach in the proposed ROCm-aware MPI library works with the rendezvous
protocol for data transfer. The source process and the remote process exchange
the addresses of their buffers. An RDMA operation is then used to issue the data
transfer. A registration cache is used here to keep a record of the reused buffers
to reduce the overhead of repeated registration of GPU memory.

10 12
PCI Bar Mapped Memory - Enabled PCl Bar Mapped Memory - Enabled
8 o PCl Bar Mapped Memory - Disabled I 10 =0 PCl Bar Mapped Memory - Disabled o
n = a-0—-8 g-p- 8 -0-8 4 - 7 8 F
3 6 El o . @ O—@ @ - e
Z6
2 4 2
5 3 4
2 2
0
1 2 4 8 16 32 64 128256512 1K 2K 4K 8K 1 2 4 8 16 32 64 128256512 1K 2K 4K 8K
Message Size (Bytes) Message Size (Bytes)
(a) Intra-Node Latency (b) Inter-Node Latency

Fig. 3. Utilizing PCI bar mapped memory for small message inter-node and intra-node
communication

3.4 CPU-Driven GPU Mapped Memory Copy Based Design

In order to enhance small message performance on NVIDIA GPUs, GDRCOPY,
a low-overhead CPU driven copy that allows for the CPU to map the GPU
memory, is used. It utilizes a specific API and the GDRCopy kernel module to
pin the device buffer using PCI BARI1 memory. The host CPU treats this mapped
memory just like any other host memory and derives the communication. On
AMD GPUs, no such kernel module is required, and instead, it offers support
for Large BAR (Base Address Register) feature that maps entire GPU memory
to host address space. We exploit large Bar features to provide similar small
message performance enhancements. In Fig. 3, we see the impact of utilizing the
mapped copy through the Large BAR feature of AMD GPUs by evaluating the
performance difference when it is enabled compared to when it is disabled. In the
small message range where these designs would have the most impact between
the range of 1B to 8 KB, we see up to 3x lower latency in utilizing the PCI Bar
Mapped Memory copy for intra-node point-to-point communication and up to
2x better performance for inter-node communication. We evaluate the impact of
the added PCI Bar Mapped Memory copy on intra-node and inter-node point-
to-point performance in Fig.5(a) and Fig. 6(a), respectively.

126 K. Shafie Khorassani et al.

3.5 ROCm IPC Based Design

The simplest approach to designing a rendezvous based transfer for large message
sizes between GPUs on a node would be to implement a staging based design
where the data transfer involves staging to the host memory. The source would
copy data from the device to the shared host memory region between the two pro-
cesses, and the destination would then copy from the host to its device memory.
This would incur an added cost for large message sizes where the performance
would be impacted by the overhead of these additional copies. Inter-Process
Communication (IPC) provides a peer-to-peer mechanism that allows for direct
MPI calls over device memory, facilitating a copy between processes on different
GPUs within a node, while entirely bypassing the host memory. However, peer-
to-peer support is only available when two devices share the same PCle switch in
the system topology (e.g., devices are the same socket). Earlier work presenting
the benefits of utilizing IPC on NVIDIA GPUs [17] shows enhanced performance
in allowing direct MPI calls over device memory for large message sizes. We apply
IPC-based data transfer mechanisms for ROCm-aware communication through
enabling direct access to the AMD GPU memory between processes on the same
node and sharing the same PCI root complex. The design is detailed as follows:
A process will use devicel PCMemHandle (abstract call in UDI) to generate
an IPC handle on its device buffer and send this handle to the remote process.
This will expose its device buffer, allowing for it to be mapped by the remote
process into its own address space and then directly issue a device M emCpy call
on the addressable buffer. In utilizing ROCm IPC with the rendezvous protocol,
this exchange happens during the handshake between the source process and the
remote process. When the source is sending a Request to Send (RTS) message,
it will also exchange the IPC handle generated. The remote process will map
this handle and directly copy from the device memory of the source.

Historically, IPC usage has shown overhead due to generating and exchanging
IPC handles repeatedly. This added cost makes the performance gain, that would
be obtained through bypassing host memory, negligible. In order to eliminate this
added overhead and to demonstrate benefit from the IPC designs, we utilize an IPC
Cache in the proposed ROCm-aware MPI. This implements caching of IPC handles
at the source and destination, allowing for direct data movement whenever a cache
hit is encountered on the handle. This IPC cache exists in the UDI layer where it is
utilized for the ROCm run-time in order to have the handles cached for subsequent
communication. Figure 4(a) demonstrates the difference in latency for large mes-
sage intra-node point-to-point communication between 128 KB and 4 MB with
IPC cache enabled compared to IPC cache disabled. We see 2-3x lower latency
when IPC cache is enabled and approximately 10x higher bandwidth (Fig. 4(b)).

We integrate the ROCm-IPC design into the proposed ROCm-aware MPI
library to improve intra-node performance for data transfer between GPUs on
the same node. We evaluate designs for large message ranges to determine the
appropriate range of use on AMD GPUs. We present intra-node latency, band-
width, and bi-directional bandwidth with ROCm-IPC being used for message
sizes > 8 KB in Fig. 5.

Designing a ROCm-Aware MPI Library for AMD GPUs: Early Experiences 127

2500 25

BIPC Cache Enabled BIPC Cache Enabled _

2000 IPC Cache Disabled 20 IPC Cache Disabled = =
3z z = E .
> 1500 $ 15 = =
o = = =
] <= = =
£ 1000 B0 = =
= 3 = =
© = =
500 £ s = =
o =7 ="
— 0 =7 =

128K 256K 512K 1M 2M am 128K 256K 512K 1M 2M am

Message Size (Bytes) Message Size (Bytes)
(a) Intra-Node Latency (b) Intra-Node Bandwidth

Fig. 4. Utilizing IPC cache for large message intra-node communication

4 Performance Evaluation

In this section, we detail the hardware and software configurations of the com-
pute platform used for the evaluation. We also present a detailed evaluation of
the proposed ROCm-aware MPI implementation against Open MPI14.1.0 + UCX
1.10.0 (details of the configuration provided in Table 2). We report a comparison
of latency, bandwidth, and bi-directional bandwidth for MPI point-to-point oper-
ations and MPI collective operations. We then delve into the application level
benchmarks by evaluating hipified versions of 3D Stencil, and HPCG (rocHPCG)
with ROCm support.

4.1 Experimental Setup

The evaluation was conducted on the Corona Cluster, deployed at Lawrence
Livermore National Laboratory [2]. It consists of 291 AMD EPYC 7002 series
CPU nodes: 82 nodes are equipped with 4 MI50 AMD GPUs per node, 82 nodes
have 4 MI60 AMD GPUs per node, and 123 nodes consisting of 8 MI50 AMD
GPUs per node. The MI50 AMD GPUs have 32 GB HBM, with single-precision
peak theoretical floating-point performance of up 13.3 teraFLOPS.

Each node is equipped with dual-socket Mellanox IB HDR-200, with AMD
EPYC 7402 24-Core Processor running Mellanox OFED 5.0, and ROCm version
4.1.0. In our evaluation, we utilized the nodes with 8 MI50 GPUs per node to
evaluate the performance of dense GPU nodes.

Peak Achievable Performance of Interconnects—To evaluate the perfor-
mance of the proposed ROCm-aware MPI and OpenMPI + UCX compared to
the peak achievable performance, we utilized the following tests:

— rocm_bandwidth_test: We utilized this test to evaluate the performance
between two GPUs on a node (displays the peak achievable bandwidth by
performing a uni/bi-directional copy involving the two devices [1]).

— Infiniband Perftest: We utilized the ib_read_bw and ib_read_lat provided by
the Infiniband Perftest package to measure the peak achievable bandwidth
and minimum achievable latency of communicating data across two nodes [4].

128 K. Shafie Khorassani et al.

Table 2. Experimental setup of OpenMPI 4.1.0 and UCX 1.10.0

Configure UCX —with-rocm=<path-to-rocm>-without-knem-without-
cuda—enable-optimizations

Configure OpenMPI | —with-ucx=<path-to-ucx>—without-verbs

Run-time parameters | -mca btl ““openib” -mca pml ucx
ROCm UCX Parameters: rocm, rocm_copy,
rocm-ipc

4.2 Micro-Benchmark Evaluation

In order to develop a comprehensive evaluation of various point-to-point and
collective MPT operations, we utilized the OSU Micro-Benchmarks (OMB) suite
version 5.7 that has support for AMD GPUs via the HIP interface. These micro-
benchmarks are used in evaluating MPI operations across different MPI libraries
on the CPU and support for CUDA-aware operations on the GPU for point-to-
point, one-sided, and collective communication. The metrics reported represent
measures of latency, bandwidth, or bi-directional bandwidth. We utilize OMB
with added support for ROCm-aware MPI operations (through HIP) to evaluate
our proposed ROCm-aware MPI implementation against Open MPI + UCX.

Intra-Node Point-to-Point—We evaluate the most common configuration for
binding MPI processes to GPUs for an MPI+GPU run where one MPI process
utilizes a single GPU. We evaluate intra-node point-to-point communication with
two processes bound to two GPUs on the same node. Figure 5 depicts the results of
evaluating this on MI50 GPUs on the Corona system for latency, bandwidth, and
bi-directional bandwidth performance. Two GPUs on the same socket within the
node (i.e. GPU 0 and GPU 1) share the same PCle switch and can have peer-to-
peer access enabled. The proposed ROCm-aware MPI demonstrates as low as 1.74
us latency (Fig.4(a)) for 8 Bytes. For small message intra-node communication,
we utilize the PCI Bar Mapped Memory approach proposed in Sect. 3.4 in order to
obtain the latency presented. As demonstrated in Fig. 3(a), within the range of 1 B
to 8 KB we see between 16-66% benefit based on message size by enabling PCI Bar
Mapped Memory for this range as opposed to disabling it. This PCI Bar Mapped
Memory approach improves the latency of the proposed ROCm-aware MPI from
~6.54 ps to ~1.80 ws within the range of 1 B to 16 Bytes. Within the range of
128 Bytes to 8 KB, we see a vast performance difference between the proposed
ROCm-aware MPI and Open MPI + UCX. This gap in performance between the
two MPI libraries can be attributed to the use of Loopback designs in conjunction
with the PCI Bar Mapped Memory in the proposed designs. The loopback design
utilizes ROCm RDMA and the PCI Bar Mapped Memory to avoid expensive copy
operations by relying on IB verbs to initiate the transfer between the host and
device [20]. In Fig. 5(c), we see that the bandwidth of the proposed ROCm-aware
MPT is about 3% higher than that of Open MPI + UCX and between 3—6x higher
for bi-directional bandwidth. In this range, the proposed ROCm-aware MPI uti-
lizes the ROCm-IPC cache proposed in Sect. 3.5 to deliver 23.8 GB/s bandwidth,

Designing a ROCm-Aware MPI Library for AMD GPUs: Early Experiences 129
12 800
—o— MVAPICH2-GDR + PROPOSED ROCm-aware MPI - MVAPICH2-GDR + PROPOSED ROCm-aware MPI
10 _ _
—0- OpenMPI4.1.0 + UCX 1.10 ; = oo O OpenMPI4.1.0+UCX 1.10
= 8 ’ =z
3 =
/
g6 g 400
-2 ~d g
84]
; 200
2 P |
o 0 Lu= —a=

1 2 4 8 16 32 64 128256512 1K 2K 4K

Message Size (Bytes)

8K 16K 32K 64K 128K 256K 512K 1M 2M 4M
Message Size (Bytes)

(a) Latency (Small Messages) (b) Latency (Large Messages)

w
o
@
o

E=SMVAPICH2-GDR + PROPOSED ROCm-aware MPI == MVAPICH2-GDR + PROPOSED ROCm-aware MPI

EEE OpenMPI 4.1.0 + UCX 1.10 55.85 GB
=Peak Bi-directional Bandwidth

N
V]
[V
o

EEOpenMPI 4.1.0 + UCX 1.10

N
o

28.57 GB

==Peak Unidirectional Bandwidth

Bandwidth (GB)
&G
Bandwidth (GB)
w
S

=
o

w

8K 16K 32K 64K 128K 256K 512K 1M 2M 4M
Message Size (Bytes)

(¢) Bandwidth

8K 16K 32K 64K 128K 256K 512K 1M 2M 4M
Message Size (Bytes)

(d) Bi-Directional Bandwidth

Fig. 5. Comparison of intra-node MPI point-to-point operations between proposed
ROCm-aware MPI Library and Open MPI 4+ UCX on the Corona system

and 39.2 GB/s bi-directional bandwidth at 1 MB message transfer. As depicted in
Fig. 5(b), enabling the IPC cache designs improves the bandwidth by over 4X. We
see similar trends as Fig. 4(b) in this comparison between the proposed ROCm-
aware MPI library and OpenMPI + UCX, with the proposed designs performing
about 3x higher than Open MPI 4+ UCX.

Inter-Node Point-to-Point—Device-resident data is typically sent over the
network in order to achieve higher scalability and enhanced performance for
HPC applications. We evaluated the performance of MPI communication of GPU
resident data across the InfiniBand network (IB HDR 200 Gbps) by using point-
to-point latency, bandwidth, and bi-directional bandwidth benchmarks. Figure 6
shows the result of inter-node device-to-device communication between two MPI
processes each bound to a GPU on different nodes.

We see similar trends in latency between the proposed ROCm-aware MPI
and OpenMPI + UCX, achieving 3.5 ps and 4.01 ps minimum latency, respec-
tively. This is in comparison to the minimum achievable latency of 2.8 ws for this
configuration of communication. The proposed ROCm-aware MPI utilizes the
PCI Bar Mapped memory for small message size communication demonstrated
in Fig. 3(b) to achieve low latency between the range of 1 B to 8 KB. In terms of
the fighandwidth evaluation, shown in Fig. 6(c), the peak achievable bandwidth
is 11.71 GB/s. The proposed ROCm-aware MPI is able to achieve close to peak
performance with 11.57 GB/s bandwidth compared to OpenMPI + UCX at 6.67

130 K. Shafie Khorassani et al.

800

8 —o— MVAPICH2-GDR + PROPOSED ROCm-aware MPI
600 =0~ OpenMPI 4.1.0 + UCX 1.10
6 _ = Minimum Achievable Latency
= 3
2 2
Za g 400
< 2
5 5
2 —&—MVAPICH2-GDR + PROPOSED ROCm-aware MPI| 200
—o=- OpenMPI 4.1.0 + UCX 1.10
o == Minimum Achievable Latency 0
1 2 4 8 16 32 64 128256512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M
Message Size (Bytes) Message Size (Bytes)
(a) Latency (Small Messages) (b) Latency (Large Messages)
20 25
E==MVAPICH2-GDR + PROPOSED ROCm-aware MPI
EEOpenMPI 4.1.0 + UCK 1.10 E=IMVAPICH2-GDR + PROPOSED ROCm-aware MP)
15 11.71GB 0 B OpenMPI 4.1.0 + UCX 1.10
@ ===Peak Unidirectional Bandwidth = pen -1 g 23.42 GB
e C) ===Peak Bi-directional Bandwidth "
£ £
T 10 =]
'g 'g 10
5 5
o 5 o0
5
0 0
8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M
Message Size (Bytes) Message Size (Bytes)
(¢) Bandwidth (d) Bi-Directional Bandwidth

Fig. 6. Comparison of inter-node MPI point-to-point operations between proposed
ROCm-aware MPI Library and Open MPI 4+ UCX on the Corona system

GB/s bandwidth. This communication across the nodes is critical for scalabil-
ity and important to analyze in order to understand how well the bandwidth
provided by the Infiniband networks is saturated by the MPI libraries.

MPI Collective Operations—We evaluate the performance of the proposed
ROCm-aware MPI and Open MPI + UCX on 128 GPUs (16 nodes, 8 GPUs per
node) on the Corona system for MPI Collective operations including broadcast,
reduce, gather, allgather, alltoall, and allreduce using ROCm-aware OMB. In
Fig. 7, we evaluate small message collective operations ranging from 4 B to 4
KB. For broadcast operations, the proposed ROCm-aware MPI shows 9.03 s
compared to 18.04 ps for Open MPI + UCX. In Fig. 7(b), we see 3.13 ps com-
pared to 4.34 ws in the lower range at 4 B for reduce operations. We see 2.07 ws
compared to 4.81 us for our proposed ROCm-aware MPI and Open MPI + UCX,
respectively for gather operations in Fig. 7(c). In Figs. 7(d), 7(e), and 7(f), we
see a larger difference between the proposed ROCm-aware MPI and Open MPI
+ UCX for dense collectives, with the former having 2-5X lower latency in this
message range. In Fig. 8, we evaluate large message collective operations with
the message size ranging from 8 KB to 1 MB. Due to node failures with scaling
Open MPI 4+ UCX to multiple nodes with 8 processes per node where the run
crashes after outputting results for 512 Bytes, Fig. 7(d) and Fig. 8(d) are missing
values for the Allgather comparison.

Designing a ROCm-Aware MPI Library for AMD GPUs: Early Experiences 131

The performance gain demonstrated in collective operations is reliant on opti-
mized point-to-point primitives detailed above when evaluating point-to-point
benchmarks and optimized collective algorithms within the MPI library. The
protocol level advanced designs in the UDI layer are utilized for point-to-point
and collective operations. In addition to the optimized protocol level designs in
the UDI layer, the library has been tuned on the system in order to adaptively
select optimized GPU-based collective algorithms for different message ranges.
The various collectives evaluated have been optimized for GPU-based commu-
nication to account for and utilize interconnects between GPUs, node density
(number of GPUs within a node), and scalability to yield enhanced performance.

4.3 Application-Level Evaluation

In this section, we evaluate the performance of the proposed ROCm-aware MPI
implementation against Open MPI 4+ UCX using various application kernels
including ROCm-aware HPCG and 3D Stencil benchmark. Several applications
are in the early stages of adding support for ROCm to run on AMD GPUs with
experimental versions released to the public.

3D Stencil—3D Stencil is a communication kernel that mimics the commu-
nication pattern of stencils and halo-exchanges in scientific applications. The
kernel creates a 3D cartesian grid of MPI processes and runs the benchmark for
n iterations. In each iteration, a given MPI rank performs a 7-point stencil and
communicates k messages with each of its peers. We demonstrate the latency of
3D stencil for 16 (Fig.9(a)), 32 (Fig. 9(b)), and 64 (Fig. 9(c)) GPUs. We encoun-
tered runtime failures when running the 3D Stencil kernel with Open MPI. We
found that Open MPI failed during MPI_Cart_create due to an implementation
bug. Due to this failure, we are not able to present a comparison with Open MPI
for this application.

RocHPCG—High-Performance Conjugate Gradients (HPCG) benchmark is
proposed to complement LINPACK (HPL) and used to rank modern HPC sys-
tems [10]. The computational and data-access patterns employed by the bench-
mark are representative of a variety of scientific codes. The numerical methods
contain different communication patterns involving MPI point-to-point and col-
lective operations. The rocHPCG is a ROCm-aware port of the HPCG bench-
mark intended for AMD GPUs. In Fig. 10(a) we evaluate the proposed ROCm-
aware MPI against Open MPI + UCX on 16 GPUs across 16 nodes on the
Corona cluster. We demonstrate the performance of each of the phases in rocH-
PCG: DDOT (dot products), WAXPBY (vector update phase), SpMV (sparse
matrix-vector multiplication), and MG (multi-grid). Likewise, we demonstrate
the performance of the proposed ROCm-aware MPI on 32 GPUs (Fig. 10(b) and
64 GPUs (Fig.10(c)). We used per-process grid dimensions of (nx, ny, nz) =
(104, 104, 104). On 16 GPUs, we see a final 633.3 GFLOPs/s for all the phases
combined with our proposed ROCm-aware MPI compared to 585.9 GFLOPS/s
for Open MPI + UCX. On 32 GPUs, we see a vaster difference with 1056.9
GFLOPs/s compared to 565.5 GFLOPs, and on 64 GPUs we demonstrate 1673.4

132 K. Shafie Khorassani et al.

80 1200
—&— MVAPICH2-GDR + PROPOSED ROCm-aware MPI —o— MVAPICH2-GDR + PROPOSED ROCm-aware MPI
—0~ OpenMPI 4.1.0 + UCX 1.10 A 1000 | _5_ OpenMPI 4.1.0 + UCX 1.10 7
60 — 1. :
A / = 800 u
3 3 /
g0 Vel g 600 /
(=4 [=4 .
g RN ’ g
5 o 7 L 5 400 ,/
20
M 200 a” °
0 0 g -—g g-87
4 8 16 32 64 128 256 512 1K 2K 4K 4 8 16 32 64 128 256 512 1K 2K 4K
Message Size (Bytes) Message Size (Bytes)
(a) BROADCAST (b) REDUCE
350 1200
~—&— MVAPICH2-GDR + PROPOSED ROCm-aware MPI —o— MVAPICH2-GDR + PROPOSED ROCm-aware MPI
300 | —o- OpenMPI4.1.0 + UCX 1.10 F 1000 | —o— OpenMPI4.1.0+UCX1.10 |
250 ! _
E} / E)
= 200 [=
g 4 o)
§ 150 ;
5 / 5
100 =
50 a’
_ _og- 8~
0 | S B—8 =g o—=0
4 8 16 32 64 128 256 512 1K 2K 4K 4 8 16 32 64 128 256 512 1K 2K 4K
Message Size (Bytes) Message Size (Bytes)
(c) GATHER (d) ALLGATHER
25 3
—o— MVAPICH2-GDR + PROPOSED%{OCm—aware MPI —o— MVAPICH2-GDR + PROPOSED ROCm-aware MPI
20 —0- OpenMPI 4.1.0 +UCX1.10 2.5 —0~ OpenMPI 4.1.0 + UCX 1.10 /"
7 ,' ! z 2 ’
£ \ E '
> " \ 315 /
g 10 ’ ! g s
i V2 \ =1 4
5 - ‘ -~
_a \ 0.5 Tl
. s =8=8 _g -
0 [r—— - 0 B B = 8 P
4 8 16 32 64 128 256 512 1K 2K 4K 4 8 16 32 64 128 256 512 1K 2K 4K
Message Size (Bytes) Message Size (Bytes)
(¢) ALLTOALL (f) ALLREDUCE

Fig. 7. Comparison of small message MPI collective operations between proposed
ROCm-aware MPI Library and Open MPI + UCX on 128 GPUs (16 nodes, 8 GPUs
per node) on the Corona system

GFLOPs/s compared to 740.4 GFLOPs/s with our proposed ROCm-aware MPI
and Open MPI 4+ UCX, respectively.

5 Related Work

Over the last few years, GPU devices have been widely used on modern clus-
ters to provide higher computing power. Hence, communication between GPUs
has become a critical bottleneck. Wang et al. [23] proposed early research
using standard MPI libraries to transfer data between GPUs in InfiniBand
clusters. The communication excluded the involvement of the CPU, so it pre-
vented the CPU/GPU buffer management and data movement issues. Potluri et

Designing a ROCm-Aware MPI Library for AMD GPUs: Early Experiences 133

5 60
—o— MVAPICH2-GDR + PROPOSED ROCm-aware MPI —o— MVAPICH2-GDR + PROPOSED I}pCmAaware MPI
4 —0~ OpenMPI 4.1.0 + UCX 1.10 y 50 | —p-OpenMPI4.1.0+UCX1.10 7
/
= / = 40 /
E3 ’ £ /
I / Z 30 d
g2 a 8 s
5 7 8 20 ’
1 A 10 -
- -
0 ==0 - 0 o le=-= om0
8K 16K 32K 64K 128K 256K 512K 1M 8K 16K 32K 64K 128K 256K 512K 1M
Message Size (Bytes) Message Size (Bytes)
(a) BROADCAST (b) REDUCE
100 150
—o— MVAPICH2-GDR + PROPOSED ROCm-aware MPI —e—MVAPICH2-GDR + PROPOSED ROCm-aware MPI
80 | —o- OpenMPI4.1.0 +UCX 1.10 o —0- OpenMPI4.1.0 + UCX 1.10
@ - 100
£ e £
> >
2 2
40
k| 8 s0
20
0 B 0
8K 16K 32K 64K 128K 256K 512K 1M 8K 16K 32K 64K 128K 256K 512K 1M
Message Size (Bytes) Message Size (Bytes)
(c) GATHER (d) ALLGATHER
1000 200
—o&— MVAPICH2-GDR + PROPOSED ROCm-aware NL_IJPI & MVAPICH2-GDR + PROPOSED ROCm-aware MPI
800 | —B— OpenMPI4.1.0 +UCX 1.10 150 —o— OpenMPI 4.1.0 + UCX 1.10 /F
= = /
E 600 £ /
g 3100 ’
< A
g 400 2 A ,
) - 50 Ve N ~ Ve
200 g o
-
-
0 ole=-=2" —e
8K 16K 32K 64K 128K 256K 512K 1M 8K 16K 32K 64K 128K 256K 512K 1M
Message Size (Bytes) Message Size (Bytes)
(¢) ALLTOALL (f) ALLREDUCE

Fig. 8. Comparison of large message MPI Collective operations between proposed
ROCm-aware MPI Library and Open MPI + UCX on 128 GPUs (16 nodes, 8 GPUs
per node) on the Corona system

al. [18] aimed to deal with inter-node GPU-to-GPU MPI communication using
GPUDirect RDMA. They studied the limitations of the system architectures
and proposed a hybrid solution from the existing host-based pipeline and new
GPUDirect-based designs. Based on the previous work on GPU-Aware MPI
using GPUDirect RDMA, Shi et al. [20] further optimized the communications
for small message sizes between inter-node GPUs. It supported using the eager
protocol at not only sender but receiver sides as well. A new data path design
was also proposed that allowed low-latency data movements between host and
remote GPU memories. Recent works [9,12] identified and addressed the limi-
tations in efficient processing on MPI derived datatypes for GPU resident data.
They demonstrated significant performance improvements through novel CUDA

134 K. Shafie Khorassani et al.

4 6
5 | —-MVAPICH2-GDR + PROPOSED \ ~e~MVAPICH2-GDR + PROPOSED X ~o~MVAPICH2-GDR + PROPOSED
ROCm-aware MPI 3 ROCm-aware MPI ROCm-aware MPI
7 7 74
22 3 3
z g’ g
c c c
Q Q 2
w1 w1 £
i} i} L
" X ¥ £ ¥ % %% % = ° S X FE 83 FF 8 S ° SR FEEXFE S
S8 F S e S 3 g ﬁ g a3 8 3 3 4838883
Message Size (Bytes) Message Size (Bytes) Message Size (Bytes)
(a) 16 GPUs (b) 32 GPUs (c) 64 GPUs

Fig. 9. Evaluation of 3D Stencil Code with the proposed ROCm-aware MPI Library
on the Corona system

2 6

B OpenMPI 4.1.0 + UCX 1.10.0 3 B@O0penMPI 4.1.0 + UCX 1.10.0 B OpenMPI 4.1.0 + UCX 1.10.0
&= MVAPICH2-GDR + PROPOSED B MVAPICH2-GDR + PROPOSED 4 B MVAPICH2-GDR + PROPOSED
3 ROCm-aware MPI ROCm-aware MPI 3 ROCm-aware MPI
3
& 5
= E2
0
DDOT _WAXPBY _SpMV MG DDOT WAXF?BY SpMv MG DDOT WA)(F?BY SpMV MG
Operations Measured Operations Measured Operations Measured
(a) 16 GPUs (b) 32 GPUs (c) 64 GPUs

Fig. 10. Comparison of rocHPCG between proposed ROCm-aware MPI Library and
Open MPI + UCX on the Corona system [Per-process grid size (nx, ny, nz) = (104,
104, 104)]

kernel-based packing/unpacking and kernel fusion designs for non-contiguous
data transfer. Subramoni et al. [21] addressed the trade-off between communi-
cation protocols in point-to-point data transfer. They proposed designs to iden-
tify the communication characteristics of processes at runtime and dynamically
adapt to them. The fully in-band design allowed the transition from one eager-
threshold to another without sacrificing the throughput.

Sharkawi et al. [19] discussed the techniques used in Spectrum-MPI on mod-
ern clusters equipped with IBM POWER9 CPUs. Kawthar et al. [13] evaluated
the performance of existing CUDA-aware MPI libraries on OpenPOWER GPU-
enabled systems by comparing benchmark-level point-to-point performance of
Spectrum MPI, Open MPI+UCX, and MVAPICH2-GDR. Much of the work done
using GPU-resident data transfer and communication has been heavily focused on
NVIDIA GPUs due to the heavy deployment of NVIDIA GPUs across platforms.
In the context of AMD GPUs, Kuznetsov et al. [14] investigated the ROCm plat-
form and evaluated whether it is comparable to CUDA. They also focused on the
programmers’ experience of porting classical molecular dynamics algorithms from
CUDA to ROCm and the performance benchmarking with these modern archi-
tectures. In addition, Tsai et al. [22] discussed the experience of porting the func-
tionality in a CUDA-focused library to the HIP ecosystem. They demonstrated
the porting workflow of linear algebra kernels and some techniques from CUDA to
HIP in detail. Cai et al. [8] introduced the Synthesized Collective Communication

Designing a ROCm-Aware MPI Library for AMD GPUs: Early Experiences 135

Library (SCCL), which is a latency-optimal and bandwidth-optimal implementa-
tion of collective communication algorithms.

6 Conclusion

As next-generation HPC systems such as Frontier and El Capitan adopt AMD
GPUs, it is important to ensure that scientific applications and the communication
middleware such as MPI are supported and enhanced for these systems. In order
to add support for AMD GPUs, ROCm is used as the high-performance software
development platform on AMD GPUs. Over the years, the state-of-the-art GPU-
aware MPI libraries evolved with enhanced support for device resident data trans-
fer. These implementations heavily rely on the CUDA toolkit to exploit NVIDIA
GPUs. With the recent trend of AMD GPU usage, it is pertinent to have a ROCm-
aware MPT library with support and optimizations for AMD GPU-resident data
transfer. In this work, we took up the challenge of designing a ROCm-aware MPI
runtime through designing an abstract communication layer that interfaces with
the CUDA and the ROCm runtimes. We utilized the various features available
through ROCm such as PeerDirect, ROCm IPC, and large-BAR mapped mem-
ory to generate GPU-based communication for AMD GPUs. We evaluated the
performance of MPI-level point-to-point and collective operations with our pro-
posed ROCm-aware MPI Library built over MVAPICH2-GDR and Open MPI
with UCX as the ROCm-aware communication backend on the Corona cluster.
We demonstrated 3—6x higher bandwidth for intra-node communication and 2x
higher bandwidth for inter-node communication, respectively. With the rocH-
PCG application, we demonstrate approximately 2.2x higher GFLOPs/s with
MVAPICH2-GDR, + our proposed ROCM-aware MPI compared to OpenMPI
with UCX. To the best of our knowledge, this is the first research work that studies
the tradeoffs involved in designing a ROCm-aware MPI library for AMD GPUs.

References

1. Bandwidth test for ROCm. https://github.com/RadeonOpenCompute/

Corona. https://hpe.llnl.gov/hardware/platforms/corona

3. Frontier: ORNL’s exascale supercomputer designed to deliver world-leading per-
formance in 2021. https://www.olcf.ornl.gov/frontier/. Accessed 25 May 2021

4. Infiniband Verbs Performance Tests. https://github.com/linux-rdma/perftest

5. Radeon Open Compute (ROCm) Platform. https://rocmdocs.amd.com

6. RLLNL and HPE to partner with AMD on El Capitan, projected as world’s fastest
supercomputer. https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-
projected-worlds-fastest-supercomputer. Accessed 25 May 2021

7. Unified Communication X. http://www.openucx.org/. Accessed 25 May 2021

Cai, Z., et al.: Synthesizing optimal collective algorithms (2020)

9. Chu, C.H., Khorassani, K.S., Zhou, Q., Subramoni, H., Panda, D.K.: Dynamic
kernel fusion for bulk non-contiguous data transfer on gpu clusters. In: 2020 IEEE
International Conference on Cluster Computing (CLUSTER), pp. 130141 (2020).
https://doi.org/10.1109/CLUSTER49012.2020.00023

N

®

https://github.com/RadeonOpenCompute/
https://hpc.llnl.gov/hardware/platforms/corona
https://www.olcf.ornl.gov/frontier/
https://github.com/linux-rdma/perftest
https://rocmdocs.amd.com
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer
http://www.openucx.org/
https://doi.org/10.1109/CLUSTER49012.2020.00023

136

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

K. Shafie Khorassani et al.

Dongarra, J., Heroux, M.A., Luszczek, P.: High-performance conjugate-gradient
benchmark: a new metric for ranking high-performance computing systems. Int. J.
High Perform. Comput. Appl. 30(1), 3-10 (2016)

Gabriel, E., et al.: Open MPI: goals, concept, and design of a next generation
MPI implementation. In: Proceedings. 11th European PVM/MPI Users’ Group
Meeting, Budapest, Hungary, pp. 97-104, September 2004

Hashmi, J.M., Chu, C.H., Chakraborty, S., Bayatpour, M., Subramoni, H., Panda,
D.K.: FALCON-X: zero-copy MPI derived datatype processing on modern CPU
and GPU architectures. J. Parallel Distrib. Comput. 144, 1-13 (2020). https://doi.
org/10.1016/j.jpdc.2020.05.008. http://www.sciencedirect.com/science/article/
pii/S0743731520302872

Khorassani, K.S., Chu, C.H., Subramoni, H., Panda, D.K.: Performance evaluation
of MPI libraries on GPU-enabled OpenPOWER architectures: early experiences.
In: International Workshop on OpenPOWER for HPC (IWOPH 19) at the 2019
ISC High Performance Conference (2018)

Kuznetsov, E., Stegailov, V.: Porting CUDA-based molecular dynamics algo-
rithms to AMD ROCm platform using HIP framework: performance analysis. In:
Voevodin, V., Sobolev, S. (eds.) RuSCDays 2019. CCIS, vol. 1129, pp. 121-130.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36592-9_11

Leiserson, C.E., et al.: There’s plenty of room at the top: what will drive computer
performance after Moore’s law? Science 368(6495) (2020). https://doi.org/10.1126/
science.aam9744. https://science.sciencemag.org/content/368,/6495/eaam9744
Panda, D.K., Subramoni, H., Chu, C.H., Bayatpour, M.: The MVAPICH project:
transforming research into high-performance MPI library for HPC community. J.
Comput. Sci. 101208 (2020). https://doi.org/10.1016/j.jocs.2020.101208. http://
www.sciencedirect.com/science/article/pii/S1877750320305093

Potluri, S., Wang, H., Bureddy, D., Singh, A.K., Rosales, C., Panda, D.K.: Opti-
mizing MPI communication on multi-GPU systems using CUDA inter-process com-
munication. In: 2012 IEEE 26th International Parallel and Distributed Processing
Symposium Workshops PhD Forum, pp. 1848-1857 (2012). https://doi.org/10.
1109/IPDPSW.2012.228

Potluri, S., Hamidouche, K., Venkatesh, A., Bureddy, D., Panda, D.K.: Efficient
inter-node MPI communication using GPUDirect RDMA for InfiniBand clusters
With NVIDIA GPUs. In: 2013 42nd International Conference on Parallel Process-
ing (ICPP), pp. 80-89. IEEE (2013)

Sharkawi, S.S., Chochia, G.A.: Communication protocol optimization for enhanced
GPU performance. IBM J. Res. Dev. 64(3/4), 9:1-9:9 (2020)

Shi, R., et al.: Designing efficient small message transfer mechanism for inter-
node MPI communication on InfiniBand GPU clusters. In: 2014 21st International
Conference on High Performance Computing (HiPC), pp. 1-10, December 2014
Subramoni, H., Chakraborty, S., Panda, D.K.: Designing dynamic and adaptive
MPI point-to-point communication protocols for efficient overlap of computation
and communication. In: Kunkel, J.M., Yokota, R., Balaji, P., Keyes, D. (eds.) ISC
2017. LNCS, vol. 10266, pp. 334-354. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-58667-0_18

Tsai, Y.M., Cojean, T., Ribizel, T., Anzt, H.: Preparing ginkgo for AMD GPUS -
a testimonial on porting CUDA code to HIP (2020)

Wang, H., Potluri, S., Bureddy, D., Rosales, C., Panda, D.K.: GPU-aware MPI
on RDMA-enabled clusters: design, implementation and evaluation. IEEE Trans.
Parallel Distrib. Syst. 25(10), 2595-2605 (2014). https://doi.org/10.1109/TPDS.
2013.222

https://doi.org/10.1016/j.jpdc.2020.05.008
https://doi.org/10.1016/j.jpdc.2020.05.008
http://www.sciencedirect.com/science/article/pii/S0743731520302872
http://www.sciencedirect.com/science/article/pii/S0743731520302872
https://doi.org/10.1007/978-3-030-36592-9_11
https://doi.org/10.1126/science.aam9744
https://doi.org/10.1126/science.aam9744
https://science.sciencemag.org/content/368/6495/eaam9744
https://doi.org/10.1016/j.jocs.2020.101208
http://www.sciencedirect.com/science/article/pii/S1877750320305093
http://www.sciencedirect.com/science/article/pii/S1877750320305093
https://doi.org/10.1109/IPDPSW.2012.228
https://doi.org/10.1109/IPDPSW.2012.228
https://doi.org/10.1007/978-3-319-58667-0_18
https://doi.org/10.1007/978-3-319-58667-0_18
https://doi.org/10.1109/TPDS.2013.222
https://doi.org/10.1109/TPDS.2013.222

	Designing a ROCm-Aware MPI Library for AMD GPUs: Early Experiences
	1 Introduction
	1.1 Contributions

	2 Background
	2.1 Radeon Open Compute (ROCm)
	2.2 ROCm Remote Direct Memory Access (RDMA)
	2.3 Inter-Process Communication (IPC)
	2.4 Message Passing Interface (MPI)
	2.5 Protocols for High-Performance Communication in MPI

	3 Designing and Implementation of ROCm-Aware MPI
	3.1 Overview of Technologies Offered by NVIDIA and AMD for GPU Based Communication
	3.2 Designing Unified Device Abstraction Interface for Accelerator-Aware MPI
	3.3 PeerDirect
	3.4 CPU-Driven GPU Mapped Memory Copy Based Design
	3.5 ROCm IPC Based Design

	4 Performance Evaluation
	4.1 Experimental Setup
	4.2 Micro-Benchmark Evaluation
	4.3 Application-Level Evaluation

	5 Related Work
	6 Conclusion
	References

