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PROPAGATION OF SMALLNESS IN ELLIPTIC PERIODIC
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Abstract. The paper is mainly concerned with an approximate three-ball inequality for solutions
in elliptic periodic homogenization. We consider a family of second order operators \scrL \epsilon in divergence
form with rapidly oscillating and periodic coefficients. It is the first time such an approximate
three-ball inequality for homogenization theory is obtained. It implies an approximate quantitative
propagation of smallness. The proof relies on a representation of the solution by the Poisson kernel
and the Lagrange interpolation technique. Another full propagation of smallness result is also shown.
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1. Introduction. Quantitative propagation of smallness plays an important role
in the quantitative study of solutions of elliptic and parabolic equations. It can be
stated as follows: a solution u of a second order PDE Lu = 0 on a domain X can
be made arbitrarily small on any given compact subset of X by making it sufficiently
small on an arbitrary given subdomain Y . The quantitative propagation of smallness
has found many important applications, such as the stability estimates in inverse
problems for the Cauchy problem [ARRV] and the Hausdorff measure estimates of
nodal sets of eigenfunctions [Lin], [Lo]. Hadamard's three-circle or three-ball theorem
is the simplest quantitative statement for propagation of smallness. The Hadamard
three-ball theorem (or three-ball inequality) for a function u is the inequality

\| u\| r2 \leq C\| u\| \alpha r1\| u\| 
1 - \alpha 
R ,(1.1)

where 0 < r1 < r2 < R and \| \cdot \| r is the L2 or L\infty norm on the ball centered at the
origin with radius r, \alpha \in (0, 1) and C is a constant depending on r1, r2, and R.
We will call the inequality (1.1) the standard three-ball inequality. For holomorphic
functions, the three-ball inequality (1.1) is a consequence of the convexity of the
logarithm of the modulus of holomorphic functions and the maximum principle. The
strategy of using logarithmic convexity of the modulus has played a central role in
obtaining three-ball theorems (or three-ball inequalities).

For solutions of second order elliptic equations

Lu =  - Dj(aij(x)Diu) + biDiu+ c(x)u = 0(1.2)

(the summation convention is used throughout the paper), the logarithmic convexity
of the L2-norm of solutions has been applied in different ways to obtain the three-ball
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inequality by Agmon [Ag] (for L2-norm) and Landis [L] (for L\infty -norm). For harmonic
functions in higher dimensions, Korevaar and Meyers [KM] obtained the three-ball
inequality in (1.1) with sharp coefficient C = 1 using the logarithmic convexity of
the L2 norm and the expansion on eigenfunctions of the Laplace--Beltrami operator
on the sphere. Brummelhuis [B] further pushed this technique to prove three-ball
inequalities for solutions to second order elliptic equations.

The frequency function and Carleman estimates are tools often used to obtain a
three-ball inequality. The frequency function is given as a quotient involving L2-norms
of solutions. The monotonicity of the frequency function implies the convexity of the
logarithm of L2-norm of solutions (see, e.g., [Al], [GL], [Z]). Carleman estimates are
weighted integral inequalities with suitable weight functions satisfying some convexity
properties. The three-ball inequality is obtained by applying the Carleman estimates
to the product of the solution and an appropriate cut-off function and then by choosing
the Carleman parameter appropriately (see, e.g., [DF], [JL], [K]). Recently, a proof of
the three-ball inequality using the Poisson kernel for harmonic functions was developed
by Guadie and Malinnikova [GM].

The theory of homogenization identifies the average, macroscopic behavior of a
phenomenon that is subject to microscopic effects. Homogenization, including sto-
chastic homogenization and numerical homogenization, has shown important impacts
in applications, e.g., material sciences and elasticity theory. See, e.g., [ALi], [Ba],
[FM], to just name a few. In order to obtain the standard three-ball inequality (1.1),
the Lipschitz continuity of the leading coefficient aij(x) is required in the usual proof.
This is consistent with the fact that there exist operators with H\"older continuous
coefficients aij with nontrivial solutions vanishing on open sets, which is precluded by
(1.1) (see, e.g., [M]). All the aforementioned techniques result in taking the derivative
of the leading coefficient aij(x). The situation for the three-ball inequality for ellip-
tic homogenization changes drastically since the derivative of the leading coefficient
aij(

x
\epsilon ) leads to a ``bad"" term 1

\epsilon . In this paper, we intend to study the propagation
of smallness for solutions in elliptic periodic homogenization. To achieve this, the
main goal of this paper is to address a version of the three-ball inequality for elliptic
periodic homogenization.

We consider a family of elliptic operators in divergence form with rapidly oscil-
lating periodic coefficients

\scrL \epsilon u\epsilon =  - div
\Bigl( 
A
\Bigl( x
\epsilon 

\Bigr) 
\nabla u\epsilon 

\Bigr) 
= 0 in \Omega ,(1.3)

where \epsilon > 0, \Omega is a bounded domain in Rd, and A(y) =
\bigl( 
aij(y)

\bigr) 
is a symmetric d\times d

matrix-valued function in Rd for d \geq 2. Assume that A(y) satisfies the following
assumptions:

(i) Ellipticity: For some 0 < \lambda < 1 and all y, \xi \in Rd, it holds that

\lambda | \xi | 2 \leq \langle A(y)\xi , \xi \rangle \leq 1

\lambda 
| \xi | 2.(1.4)

(ii) Periodicity:

A(y + z) = A(y) for y \in Rd and z \in Zd.(1.5)

(iii) H\"older continuity: There exist constants \tau > 0 and 0 < \mu < 1 such that

| A(x) - A(y)| \leq \tau | x - y| \mu (1.6)

for any x, y \in Rd.
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We are able to establish the following approximate three-ball inequality in ellip-
soids. The definition of ellipsoids Er depending on the coefficients A(y) is given in
section 2.

Theorem 1. Let u\epsilon be a solution of (1.3) in B10. For 0 < r1 < r2 < R
4 < 1,

sup
Er2

| u\epsilon | \leq C

\biggl\{ 
r2
R

\Bigl( 
sup
Er1

| u\epsilon | 
\Bigr) \alpha \Bigl( 

sup
ER

| u\epsilon | 
\Bigr) 1 - \alpha 

+
R2

r21
[\epsilon ln(\epsilon  - 1 + 2)]\alpha sup

ER

| u\epsilon | 
\biggr\} 
,(1.7)

where \alpha = ln R
2r2

/ln R
r1

and C depends on \lambda and (\tau , \mu ).

Let Br(0) be the ball centered at the origin with radius r. We usually write it as
Br if the context is understood. Since balls are more convenient in applications than
ellipsoids, a direct consequence of Theorem 1 is the following approximate three-ball
inequality in balls.

Corollary 1. Let u\epsilon be a solution of (1.3) in B10. For 0 < R1 < R2 < \lambda R3

4 < \lambda 
4 ,

\| u\epsilon \| L\infty (BR2
) \leq C

\biggl\{ 
R2

R3
\| u\epsilon \| \beta L\infty (BR1

)\| u\epsilon \| 1 - \beta 
L\infty (BR3

) +
R2

3

R2
1

[\epsilon ln(\epsilon  - 1 + 2)]\beta \| u\epsilon \| L\infty (BR3
)

\biggr\} 
,

(1.8)

where \beta = ln\lambda R32R2/ln
R3

R1
and C depends on \lambda and (\tau , \mu ).

Let us address some important issues about the difference between the standard
three-ball inequality (1.1) and inequality (1.8).

Remark 1. The three-ball inequality (1.8) in Corollary 1 is different from the
standard three-ball inequality in (1.1). The inequality (1.1) implies the weak unique
continuation property, which states that the solution vanishes globally if it vanishes
in an open set. However, the estimate (1.8) does not. As \epsilon \rightarrow 0, the inequality (1.8)
converges to the standard three-ball inequality in (1.1). Compared with the Lipschitz
regularity needed to obtain the inequality (1.1), only H\"older continuity is imposed to
obtain the inequality (1.8).

The three-ball inequality with consecutive balls having radii of a fixed ratio is
very useful for applications. If we choose R1, R2, R3 in an appropriate scale, e.g., let
R1 = r, R2 = 2r, and R3 = 9r

\lambda , we have the following corollary.

Corollary 2. Let u\epsilon be a solution of (1.3) in B10. For r \leq \lambda 
9 ,

\| u\epsilon \| L\infty (B2r) \leq C
\bigl\{ 
\| u\epsilon \| \beta L\infty (Br)

\| u\epsilon \| 1 - \beta 
L\infty (B 9r

\lambda 
) + [\epsilon ln(\epsilon  - 1 + 2)]\beta \| u\epsilon \| L\infty (B 9r

\lambda 
)

\bigr\} 
,(1.9)

where \beta = ln 9
4/ln

9
\lambda and C depends on \lambda and (\tau , \mu ).

The eigenvalue problem in elliptic homogenization is of importance in the study
of homogenization. Since the eigenvalue can be arbitrarily large, it is interesting to
know what role the eigenvalue plays in the propagation of smallness. One can consider
the eigenvalue type equation

 - div
\Bigl( 
A
\Bigl( x
\epsilon 

\Bigr) 
\nabla u\epsilon 

\Bigr) 
= \Lambda \epsilon ,ku\epsilon in B10.(1.10)

Assume that \Lambda \epsilon ,k are positive constants and \Lambda \epsilon ,k \rightarrow \infty as k \rightarrow \infty . The following
corollary holds.

jiuyi zhu
Cross-Out
It is not correct! Correct one is $\ln\frac{\lambda R_3}{2R_2}.$

 Just like other $\beta$ values in other theorems



4 CARLOS KENIG AND JIUYI ZHU

Corollary 3. Let u\epsilon be a solution of (1.10) in B10. For 0 < R1 < R2 < \lambda R3

4 <
\lambda 
4 ,

\| u\epsilon \| L\infty (BR2
) \leq Ce2R3

\surd 
\Lambda \epsilon ,k

\biggl\{ 
R2

R3
\| u\epsilon \| \beta L\infty (BR1

)\| u\epsilon \| 1 - \beta 
L\infty (BR3

)

+
R2

3

R2
1

[\epsilon ln(\epsilon  - 1 + 2)]\beta \| u\epsilon \| L\infty (BR3
)

\biggr\} 
,(1.11)

where \beta = ln \lambda R3

2R2
/ln R3

R1
and C depends on \lambda and (\tau , \mu ).

Thanks to the three-ball inequality (1.9), we can show an approximate quantita-
tive propagation of smallness result for solutions of (1.3).

Corollary 4. Let u\epsilon be a solution of (1.3) in B10. Assume that \| u\epsilon \| L\infty (Br) \leq \delta 

for some small r < \lambda 
9 and \| u\epsilon \| L\infty (B10) \leq 1. Then, with \beta = ln 9

4/ln
9
\lambda and C depending

on \lambda and (\tau , \mu ),

\| u\epsilon \| L\infty (B9) \leq C\delta \beta 
m

+mC[\epsilon ln(\epsilon  - 1 + 2)]\beta 
m

(1.12)

for some positive integer m depending only on r, for \epsilon ln(\epsilon  - 1 + 2) \leq 1.

From the inequality (1.12), we learn that u\epsilon in any compact domain of B10 can
be made small if \delta is sufficiently small and \epsilon is sufficiently small, with an explicit
dependence of \delta and \epsilon .

Recently, an interesting doubling inequality was shown by Lin and Shen [LS] un-
der a stronger regularity of A(y). Assume that A(y) satisfies the following Lipschitz
continuous condition.

(iv) Lipschitz continuity: There exists a constant \tau > 0 such that

| A(x) - A(y)| \leq \tau | x - y| (1.13)

for any x, y \in Rd.
Let

ffl
Br

be the average integral in Br. Under the assumptions of (1.4), (1.5), and

(1.13) for A(y), the doubling inequality results in [LS] can be formulated as follows.

Theorem A. Let u\epsilon be a solution of (1.3) in B4/
\surd 
\lambda . Assume that

 
B2/

\surd 
\lambda 

u2
\epsilon dx \leq N

 
B\surd 

\lambda 

u2
\epsilon dx(1.14)

for some N > 1. Then
 
Br

u2
\epsilon dx \leq C(N)

 
B r

2

u2
\epsilon dx(1.15)

for any 0 < r < 1, where C(N) depends on N,\lambda , \tau , d.

Note that C(N) can be chosen increasing with respect to N . By standard argu-
ments, we can replace the average L2 norm by L\infty norm in Theorem A. Thanks to
Theorem A, we are able to show the following full propagation of smallness result.

Corollary 5. Assume that \| u\epsilon \| L\infty (B2/
\surd 

\lambda )
\leq 1. Then, given any constants \eta 0 >

0, 0 < r0 <
\surd 
\lambda 
2 , there exists a positive constant \delta 0 = \delta 0(\lambda , d, \tau , r0, \eta 0) such that if

\| u\epsilon \| L\infty (Br0
) \leq \delta 0, then \| u\epsilon \| L\infty (B\surd 

\lambda )
\leq \eta 0.
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Note that the dependence of \delta 0 is not explicit in the corollary.

Remark 2. A direct consequence of Theorem A is the following doubling inequal-
ity with translation (Theorem 3.3 in [LS]): 

Br(x0)

u2
\epsilon dx \leq C(N)

 
B r

2
(x0)

u2
\epsilon dx(1.16)

for 0 < r < 3
4 and | x0| \leq 

\surd 
\lambda 
2 . We can also replace the average L2 norm by L\infty 

norm in (1.16). Assuming that \| u\epsilon \| L\infty (B\surd 
\lambda )

\geq 1 and \| u\epsilon \| L\infty (B2/
\surd 

\lambda )
\leq M , a uniform

in \epsilon vanishing order estimate for u\epsilon can be shown in B\surd 
\lambda /2 by iteration of (1.16) in

L\infty norm. However, such a vanishing order estimate is implicit since it depends on
C(M). See, e.g., [K], [Z], for some literature on the explicit vanishing order estimates
for solutions in (1.2).

To study the propagation of smallness in the half-space, one needs to establish
the three half-balls inequality. We can extend the three-ball inequality (1.8) to elliptic
homogenization with Dirichlet or Neumann boundary conditions. We consider elliptic
homogenization with the Dirichlet or Neumann boundary conditions in half balls\Biggl\{ 

 - div
\bigl( 
A(x\epsilon )\nabla u\epsilon 

\bigr) 
= 0 in B+

10 = B10 \cap \{ xd \geq 0\} ,

u\epsilon = 0 or \partial u\epsilon 

\partial \nu = 0 on \partial B+
10 \cap \{ xd = 0\} ,

(1.17)

where

A(y) =

\left(     
a11(y) \cdot \cdot \cdot a1(d - 1)(y) 0

...
. . .

...
...

a(d - 1)1(y) \cdot \cdot \cdot a(d - 1)(d - 1)(y) 0
0 \cdot \cdot \cdot 0 add(y)

\right)     ,(1.18)

the conormal derivative \partial u\epsilon 

\partial \nu \epsilon 
is defined as

\partial u\epsilon 

\partial \nu \epsilon 
= aij

\partial u\epsilon 

\partial xj
ni,

and n = (n1, . . . , nd) is a unit outer normal. We are able to show the approximate
three-ball inequality for solutions of (1.17) in half balls.

Theorem 2. Let u\epsilon be a solution of (1.17) with A(y) satisfying (1.18) in B+
10.

For 0 < R1 < R2 < \lambda R3

4 < \lambda 
4 ,

\| u\epsilon \| L\infty (B+
R2

) \leq C

\biggl\{ 
R2

R3
\| u\epsilon \| \beta L\infty (B+

R1
)
\| u\epsilon \| 1 - \beta 

L\infty (B+
R3

)
+

R2
3

R2
1

[\epsilon ln(\epsilon  - 1 + 2)]\beta \| u\epsilon \| L\infty (B+
R3

)

\biggr\} 
,

(1.19)

where \beta = ln \lambda R3

2R2
/ln R3

R1
and C depends on \lambda and (\tau , \mu ).

Similarly, we are able to consider an approximate three-ball inequality for eigen-
value type equations in half balls with the Dirichlet or Neumann boundary conditions\Biggl\{ 

 - div
\bigl( 
A(x\epsilon )\nabla u\epsilon ,k

\bigr) 
= \Lambda \epsilon ,ku\epsilon ,k in B+

10 = B10 \cap \{ xd \geq 0\} ,

u\epsilon ,k = 0 or
\partial u\epsilon ,k

\partial \nu = 0 on \partial B+
10 \cap \{ xd = 0\} ,

(1.20)

where A(y) is in the form of (1.18). The constants \Lambda \epsilon ,k are assumed to be positive
and \Lambda \epsilon ,k \rightarrow \infty as k \rightarrow \infty . We can show the following corollary.
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Corollary 6. Let u\epsilon ,k be a solution of (1.20) with A(y) satisfying (1.18) in B+
10.

For 0 < R1 < R2 < \lambda R3

4 < \lambda 
4 ,

\| u\epsilon ,k\| L\infty (B+
R2

) \leq Ce2R3

\surd 
\Lambda \epsilon ,k

\biggl\{ 
R2

R3
\| u\epsilon ,k\| \beta L\infty (B+

R1
)
\| u\epsilon ,k\| 1 - \beta 

L\infty (B+
R3

)

+
R2

3

R2
1

[\epsilon ln(\epsilon  - 1 + 2)]\beta \| u\epsilon ,k\| L\infty (B+
R3

)

\biggr\} 
,(1.21)

where \beta = ln\lambda R32R2/ln
R3

R1
and C depends on \lambda and (\tau , \mu ).

One can also consider the asymptotical behavior of eigenvalue \Lambda \epsilon ,k in terms of \epsilon 
and k in the model as (1.20), which is a difficult issue. Related results in this direction
can be found in, e.g., [KLS1], [Zh].

The paper is organized as follows. Section 2 is devoted to some basic material on
elliptic periodic homogenization. In section 3, we prove Theorems 1 and 2 and the
corollaries. The letter C denotes a positive constant that does not depend on \epsilon or u\epsilon .
It may vary from line to line.

Added remark. After the paper was posted in arXiv and submitted for publi-
cation, an improvement in the error bound for the three-ball inequality in Theorem 1
(under certain extra conditions) was discovered by Armstrong, Kuusi, and Smart in
[AKS].

2. Preliminaries. This section introduces some background results on elliptic
periodic homogenization. Most of the material can be found in books, e.g., [BLP],
[S]. Let \chi (y) = (\chi 1(y), . . . , \chi d(y)) \in H1(Td;Rd) denote the corrector of \scrL \epsilon , where
Td = Rd/Zd. It is known that \chi (y) is the unique 1-periodic solution in H1(Td)
satisfying

(2.1)

\Biggl\{ 
\scrL 1(\chi j) + \scrL 1(yj) = 0 in Rd,´
Td \chi j dy = 0 for j = 1, . . . , d.

Using the De Giorgi--Nash estimates, \chi j(y) is H\"older continuous. If A(y) is H\"older
continuous, then \nabla \chi is bounded. See, e.g., [S]. Assume that \Omega is a bounded C2,\eta 

domain for some \eta \in (0, 1) in Rd in the rest of the paper. If \{ u\epsilon \} is bounded in H1(\Omega ),
then any sequence \{ u\epsilon l\} with \epsilon l \rightarrow 0 contains a subsequence that converges weakly in
H1(\Omega ). By the homogenization theory, one may conclude that as \epsilon \rightarrow 0,

(2.2)

\left\{       
A(x\epsilon )\nabla u\epsilon \rightharpoonup \widehat A\nabla u weakly in L2(\Omega ),

u\epsilon \rightharpoonup u weakly in L2(\Omega ),

u\epsilon \rightarrow u stronlgy in L2(\Omega ),

where \widehat A = (\widehat aij) and
\widehat A = \widehat aij = ˆ

Td

\biggl[ 
aij + aik

\partial \chi j

\partial yk

\biggr] 
dy.(2.3)

It is also true that the constant matrix \widehat aij is symmetric and satisfies (1.4) with the
same parameter \lambda . Thus, the homogenized equation for \scrL \epsilon u\epsilon = 0 is given by

\scrL 0u =  - div( \widehat A\nabla u) = 0.(2.4)
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Since \widehat A is symmetric and positive definite, there exists a d\times d matrix S such that
S \widehat AST = Id\times d. Note that \widehat A - 1 = STS and

\langle \widehat A - 1x, x\rangle = | Sx| 2.(2.5)

We introduce a family of ellipsoids as

Er( \widehat A) = \{ x \in Rn : \langle ( \widehat A - 1x, x\rangle \leq r2\} .(2.6)

By the assumption that \widehat A satisfies (1.4) as well, we can show that

B\surd 
\lambda r(0) \subset Er( \widehat A) \subset B r\surd 

\lambda 
(0).(2.7)

We will write Er( \widehat A) as Er if the context is understood.
The Dirichlet corrector is used to control the influence of the boundary data. The

Dirichlet corrector \Psi \epsilon ,k for the operator \scrL \epsilon in \Omega is defined as\Biggl\{ 
\scrL \epsilon (\Psi \epsilon ,k) = 0 in \Omega ,

\Psi \epsilon ,k = Pk on \partial \Omega ,

where Pk = xk for 1 \leq k \leq d. It was shown by Avellaneda and Lin in [AL] that

\| \nabla \Psi \epsilon ,k\| L\infty (\Omega ) \leq C,(2.8)

where C depends on \lambda , (\tau , \mu ), and \Omega . In the discussion in the next section, we need to
know how the constant C depends on r in the ellipsoid Er. By a rescaling argument,
we can actually show that

\| \nabla \Psi \epsilon ,k\| L\infty (Er) \leq C(2.9)

with C depends only on \lambda and (\tau , \mu ). For x \in Er, let y = x
r . Then y \in E1. We

perform a rescaling as

\Psi \epsilon ,k(x) = r \~\Psi \epsilon ,k

\Bigl( x
r

\Bigr) 
= r \~\Psi \epsilon ,k(y),(2.10)

where \~\Psi \epsilon ,k is the Dirichlet corrector for the operator \scrL \epsilon in E1. We can see that
\Psi \epsilon ,k(x) is the Dirichlet corrector for the operator \scrL \epsilon in Er, since\Biggl\{ 

 - div(A( x
\epsilon r )\nabla \Psi \epsilon ,k(x) =  - div(A(y)\nabla \~\Psi \epsilon ,k(y) = 0 in Er,

\Psi \epsilon ,k = r \~\Psi \epsilon ,k(
x
r ) = r \cdot xk

r = xk on \partial Er.

It follows from (2.8) that

\| \nabla y
\~\Psi \epsilon ,k\| L\infty (E1) \leq C

with C depending only on \lambda and (\tau , \mu ). Thus, it implies that

\| \nabla x\Psi \epsilon ,k\| L\infty (Er) = \| \nabla y
\~\Psi \epsilon ,k\| L\infty (E1) \leq C(2.11)

with the same constant C in the last inequality. Therefore, we arrive at the estimates
(2.9).
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The asymptotic expansion of the Poisson kernel is well studied in homogenization
theory. Let P\epsilon (x, y) denote the Poisson kernel for \scrL \epsilon in a bounded C2,\eta domain \Omega .
It was shown by Kenig, Lin, and Shen in [KLS2] that we can write

P\epsilon (x, y) = P0(x, y)w\epsilon (y) +R\epsilon (x, y),(2.12)

where P0(x, y) is the Poisson kernel for the homogenized operator \scrL 0,

w\epsilon (y) = (\widehat aijninj)
 - 1 \partial \Psi \epsilon ,k

\partial n
nk \cdot aij(

y

\epsilon 
)ninj ,(2.13)

n = (n1, . . . , nn) is a unit outer normal on \partial \Omega , and

| R\epsilon (x, y)| \leq 
C\epsilon ln | \epsilon  - 1| x - y| + 2| 

| x - y| d
for any x \in \Omega and y \in \partial \Omega .(2.14)

The constant C in (2.14) depends on \lambda , (\tau , \mu ), and \Omega . From (1.4), (2.11), and (2.13),
it follows that

\| w\epsilon (y)\| L\infty (Er) \leq C(2.15)

with C independent of r. In the following discussions, we also need to know what
the dependence of the constant C in (2.14) on the ellipsoid Er is. Note that for any
x \in \Omega and y \in \partial \Omega ,

P\epsilon (x, y) =  - \partial G\epsilon (x, y)

\partial n(y)
aij

\Bigl( y
\epsilon 

\Bigr) 
ni(y)nj(y),(2.16)

and

P0(x, y) =  - \partial G(x, y)

\partial n(y)
\widehat aij(y)ni(y)nj(y),(2.17)

where G\epsilon (x, y) and G(x, y) are the Green functions for the operator \scrL \epsilon and \scrL 0,
respectively. It follows from (2.12) that

R\epsilon (x, y) =  - \partial G\epsilon (x, y)

\partial n(y)
aij

\Bigl( y
\epsilon 

\Bigr) 
ni(y)nj(y)

+
\partial G(x, y)

\partial n(y)

\partial \Psi \epsilon ,k

\partial nk(y)
nk(y)aij

\Bigl( y
\epsilon 

\Bigr) 
ni(y)nj(y).(2.18)

Thus, the estimate (2.14) for R\epsilon (x, y) is shown in [KLS2] as

| R\epsilon (x, y)| \leq C

\bigm| \bigm| \bigm| \bigm| \partial G\epsilon (x, y)

\partial yi
 - \partial \Psi \epsilon ,k

\partial yi

\partial G(x, y)

\partial yj

\bigm| \bigm| \bigm| \bigm| 
\leq C

\epsilon ln | \epsilon  - 1| x - y| + 2| 
| x - y| d

.(2.19)

To see how the C in the last inequality depends on r in Er, we use the rescaling
argument again. Let x\prime = x

r and y\prime = y
r , where x, y \in Er. Then x\prime , y\prime \in E1. We do a

rescaling as

G\epsilon (x, y) = r2 - d \~G\epsilon (x
\prime , y\prime ),(2.20)
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where \~G\epsilon (x
\prime , y\prime ) is the Green function for the operator \scrL \epsilon in E1. Since\left\{       
 - div(aij(

x
\epsilon r )\nabla G\epsilon (x, y)) =  - r - ddiv(aij(

x\prime 

\epsilon )\nabla \~G\epsilon (y
\prime ))

= r - d\delta (x\prime  - y\prime ) = \delta (x - y) in Er,

G\epsilon (x, y) = r2 - d \~G\epsilon (x
\prime , y\prime ) = 0 on \partial Er,

it implies that G\epsilon (x, y) is the Green function for the operator \scrL \epsilon in Er. From (2.19),
we have\bigm| \bigm| \bigm| \bigm| \partial G\epsilon (x, y)

\partial yi
 - \partial \Psi \epsilon ,k

\partial yi

\partial G(x, y)

\partial yj

\bigm| \bigm| \bigm| \bigm| = r1 - d

\bigm| \bigm| \bigm| \bigm| \partial G\epsilon (x
\prime , y\prime )

\partial y\prime i
 - \partial \Psi \epsilon ,k

\partial y\prime i

\partial G(x\prime , y\prime )

\partial y\prime j

\bigm| \bigm| \bigm| \bigm| 
\leq Cr1 - d\epsilon ln[\epsilon  - 1| x\prime  - y\prime | + 2]

| x\prime  - y\prime | d

=
Cr\epsilon ln[\epsilon  - 1 | x - y| 

r + 2]

| x - y| d
,(2.21)

where C in the last inequality depends only on \lambda , (\tau , \mu ) since x\prime , y\prime \in E1. This implies
that

| R\epsilon (x, y)| \leq 
Cr\epsilon ln[\epsilon  - 1 | x - y| 

r + 2]

| x - y| d
(2.22)

for x \in Er and y \in \partial Er and C is independent of r.

3. Approximate three-ball inequality. This section is devoted to the proof
of three-ball inequality (1.8) in Theorem 1. We adapt the method of using the Poisson
kernel in [GM], for harmonic functions, to elliptic homogenization. We want to have
an explicit form for the Poisson kernel of the homogenized operator \scrL 0. We transform
the operator \scrL 0 into the classical Laplacian operator. Let u(x) = w(Sx). Then

0 = div( \widehat A\nabla u) = div(S \widehat AST\nabla w) = \bigtriangleup w.(3.1)

We can represent the harmonic function w(x) by Poisson kernel as

w(x) =

ˆ
Sr

\gamma d
r2  - | x| 2

r| x - y| d
w(y) dy,(3.2)

where Sr is the d  - 1 dimensional sphere centered at the origin with radius r and
\gamma d = 2\pi 

d
2 /\Gamma (d2 ) is the surface area of S1 with d \geq 2. By the relation of u(x) = w(Sx),

we can transform (3.2) to the solution u for homogenized equation (2.4). It follows
that

u(x) =

ˆ
\partial Er

P0(x, y)u(y) dy,(3.3)

where

P0(x, y) = \gamma d| S| 
r2  - | Sx| 2

r| Sx - Sy| d
.(3.4)

Following [GM], we are going to apply the Lagrange interpolation method to ob-
tain the three-ball inequality (1.8). Intuitively, the main idea of the Lagrange inter-
polation method is to use well-behaved polynomials to approximate a given function
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and efficiently estimate the error term. Let us briefly review the standard Lagrange
interpolation method in numerical analysis [DB]. Set

\Phi m(z) = (z  - u1)(z  - u2) \cdot \cdot \cdot (z  - um)(3.5)

for z, uj \in \scrC with j = 1, . . . ,m. Let \scrD be a simply connected open domain in the
complex plane \scrC that contains the nodes \~u, u1, . . . , um. Assume that f is an analytic
function without poles in the closure of \scrD . By well-known calculations, it holds that

1

z  - \~u
=

m\sum 
j=1

\Phi j - 1(\~u)

\Phi j(z)
+

\Phi m(\~u)

(z  - \~u)\Phi m(z)
.(3.6)

Multiplying the last identity by 1
2\pi if(z) and integrating along the boundary of \scrD 

leads to

1

2\pi i

ˆ
\partial \scrD 

f(z)

z  - \~u
dz =

m\sum 
j=1

\Phi j - 1(\~u)

2\pi i

ˆ
\partial \scrD 

f(z)

\Phi j(z)
dz + (Rmf)(\~u),(3.7)

where

(Rmf)(\~u) =
1

2\pi i

ˆ
\partial \scrD 

\Phi m(\~u)f(z)

(z  - \~u)\Phi m(z)
dz.

By the residue theorem, we obtain that

(Rmf)(\~u) =
m\sum 
j=1

\Phi m(\~u)

(uj  - \~u)\Phi \prime 
m(uj)

f(uj) + f(\~u)

=  - 
m\sum 
j=1

m\prod 
i\not =j

\~u - ui

uj  - ui
f(uj) + f(\~u),(3.8)

where (Rmf)(\~u) is called the interpolation error. Based on the identity (3.8), the idea
is to approximate f(\~u) by a linear combination of the polynomials

 - 
m\sum 
j=1

m\prod 
i\not =j

\~u - ui

uj  - ui
f(uj)

and then control the error term (Rmf)(\~u) efficiently. See chapter 4 in [DB] for more
information.

With these preliminaries, we are able to present the proof of Theorem 1.

Proof of Theorem 1. In order to obtain the approximate three-ball theorem for
the solution in (1.3) in elliptic periodic homogenization, we consider the Lagrange
interpolation for f(t) = P0(tx0

r1
r2
, y), where 0 < r1 < r2 < R

4 < 1. We fix a point

x0 such that

\sqrt{} 
\langle \widehat A - 1x0, x0\rangle = | Sx0| \leq r2. We approximate P0(x0, y) by a linear

combination of the form
\sum m

i=1 ciP0(xi, y) with | Sxi| \leq r1. Then we need to estimate
the sum of the absolute values of the coefficients ci in the linear combination and the
error (RmP0)(x0, y) of the approximation.

We choose points xi = tix0
r1
r2

on the segment [0, x0
r1
r2
] with ti \in (0, 1). We select

ui = ti in the definition of \Phi m in (3.5) and \~u = r2
r1
. Define

cj =
m\prod 
i\not =j

r2r
 - 1
1  - ti

tj  - ti
.(3.9)



PROPAGATION OF SMALLNESS IN HOMOGENIZATION 11

Since 0 < ti < 1, direct calculations show that

| cj | \leq 
(r2r

 - 1
1 )m

| \Phi \prime 
m(tj)| 

.(3.10)

To further estimate | cj | , we choose ti to be the Chebyshev nodes, i.e., ti = cos( (2i - 1)\pi 
2m ).

Then we can write

\Phi m(t) = 21 - mTm(t),

where Tm is the Chebyshev polynomial of the first kind. We also know that

\Phi \prime 
m(t) = m21 - mUm - 1(t),(3.11)

where Um - 1 is the Chebyshev polynomial of the second kind. See, e.g., section 3.2.3
in [DB]. At each ti, we have

Um - 1(ti) = Um - 1

\biggl( 
cos

(2i - 1)\pi 

2m

\biggr) 
=

sin (2i - 1)\pi 
2

sin (2i - 1)\pi 
2m

=
( - 1)i - 1

sin (2i - 1)\pi 
2m

.

By (3.11), it follows that

| \Phi \prime 
m(ti)| \geq m21 - m.

Therefore, we can show that

| cj | \leq (2m) - 1

\biggl( 
2r2
r1

\biggr) m

.(3.12)

To estimate the error of the approximation (RmP0)(x0, y), we do an analytic
extension of the function f(t) = P0(tx0

r1
r2
, y) to the disc of radius R

2r1
centered at the

origin in the complex plane \scrC . Note that P0(x, y) is independent of \epsilon . By the explicit
form of P0(x, y) in (3.4) for \partial ER, we have

f(z) = \gamma d| S| 
R2  - | Sx0| 2r21r - 2

2 z2

R| r1r - 1
2 zSx0  - Sy| d

.(3.13)

If R is fixed, then

| f(z)| \leq CR - (d - 1)(3.14)

in the disc. Hence, f(z) is bounded. By (3.5), we can also see that

| \Phi m(z)| \geq 
\biggl( \biggl( 

R

2r1

\biggr) 
 - 1

\biggr) m

on the circle | z| = R

2r1
(3.15)

and \bigm| \bigm| \bigm| \bigm| \Phi m

\biggl( 
r2
r1

\biggr) \bigm| \bigm| \bigm| \bigm| \leq \biggl( r2
r1

\biggr) m

.(3.16)
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By the identity (3.8), we estimate the interpolation error as follows:

| (RmP0)(x0, y)| =
\bigm| \bigm| \bigm| \bigm| P0(x0, y) - 

m\sum 
i=1

ciP0(xi, y)

\bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| f(r2r1 ) - 
m\sum 
i=1

cif(ti)

\bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| 1

2\pi i

ˆ
| z| = R

2r1

\Phi m(r2r
 - 1
1 )f(z)

(z  - r2r
 - 1
1 )\Phi m(z)

dz

\bigm| \bigm| \bigm| \bigm| 
\leq C

2mrm2
Rd - 2(R - 2r1)m(R - 2r2)

\leq C
2mrm2

Rd+m - 1
,(3.17)

where we have used estimates (3.15), (3.16) and the assumption that 0 < r1 < r2 <
R
4 < R in the last inequality, and the constant C in the last inequality does not
depend on m. Note that (3.12) yields

m\sum 
j=1

| cj | \leq 2 - 1

\biggl( 
2r2
r1

\biggr) m

.(3.18)

With these estimates for the Poisson kernel, we are going to estimate the supre-
mum u\epsilon in ellipsoids. We can write the solutions of (1.3) in ER as

u\epsilon (x) =

ˆ
\partial ER

P\epsilon (x, y)u\epsilon (y) dy.(3.19)

Thanks to (2.12), we can split the last integral as\bigm| \bigm| \bigm| \bigm| ˆ
\partial ER

P\epsilon (x, y)u\epsilon (y) dy

\bigm| \bigm| \bigm| \bigm| 
\leq 
\bigm| \bigm| \bigm| \bigm| ˆ

\partial ER

m\sum 
i=1

ciP\epsilon (xi, y)u\epsilon (y) dy

\bigm| \bigm| \bigm| \bigm| 
+

\bigm| \bigm| \bigm| \bigm| ˆ
\partial ER

\bigl( 
P\epsilon (x, y) - 

m\sum 
i=1

ciP\epsilon (xi, y)
\bigr) 
u\epsilon (y) dy

\bigm| \bigm| \bigm| \bigm| 
\leq 

m\sum 
i=1

\bigm| \bigm| \bigm| \bigm| ci| | u\epsilon (xi)

\bigm| \bigm| \bigm| \bigm| + ˆ
\partial ER

\bigm| \bigm| \bigm| \bigm| P0(x, y) - 
m\sum 
i=1

ciP0(xi, y)| | w\epsilon (y)| | u\epsilon (y)

\bigm| \bigm| \bigm| \bigm| dy
+

ˆ
\partial ER

\bigm| \bigm| \bigm| \bigm| R\epsilon (x, y) - 
m\sum 
i=1

ciR\epsilon (xi, y)| | u\epsilon (y)

\bigm| \bigm| \bigm| \bigm| dy.(3.20)

Let x = x0. By the relations of xi = tix0
r1
r2

and | Sx0| \leq r2, then all xi \in Er1 . Taking
into account the estimates (2.15), (2.22), (3.17), and (3.18) gives that

| u\epsilon (x0)| \leq 
\biggl( 
2r2
r1

\biggr) m

sup
Er1

| u\epsilon | + C
2mrm2
Rm

sup
ER

| u\epsilon | + C\epsilon ln(\epsilon  - 1 + 2)

\biggl( 
2r2
r1

\biggr) m

sup
ER

| u\epsilon | ,

(3.21)
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where those C do not depend on m, r1, r2, or R. Since x0 is an arbitrary point in
Er2 , it follows that

sup
Er2

| u\epsilon | \leq C

\biggl\{ \biggl( 
2r2
r1

\biggr) m

sup
Er1

| u\epsilon | +
\biggl( 
2r2
R

\biggr) m

sup
ER

| u\epsilon | + \epsilon ln(\epsilon  - 1 + 2)

\biggl( 
2r2
r1

\biggr) m

sup
ER

| u\epsilon | 
\biggr\} 
.

(3.22)

Next we aim to minimize the summation of the terms in the right-hand side of
(3.22) by choosing the integer value m. For ease of notation, let

sup
Er1

| u\epsilon | = \delta , sup
ER

| u\epsilon | = M.(3.23)

First, we choose a value of m such that\biggl( 
2r2
r1

\biggr) m

\delta =
(2r2)

m

Rm
M.(3.24)

Solving the equality gives that

m =
lnM/\delta 

lnR/r1
.

We define an integer value

m0 =

\biggl\lfloor 
lnM/\delta 

lnR/r1

\biggr\rfloor 
+ 1,

where \lfloor \cdot \rfloor denotes its integer part. We split the discussion of the minimization into
two cases.

Case 1: The case \epsilon ln(\epsilon  - 1 + 2)( 2r2r1
)m0 \leq ( 2r2R )m0 . In this case, let m = m0 in

the estimate (3.22). The third term can be incorporated into the second term in the
right-hand side of (3.22). It follows that

sup
Er2

| u\epsilon | \leq C

\biggl\{ \biggl( 
2r2
r1

\biggr) m0

\delta +

\biggl( 
2r2
R

\biggr) m0

M

\biggr\} 
\leq C

\biggl( 
2r2
R

\biggr) 
M1 - \alpha \delta \alpha ,(3.25)

where

\alpha =
ln R

2r2

ln R
r1

.(3.26)

Case 2: The case \epsilon ln(\epsilon  - 1+2)( 2r2r1
)m0 > ( 2r2R )m0 . In this case, from the definition

of m0, we see that

\epsilon ln(\epsilon  - 1 + 2) >
\delta r1
MR

.(3.27)

That is,

sup
Er1

| u\epsilon | \leq \epsilon ln(\epsilon  - 1 + 2)
R

r1
sup
ER

| u\epsilon | .(3.28)
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In order to obtain the minimum for the terms in the right-hand sides of (3.22), we
choose the value of \^m such that

\epsilon ln(\epsilon  - 1 + 2)

\biggl( 
2r2
r1

\biggr) \^m

=

\biggl( 
2r2
R

\biggr) \^m

.(3.29)

Solving the equality yields that

\^m =
ln
\bigl( 
\epsilon ln(\epsilon  - 1 + 2)

\bigr) 
ln r1

R

.(3.30)

We define the integer value as

m1 =

\biggl\lfloor 
ln
\bigl( 
\epsilon ln(\epsilon  - 1 + 2)

\bigr) 
ln r1

R

\biggr\rfloor 
+ 1.(3.31)

Substituting m = m1 in the inequality (3.22) again, we can incorporate the second
term into the third term in the right-hand side of (3.22). Taking (3.28) into account,
we obtain that

sup
Er2

| u\epsilon | \leq C

\biggl\{ \biggl( 
2r2
r1

\biggr) m1

\epsilon ln(\epsilon  - 1 + 2)
R

r1
M + \epsilon ln(\epsilon  - 1 + 2)

\biggl( 
2r2
r1

\biggr) m1

M

\biggr\} 

\leq C
2r2R

r21
exp

\Biggl\{ 
ln 2r2

r1
ln[\epsilon ln(\epsilon  - 1 + 2)]

ln r1
R

\Biggr\} 
\epsilon ln(\epsilon  - 1 + 2)M

\leq C
R2

r21
[\epsilon ln(\epsilon  - 1 + 2)]

ln R
2r2

ln R
r1 M

= C
R2

r21
[\epsilon ln(\epsilon  - 1 + 2)]\alpha M(3.32)

with

\alpha =
ln R

2r2

ln R
r1

.(3.33)

Combining the estimates in (3.25) and (3.32) in these two cases, we arrive at

sup
Er2

| u\epsilon | \leq C

\Biggl\{ 
r2
R

\Bigl( 
sup
Er1

| u\epsilon | 
\Bigr) \alpha \Bigl( 

sup
ER

| u\epsilon | 
\Bigr) 1 - \alpha 

+
R2

r21
[\epsilon ln(\epsilon  - 1 + 2)]\alpha sup

ER

| u\epsilon | 

\Biggr\} 
(3.34)

in three different sizes of ellipsoids. By the assumption of r1, r2, and R, we also see
that 0 < \alpha < 1. This completes the proof of Theorem 1.

Now we are ready to show the proof of Corollary 1.

Proof of Corollary 1. We make use of the approximate three-ball inequality in
ellipsoids in (3.34). We choose 0 < r1 \leq r1

\lambda < r2 < R
4 < R

4\lambda for R <
\surd 
\lambda . By the

relation of ellipsoids and balls in (2.7), we have

sup
B\surd 

\lambda r2

| u\epsilon | \leq C

\biggl\{ 
r2
R

\Bigl( 
sup

Br1/
\surd 

\lambda 

| u\epsilon | 
\Bigr) \alpha \Bigl( 

sup
BR/

\surd 
\lambda 

| u\epsilon | 
\Bigr) 1 - \alpha 

+
R2

r21
[\epsilon ln(\epsilon  - 1 + 2)]\alpha sup

BR/
\surd 

\lambda 

| u\epsilon | 
\biggr\} 
.

(3.35)
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Let R1 = r1/
\surd 
\lambda , R2 =

\surd 
\lambda r2, and R3 = R/

\surd 
\lambda , Then 0 < R1 < R2 < R3

4 < 1
4 .

The last inequality implies that

sup
BR2

| u\epsilon | \leq C

\Biggl\{ 
R2

R3

\Bigl( 
sup
BR1

| u\epsilon | 
\Bigr) \beta \Bigl( 

sup
BR3

| u\epsilon | 
\Bigr) 1 - \beta 

+
R2

3

R2
1

[\epsilon ln(\epsilon  - 1 + 2)]\beta sup
BR3

| u\epsilon | 

\Biggr\} 
,(3.36)

where

\beta =
ln \lambda R3

2R2

ln R3

R1

(3.37)

is derived from the \alpha value in (3.26) and C depends only on \lambda and (\tau , \mu ). It is easy
to see that \beta < 1. By the value of \lambda , it is possible that \beta < 0. However, the second
term in the right-hand side of (3.36) implies that such inequality holds trivially when
\epsilon is sufficiently small. To have \beta > 0, we need to have R2 < \lambda R3

2 . Together with

R2 < R3

4 < 1
4 , we choose 0 < R1 < R2 < \lambda R3

4 < \lambda 
4 . Thus, the inequality (3.36) holds

with 0 < \beta < 1. This completes the proof of Corollary.

From Corollary 1, we can give the proof of Corollary 3.

Proof of Corollary 3. We introduce a new function v\epsilon (x, t) as

v\epsilon (x, t) = e
\surd 

\Lambda \epsilon ,ktu\epsilon (x) in B10 \times ( - 10, 10).

From eigenvalue type equation (1.10), the new function v\epsilon (x, t) solves the equation

\scrL \epsilon v\epsilon  - \partial 2
t v\epsilon = 0 in B10 \times ( - 10, 10).(3.38)

This new homogenization equation (3.38) has the coefficient matrix\Biggl( 
(aij)d\times d 0

0 1

\Biggr) 
,

which also satisfies conditions (1.4), (1.5), and (1.6). Let \~Br be the ball with radius
r in B10 \times ( - 10, 10). We may write \~Br as Br \times ( - r, r). From Corollary 1, it holds
that

\| v\epsilon \| L\infty (\~BR2
) \leq C

\biggl\{ 
R2

R3
\| v\epsilon \| \beta L\infty (\~BR1

)
\| v\epsilon \| 1 - \beta 

L\infty (\~BR3
)
+

R2
3

R2
1

[\epsilon ln(\epsilon  - 1 + 2)]\beta \| v\epsilon \| L\infty (\~BR3
)

\biggr\} (3.39)

for R1, R2, R3, \beta given in Corollary 1. By the definition of v\epsilon (x, t) and \~Br, we obtain
that

e - 
\surd 

\Lambda \epsilon ,kR2\| u\epsilon \| L\infty (BR2
) \leq C

\biggl\{ 
R2

R3
e
\surd 

\Lambda \epsilon ,kR3\| u\epsilon \| \beta L\infty (BR1
)\| u\epsilon \| 1 - \beta 

L\infty (BR3
)

+
R2

3

R2
1

e
\surd 

\Lambda \epsilon ,kR3 [\epsilon ln(\epsilon  - 1 + 2)]\beta \| u\epsilon \| L\infty (BR3
)

\biggr\} 
.(3.40)

Thus, the corollary follows.

Let us show another consequence of the three-ball inequality in Corollary 1, that
is, the approximate propagation of smallness estimates.
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Proof of Corollary 4. As a consequence of De Giorgi--Nash estimates, the solution
u\epsilon in (1.3) is a continuous function. Hence there exists \=x \in B9 such that u\epsilon (\=x) =
supB9

| u\epsilon (x)| . We select a sequence of balls with radius 2r centered at x1 = 0, . . . , xm

so that xi+1 \in Br(xi), Br(xi+1) \subset B2r(xi) and \=x \in B2r(xm). The number m depends
on r. By the way we choose xi+1, it holds that

\| u\epsilon \| L\infty (Br(xi+1)) \leq \| u\epsilon \| L\infty (B2r(xi)).(3.41)

Applying the three-ball inequality (1.9) for x1 = 0 and using that \| u\epsilon \| L\infty (B10) \leq 1,
we have

\| u\epsilon \| L\infty (B2r(x1)) \leq C\{ \delta \beta + [\epsilon ln(\epsilon  - 1 + 2)]\beta \} (3.42)

with \beta =
ln 9

4

ln 9
\lambda 

. Then we choose x2 \in B2r(x1) such that Br(x2) \subset B2r(x1). Thus,

\| u\epsilon \| L\infty (Br(x2)) \leq \| u\epsilon \| L\infty (B2r(x1)).(3.43)

Applying the three-ball inequality (1.9) for balls centered at x2 and using (3.42) and
(3.43), we have

\| u\epsilon \| L\infty (B2r(x2)) \leq C\{ C\delta \beta + C[\epsilon ln(\epsilon  - 1 + 2)]\beta \} \beta + C[\epsilon ln(\epsilon  - 1 + 2)]\beta 

= C\beta +1\delta \beta 
2

+ C\beta +1[\epsilon ln(\epsilon  - 1 + 2)]\beta 
2

+ C[\epsilon ln(\epsilon  - 1 + 2)]\beta .(3.44)

Iterating this argument with three-ball inequality at points x3, . . . , up to xm and
using (3.41) and the fact that \| u\epsilon \| L\infty (B10) \leq 1, we obtain that

\| u\epsilon \| L\infty (B2r(xm)) \leq C
\sum m

i=1 \beta m - i

\delta \beta 
m

+

m\sum 
j=1

C
\sum j

i=1 \beta i - 1

[\epsilon ln(\epsilon  - 1 + 2)]\beta 
j

.

Since 0 < \beta < 1, we have

\| u\epsilon \| L\infty (B2r(xm)) \leq C
1

1 - \beta \delta \beta 
m

+mC
1

1 - \beta [\epsilon ln(\epsilon  - 1 + 2)]\beta 
m

.(3.45)

If r is fixed, then m is a fixed number. Thus,

\| u\epsilon \| L\infty (B9) \leq C
1

1 - \beta \delta \beta 
m

+mC
1

1 - \beta [\epsilon ln(\epsilon  - 1 + 2)]\beta 
m

(3.46)

for \epsilon ln(\epsilon  - 1 + 2) \leq 1.

Compared with the previous approximate propagation of smallness result, we
are able to show a full propagation of smallness result with the aid of the doubling
inequality in Theorem A.

Proof of Corollary 5. Let rk = 2kr0. Choose k0 such that 2k0r0 =
\surd 
\lambda . Then k0 \approx 

log2(
\surd 
\lambda 

r0
). Let Mk = \| u\epsilon \| L\infty (Brk

) so that M0 = \| u\epsilon \| L\infty (Br0 )
and Mk0

= \| u\epsilon \| L\infty (B\surd 
\lambda )
.

Choosing

N =
\| u\epsilon \| L\infty (B2/

\surd 
\lambda )

\| u\epsilon \| L\infty (B\surd 
\lambda )

,(3.47)

from Theorem A, we have

M0 =
M0

M1
\cdot M1

M2
\cdot M2

M3
\cdot Mk0 - 1

Mk0

\cdot Mk0 \geq 
\biggl( 

1

C(N)

\biggr) k0

Mk0 .(3.48)
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It also follows that

Mk0
\leq M0C(N)k0 .(3.49)

From the N value in (3.47), the boundedness assumption of u\epsilon , and the definition of
Mk0

, it follows that N \leq 1
Mk0

. By (3.49) and monotonicity of C(N), we arrive at

Mk0 \leq M0C

\biggl( 
1

Mk0

\biggr) k0

.(3.50)

Supposing that Mk0 > \eta 0 and M0 = \| u\epsilon \| L\infty (Br0 )
\leq \delta 0, from (3.50),

Mk0 \leq \delta 0C

\biggl( 
1

Mk0

\biggr) k0

\leq \delta 0C

\biggl( 
1

\eta 0

\biggr) k0

.(3.51)

If we choose \delta 0 such that \delta 0C( 1
\eta 0
)k0 \leq \eta 0

2 , this gives that Mk0
\leq \eta 0

2 , which contradicts

the assumption Mk0
> \eta 0. Hence, if \delta 0 \leq \eta 0

2 (C( 1
\eta 0
)) - k0 , we must have Mk0

\leq \eta 0
as desired. This completes the corollary. Notice that the dependence of \delta 0 is not
explicit.

As a consequence of Corollary 1, we can give the proof of Theorem 2.

Proof of Theorem 2. To use the conclusion in Corollary 1, we extend (1.17) in
half balls to balls. We do an even extension for the metric A(y) across the half space
\{ x| xd = 0\} . Then we define a new coefficient matrix as

\~A
\Bigl( x
\epsilon 

\Bigr) 
=

\Biggl\{ 
A(x

\prime 

\epsilon ,
xd

\epsilon ) for xd \geq 0,

A(x
\prime 

\epsilon ,
 - xd

\epsilon ) for xd < 0,

where x\prime = (x1, . . . , xd - 1). We can see that \~A(y) still satisfies the ellipticity condition
(1.4) and 1-periodic condition (1.5). To verify that \~A(y) also satisfies the H\"older con-
tinuity (1.6), we just need to check the H\"older continuity for \~A(y) in the yd direction.
Let y1d > 0 and y2d < 0. By the condition (1.6) for A(y), we have

| \~A(y\prime , y1d) - \~A(y\prime , y2d)| = | A(y\prime , y1d) - A(y\prime , 0) +A(y\prime , 0) - A(y\prime , - y2d)| 
\leq \tau | y1d| \mu + \tau | y2d| \mu 

\leq 2\tau | y1d  - y2d| \mu .(3.52)

This implies H\"older continuity as (1.6) holds for \~A(y). For the Dirichlet boundary
conditions, we do an odd extension for u\epsilon (x) across the half space \{ x| xd = 0\} . Then
we have a new function v\epsilon (x) defined as follows:

v\epsilon (x) =

\Biggl\{ 
u\epsilon (x

\prime , xd) for xd \geq 0,

 - u\epsilon (x
\prime ,  - xd) for xd < 0.

Since the solution u\epsilon (x) in (1.17) for the Dirichlet boundary conditions is Lip-
schitz continuous by the homogenization theory, e.g., [AL], the new v\epsilon (x) is Lipschitz
continuous and is inH1(B10). We claim that v\epsilon (x) satisfies the elliptic homogenization

 - div
\Bigl( 
\~A
\Bigl( x
\epsilon 

\Bigr) 
\nabla v\epsilon 

\Bigr) 
= 0 in B10.(3.53)
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To verify that v\epsilon (x) is a weak solution of (3.53), we need to check that the following
holds: ˆ

B10

\~A
\Bigl( x
\epsilon 

\Bigr) 
\nabla v\epsilon \cdot \nabla \phi (x) dx = 0 for any \phi (x) \in C\infty 

0 (B10).(3.54)

Recall that the weak solution u\epsilon (x) of (1.17) for the Dirichlet boundary condition
is given as

ˆ
B+
10

A
\Bigl( x
\epsilon 

\Bigr) 
\nabla u\epsilon \cdot \nabla \phi (x) dx =

ˆ
\partial B+

10\cap \{ xd=0\} 
A
\Bigl( x
\epsilon 

\Bigr) 
\nabla u\epsilon \cdot n\phi (x) d\sigma (3.55)

for any \phi (x) \in C\infty 
0 (B+

10). By the assumption of A(y) in (1.18), (3.55) is equivalent to

ˆ
B+
10

d - 1\sum 
i,j=1

aij
\partial u\epsilon 

\partial xj

\partial \phi 

\partial xi
dx+

ˆ
B+
10

add
\partial u\epsilon 

\partial xd

\partial \phi 

\partial xd
dx =  - 

ˆ
\partial B+

10\cap \{ xd=0\} 
addDdu\epsilon \phi d\sigma .(3.56)

In order to show (3.54), we split the integral in the left-hand side of (3.54) in
B10 into the integrations in B+

10 and B - 
10, where B - 

10 = B10 \cap \{ xd < 0\} . For any
\phi (x) \in C\infty 

0 (B10), by the definition of \~A(x\epsilon ) and v\epsilon (x), we have

ˆ
B10

\~A
\Bigl( x
\epsilon 

\Bigr) 
\nabla v\epsilon \cdot \nabla \phi (x) dx =

ˆ
B+
10

\~A
\Bigl( x
\epsilon 

\Bigr) 
\nabla v\epsilon \cdot \nabla \phi (x) dx+

ˆ
B - 
10

\~A
\Bigl( x
\epsilon 

\Bigr) 
\nabla v\epsilon \cdot \nabla \phi (x) dx

=

ˆ
B+
10

A
\Bigl( x
\epsilon 

\Bigr) 
\nabla u\epsilon \cdot \nabla \phi (x) dx+

ˆ
B - 
10

\~A
\Bigl( x
\epsilon 

\Bigr) 
\nabla v\epsilon \cdot \nabla \phi (x) dx.(3.57)

Applying the integration by parts and change of variables to transform the integration
from B - 

10 to B+
10, we can show that

ˆ
B - 
10

\~A
\Bigl( x
\epsilon 

\Bigr) 
\nabla v\epsilon \cdot \nabla \phi (x) dx = - 

ˆ
B - 
10

d - 1\sum 
i,j=1

aij

\Bigl( x\prime 

\epsilon 
,
 - xd

\epsilon 

\Bigr) \partial u\epsilon (x
\prime , - xd)

\partial xj

\partial \phi 

\partial xi
dx

 - 
ˆ
B - 
10

add

\Bigl( x\prime 

\epsilon 
,
 - xd

\epsilon 

\Bigr) \partial u\epsilon (x
\prime , - xd)

\partial xd

\partial \phi 

\partial xd
dx

= - 
ˆ
B+
10

d - 1\sum 
i,j=1

aij

\Bigl( x\prime 

\epsilon 
,
xd

\epsilon 

\Bigr) \partial u\epsilon 

\partial xj

\partial \phi (x\prime , - xd)

\partial xi
dx

 - 
ˆ
B+
10

add

\Bigl( x\prime 

\epsilon 
,
xd

\epsilon 

\Bigr) \partial u\epsilon 

\partial xd

\partial \phi (x\prime , - xd)

\partial xd
dx

=

ˆ
\partial B+

10\cap \{ xd=0\} 
addDdu\epsilon \phi d\sigma ,(3.58)

where we have used (3.56). Then (3.54) is verified by combining the estimates (3.56),
(3.57), and (3.58). Thus, v\epsilon (x) is the solution of (3.53).

Thanks to Corollary 1, we have the approximate three-ball inequality for v\epsilon . For
0 < R1 < R2 < \lambda R3

4 < \lambda 
4 , we obtain that

\| v\epsilon \| L\infty (BR2
) \leq C

\biggl\{ 
R2

R3
\| v\epsilon \| \beta L\infty (BR1

)\| v\epsilon \| 
1 - \beta 
L\infty (BR3

) +
R2

3

R2
1

[\epsilon ln(\epsilon  - 1 + 2)]\beta \| v\epsilon \| L\infty (BR3
)

\biggr\} 
,

(3.59)
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where \beta = ln \lambda R3

2R2
/ln R3

R1
and C depends on \lambda and (\tau , \mu ). Since v\epsilon is an odd extension

of u\epsilon , the estimates (1.19) for the Dirichlet boundary conditions in half balls follow
from (3.59).

For the Neumann boundary conditions, we do an even extension. We define a
new function v\epsilon (x) as follows:

v\epsilon (x) =

\Biggl\{ 
u\epsilon (x

\prime , xd) for xd \geq 0,

u\epsilon (x
\prime ,  - xd) for xd < 0.

The solution u\epsilon (x) in (1.17) for the Neumann boundary conditions is Lipschitz con-
tinuous, e.g., [KLS1], [AS]. Hence, v\epsilon (x) is Lipschitz continuous and is in H1(B10).
We also claim that v\epsilon (x) is the solution for

 - div
\Bigl( 
\~A
\Bigl( x
\epsilon 

\Bigr) 
\nabla v\epsilon 

\Bigr) 
= 0 in B10.(3.60)

Thus, we need to show thatˆ
B10

\~A
\Bigl( x
\epsilon 

\Bigr) 
\nabla v\epsilon \cdot \nabla \phi (x) dx = 0 for any \phi (x) \in C\infty 

0 (B10).(3.61)

The weak solution u\epsilon (x) of (1.17) for the Neumann boundary condition is given
as ˆ

B+
10

A
\Bigl( x
\epsilon 

\Bigr) 
\nabla u\epsilon \cdot \nabla \phi (x) dx = 0(3.62)

for any \phi (x) \in C\infty 
0 (B+

10). By the definition of A(y), it also holds that

ˆ
B+
10

d - 1\sum 
i,j=1

aij
\partial u\epsilon 

\partial xj

\partial \phi 

\partial xi
dx+

ˆ
B+
10

add
\partial u\epsilon 

\partial xd

\partial \phi 

\partial xd
dx = 0.(3.63)

We split the integral in the left-hand side of (3.61) in B10 into the integrations in B+
10

and B - 
10 asˆ

B10

\~A
\Bigl( x
\epsilon 

\Bigr) 
\nabla v\epsilon \cdot \nabla \phi (x) dx =

ˆ
B+
10

\~A
\Bigl( x
\epsilon 

\Bigr) 
\nabla v\epsilon \cdot \nabla \phi (x) dx+

ˆ
B - 
10

\~A
\Bigl( x
\epsilon 

\Bigr) 
\nabla v\epsilon \cdot \nabla \phi (x) dx

=

ˆ
B+
10

A
\Bigl( x
\epsilon 

\Bigr) 
\nabla u\epsilon \cdot \nabla \phi (x) dx+

ˆ
B - 
10

\~A
\Bigl( x
\epsilon 

\Bigr) 
\nabla v\epsilon \cdot \nabla \phi (x) dx.(3.64)

By (3.63), the definition of \~A(x\epsilon ), v\epsilon (x), and the change of variables, we can show that

ˆ
B - 
10

\~A
\Bigl( x
\epsilon 

\Bigr) 
\nabla v\epsilon \cdot \nabla \phi (x) dx =

ˆ
B - 
10

d - 1\sum 
i,j=1

aij

\Bigl( x\prime 

\epsilon 
,
 - xd

\epsilon 

\Bigr) \partial u\epsilon (x
\prime , - xd)

\partial xj

\partial \phi 

\partial xi
dx

+

ˆ
B - 
10

add

\Bigl( x\prime 

\epsilon 
,
 - xd

\epsilon 

\Bigr) \partial u\epsilon (x
\prime , - xd)

\partial xd

\partial \phi 

\partial xd
dx

=

ˆ
B+
10

d - 1\sum 
i,j=1

aij

\Bigl( x\prime 

\epsilon 
,
xd

\epsilon 

\Bigr) \partial u\epsilon 

\partial xj

\partial \phi (x\prime , - xd)

\partial xi
dx

+

ˆ
B+
10

add

\Bigl( x\prime 

\epsilon 
,
xd

\epsilon 

\Bigr) \partial u\epsilon 

\partial xd

\partial \phi (x\prime , - xd)

\partial xd
dx

= 0(3.65)
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for any \phi (x) \in C\infty 
0 (B10). Therefore, the combination of (3.63), (3.64), and (3.65)

verifies the claim and v\epsilon (x) is the solution in (3.60). Following the same strategy as
the case of the Dirichlet boundary conditions, the estimate (1.19) is arrived at for
equations with the Neumann boundary conditions.

Following the ideas in Corollary 3 and Theorem 2, we can easily show the proof
of Corollary 6. For completeness of presentation, we present the main ideas in the
argument.

Proof of Corollary 6. We consider a new function v\epsilon (x, t) as

v\epsilon (x, t) = e
\surd 

\Lambda \epsilon ,ktu\epsilon (x) in B+
10 \times ( - 10, 10).(3.66)

Then the new function v\epsilon (x, t) satisfies the homogenization equation\Biggl\{ 
 - div

\bigl( 
A(x\epsilon )\nabla v\epsilon 

\bigr) 
 - \partial 2

t v\epsilon = 0 in B+
10 \times ( - 10, 10),

v\epsilon = 0 or \partial v\epsilon 

\partial \nu = 0 on
\bigl\{ 
\partial B+

10 \cap \{ xd = 0\} 
\bigr\} 
\times ( - 10, 10).

(3.67)

We denote the new coefficient matrix in B+
10 \times ( - 10, 10) as

\=A
\Bigl( x
\epsilon 
, t
\Bigr) 
=

\Biggl( \bigl( 
aij(

x
\epsilon ))d\times d 0

0 1

\Biggr) 
.

Thus, the equation in (3.67) can be written as

 - div
\Bigl( 
\=A
\Bigl( x
\epsilon 
, t
\Bigr) 
\nabla v\epsilon 

\Bigr) 
= 0 in B+

10 \times ( - 10, 10).(3.68)

We do an even extension for the matrix \=A(x\epsilon , t) across the half space \{ (x, t)| xd = 0\} 
and write the new coefficient matrix as \~\=A(x\epsilon , t). This coefficient matrix \~\=A(x\epsilon , t) still
satisfies the conditions (1.4), (1.5), and (1.6). As in the proof of Theorem 2, we do
an odd extension for v\epsilon in (3.67) for the Dirichlet boundary conditions across the half
space \{ (x, t)| xd = 0\} and write it as \~v\epsilon (x, t). We identify the half ball with radius r
in the cylinder B+

10 \times ( - 10, 10) as B+
r \times ( - r, r). Recall that Br \times ( - r, r) is written

as \~Br. We can check as in the proof of Theorem 2 that \~v\epsilon (x, t) satisfies the equation

 - div
\Bigl( 
\~\=A
\Bigl( x
\epsilon 
, t
\Bigr) 
\nabla \~v\epsilon 

\Bigr) 
= 0 in \~B10.(3.69)

Thanks to Corollary 1, the solutions \~v\epsilon in (3.69) satisfy the three-ball inequality

\| \~v\epsilon \| L\infty (\~BR2
) \leq C

\biggl\{ 
R2

R3
\| \~v\epsilon \| \beta L\infty (\~BR1

)
\| \~v\epsilon \| 1 - \beta 

L\infty (\~BR3
)
+

R2
3

R2
1

[\epsilon ln(\epsilon  - 1 + 2)]\beta \| \~v\epsilon \| L\infty (\~BR3
)

\biggr\} (3.70)

for 0 < R1 < R2 < \lambda R3

4 < \lambda 
4 with \beta = ln \lambda R3

2R2
/ln R3

R1
. Since we have done an odd

extension for \~v\epsilon , the following inequality holds for v\epsilon (x, t):

\| v\epsilon \| 
L\infty 
\bigl( 
B+
R2

\times ( - R2, R2)
\bigr) \leq \biggl\{ R2

R3
\| v\epsilon \| \beta 

L\infty 
\bigl( 
B+
R1

\times ( - R1, R1)
\bigr) \| v\epsilon \| 1 - \beta 

L\infty 
\bigl( 
\~B+
R3

\times ( - R3, R3)
\bigr) 

+
R2

3

R2
1

[\epsilon ln(\epsilon  - 1 + 2)]\beta \| v\epsilon \| 
L\infty 
\bigl( 
B+
R3

\times ( - R3, R3)
\bigr) \biggr\} .(3.71)
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By the definition of v\epsilon (x, t) in (3.66), we further obtain that

\| u\epsilon \| L\infty (B+
R2

) \leq Ce2R3

\surd 
\Lambda \epsilon ,k

\biggl\{ 
R2

R3
\| u\epsilon \| \beta L\infty (B+

R1
)
\| u\epsilon \| 1 - \beta 

L\infty (B+
R3

)

+
R2

3

R2
1

[\epsilon ln(\epsilon  - 1 + 2)]\beta \| u\epsilon \| L\infty (B+
R3

)

\biggr\} 
.(3.72)

Thus, (1.21) is arrived at for solutions of (1.20) with the Dirichlet boundary condi-
tions. For (3.67) with the Neumann boundary conditions, we do an even extension for
v\epsilon (x, t). As in the proof of Theorem 2, the approximate three-ball inequality (1.21)
can be obtained.
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