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PROPAGATION OF SMALLNESS IN ELLIPTIC PERIODIC
HOMOGENIZATION*
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Abstract. The paper is mainly concerned with an approximate three-ball inequality for solutions
in elliptic periodic homogenization. We consider a family of second order operators L. in divergence
form with rapidly oscillating and periodic coefficients. It is the first time such an approximate
three-ball inequality for homogenization theory is obtained. It implies an approximate quantitative
propagation of smallness. The proof relies on a representation of the solution by the Poisson kernel
and the Lagrange interpolation technique. Another full propagation of smallness result is also shown.
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1. Introduction. Quantitative propagation of smallness plays an important role
in the quantitative study of solutions of elliptic and parabolic equations. It can be
stated as follows: a solution u of a second order PDE Lu = 0 on a domain X can
be made arbitrarily small on any given compact subset of X by making it sufficiently
small on an arbitrary given subdomain Y. The quantitative propagation of smallness
has found many important applications, such as the stability estimates in inverse
problems for the Cauchy problem [ARRV] and the Hausdorfl measure estimates of
nodal sets of eigenfunctions [Lin], [Lo]. Hadamard’s three-circle or three-ball theorem
is the simplest quantitative statement for propagation of smallness. The Hadamard
three-ball theorem (or three-ball inequality) for a function w is the inequality

(L.1) lullyy < Cllull?, Jull

where 0 < r; <79 < R and | - ||, is the L? or L> norm on the ball centered at the
origin with radius 7, @ € (0, 1) and C is a constant depending on ry, 72, and R.
We will call the inequality (1.1) the standard three-ball inequality. For holomorphic
functions, the three-ball inequality (1.1) is a consequence of the convexity of the
logarithm of the modulus of holomorphic functions and the maximum principle. The
strategy of using logarithmic convexity of the modulus has played a central role in
obtaining three-ball theorems (or three-ball inequalities).
For solutions of second order elliptic equations

(1.2) Lu = —Dj(a;j(x)Du) + biD;ju+ c(x)u =0

(the summation convention is used throughout the paper), the logarithmic convexity
of the L?-norm of solutions has been applied in different ways to obtain the three-ball
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inequality by Agmon [Ag] (for L2-norm) and Landis [L] (for L>°-norm). For harmonic
functions in higher dimensions, Korevaar and Meyers [KM] obtained the three-ball
inequality in (1.1) with sharp coefficient C' = 1 using the logarithmic convexity of
the L? norm and the expansion on eigenfunctions of the Laplace-Beltrami operator
on the sphere. Brummelhuis [B] further pushed this technique to prove three-ball
inequalities for solutions to second order elliptic equations.

The frequency function and Carleman estimates are tools often used to obtain a
three-ball inequality. The frequency function is given as a quotient involving L?-norms
of solutions. The monotonicity of the frequency function implies the convexity of the
logarithm of L?-norm of solutions (see, e.g., [Al], [GL], [Z]). Carleman estimates are
weighted integral inequalities with suitable weight functions satisfying some convexity
properties. The three-ball inequality is obtained by applying the Carleman estimates
to the product of the solution and an appropriate cut-off function and then by choosing
the Carleman parameter appropriately (see, e.g., [DF], [JL], [K]). Recently, a proof of
the three-ball inequality using the Poisson kernel for harmonic functions was developed
by Guadie and Malinnikova [GM].

The theory of homogenization identifies the average, macroscopic behavior of a
phenomenon that is subject to microscopic effects. Homogenization, including sto-
chastic homogenization and numerical homogenization, has shown important impacts
in applications, e.g., material sciences and elasticity theory. See, e.g., [ALi], [Ba],
[FM], to just name a few. In order to obtain the standard three-ball inequality (1.1),
the Lipschitz continuity of the leading coefficient a;;(z) is required in the usual proof.
This is consistent with the fact that there exist operators with Holder continuous
coefficients a;; with nontrivial solutions vanishing on open sets, which is precluded by
(1.1) (see, e.g., [M]). All the aforementioned techniques result in taking the derivative
of the leading coefficient a;;(x). The situation for the three-ball inequality for ellip-
tic homogenization changes drastically since the derivative of the leading coefficient
a;j(%) leads to a “bad” term % In this paper, we intend to study the propagation
of smallness for solutions in elliptic periodic homogenization. To achieve this, the
main goal of this paper is to address a version of the three-ball inequality for elliptic
periodic homogenization.

We consider a family of elliptic operators in divergence form with rapidly oscil-
lating periodic coeflicients

(1.3) Loue = —div(A(%)Vm) =0 in,

where € > 0, Q is a bounded domain in R¢, and A(y) = (a;(y)) is a symmetric d x d
matrix-valued function in R? for d > 2. Assume that A(y) satisfies the following
assumptions:

(i) Ellipticity: For some 0 < A < 1 and all 3, ¢ € R?, it holds that

(14) NP < (A, € < 11e”

(ii) Periodicity:
(1.5) Aly+2z) = Ay) for y € R? and z € Z¢.

(iii) Holder continuity: There exist constants 7 > 0 and 0 < p < 1 such that
(1.6) A(x) = Aly)| < 7l — y*

for any z,y € R%.
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We are able to establish the following approximate three-ball inequality in ellip-
soids. The definition of ellipsoids E, depending on the coefficients A(y) is given in
section 2.

THEOREM 1. Let u. be a solution of (1.3) in B1g. For 0 <r; <19 < % <1,

Er

[eY -« R2
(1.7)  sup|u| < C{Tz<supue|) (sup|u€|) + —leln(e™! +2)]* sup|ue}7
Joi R\ g, Er i

where & = In Q—i/ln % and C depends on A and (T, {1).

Let B, (0) be the ball centered at the origin with radius r. We usually write it as
B, if the context is understood. Since balls are more convenient in applications than
ellipsoids, a direct consequence of Theorem 1 is the following approximate three-ball
inequality in balls.

COROLLARY 1. Let ue be a solution of (1.3) inByg. For0 < Ry < Ry < % < %,

(1.8)
R3

1— _
HUEHL“(IBRQ) < C{R?)HUJﬁoo(BRl)HUeHLOCB(BRB) + 72['5111(6 t+ 2)]ﬁ||u€||Lw(BR3)}7
1

where f = nAR52Rs /In %i’ and C depends on \ and (T, 11).

Let us address some important issues about the difference between the standard
three-ball inequality (1.1) and inequality (1.8).

Remark 1. The three-ball inequality (1.8) in Corollary 1 is different from the
standard three-ball inequality in (1.1). The inequality (1.1) implies the weak unique
continuation property, which states that the solution vanishes globally if it vanishes
in an open set. However, the estimate (1.8) does not. As e — 0, the inequality (1.8)
converges to the standard three-ball inequality in (1.1). Compared with the Lipschitz
regularity needed to obtain the inequality (1.1), only Holder continuity is imposed to
obtain the inequality (1.8).

The three-ball inequality with consecutive balls having radii of a fixed ratio is
very useful for applications. If we choose R;, R, R3 in an appropriate scale, e.g., let
Ri =7, Ry =2r,and R3 = 977’7 we have the following corollary.

COROLLARY 2. Let ue be a solution of (1.3) in Bqg. Forr < %,
(19) el < Ol oo el i 5m + (™ + D) o}

where B =In%/In{ and C depends on A and (1, ).

The eigenvalue problem in elliptic homogenization is of importance in the study
of homogenization. Since the eigenvalue can be arbitrarily large, it is interesting to
know what role the eigenvalue plays in the propagation of smallness. One can consider
the eigenvalue type equation

(1.10) —div(A(%)Vue) = Acpue  in Byo.

Assume that Acj are positive constants and A¢; — oo as & — oco. The following
corollary holds.
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COROLLARY 3. Let ue be a solution of (1.10) in Byg. For 0 < Ry < Rs < % <

A
4
Ry 1-
P O A =
2
(1.11) + &[eln(e_l + 2)]P e[ oo
. R% el|L (IB%Rs) )

where f = In ;‘—gg/ln %‘f and C' depends on X and (T, j1).

Thanks to the three-ball inequality (1.9), we can show an approximate quantita-
tive propagation of smallness result for solutions of (1.3).

COROLLARY 4. Let u. be a solution of (1.3) in Big. Assume that ||uc|pom,) <0
for some smallr < % and ||uel| oo (B,0) < 1. Then, with 3 = In %/ln% and C depending
on X and (T, ),

(1.12) [tte]| oo (Bg) < CO°" + mCleln(e™t +2)]7"

for some positive integer m depending only on r, for eln(e=! +2) < 1.

From the inequality (1.12), we learn that u. in any compact domain of By can
be made small if § is sufficiently small and € is sufficiently small, with an explicit
dependence of § and e.

Recently, an interesting doubling inequality was shown by Lin and Shen [LS] un-
der a stronger regularity of A(y). Assume that A(y) satisfies the following Lipschitz
continuous condition.

(iv) Lipschitz continuity: There exists a constant 7 > 0 such that
(1.13) [A(z) = Aly)| < 7lx —y|

for any x,y € R
Let fBT be the average integral in B,.. Under the assumptions of (1.4), (1.5), and
(1.13) for A(y), the doubling inequality results in [LS] can be formulated as follows.

THEOREM A. Let ue be a solution of (1.3) in By, . Assume that

(1.14) ][ u?dx < N u? da
Ba/vx Bux

for some N > 1. Then

(1.15) ][ u?dr < C(N)][ u? dx
T ]Bg

for any 0 < r < 1, where C(N) depends on N, \, 7,d.

Note that C'(N) can be chosen increasing with respect to N. By standard argu-
ments, we can replace the average L? norm by L> norm in Theorem A. Thanks to
Theorem A, we are able to show the following full propagation of smallness result.

COROLLARY 5. Assume that HUGHLOO(BQ/\/X) < 1. Then, given any constants ng >

0,0 <ry < @, there exists a positive constant §g = do(\,d, 7,70,m0) such that if

uelloo(m,,) < do, then [[uellL= ) < no-
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Note that the dependence of dg is not explicit in the corollary.

Remark 2. A direct consequence of Theorem A is the following doubling inequal-
ity with translation (Theorem 3.3 in [LS]):

(1.16) ][ u? da < C(N)][ u? da

B, (o) By (zo)
for 0 < r < % and |xg| < @ We can also replace the average L? norm by L™
norm in (1.16). Assuming that [Juc|[r~@ ;) > 1 and ||U€HL00(]BZ/\/X) < M, a uniform

in € vanishing order estimate for u. can be shown in B /2 by iteration of (1.16) in
L*> norm. However, such a vanishing order estimate is implicit since it depends on
C(M). See, e.g., [K], [Z], for some literature on the explicit vanishing order estimates
for solutions in (1.2).

To study the propagation of smallness in the half-space, one needs to establish
the three half-balls inequality. We can extend the three-ball inequality (1.8) to elliptic
homogenization with Dirichlet or Neumann boundary conditions. We consider elliptic
homogenization with the Dirichlet or Neumann boundary conditions in half balls

—div(A(%)Vue) =0 in Bf, = B1o N {24 > 0},
(L17) { ue =0 or %“y =0 on OB}, N {x4 = 0},
where
ai1(y) T al(d—l)(y) 0
(14%) AW = a(dfl.)l(y) a(dfl)(.dfl)(y) 0 7
0 . 0 add(y)

the conormal derivative g:j: is defined as

Ou, Ou,

. aij%jm,
and n = (ni1,...,nq) is a unit outer normal. We are able to show the approximate

three-ball inequality for solutions of (1.17) in half balls.

THEOREM 2. Let u, be a solution of (1.17) with A(y) satisfying (1.18) in BY,.
For0 < Ry < Ry < 23 < 4,

(1.19)
R _
|us||M+)<0{ el el + eI +2)) ||ue||Lw(B;3)},

where 3 = )‘R3 2 /In Rf and C' depends on A and (7, ).

Similarly, we are able to consider an approximate three-ball inequality for eigen-
value type equations in half balls with the Dirichlet or Neumann boundary conditions

( ) —diV(A(%)VUE’k) = Ac kUc in BTO =BigN {xd > 0},
1.20
Uep =0 or ag;’“ =0 on 9B}, N {x4 = 0},

where A(y) is in the form of (1.18). The constants A,y are assumed to be positive
and A¢; — oo as k — co. We can show the following corollary.
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COROLLARY 6. Let uc . be a solution of (1.20) with A(y) satisfying (1.18) in B}, .
For 0 < Ry < Ry < s < 2

R
< 2R3+/Ac k) 112 B 1-8
Ikl poeqay, ) < CHtVAEd P il e ekl s
2
(1.21) +&[eln(e*1+2)]5|\uekll o (B
R% ’ L (BR3) ’

where B =In AR32Ry/In % and C depends on \ and (7, ).

One can also consider the asymptotical behavior of eigenvalue A,y in terms of €
and k in the model as (1.20), which is a difficult issue. Related results in this direction
can be found in, e.g., [KLS1], [Zh].

The paper is organized as follows. Section 2 is devoted to some basic material on
elliptic periodic homogenization. In section 3, we prove Theorems 1 and 2 and the
corollaries. The letter C' denotes a positive constant that does not depend on € or w,.
It may vary from line to line.

Added remark. After the paper was posted in arXiv and submitted for publi-
cation, an improvement in the error bound for the three-ball inequality in Theorem 1
(under certain extra conditions) was discovered by Armstrong, Kuusi, and Smart in
[AKS].

2. Preliminaries. This section introduces some background results on elliptic
periodic homogenization. Most of the material can be found in books, e.g., [BLP],
[S]. Let x(y) = (x1(y),---,xa(y)) € HY(T% R?) denote the corrector of L., where
T¢ = R?/Z?. Tt is known that x(y) is the unique 1-periodic solution in H'(T?)
satisfying

(2.1) { Li(xj) + Liy;) =0  inR%

Jraxjdy =0 forj=1,...,d.

Using the De Giorgi-Nash estimates, x,;(y) is Holder continuous. If A(y) is Holder
continuous, then Vy is bounded. See, e.g., [S]. Assume that Q is a bounded C%"
domain for some 7 € (0,1) in R? in the rest of the paper. If {u.} is bounded in H'(),
then any sequence {u,, } with ¢, — 0 contains a subsequence that converges weakly in
H'(€2). By the homogenization theory, one may conclude that as € — 0,

A(Z)Vue — AVu weakly in L?(Q),
(2.2) Ue — U weakly in L?(Q),
Ue —> U stronlgy in L2(€),

where A = (@;;) and

~ v
2.3 A=a; = / [ai‘ + am]} dy.
23 ! Ta |7 Oy

It is also true that the constant matrix @;; is symmetric and satisfies (1.4) with the
same parameter \. Thus, the homogenized equation for L.u. = 0 is given by

(2.4) Lou = —div(AVu) = 0.
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__Since Ais symmetric and positive definite, there exists a d x d matrix S such that
SAST = I;yq. Note that A=! = STS and

(2.5) (A 'z, 2) = | Sz
We introduce a family of ellipsoids as
(2.6) B (A) = {z eR": (A 'z, z) <r?}.

By the assumption that A satisfies (1.4) as well, we can show that

-~

(2.7 B /5, (0) C E.(A) C B (0).
We will write E, (A) as E, if the context is understood.

The Dirichlet corrector is used to control the influence of the boundary data. The
Dirichlet corrector W, ;, for the operator L. in € is defined as

L(Tep)=0  inQ,
\Ileyk = Pk on 89,

where P, =z, for 1 < k < d. It was shown by Avellaneda and Lin in [AL] that
(2.8) V¥ rllLee) < C,

where C depends on A, (7, ), and Q. In the discussion in the next section, we need to
know how the constant C' depends on r in the ellipsoid E,. By a rescaling argument,
we can actually show that

(2.9) [VUekllLos,) <C

with C' depends only on X and (7,u). For x € E,, let y = £. Then y € E;. We
perform a rescaling as

(2.10) Uer(@) = 10 (D) = rbes(y).

-
where \ilgk is the Dirichlet corrector for the operator L. in E;. We can see that
U, () is the Dirichlet corrector for the operator L. in E,, since

7d1V(A(€%)v\IIe,k(I) = 7d1V(A(y)V{I}e,k(y) =0 in ET’7
U p :r\ifevk(%) =7k =g on OF,.
It follows from (2.8) that
||Vy‘i’e,k||Loc(E1) <C
with C depending only on A and (7, x). Thus, it implies that
(2.11) Ve el (s = 1VyCerlliiem) < C

with the same constant C' in the last inequality. Therefore, we arrive at the estimates
(2.9).
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The asymptotic expansion of the Poisson kernel is well studied in homogenization
theory. Let P.(z, y) denote the Poisson kernel for £, in a bounded C?" domain §).
It was shown by Kenig, Lin, and Shen in [KLS2] that we can write

(212) PE(Z', y) = PO(:L'v y)we(y) + Re(l'v y)a
where Py(z, y) is the Poisson kernel for the homogenized operator Lo,

\Ile,k:

" 40
(2.13) we(y) = (@ininy) ! o

Y
ng - aij(g)ninj7
n=(ny,...,ny,) is a unit outer normal on I, and

Celn|e |z — y| + 2|

2.14 R.(z,y)] <
1) Ry T

for any z € Q and y € 5.

The constant C' in (2.14) depends on A, (7, 4t), and €. From (1.4), (2.11), and (2.13),
it follows that

(2.15) lwe(@)llL=(E,) < C

with C independent of r. In the following discussions, we also need to know what
the dependence of the constant C' in (2.14) on the ellipsoid E,. is. Note that for any
x € Qand y € 09,

(2.16) P, 9) = =258 Dy (L) ans o)
and
(217) Pole. ) =~ 22 s ity ),

where G.(z, y) and G(z, y) are the Green functions for the operator L. and Lo,
respectively. It follows from (2.12) that

R (z, y) = —W%J‘ (%)m(y)ng(y)

0G(z, y) 0¥
on(y) Ong(y)

Thus, the estimate (2.14) for R.(x, y) is shown in [KLS2] as

(2.18) ny(y)ai; (%)ni(y)nj(y)~

|Re(z, y)| < C

aGe(xa y) _ a\lle,k: 6G(x,y)’
y; yi 0y,
eln|e Yz —y| + 2

2.19 <C
(2.19) |z — y|d

To see how the C' in the last inequality depends on 7 in FE,, we use the rescaling
argument again. Let 2’ = £ and ' = £, where 2,y € E,. Then 2/,3 € E;. We do a
rescaling as

(2.20) Go(z, y) = r4G.(«, o),
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where G.(z', y') is the Green function for the operator £, in E;. Since
—div(ay(£)VGelz, y)) = —r~*div(ay;(£)VEely))
=r~45(z" — o) = d(x —y) in E,,
Ge(z, y) =r* G (', y') =0 on 0F,.,

it implies that G¢(x, y) is the Green function for the operator L. in E,.. From (2.19),
we have

OGe(z, y) 0Py 8G(x,y)‘ _1-d 0Ge(a', y')  O0Vey 0G(2',y")

dyi dyi Oy y; dy; y;
Cri=delnfe~ |2’ — o' + 2]
— |£U/ _ y/|d
Crel —1]z—yl 2
(2.21) relnfe - + ]7
[z =y

where C' in the last inequality depends only on A, (7, ) since 2’,y’ € FE;. This implies
that

Cre ln[e_l—lx;y‘ + 2]
|z —yl

(2.22) |Re(z, y)| <

for z € E,. and y € OF, and C' is independent of r.

3. Approximate three-ball inequality. This section is devoted to the proof
of three-ball inequality (1.8) in Theorem 1. We adapt the method of using the Poisson
kernel in [GM], for harmonic functions, to elliptic homogenization. We want to have
an explicit form for the Poisson kernel of the homogenized operator Ly. We transform
the operator Ly into the classical Laplacian operator. Let u(z) = w(Sz). Then

(3.1) 0 = div(AVu) = div(SAST Vw) = Aw.

We can represent the harmonic function w(z) by Poisson kernel as

(32) @ = [ i)
: w(z) = [ ya———gw(y)dy,

s, Tl —yl
where S, is the d — 1 dimensional sphere centered at the origin with radius r and
Ya = QW%/F(%) is the surface area of S; with d > 2. By the relation of u(z) = w(Sz),
we can transform (3.2) to the solution u for homogenized equation (2.4). It follows
that

(3.3) u(w)= [ Poay)uty) dy,
O,
where
r2 —|Sxz|?
4 P = _
(3 ) 0($,y) 7d|S‘T|S(E—S’y|d

Following [GM], we are going to apply the Lagrange interpolation method to ob-
tain the three-ball inequality (1.8). Intuitively, the main idea of the Lagrange inter-
polation method is to use well-behaved polynomials to approximate a given function
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and efficiently estimate the error term. Let us briefly review the standard Lagrange
interpolation method in numerical analysis [DB]. Set

(3.5) D, (2) =(z—w)(z —u2) - (2 — Um)

for z,u; € C with j = 1,...,m. Let D be a simply connected open domain in the
complex plane C that contains the nodes @, uy, ..., uy,. Assume that f is an analytic
function without poles in the closure of D. By well-known calculations, it holds that

L: m (I)jfl(’LNL) (I)M(ﬂ)
(3.6) — ; o,2) o))

Multiplying the last identity by % f(2) and integrating along the boundary of D
leads to

L[ SG) 2@ [ G

3.7
(37) 27 Jop 2 — @ 2 Jop ®j(2)

dz + (R f) (1),

j=1

where

f(uj) + f(a),

(3.8) Z H
i=lij

where (R, f)(%) is called the interpolation error. Based on the identity (3.8), the idea
is to approximate f(@) by a linear combination of the polynomials

’L

m m ~

I s

j=li#j 7

and then control the error term (R,, f)(@) efficiently. See chapter 4 in [DB] for more
information.
With these preliminaries, we are able to present the proof of Theorem 1.

Proof of Theorem 1. In order to obtain the approximate three-ball theorem for
the solution in (1.3) in elliptic periodic homogenization, we consider the Lagrange
interpolation for f(t) = Po(tzoyt,y), where 0 <1y <7y < £ < 1. We fix a point

2o such that \/(A—lzg,z0) = |Szo| < ro. We approximate Py(zo,y) by a linear
combination of the form Y ", ¢;Py(z;,y) with [Sz;| < r1. Then we need to estimate
the sum of the absolute values of the coefficients ¢; in the linear combination and the
error (R, Po)(xo, y) of the approximation.

We choose points x; = t;z0 7L on the segment [0, zo 7] with ¢; € (0, 1). We select
u; = t; in the definition of @, in (3.5) and @ = :—f Define

e rorTl —
2 — .
J %

i#]
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Since 0 < t; < 1, direct calculations show that
(rory )™

(3.10) le;| < m

To further estimate |c;|, we choose t; to be the Chebyshev nodes, i.e., t; = cos(%).

Then we can write

D, (1) = 21T (1),
where T, is the Chebyshev polynomial of the first kind. We also know that
(3.11) (1) =m2"U,, 1 (1),

where U,,_1 is the Chebyshev polynomial of the second kind. See, e.g., section 3.2.3
in [DB]. At each t;, we have

(2i — 1)71') Cosin &UT ()it

T ogip @i=bm ) @imDre

Um—l(ti) = Um—l (COS
sin

2m

2m 2m

By (3.11), it follows that
@0, (t)] = m2i.

Therefore, we can show that

(312 ol < em ' (22)"

1

To estimate the error of the approximation (R,,Po)(zo, y), we do an analytic
extension of the function f(t) = Py(tzoft,y) to the disc of radius % centered at the

origin in the complex plane C. Note that Py(z, y) is independent of €. By the explicit
form of Py(z, y) in (3.4) for OER, we have

RZ — |Sx0\2r%r;222

3.13 =4S .
(3.13) f(z) = 74l |R|r1r;125$0 — Syld

If R is fixed, then
(3.14) f()] < CR-@D

in the disc. Hence, f(z) is bounded. By (3.5), we can also see that

(3.15) [P (2)] > ((R) - 1) on the circle |z| = B

2’1”1 27"1

and

()=
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By the identity (3.8), we estimate the interpolation error as follows:

(R, 9] = |Palen, 1) = 3 i )
=1
) U
1G) Z?ﬂ)
|t @ (rary 1) f(2) dz’
2mi |2l = (z = 1ory )@ (2)
omym
<
- CRd_Q(R — 2T1)m(R — 27“2)
2m7,.m
(3.17) < CRTmQ—N

where we have used estimates (3.15), (3.16) and the assumption that 0 < r; < ro <

% < R in the last inequality, and the constant C in the last inequality does not

depend on m. Note that (3.12) yields

m

(3.18) > el < 21(2:12>m.

j=1
With these estimates for the Poisson kernel, we are going to estimate the supre-

mum . in ellipsoids. We can write the solutions of (1.3) in Er as

(3.19) ue(x) = Pz, y)u(y)dy.
OER

Thanks to (2.12), we can split the last integral as

‘/aER Pe(z, y)ue(y) dy‘
/6 Zcz (i, Yuely )dy‘

Er =1

m

+’/8ER(PE(x,y Zcz (@i, y (y)dy’

<2 f AER
(3.20) +/8ER ch (24, y)||uc(y )‘dy.

Let x = wg. By the relations of x; = t;x97> and |Sxo| < 7o, then all 2; € E,,. Taking
into account the estimates (2.15), (2.22), 23 17), and (3.18) gives that

Hue xz

Po(z, y) ZCzPO (wi, y Hw6( )Hue(y) dy

m'r‘r

(3.21)
2
oo < (32) sl + 0%
1

sup|u6|+Celn( _1+2)(r ) sup |ue/,
1

Er
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where those C' do not depend on m, r1, r3, or R. Since xg is an arbitrary point in
E,,, it follows that

(3.22)

2 " 2 " 2 "
sup |ue| < C{ (TQ) sup |ue| + <r2> sup |uc| + eln(e! +2)<T2> sup|u6}.
By, | E,, R En 1 En

Next we aim to minimize the summation of the terms in the right-hand side of
(3.22) by choosing the integer value m. For ease of notation, let

(3.23) sup [ue| =0, sup |ue| = M.

™1 R

First, we choose a value of m such that

27”'2 m (2T2)m
3.24 — ) 6= M.
(3.24) (22) 5= 2
Solving the equality gives that
InM/é
m = .
InR/r
We define an integer value
— lnM/o 41
7 |mR/r ’

where |-] denotes its integer part. We split the discussion of the minimization into
two cases.

Case 1: The case eln(e™! + 2)(72)me < (2%)’”0. In this case, let m = my in
the estimate (3.22). The third term can be incorporated into the second term in the
right-hand side of (3.22). Tt follows that

2r\ ™ 2ro\ ™
sup|u6|§0{<m) 5+( TQ) M}
E,, T1 R

2
(3.25) < C(;Q)Ml‘aé",
where
In £
(3.26) o= 2
In £

Case 2: The case eln(e~! —1—2)(27%)7”0 > (%)mo. In this case, from the definition
of mg, we see that

57"1
2 In(e™ ' +2) > —.
(3.27) eln(e™ +2) > UR
That is,
1 R
(3.28) sup |ue| < eln(e™ + 2)— sup |u,|.
T

™1 1 Egr
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In order to obtain the minimum for the terms in the right-hand sides of (3.22), we
choose the value of 7 such that

(3.29) eln(e™! +2) <2:12>m = <2;2>m

Solving the equality yields that
In (eln(e™! + 2))

In

(3.30) =

T
R
We define the integer value as

In (eln(e=* +2
my = \‘ (6 1516” ))J + 1.
R

(3.31)

Substituting m = my in the inequality (3.22) again, we can incorporate the second
term into the third term in the right-hand side of (3.22). Taking (3.28) into account,
we obtain that

o T1 T1 1

2 In 222 Infeln(e~! 4 2
<C 7“22R ex { n [e1n( ) } eln(e_1 +2)M

- 3 In %
R? naa
R
<C—leln(e ' +2)) " M
1
R2
(3.32) =C—leln(e ' +2)]*M
1
with
3.33 I %

Combining the estimates in (3.25) and (3.32) in these two cases, we arrive at

a l1—a R2

(3.34) suplu <C r—?(sup |u6|) (sup |u6\) + 5 leln(e™" +2)]* sup |u|
By, R\ g, jo i En

in three different sizes of ellipsoids. By the assumption of r1, r3, and R, we also see

that 0 < a < 1. This completes the proof of Theorem 1. 0

Now we are ready to show the proof of Corollary 1.

Proof of Corollary 1. We make use of the approximate three-ball inequality in
ellipsoids in (3.34). We choose 0 < 11 < 3 <1y < £ < B for R < VX, By the
relation of ellipsoids and balls in (2.7), we have

(3.35)

T2
< =
sup |u| < C{ R(

[eY -« R2
sup |u6|) sup |u6|) + —[eIn(e™ +2)]* sup |u6}
B 5, B

2
B, /v~ R/VX T Br/vx
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Let Ry = r1/V\, Ry = VAra, and Ry = R/VA, Then 0 < Ry < Ry < &2 < L.
The last inequality implies that

Ry B -8 R3
3.36 J<cC . 5 . SBleln(e ' +2)]8s .
(3:36) suplu {RS(?BHPW ) (suplud) -+ Tpletn(e™ +2)) supud o

Ry R3 R3
where
In 283
(3.37) B=—2E
hl Ril

is derived from the « value in (3.26) and C' depends only on A and (7, u). It is easy
to see that § < 1. By the value of ), it is possible that 5 < 0. However, the second
term in the right-hand side of (3.36) implies that such inequality holds trivially when

€ is suﬁiciently small. To have § > 0, we need to have Ry < %. Together with

Ry < fs < 1 we choose 0 < Ry < Ry < ’\f‘“’ < 4. Thus, the inequality (3.36) holds
with 0 < 153 < 1. This completes the proof of Corollary. 0

From Corollary 1, we can give the proof of Corollary 3.

Proof of Corollary 3. We introduce a new function v.(x,t) as
ve(z,t) = eVArty () in By x (=10, 10).
From eigenvalue type equation (1.10), the new function v.(z,t) solves the equation
(3.38) Love— 0. =0 in By x (10, 10).

This new homogenization equation (3.38) has the coefficient matrix

(@ij)axa O
0 1)’

which also satisfies conditions (1.4), (1.5), and (1.6). Let B, be the ball with radius
r in Byg x (=10, 10). We may write B, as B, x (—r, r). From Corollary 1, it holds
that

(3.39)

Ry R3 _
L O A T P R[S P .

for Ry, Ry, Rs, 3 given in Corollary 1. By the definition of v (z,t) and B,., we obtain
that

s U PRECR e N I =

R2 _
(340) + Rge\/ ekRS[Eln( 1 —|—2)] ||u6||L:x>(]BR3)}.
Thus, the corollary follows. ]

Let us show another consequence of the three-ball inequality in Corollary 1, that
is, the approximate propagation of smallness estimates.
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Proof of Corollary 4. As a consequence of De Giorgi-Nash estimates, the solution
te in (1.3) is a continuous function. Hence there exists z € Bg such that u.(z) =
supg, |ue(z)|. We select a sequence of balls with radius 2r centered at x; =0,..., 2,
so that z;11 € B.(x;), By (zi41) C Bar(2;) and T € B, (2y,). The number m depends
on r. By the way we choose x;41, it holds that

(341) HUE”L‘X’(BT(:MJA)) < ”uE”L‘X’(Bm(%i))'

Applying the three-ball inequality (1.9) for 1 = 0 and using that [Juc||z~m,,) < 1,
we have

(3.42) el Loo B, (21)) < C{6” + [eln(e™" +2)]7}

NI

with 8 = n

In

. Then we choose z9 € By,.(x1) such that B,.(z2) C By, (z1). Thus,

>

(3.43) el Loo B, (22)) < el Lo (Bay (21))-

Applying the three-ball inequality (1.9) for balls centered at xs and using (3.42) and
(3.43), we have

[ el Lo B () < C{C” + Cleln(e! +2)]°} + Cleln(e™! +2)]°
(3.44) = PP L CPH eln(e ! +2)]7 4 Cleln(e ! + 2)]°.

Iterating this argument with three-ball inequality at points z3, ..., up to x,, and
using (3.41) and the fact that |ul|zom®,,) < 1, we obtain that

[tte]| oo (Ba () < O BT A Z OXi= B leln(e ! + 2)]&.
j=1

Since 0 < < 1, we have

(3.45) el Bar oy < CPF67" + mO=A (e + 27"
If r is fixed, then m is a fixed number. Thus,

(3.46) el o= 5y) < CT7 8" +mCT7 [eln(e ™" +2))7"

for eln(e=1 +2) < 1. o

Compared with the previous approximate propagation of smallness result, we
are able to show a full propagation of smallness result with the aid of the doubling
inequality in Theorem A.

Proof of Corollary 5. Let r, = 2Frg. Choose kg such that 2k0ry = V. Then ko ~

10g2(T£0)‘). Let M}, = ||u€||Loc(IB7,k) so that My = ||u6||Loo(B7,O) and My, = [|uc|ze

B )
Choosing

7) _ N>, 0
||Ue|\L°°(maﬁ)

from Theorem A, we have

k

My M, M, M, 1 o
3.48 My =20 220 222 Bkl ap s (=) A
(3.48) OT M, My, Ms M, ko_(C(N)) ko
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It also follows that
(3.49) My, < MoC(N).

From the N value in (3.47), the boundedness assumption of ue, and the definition of
My,, it follows that N < —A—. By (3.49) and monotonicity of C(N), we arrive at

Mko.
1 )’““
My, )

Supposing that My, > 1o and My = [[uel|L=,,) < do, from (3.50),

1 \% 1\
<sC( =) .
Mk0> = (770>

If we choose dy such that 6oC (n%)k0 < B, this gives that My, < B, which contradicts

the assumption My, > no. Hence, if §p < Z—“(C(nio))*ko, we must have My, < 1o

as desired. This completes the corollary. Notice that the dependence of &g is not
explicit. 0

(3.50) My, < MOC(

(3.51) My, < 500<

As a consequence of Corollary 1, we can give the proof of Theorem 2.

Proof of Theorem 2. To use the conclusion in Corollary 1, we extend (1.17) in
half balls to balls. We do an even extension for the metric A(y) across the half space
{z|xq = 0}. Then we define a new coefficient matrix as

m‘H

€

A<z> A(E, ) for x4 > 0,
A(”%/7 =) for z4 <0,

where 2/ = (z1,...,24_1). We can see that A(y) still satisfies the ellipticity condition

(1.4) and 1-periodic condition (1.5). To verify that A(y) also satisfies the Holder con-

tinuity (1.6), we just need to check the Holder continuity for A(y) in the 34 direction.
Let y) > 0 and y2 < 0. By the condition (1.6) for A(y), we have

AW ya) — AWyl = [AW  yd) — AlY',0) + Ay, 0) = Ay, —yd)|
< Tlyal” + rlyal"
(3.52) < 27y — yal"-
This implies Holder continuity as (1.6) holds for A(y). For the Dirichlet boundary

conditions, we do an odd extension for u.(z) across the half space {z|xq = 0}. Then
we have a new function v.(z) defined as follows:

@) ue(2’, xq) for x4 > 0,
ve(z) =
—uc(z', —xq) for z4 < 0.

Since the solution wu.(z) in (1.17) for the Dirichlet boundary conditions is Lip-
schitz continuous by the homogenization theory, e.g., [AL], the new v.(x) is Lipschitz
continuous and is in H'(Byg). We claim that v.(z) satisfies the elliptic homogenization

(3.53) —div(fl(%)Vve) =0  in By
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To verify that ve(x) is a weak solution of (3.53), we need to check that the following
holds:

(3.54) /B A(2) Vv Vol)dr =0 for any 6(x) € C(B).

Recall that the weak solution u.(x) of (1.17) for the Dirichlet boundary condition
is given as

(3.55) /B . A(%)VUE V() do = /8 S A(%)Vue - ng(z) do

for any ¢(z) € C3°(BY,). By the assumption of A(y) in (1.18), (3.55) is equivalent to

d—1

Ou, 8¢> Oue 8(;5
a; =— Dyucp do.
(3.56) / Z J 830] 6:51 v /BI’ 024 &vd /GIB%TOO{zd—O} GaaDate do

102] 1

In order to show (3.54), we split the integral in the left-hand side of (3.54) in
Bio into the integrations in BYj and By, where By, = Bio N {zq < 0}. For any
#(r) € C§°(Bio), by the definition of A(%) and vc(x), we have

/Bw A(%)we - Vé(z)da :/BR A(%)we V() de + / A(%)vue V(z) da
(3.57) :/w A(%)Vu6~v¢(x) dx+/7 A(%)we.w(x) dx

Applying the integration by parts and change of variables to transform the integration
from By, to B, we can show that

/1 A( )VUE Vo(x /7 Z a” o _md)auﬁ(ﬁzvj )gji
—/Bf ol Yz 0,
[ 3 ol e,

' g\ Oue 0p(a’, —xq)
/BR add( e € >3xd 0z du

(3.58) = / adaDaued do,
OB N{za=0}

where we have used (3.56). Then (3.54) is verified by combining the estimates (3.56),
(3.57), and (3.58). Thus, v.(z) is the solution of (3.53).

Thanks to Corollary 1, we have the approximate three-ball inequality for v.. For
O0<Ri <Ry < ’\R3 < 2, we obtain that

(3.59)

Ry R3 _
||U€HL°0(]BR2) < C {‘R3|U6|6"°(BR )H'Ue”Loo(BR ) + Rﬁikln(e 1 + 2)]ﬂ||ve||L°°(BR3)} s
1
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where § = AR3 2 /In % Bs and C depends on A and (7, ut). Since v, is an odd extension
of ue, the estlmates (1 19) for the Dirichlet boundary conditions in half balls follow
from (3.59).

For the Neumann boundary conditions, we do an even extension. We define a
new function v(x) as follows:

(2, xq) for zq4 > 0,
ve(w) =

u(z', —xq) for zq4 < 0.

The solution u(x) in (1.17) for the Neumann boundary conditions is Lipschitz con-
tinuous, e.g., JIKESY, [AS]. Hence, v.(z) is Lipschitz continuous and is in H*(B1g).
We also claim that ve(x) is the solution for

. ES .
(3.60) —dlv(A(z>VvE) —0  in By
Thus, we need to show that
(3.61) / A(2) V- Vo) dr =0 for any 6(x) € G5 (Bro).
Bio
The weak solution uc(x) of (1.17) for the Neumann boundary condition is given
as
(3.62) / A@)vue - Vé(z)dz =0
B €
10
for any ¢(z) € C5°(BY,). By the definition of A(y), it also holds that
d—1
Oue aqS Oue 0¢
. i —dx =0.
(3.63) /BTO ”21 1 0, 0y T /Bio d g B 00 =0

We split the integral in the left-hand side of (3.61) in By into the integrations in ]B%fo
and B, as

~/x ~ /T (T
/Bm A(E>Vv5 Vé(z)de /BTO A(E)Vvs V(z) dz + / A(;)vve Vo(z) da
x (T
(3.64) - /113 A(E)Vue'Vqﬁ(x) dz + / I_DA<E>V7JE~V¢(9:) dz
By (3.63), the definition of fl(g), ve(z), and the change of variables, we can show that
x —CEd Oue(z', —xq) 8¢
/— ( )VUC Vol dx_/— Z a” ) z; 83:1
r_ Ouc(x!, —zq) O
e

+
10

€ c')xd 8:vd
/ Z x xd>6ue oo(a’, fxd)d
U Oz, o0x;
101] 1
' g\ Oue Op(a’, —xq)
+/B;r0 add(? 7) 33361 63?(1 du

(3.65) =0
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for any ¢(x) € C§°(B1g). Therefore, the combination of (3.63), (3.64), and (3.65)
verifies the claim and v¢(x) is the solution in (3.60). Following the same strategy as
the case of the Dirichlet boundary conditions, the estimate (1.19) is arrived at for
equations with the Neumann boundary conditions. 0

Following the ideas in Corollary 3 and Theorem 2, we can easily show the proof
of Corollary 6. For completeness of presentation, we present the main ideas in the
argument.

Proof of Corollary 6. We consider a new function v.(z,t) as

(3.66) ve(z,t) = eVAerty () in B}, x (-10, 10).
Then the new function v, (z,t) satisfies the homogenization equation

—div(A(£)Vve) — 0fve =0 in B, x (=10, 10),
(3.67) ( ) o v
ve=0or 2= =0 on {OB, N {zq =0}} x (10, 10).

We denote the new coefficient matrix in B, x (=10, 10) as

fl(%,t) _ ((aw(i))dxd (1)> .

Thus, the equation in (3.67) can be written as
(3.68) —div(ﬁ(%,t)vue) —0  inBf x (-10, 10).

We do an even extension for the matrix A( t) across the half space {(z,t)|zq = 0}

and write the new coefficient matrix as A( ,t). This coefficient matrix A(Z,t) still
satisfies the conditions (1.4), (1.5), and (1. ) As in the proof of Theorem 2, we do
an odd extension for v, in (3.67) for the Dirichlet boundary conditions across the half
space {(z,t)|xq = 0} and write it as 0.(z,t). We identify the half ball with radius r
in the cylinder B}, x (=10, 10) as B} x (—r, 7). Recall that B, x (-7, 7) is written
as B,. We can check as in the proof of Theorem 2 that o, (z,t) satisfies the equation

z
€’
z

(3.69) —div(ix(f,t)we) =0  in By
Thanks to Corollary 1, the solutions ¥, in (3.69) satisfy the three-ball inequality
(3.70)

Iollm 8y < € {20l o, 10l + TR+ 2 il

for 0 < Ry < Ry < )‘f?’ < % with 8 = In ’\R3 /ln R3. Since we have done an odd

extension for ¥, the following inequality holds for Ve (.13 t):

e < {22
€ Loo(]B;,zx(—Rz, Rz)) Rs L°°(]B+ X(—Ri1, Ra )

(3.71) - gg[

o2
Lo (B}, x(~Rs, Rs))

-1
e 4 DIl o5 ) [
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By the definition of v(x,t) in (3.66), we further obtain that

(3.72)

R
||u€||L°°(]B+R2) >~ C@ R3 ||ue|| M(Bgl)”ueHLoo(]B;s)
R3 1
+ el + 2 g |-

Thus, (1.21) is arrived at for solutions of (1.20) with the Dirichlet boundary condi-
tions. For (3.67) with the Neumann boundary conditions, we do an even extension for
ve(x,t). As in the proof of Theorem 2, the approximate three-ball inequality (1.21)
can be obtained. 0
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