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ABSTRACT

We propose a novel weakly supervised method to improve
the boundary of the 3D segmented nuclei utilizing an over-
segmented image. This is motivated by the observation that
current state-of-the-art deep learning methods do not result
in accurate boundaries when the training data is weakly an-
notated. Towards this, a 3D U-Net is trained to get the cen-
troid of the nuclei and integrated with a simple linear iter-
ative clustering (SLIC) supervoxel algorithm that provides
better adherence to cluster boundaries. To track these seg-
mented nuclei, our algorithm utilizes the relative nuclei loca-
tion depicting the processes of nuclei division and apoptosis.
The proposed algorithmic pipeline achieves better segmen-
tation performance compared to the state-of-the-art method
in Cell Tracking Challenge (CTC) 2019 and comparable per-
formance to state-of-the-art methods in IEEE ISBI CTC2020
while utilizing very few pixel-wise annotated data. Detailed
experimental results are provided, and the source code is
available on 'GitHub.

Index Terms— nuclei, cell, supervoxel, boundary, 3D U-
Net, segmentation, tracking, watershed, graph

1. INTRODUCTION

Nuclei migration and proliferation are two important pro-
cesses in tissue development at early embryonic stages. Op-
tical time-lapse microscopy is the most appropriate imag-
ing modality to visualize these processes. Such microscopy
recordings can generate massive data, allowing for a detailed
analysis of nuclei physiology and properties. To gain bio-
logical insights into nuclei behavior, it is often necessary to
identify individual nucleus (segmentation) and follow them
over time (tracking). However, manual data analysis is in-
feasible due to the large amount of data acquired. Also, seg-
menting the nuclei in the microscopic images is a daunting
task because of the presence of noise that affects their visual
appearance as well as shape.

Convolutional neural networks (CNNs), especially U-
Net [1] have been widely used in the cell and nuclei seg-
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mentation context because of their superior segmentation per-
formance. The general nuclei segmentation problem can be
formulated as either instance segmentation or semantic seg-
mentation. The instance segmentation [2, 3, 4] tends to give
good detection accuracy but not segmentation accuracy while
semantic segmentation [5, 6, 7] is viable but loses accuracy
around the border of nuclei when training data is sparsely an-
notated. Along this line, researchers have proposed an active
learning tool to improve nuclei boundaries but it is dependent
on user feedback [8]. Based on the segmentation or detection
of nuclei, most successful nuclei tracking methods rely on the
Viterbi algorithm [9]. These techniques construct tracking as
a global optimization problem and utilize absolute nuclei lo-
cation to detect their trajectories. Therefore, it is not efficient.

In this paper, we propose a novel semi supervised nuclei
segmentation method utilizing Simple linear Iterative Cluster-
ing (SLIC) boundary adherence and a graph-based tracking
algorithm utilizing relative nuclei location information. The
main contributions of this paper are two-fold. First, we pro-
pose a novel method to improve nuclei boundary detection
and thereby segmentation for quantitative nuclei morphology.
Second, a novel graph-based tracking method that leverages
the stable relative nuclei location in consecutive video frames
is developed. We also show that the algorithm can be ex-
tended to other datasets giving comparable results.

2. SEGMENTATION ALGORITHM

This section describes the details of the proposed segmenta-
tion method for weakly annotated data that takes advantage
of the boundary correction algorithm using supervoxels. In
time-lapse videos of three dimensional image stacks, anno-
tating data points is a time and resource consuming process.
As a result, only a few 2D slices of expert annotated ground
truth is available. This is not sufficient to train a deep learning
model for accurate semantic segmentation. Besides, learning
models only based on such sparse reference data points are
not scalable. This emphasizes the need of a semi-supervised
algorithm for accurate segmentation. Moreover, most of the
methods are texture-based and not accurate for the boundaries
of the nuclei which play an important role in understanding
nuclei morphology and proliferation. Towards that end, we
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present a robust and scalable method to segment and track
nuclei. Our algorithm utilizes over-segmented image stacks
to improve the segmentation of the given image by mainly
correcting the boundaries of a texture-based method. In or-
der to do so, we first segment the image stack using standard
3D watershed segmentation. In parallel, we also obtain the
over-segmented image stack using supervoxel segmentation.
Finally, we propose our boundary correction algorithm that
takes advantage of both segmentation methods to improve the
boundaries. The schematic of the proposed segmentation al-
gorithm is shown in the Figure 1.

Watershed
segmented image

Final segmented
image

Supervoxel L a
segmented image Proposed boundary
correction Algorithm

Fig. 1. Schematic diagram of the proposed segmentation method.

To get an approximate segmentation, we utilize 3D water-
shed segmentation. Watershed segmentation algorithm [10] is
applied to the 3D probability map of nuclei detection that is
generated by a very small CNN consisting of 3D convolution
layers. This gives a rough segmentation of the image but gen-
erates labels for the nuclei. We denote the output segmented
image from the watershed as I, with C'}” representing the set
of voxels that form the cluster for nucleus k.

In order to get the over-segmented image, supervoxel seg-
mentation method is used. SLIC [11] is a method for gen-
erating supervoxels from images using an adaptation of k-
means clustering that uses a distance function with both in-
tensity and distance similarity terms. We denote the output
over-segmented image as I, with C} representing the set of

seg
voxels that form the cluster for nucleus k.

2.1. Boundary correction algorithm

We propose a novel boundary correction algorithm that takes
advantage of the over-segmented supervoxels in Ig, (from
SLIC) to improve watershed segmented image [,. We
know that g, is the over-segmented image that increases the
chances that nuclei boundaries are extracted at the cost of cre-
ating many false boundaries within the nuclei. Hence, we
have,

05| > [Cv), Cf ={Cs,C5,C5, ..

where || denotes the total number of clusters in the segmented
image. Consider C7 € C* and C" € C" for all clusters
1,7 €{1,2,3,...} x{1,2,3,...}. Define a cluster correlation
parameter K;; as

Ky, 2lcpneyl. (1)

Then, we compute C;* for each label i, where

J* = arg max Kj;. 2
J

For every i, we obtain j* that maximizes the clustering
correlation between the clusters of the watershed segmented
image and the SLIC segmented image. This ensures that
for each watershed segmented nuclei, we have an accurate
boundary of the nuclei supervoxels. Hence, we get improved
nuclei boundaries in the final segmented image S with nu-
clei represented by C7... Supervoxels based boundary correc-
tion algorithm refines the watershed segmented boundaries in
I, by taking into account the boundaries of the supervox-
els. Boundary adherence is one of the important properties of
SLIC supervoxel as it reflects how supervoxel boundaries fit
the nuclei borders.

3. GRAPH-BASED TRACKING

Nuclei tracking is to reconstruct the lineage of nuclei and
match related nuclei across the whole video sequence. The
tracking process will give a trajectory for each individual nu-
cleus as shown in Figure 2. In the traditional Viterbi cell
tracking algorithm, its complexity is O(T'M*) where T is the
length of the video sequence and M is the maximum num-
ber of nuclei. This is because the complexity of the Viterbi
algorithm is linear in 7', there can be M 2 pairs of nuclei in
any two frames, and every such pair can have as many swap
arcs between them as there are pre-existing tracks. A gen-
eral assumption, as shown in [12], is that only certain nuclei
events (apoptosis, division, etc) can happen and thus reduces
possible swap arcs to some constant. This reduces the whole
tracking complexity to be quadratic in the number of nuclei.
We propose an adjacency graph-based nuclei tracking algo-
rithm utilizing nuclei relative location information to reduce
the complexity to O(T'M?) without any assumption of nuclei
events while achieving comparable results.

A nuclei adjacency graph G(V,E) is an undirected
weighted graph built based on the segmented image S. In
G(V, E), each vertex v; € V represents each individual nu-
cleus. For each pair of vertices (v;,v;), there is an edge
e; € E connecting them. The weight w; € W of the edge e;
is the minimum distance between nucleus 7 and j. The min-
imum distance is computed as number of times morphology

Algorithm 1 Nuclei Adjacency Graph Construction

function ADJACENCY(Segmented Image S)
Initiate AdjacentGraph A
Initiate drawboard (same shape as .S) with 0 entries
for i = 1 to number of Nuclei do
for j = 1 to number of Nuclei do
if the voxel belong to Nucleus i or j then
entry of drawboard is set to 1
if i not equal to j then
3D dilation of drawboard
Connected component analysis
if number of component is 1 then
append j to ith entry of AdjacentGraph
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Algorithm 2 Tracking Feature Computation

function TRACKFEATURE(Segmentation and G(V,E))
for i = 1 to number of nuclei do

Initiate Feature Vectors fy,,

for i = 1 to number of nuclei do
nuclei volume vol® = number of voxel inside nuclei i X voxel resolution
j Wij
deg(vy)
frack =(voly, deg(vi), wdeg(vi))

wdeg(v;) =

dilation operations of nucleus 7 and j need to be applied until
nucleus 7 and j become a single component. The step-by-step
details of the method is described in Algorithm 1. Now, the
natural solution to the tracking problem is defined as finding
the similar vertices in two graphs. Therefore, we build a fea-

ture f},,, vector for each vertex v;. £}, is a three dimensional

rack
feature vector with entries vol’ and fi,. . vol’ is a scalar repre-
senting the volume of each nucleus. ffoc is a two dimensional
vector (N, D), where N? is the total number of neighbor
nuclei and D? is the average distance from all other nuclei.
Given the adjacency graph G(V, E) of the segmented image
stack, for each vertex ¢ in the graph, the location feature vec-

tor can be expressed as

fioe = (N, D) = (deg(v;), wdeg(v;)) )

where v; € V, deg(v;) is the degree of the vertex v;, and
wdeg(v;) is the weighted degree of the vertex v; defined as

> Wij

deg(v;) = ——— 4
PO = egn) @
The procedure of constructing f:. ., is described in Algo-

rithm 2.

After computing f/_, for all nodes in two consecutive
frames, we link two nodes from different frames based on
the following similarity measurement sim defined as

|S1i — Soj|  |degi(vi) — dega(v;)] n
S1i degy (v1)

|wdegy (v1) — wdega(va)]
wdegy (v1)

sim =

&)

where ¢ and j denote two nodes from different frames. We
define sim so that we can allow different units of entries in

02020
02020
02020

t=0 t=1 t=2 t=3 t=4 t=5

Fig. 2. Nucleus tracking illustration: number is used to represent the unique
ID for each track of nucleus. At t=3, nucleus 2 divides into 2 new nuclei 3
and 4

f._ .. We find i* and j* that minimizes sim. i* and j* are
linked only when their sim is below a set threshold value. If
some nucleus in the previous frame has no linked nucleus in
the latter frame, it means apoptosis happens or the nucleus
leaves the field of view. If some nucleus in the latter frame
has no linked nucleus in the previous frame, it means the new
nucleus comes into the field of view. Thus, based on this mea-
sure, we can track each nucleus in consecutive frames of the
recordings. The complexity for finding all possible links in
consecutive frames is O(M?). Therefore, the whole tracking

complexity is O(TM?).

4. EXPERIMENTAL RESULTS

4.1. Dataset

The time series dataset in CTC2020 [13, 14] consists of 3D
time-lapse video sequences of fluorescent counterstained nu-
clei microscopy image of C.elegans developing embryo as
shown in Figure 3. Each voxel size is 0.09 x 0.09 x 1.0 in mi-
crons. Time points were collected once per minute for (5 — 6)
hours. There are 2 videos in the training set and 2 videos
in the challenge (testing) dataset. The details of the data is
summarized in the Table 1. Gold-standard corpus containing
human-origin reference annotations are referred as gold truth
(GT). We used the annotated GT from training dataset for our
training and validation procedure. The GT labels are withheld
for the test videos and used to evaluate the model.

time

Raw data

Segmented Output

Fig. 3. 2D slices of the raw and segmented data for 3D N3DH-CE at different
time instances in minutes.

Dataset Video Dimension #frames | #seg GT | #track GT
Training 01 512 x 708 x 35 250 5 195
02 512 x 712 x 31 250 5 190
Testing 01 512 x 712 x 31 190 - -
02 512 x 712 x 31 140

Table 1. Dataset description for CTC2020. # denotes the number of, for example,
#frames refers to the number of frames in the video

4.2. Evaluation Metrics

Five evaluation metrics, detection accuracy (DET), segmen-
tation accuracy (SEG), tracking accuracy (TRA), Cell Seg-
mentation Benchmark (OPcsg), and Cell Tracking Bench-
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mark (OPcrg) are commonly used in the nuclei segmen-
tation and tracking problem. DET is used to quan-
tify how well each given nuclei has been identified. It
is defined based on Acyclic Oriented Graph Matching
(AOGM-D) [15] measure for detection as DET 1 -
min(AOGM-D, AOGM-Dy)/AOGM-D; where AOGM-D is
the cost of transforming a set of nodes provided by the al-
gorithm into the set of ground truth nodes; AOGM-Dy is the
cost of creating the set of ground truth nodes from scratch.
DET ranges between 0 to 1 (I means perfect matching).
SEG is a statistic used to measure the similarity of the seg-
mented nuclei and ground-truth nuclei. It is defined based on
the Jaccard similarity index (J) as SEG = |[RN S|/|[RU S|
where R and S denotes the set of pixels in the ground-
truth and prediction, respectively. SEG ranges between 0
to 1 (1 means perfect matching). TRA measures how accu-
rately each nuclei has been identified and followed in succes-
sive frames of the video. It is defined based on AOGM as
TRA = 1 —min(AOGM, AOGM,)/AOGM, where AOGM
is the AOGM value required for creating the reference graph
from scratch. TRA ranges between O to 1 (1 means per-
fect tracking). For direct comparison of the methods, Cell
Segmentation and Tracking Benchmark is evaluated using
OPcsg and OPcrg, defined as OPcsg = (DET + SEG)/Q and
OPcrp = (SEG + TRA)/2.

4.3. Segmentation Performance

The results of our proposed segmentation algorithm is shown
in Figure 3. We evaluated the method using the scheme pro-
posed in the online version of the Cell Tracking Challenge.
Results of our proposed method on the CTC2020 test set is
shown in the Table 2. This demonstrates that our algorithm
outperforms the benchmark method for nuclei segmentation
for CTC2019 (MPI-GE). It is also comparable to the state-of-
art method for CTC2020 (KIT-Sch-GE) while utilizing a very
few number of annotated training data (KIT-Sch-GE used 239
ground truth annotations to train their model while we utilized
only 10 to get the nuclei centroid). We can assume that the
ground truth annotations for testing dataset is low in number
and weakly annotated similar to the data made available to us.
So, the minor difference in the algorithmic performance based
on the evaluation metric used is not significant. We present
fairly robust 3D segmentation method that generalizes across
datasets (as discussed in the next section) using less annotated
data points than [16] and achieve competitive performance.

Method DET SEG OPcsp #Pixel-wise annotation used
KIT-Sch-GE [16] | 0.930 | 0.729 0.830 239 (997 crops)
UCSB-US [17] 0.927 | 0.705 0.816 10
MPI-GE [18] 0915 | 0.688 0.801 10

Table 2. Cell Segmentation Benchmark for N3DH-CE dataset in IEEE ISBI CTC2020.
Our proposed algorithm (UCSB-US) was placed second in the CTC2020. DET, SEG
and OPcsp are defined in Section 4.1.

388

4.4. Tracking Performance

In Table 3, we compare the nuclei tracking performance of the
proposed method with the state-of-the-art methods defined in
Section 4.1. Both KIT-SCH-GE and KTH-SE optimize the
global tracking process while our methods utilize the rela-
tive nuclei location information to do the local optimization.
Our local optimized tracking process is more efficient and still
achieves the comparable results (difference is less than 1%) as
shown in the Table 3.

Method SEG TRA OPcrp
KIT-Sch-GE [16] 0.729 0.886 0.808
KTH-SE [9] 0.662 0.945 0.803
UCSB-US[17] 0.705 0.895 0.800

Table 3. Cell Tracking Benchmark for N3DH-CE dataset in IEEE ISBI CTC2020.
Results of our proposed algorithm (UCSB-US) was placed third in the CTC2020. SEG,
TRA and OPcrp are defined in Section 4.1

To demonstrate that our algorithmic pipeline can be easily
extended, we experimented with another dataset from CTC.
We used infected C3DL-MDA231 human breast carcinoma
cells for this purpose. Without fine tuning the hyperparame-
ters to this specific dataset, we achieve comparable results to
the state-of-the-art method with DET = 0.839, SEG = 0.545,
TRA = 0.795, OP¢csp = 0.692, and OPcrp = 0.670. The
source code is publicly available on GitHub [19].

5. DISCUSSION & CONCLUSION

In this paper, we have presented a novel weakly supervised
3D nuclei segmentation method that consists of watershed
segmentation, supervoxel segmentation, and a boundary cor-
rection algorithm. Specifically, we demonstrate that the pro-
posed segmentation method explicitly carries boundary in-
formation of the nuclei thus improving performance of the
traditional watershed segmentation. We also show that our
resource efficient algorithm exploits partially labeled data to
achieve competitive performance.

Additionally, we present a simple and efficient graph-
based tracking algorithm utilizing relative nuclei location in-
formation extracted from the adjacency graph. The widely
used Viterbi algorithm models the whole sequence of detected
cells in video as a directed acyclic graph to solve a global op-
timization problem. In contrast to this, our frame-by-frame
tracking algorithm does not require an entire recorded se-
quence and can be applied in real time applications while
still maintaining comparable results to state-of-the-art meth-
ods. For future work, we intend to further evaluate the re-
producibility of our approach on additional datasets. We also
intend to study a joint optimization problem which includes
segmentation as well as tracking. This will explore how track-
ing could be used as feedback to improve segmentation.
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