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{ —Dgex(z) = dex(z), zeM,
(1.1)

ex(z) =0, xr € OM,

where (M, g) is a smooth and compact n-dimensional Riemannian manifold with bound-
ary (n > 2). With the sharp doubling inequalities of the gradients on the boundary and
in the interior of the manifold, we are able to obtain the sharp upper bounds of critical
sets of Dirichlet eigenfunctions by standard techniques. Doubling inequalities are in-
equalities with norms in a ball controlling the norms in a double ball. They are effective
tools to control the local growth of the functions. Thus, these inequalities are important
in the quantitative characterization of the strong unique continuation property and in
the study of the measure of zero-level sets of given functions.

Let us briefly review the relations of doubling inequalities and the measure of nodal
sets (zero-level sets) of eigenfunctions. The doubling inequalities have played important
roles in the measure of nodal sets of eigenfunctions

—Ngdr = \pa (1.2)

on compact manifolds (M, g) without boundary. The celebrated problem about nodal
sets centers around the famous Yau’s conjecture for smooth manifolds. Yau [25] con-
jectured that the upper and lower bound of nodal sets of eigenfunctions in (1.2) are
controlled by

VA< H" ' ({z € M|pr(z) = 0}) < CVA (1.3)

where C| ¢ depend only on the manifold M. The conjecture was shown to be true for
real analytic manifolds by Donnelly-Fefferman in [6], [7]. Lin [14] also proved the upper
bound for the analytic case using a different approach. The following doubling inequality

AN o0 (Ban(2)) < €CVM 0N Lo (B, () (1.4)

for any B,(xz) C M is essential in the derivations of bounds (1.3). Note that (1.4) was
obtained in the smooth manifold. For the conjecture (1.3) on the measure of nodal sets on
smooth manifolds, there are important breakthrough made by Logunov and Malinnikova
[18], [16] and [17] in recent years.

It is well known that eigenfunctions e, change signs as eigenvalues A increase. The
nodal sets of eigenfunctions may intersect other interior nodal sets or may intersect the
boundary. Critical sets of eigenfunctions are sets where the gradients of eigenfunctions
Ve, vanish. The critical sets appear at the intersections of nodal sets or inside of nodal
domains. We aim to study the measure of critical sets on the boundary {z € OM||Ve,| =
0}, where Ve, is the full derivative in M. Since e, = 0 on boundary, those critical sets
on the boundary can be regarded as singular sets, that is, {x € OMley = |Vey| =
0}. By Hopf lemma, we can check that these critical sets are the intersection of nodal
sets in the interior manifold with the boundary. More intuitively, these critical sets are
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where interior nodal sets touch the boundary. We can also consider these sets as the
intersection of different nodal sets if we can extend the Dirichlet eigenfunction across
the boundary. Since the boundary OM is (n — 1) dimensional, the boundary critical sets
{z € OM||Ve,| = 0} are with dimension no more than (n — 2). To obtain the measure
of boundary critical sets, we study the measure of zero sets of the normal derivatives
68% on the boundary, where v is a unit outer normal on the boundary. Based on the
relations of doubling inequalities and zero-level sets, in order to obtain the measure of
boundary critical sets, we need to obtain the doubling inequality for normal derivatives

on the boundary for smooth manifolds.

Theorem 1. Let ey be the Dirichlet eigenfunctions in (1.1). There exist positive constants
C and ry depending only on the smooth manifold M such that

(96)\

C\/X 8e>\
||EHL00(BZT(1-)) <e HEHLW(BT(J;)) (1.5)

for any 0 < r <1y and any Ba,(x) C OM.

Together with zeros counting results for complex analytic functions, we can show the
following sharp upper bounds for the boundary critical sets.

Theorem 2. Let M be a real analytic manifold with boundary and ey be the Dirichlet
eigenfunctions in (1.1). There exists a positive constant C depending on M such that

H" 2({x € OM| |Vey| = 0}) < CV\. (1.6)

For planar analytic domains, such upper bounds for boundary critical sets of Dirich-
let eigenfunctions was derived by Toth and Zelditch [23] among other interesting results
using a different method. Theorem 2 improves such upper bounds to general dimensions
in the analytic manifold. See also [24] for their related interesting work on nodal inter-
sections with a certain analytic hypersurface in the analytic manifold without boundary.

Next we focus on the study of interior critical sets and interior doubling inequalities.
For elliptic equations without zero order term, the critical sets of the solutions are at
most (n—2)-dimensional. Exponential upper bounds have been established for Hausdorff
measure of critical sets of solutions in smooth manifolds by Naber and Valtorta [21], see
also other work on the study of critical sets or singular sets of elliptic equations, [5],
[8], [9], [11], [12], just name a few. For the Laplace eigenfunctions, the dimension of
critical sets of eigenfunction can be varied. It is shown by Jackobson and Nadirashvili
[13] that there exists a Riemannian metric on two dimensional torus T2 such that the
number of critical points is uniformly bounded for some sequence of eigenfunctions, which
disproves the Yau’s conjecture [25] on the increase of the number of critical points.
Recently, Buhovsky, Logunov and Sodin [4] constructed a Riemannian metric on the
two dimensional torus T2, such that for infinitely many eigenvalues, each corresponding
eigenfunction has infinitely many isolated critical points.
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There exist examples of Dirichlet eigenfunctions which have (n—1)-dimensional critical
sets. Let (A, g) be a (n — 1)-dimensional compact manifold and M = [0,1] x A. The
compact manifold M is equipped with the product metric. Then the boundary M is given
by OM = {0,1} x N. We can check that eg(z) = sin(27kx) are Dirichlet eigenfunctions
with eigenvalues A = 472k? on M. We can also see that the critical set is (n — 1)-
dimensional. Furthermore, cv/A < H" '({x € M||Ver| = 0}) < CV\, where ¢,C
depend on the manifold M. There are also some surfaces of revolution with (n — 1)-
dimensional critical sets, see also [26]. Since the critical sets of Dirichlet eigenfunction
are at most (n—1)-dimensional, we can bound the Hausdorff measure of critical sets as we
do for zero-level sets. We first need to obtain the doubling inequality for the gradients of
Dirichlet eigenfunctions near the boundary. For Dirichlet eigenfunctions, even if we can
do an odd extension to have a double manifold, we can not directly show the doubling
inequalities for Vey, because the metric for the double manifold is only Lipschitz. To
avoid the use of the double manifold, we develop the quantitative Carleman estimates
in the half balls, and then show new propagation arguments to obtain the doubling
inequalities.

Theorem 3. Let ey be the Dirichlet eigenfunction in (1.1). There exist positive constants
C and ro depending only on the smooth manifold M such that

IVerll Lo B4, (o)) < ecﬁHVeAHLm(Bi(mo)) (L.7)
for any 0 < r < ry and any B (x¢) C M and xo € OM.

Thanks to the doubling inequality in half balls (1.7), and the interior doubling in-
equality in Lemma 5, and zeros counting results, the upper bounds of interior critical
sets are derived.

Theorem 4. Let M be a real analytic manifold with boundary and ey be the Dirichlet
eigenfunctions in (1.1). There exists a positive constant C depending on M such that

H" '({z € M||Vex| = 0}) < CVA. (1.8)

For real analytic manifolds without boundary, the same strategy was used in [2] to
obtain the upper bounds of critical sets of eigenfunctions in (1.2). In our proof of Theo-
rem 4, we need to overcome the difficulties on the presence of the boundary. Specifically,
we have to deal with the critical sets in the neighborhood of the boundary and in the in-
terior of the manifold. Furthermore, new challenges arise when dealing with the doubling
inequalities of the gradients of Dirichlet eigenfunctions.

The following remark provides new insights for the techniques used in the proof of
Theorem 3.
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Remark 1. The method in the proof of Theorem 3 provides new ways to prove the
doubling inequality for smooth manifolds if the double manifold is not available. It has
interesting applications to the study of nodal sets or other quantitative properties of
eigenfunctions of general eigenvalue problems. For example, the Steklov problem is often
considered in this more general form with physical background

Ngey =0 in M,
(1.9)

%ilj = Xo(x)ex on OM.

The weight function o(x) represents the mass density along the boundary M. Another
example is a general type of Robin eigenvalue problem with weight functions on the
boundary

—Agexn = ey in M,
(1.10)

%Llj =aV(x)ex on IM.

The double manifold does not seem to be available because of the presence the function
o(x) or V(x). The technique in Theorem 3 provides the way to prove the doubling
inequality for the half balls centered at the boundary for ey in (1.9) or (1.10). We can
further prove the upper bounds of interior nodal sets of ey in the manifold. See also
other work e.g. [3], [27], [29], [30], [31], [15] on the upper bounds of interior nodal sets
or boundary nodal sets for eigenfunctions as (1.9) or (1.10).

The outline of the paper is as follows. Section 2 is devoted to the proof of Theorem 1
and Theorem 2. In section 3, we first derive the systems of equations which gradients of
eigenfunctions Ve, satisfy. Then we state the quantitative Carleman estimates on the
half balls. As applications of Carleman estimates, we prove three half-ball inequalities
and Theorem 3 in section 4. New propagation arguments are applied to bypass the use of
the double manifold. In section 5, we derive the proof of Theorem 4. The last section is for
the proof of the quantitative Carleman estimates in half balls. The letter ¢, C', C; denote
generic positive constants and do not depend on A. They may vary in different lines and
sections. In the paper, since we study the asymptotic properties for eigenfunctions, the
eigenvalue )\ is assumed to be sufficiently large.

Acknowledgment. The author appreciates Professor Fang-hua Lin for helpful discussions
on the topic in the paper. The author also thanks Professor Steve Zelditch for bringing
[24] to our attentions and for information on the possible extension of their results to
critical sets.

2. Boundary critical sets

In this section, we first prove the sharp doubling inequalities for the normal deriva-
tives, then show the upper bounds of the measure of critical sets on the boundary for
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Dirichlet eigenfunctions. In the local coordinate charts, using the Einstein notations (the
summation notation is understood), the equation is written as

9
—Agey = —g 2 0,(gr g 5

5e) = (2.1)

where g% denotes the inverse of the metric g;; and g = det(g;;). We will write A, as A
if the context is understood. We need to pay special attention to the equation around
the boundary OM. For any point p € OM, the Fermi exponential map at p which
gives the Fermi coordinate systems, is defined on a half ball of R"} ~ T},(OM) centered
at origin. Suppose (z1,---,Tn—1) is the geodesic normal coordinate of OM at p. Let
xy, = dist(z, OM). Note that dist(z, OM) is smooth in a small open neighborhood
of p in M if M is smooth. We can locally identify OM as x,, = 0. By Fermi geodesic
coordinates,

ae,\
J

—g_%ai(gég”%) = ey (2.2)

with ¢"" =1, ¢ = 0 and ¢¥ (2, 2,) #0 for 1 <i,5 <n —1.

We will take advantage of the new quantitative propagation smallness results for the
second order elliptic equations in the half ball shown in [31], that is, quantitative two
half-ball and one lower dimensional ball inequality. Let us present the results in a general
setting. Let u be the solutions of

—ai;Diju+bi(zr)Dyu+ c(x)u=0 in B, (2.3)
where a;; is C*, b(y) and c(y) satisfy
1bll w00 g5,y < C(T1+1),
e (2.4)

||C\|W1=oc(131+/2) < C(f +72),

and 71 and 7y are positive constants with possible large values. The quantitative two
half-ball and one lower dimensional ball inequality is stated as follows.

Lemma 1. Let u € CSO(IBT/Q) be a solution of (2.3). Denote the lower dimensional ball

1
Bis={(2, 0) Rz’ e R*" ", |2/| < §}~

Assume that

ou
HU’HHl(Bl/s) + ||5HL2(B1/3) S e<<1 (25)

and ||u||L2(]B1+/2) < 1. There exist positive constants C' and 8 such that



J. Zhu / Journal of Functional Analysis 281 (2021) 109155 7

s gy < 7TV (2.6)

More precisely, we can show that there exists 0 < k < 1 such that

||u||L2(ﬁIB;r) < eC(T1+\/E

)HUIliz(B; (”U”Hl(Bl/g)JF” ||L2(Bl/3))17”- (2.7)
These qualitative results were established in [14] and [1]. We obtained the quantitative
results with the consideration of the quantitative behavior of 7 and 75 by some global
Carleman estimates. The estimates (2.7) have already shown their important applications
on the measure of boundary nodal sets of Neumann eigenfunctions in [31].
For the Dirichlet eigenfunctions, the following sharp doubling inequalities hold

||€/\||L2(1B2t(x)) < QCﬁHeAHL?(]B,JF(x)) (2.8)

in half balls for any 0 < r < rg, where ry depend only on M and x € O M. The estimate
(2.8) was actually established in [6], even if it was not stated for the half balls, because
the doubling inequality in balls in the double manifold was sufficient for their results.
Note that the sharp doubling inequalities (2.8) can also be proved by the technique
developed in section 4 without using the technique of the double manifold.

Together with Lemma 1 and doubling inequalities (2.8) in half balls, we can read-
ily derive the doubling inequality for the gradients of Dirichlet eigenfunctions on the
boundary of the manifold.

Proof of Theorem 1. Because of the Fermi coordinates, we consider the Dirichlet eigen-
functions ey in (2.2) near the boundary. We may argue on scale of order one and normalize
€) as

H€A||L2(1Bl+/2) =1 (2.9)

Note that ey = Viey = 0 on the boundary {x,, = 0}, where V,; is the derivative in
the tangential direction. We can write the equation (2.2) in the form of (2.3). In term
of the assumptions (2.4), we can choose 71 as some fixed constant depending on M and
T3 = A. Hence the quantitative three-ball inequality on the half balls (2.7) holds. We
may normalize it as

86)\

lexllzams, ) < €Y lealamy oI5, 1126, 0 (2.10)

By finitely many iterations of the doubling inequality in the half balls (2.8) and (2.9),
we get

ae* > eCVA, (2.11)

||L (B1/o) =
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Let 7 be a cut-off function such that n(r) = 1 for |r| < i and vanishes for |r| > % By
the Hardy trace inequality and elliptic estimates, it follows that

ae,\ 6
2 2w < 152 1w, < VG2 ace)

86)\

< Vel 2y, + Cli5~ ||L2 (B} )

< CMleall 2y,

< O (2.12)

Combining the established estimates (2.11) and (2.12), we have

fJaz

Oe

cCVA A

Mz, < ‘F\Iaxnllmsw). (2.13)
Using the similar idea, we can show the boundary doubling inequality in L*° norm,
which we will use for the measure of nodal sets. From rescaling arguments and elliptic
estimates, we have

86)\
152 ||L°<>(131/5><CA i ||€A||L2<B 12)

Applying (2.11) yields the doubling inequality in L°® norm,

86)\
B 1) < Cfu—nmw (2.14)

By rescaling and iteration, we arrive at

||L ~ (Ba, (20)) <6cf|\—IIL = (B (o)) (2.15)

for any o € OM and Ba,(x9) C IM, and r < ro for some ¢ depending only on M.
This completes the proof of Theorem 1. 0O

To measure the number of zeros, we need a lemma concerning the growth of a complex
analytic function. See e.g. Lemma 2.3.2 in [10].

Lemma 2. Suppose f : B1(0) C C — C is an analytic function satisfying

FO)=1 and sup |f| <2V
B1(0)

for some positive constant N. Then for any r € (0,1), there holds
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#{zeB.(0): f(z) =0} < eN
where ¢ depends on r. Especially, for r = %, there holds

#{z € B1/2(0) : f(z) =0} < N.

With the doubling inequality (1.5) and Lemma 2 on hand, it is kind of standard to
provide the proof of upper bounds for the boundary critical sets of Dirichlet eigenfunc-
tions. See pioneer work on the measure of nodal sets by [6], [14] and other related work
using this idea, e.g. [30], [31], [15].

Proof of Theorem 2. To get the hypoelliptic estimates for Dirichlet eigenfunctions on
the boundary, we perform a standard lifting argument. Let

w(z,t) = eﬁte,\(x). (2.16)

Then w(zx, t) satisfies the following equation

Aw+0w=0 in M x (—o0, 00),
(2.17)

w=0 ondMx(—o0, o).

By straightening the boundary dM locally, rescaling and translation. we may assume
that (p,0,t) € ((’9[8%?/16 N{z, =0}) x (=75, 75) with p € R"~!. From elliptic estimates
in Lemma 2.3 in [20], we obtain that

Veuw(p,0,0)

| ol(an £ 1) | < CCkHHwHLw (B o x(~3.2) (2.18)
where & = (a1, ,ap—1,0, + 1,0) and |a| = [(a1,- -+ ,an—1,03)| =k, and C, C>1
depends on M. By the definition of w and (2.11), we have that

a dex

|Va+!(l’70)| < Clon + D)C wll oo~ 1.1)
< Oék@Cﬁnex\HLm(Bbg)
< CCke Cf|| 86* o0 (2.19)

Then ae* (p, 0) is real analytic for any (p,0) € 8B1+/16 N {z, = 0}. We may consider
p as the orlgm in R»~!. By summing up a geometric series, we derive a holomorphic

extension of g% with

86,\
sup | 52(2)] < VA2 ol s, - (2.20)
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where % < % and z € C*~!. Note that B, is denoted as the ball in R®~! with radius r.
Taking the boundary doubling inequality (2.13) and (2.20) into consideration, by finitely
many steps of iterations, we conclude that

86)\ CvV 86)\
< . 2.21
o GRS 1520 (221)
2nC 4nC

By rescaling arguments, we further derive that

0
sup | A ()] < Y sup |22 (2)), (2.22)

where 0 < r < 7y and 7y, C' depend on M.

For ease of notations, let v = 8” . Thanks to the doubling inequality (2.22) and the
growth control lemma for zeros, i.e. Lemma 2, we can give the proof of Theorem 2. We
may also argue on scales of one as well. Let p € By/4 C R”~! be the point where the
supremum of |v| is achieved. After rescaling, we can assume that |v(p)| = 1. For each
direction w € S™2, we consider the function

Vw(2) = v(p + 2w), z € B(0) cC.

Denote N(w) = #{z € By2(0) C Clu,(z) = 0}. With aid of the doubling inequality
(2.22) and Lemma 2, we can show that

#{z € By/2(p) C R" |z — p is parallel to w and v(z) = 0}

< #{z € B12(0) C Clu,(z) = 0}

~ N(w)

< CVA. (2.23)

By the integral geometry estimates, we readily deduce that

B2 (o € Bia@) 52 @) =) < [ Nw)ds

< CVA (2.24)
Thus, we obtain the upper bound of critical sets

H"*({z € B1/4(0)| [Vea(z)| = 0}) < OV, (2.25)



J. Zhu / Journal of Functional Analysis 281 (2021) 109155 11

By rescaling, it also implies that
H"*({By,(p) C OM| |Vex(x)| = 0}) < CVA (2.26)

for some ry depending only on M and for any p € 9M. Since the boundary M is
compact, by finite number of coverings, we complete the proof of the theorem. O

3. Quantitative Carleman estimates

In this section, we first derive the systems of elliptic equations for the derivatives of
Dirichlet eigenfunctions. Then we will establish the quantitative Carleman estimates for
the elliptic systems. To study the interior critical sets, we take derivative Jy with respect
to xp for each £ = 1,---n in each coordinate chart. Thus, we have

1 1 ,-86 1 1 s 66 1 1 s 86
— Ohg R 0i(gP g ) =g 20i((929") k5 ) = Adken.

3xj
(3.1)

Let U = (Uy,Us - -+ ,U,), where each Uy, = 222 for k=1,---,n. We rearrange (3.1) as
follows

AgUk+<Bk, VU)+ A - U+ AU, =0 (3.2)

where Ay, is a vector function and By, is a matrix function depending only on the metric
g and its derivatives. Hence, we have a system of equation for U,

AU+ (B, VU) + A-U + \U =0, (3.3)

where B a matrix consisting of By and A is a matrix consisting of Ay.

We also need to derive the boundary conditions for elliptic systems of the derivatives of
Dirichlet eigenfunctions. From the Dirichlet boundary conditions, in the local coordinate,
we derive that

86>\ 86)\

0x O0xn_1 on (34)
Thus, we know U; = --- = U,_1 = 0 on =, = 0. We also need to deduce another
boundary condition for U,, = g;* . We write the equation (2.2) in local Fermi coordinates
as
fg—%a.(g%gij)% — g 9% = e (3.5)
! al'j (’)xlaxj A '

Since the equation is smooth up to the boundary, from the boundary conditions (3.4)
and properties of Fermi coordinates, we obtain that
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0 1 86)\ 826)\

1
5 = nn _ . nn =\ n = 0. .
97 5,970 )—8% 9" Gez —Aen one 0 (3.6)
By the fact that ey = 0 on z,, = 0, we show that
ou, dlngz
=——20,. 3.7
0xy, ox, (3.7)

Thus, to study the doubling inequalities and interior critical sets of Dirichlet eigenfunc-
tions, it is reduced to investigate the elliptic systems with boundary conditions as follows

NgU+ (B, VU)+A-U+ MU =0, in B, (38)
3.8
Uy =---U,_1 =0, gTU: = k(z)Up, on 9B N {x|z, = 0},
where A(x), B(x) are matrix functions and k(x) = —manTié is a scalar function which

all depend on the metric g and its derivatives.

The rest of section is devoted to the statement of the quantitative Carleman estimates
for elliptic systems in half balls with proper boundary conditions. The quantitative Car-
leman estimates are important tools for the study of three-ball inequalities and doubling
inequalities in the next section. Let r = r(y) be the Riemannian distance from the origin
to y, which is always less than the injectivity radius. Carleman estimates are weighted
integral inequalities with some weight function exp{Su(x)}. We construct the weight
function 1 as follows. Let ¥ (y) = —¢(Inr(x)), where ¢(t) =t + Int? for (—oo, Ty] and
Ty is negative with |Tp| is sufficiently large enough. It is easy to see that the function
¢(t) satisfies the following properties

2 /
Lt <o =1 (3.9)

lim —¢"(®)

t——oc et

= +o00. (3.10)

We are able to establish the following Carleman estimates. Note that E(z) and h(z)
below may have large C! norm. The notation || - |g+ denotes the L? norm in the half

ball [B%E unless otherwise stated.

Proposition 1. There exist positive constants Cy, Cy and small constant ry such that for
any V € Cg° € BX\{0}, E(z),h(z) € C', and

B> Co(l+VIElcr + lIhller),

one has

3 — 1 _
Ol Fllgs > B3| (log r) Vg + 83 [[re™ (logr) ' VV g, (3.11)
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where the vector function V(x) satisfies

AV + E(z)V = F(z) in B,
v, i
Vi=0,---,V,_1 =0, o = h(z)V,, on OB, N{z|z, = 0}. (3.12)

Furthermore, if V€ Cg° € B \B, then

3 _ 1 _1
Crllr?e? Fllgs > 831 (logr) " Viigs + 8o llr 2™ Vg

+ 32 [re® (logr) 1YV ;. (3.13)

Next we show a lemma which will be applied for the elliptic system (3.8) in our latter
arguments.

Lemma 3. There exist positive constants Cy, Cy and small constant ro such that for any
V e C5° (B )\{0}, and

ﬂ > 00(1 + \/X),
one has
Ci[r?e” Fligs > 8% [|e® (logr) ™'V |jgs. + B [|re”(logr) ' VV gz, (3.14)

where V(x) satisfies

AV (BYV)+AV AV =F B,
Vi = 0,eee Vi1 =0, gﬁ = k(@)Va,  onOBE N {zlr,=0}).  (3.15)
Ln

Furthermore, if V€ Cg° € B \B, then

Cillre?V Flgs > B2 [|e” (logr) V|

mr + B2l 2 eV |
+ 8 [re? (log ) 'V V |z (3.16)
Proof. We assume that § > Co(1 + /) and X is large enough. Since B(z), A(x) and

k(z) are fixed functions depending only on the metric g and its derivatives, from triangle
inequality and (3.11), we readily have

Cul[r2e? (AV + (B, VV) + AV +2V)|lg+
> [[r2e?P (AV + V) |lgs, — lIr?e™ (B, VV)|gs,

_ |28
26| AV s,
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> B3|e” (logr) "'V 5y,
+ 82 [re” (log r) ' VV [z — (2™ (B, VV) 5.

_||y2pBY
7265 | AV || (3.17)

By the assumption of 5 and the fact that r is small, the last two terms in the last inequal-
ity can be controlled by the right hand side of (3.11)). Thus, the Carleman estimates
(3.14) can be derived from (3.17). The conclusion (3.16) can be arrived using the same
strategy from the estimates (3.13). O

Inspired by the approach in [6], [2], [28] and [22], we prove the quantitative Carleman
estimates (3.11) and (3.13) by introducing new coordinates and conjugate operators.
Since the arguments of the Carleman estimates are long and detailed, we present the
proof in the last section, i.e. Section 6. We will only use the Carleman estimates (3.14)
and (3.16) for the later proof of the doubling inequalities and the measure of critical sets.

4. Three-ball inequalities and doubling inequalities

In this section, thanks to the quantitative Carleman estimates (3.14) and (3.16), we
will first show the three half-ball inequalities of the gradient of Dirichlet eigenfunctions
in the half balls centered at the boundary. Then we will obtain the quantitative doubling
inequalities of the gradients in those half balls. In the proof of the doubling inequality, an
important ingredient is a lower bound estimate for L? norm of the gradients of Dirichlet
eigenfunctions, since the doubling manifold technique in [6] is not available directly, our
new idea is to study the propagation between the neighborhood of the boundary and
the interior of the manifold.

Relied on the Carleman estimates as (3.14) for interior balls, it is standard to have
the following quantitative interior three-ball inequality

IVexllza g @) < eV Verlf @ en I Verl} gy (4.1)
4

if Br(x) C M, where 0 < 7 < 1 is a constant. For the complete of the presentation, we
present the approach to obtain these inequalities in half balls by considering the boundary
conditions. Recall that r(z) be the geodesic distance from z to origin. By rotation and
translation, we may assume that 0 € 9M. Denote Ag, r, = {x € M|Ry < r(x) < Ra}
be the annulus. Let ||U| g, r, be the L? norm of U on Ag, r,.

Lemma 4. There exist positive constants R < ro, C and 0 < 7 < 1 which depend only on
M such that, for any R < R and any xo € OM, the Dirichlet eigenfunctions ey of (1.1)
satisfy

19l @t oy < €V IV g ooy I VML, (42)

L B;R(xo))
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Proof. We study the elliptic systems (3.8) derived from the derivatives of Dirichlet
eigenfunctions. By translation, let 2o = 0. To apply the Carleman estimates (3.14),
we introduce a smooth cut-off function ¢(r) € Cg°(Bsg) with R < %2. Let 0 < ¢(r) < 1

satisfy the following properties:

e ¢(r)=0 ifr(z) < £ orr(z) > &,
C o) =1 it 38 < r(z) < M,
o IVl < 7

for a = (o, -, ap). Thus, the function ¢U is supported in the annulus A%%. Applying
the Carelman estimates (3.14) with V' = ¢U and considering the elliptic systems (3.8),
we obtain that

B2||(logr) '™ ¢U ;. < Cllr*e” (A(GU) + (B, V($U)) + AdU + A¢U) |15,
= C||r?e’ (AgU +2V¢VU + (B, VoU)) | - (4.3)

It follows from the properties of ¢ that

1e”“U||sz 13n < C(l”?U| 5 sn +||”*U | 138 zn)

C(||re’6wVUH%% + HT@BwVU” 13R %)

)

Note that the weight function v is radial and decreasing. We obtain that

€T 52 130 < C(eP S |U] 5 35 + €6 | U 13 2n)

' 76
(13R

+ O3 DNrVU |z sz + ™ [rVU |38 22). (4.4)
6 3

The following Caccioppoli inequality for the elliptic systems (3.8)

C(VA+1)
IVUlg: , = —F—

1T+ (4.5)
1R

holds for all positive constants 0 < ¢y < ¢1 < 1, which can be proved by multiplying the
elliptic systems (3.8) by ngSQU for some cut-off function ngS and using the trace inequality
(6.20). Thus, the estimate (4.4) implies that

1U|52 25 < CVA(PWE YD gy 4 POCEIVCR|p. ). (4.6)

We choose some new parameters

rh=u(y) - bCR)
= Y(R) — BT
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Thanks to the definition of 1, we learn that
0 —1 1 2 —1
<1 <Tp <7 and 0< T <TR<T, ,

where 71 and 72 are independent of R. Adding ||U]|| an to both sides of the inequality
(4.6) yields that

1Ullgs, < CVA(?™ [Ullgs + e ullg;. ). (4.7)

We want to incorporate the second term in the right hand side of the last inequality into
the left hand side. To this end, we choose 8 such that

o 1
CVie | Ullgy, < 51Ul

which holds if

1 n2CﬁIIUIIB;R
e 7]

Thus, we derive that
10l < VAP [Tl (4.8)

Recall that the lower bound 8 > CV/X is required to apply the Carleman estimates
(3.14). Hence we choose

1 2CVA|U|g+
B—ovittm U g,
T2 1Ullsg,,

Substituting such § in (4.8) gives that

< eV HUH U sy, (4.9)

To+T1
:
10l <

Raising the exponent to both sides of the last inequality yields that

T2 +‘r
1Ullgg,, < ec‘FllUllT”T2 ||U\|”+m- (4.10)
Set 7 = —Z2—. Thus, 0 < 7 < 1. Recall that U = ( By 73%), we arrive at

IVerllpy, < e IVerly I Verllh (4.11)
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By the standard elliptic estimates, the L> norm and L? norm of U are comparable in
different sizes of balls. We save the efforts in changing the sizes of balls in converting the
L? norm in (4.11) into the L® norm. Thus, the three half-ball inequality in the lemma
is completed. O

Next we aim to find some quantitative lower bounds for L? norm of Ve, in half-
ball centered at the boundary dM. Unlike the manifold without boundary or double
manifold, we can not iterate the three-ball inequality directly to achieve the goal. Instead,
we combine the three half-ball inequality and interior three-ball inequality to do the
propagation between the neighborhood on the boundary and the interior of the manifold.

First we claim that

Vel n) 2 €= VA Ve e (an), (4.12)
where C(R) is a positive constant depending on R and Mg = {z € M|dist(z, OM) <
R}. Since Ve, is smooth, there exists some point # € M such that |Vey(2)| =
Vex||Lo(rm). We may rescale to assume that ||[Vex| e a = 1. If & € Mg, the claim
(4.12) follows immediately. If £ € M\Mpg, we apply the interior three-ball inequality
and three half-ball inequality. Assume that there exists some point &y € Mg such that

[Vea(20)| = [[Vexl| Lo (mp)- Then we choose some point Z € M such that &y € B} (z)
and

IVerll Lo B4 (z)) = IVerlloe(mz) = do (4.13)
for some 0 < §p < 1. Applying the three half-ball inequality (4.2) at Z, we get
CVAST
HveA”Loo(B;R(;z)) <e f(so. (4.14)
Then we choose a point 1 € BJ,(Z) such that
Br(z1) C By z(Z) and Br(z1) £ By k(7). (4.15)
Applying the interior three-ball inequality at z1, we have
IVerze® 5 1)) < ecﬁllvwHzoc(ug@(m))HVBAIIlL;%(BR(m)
4
< OVAQHR) 577 (4.16)
Fix such R, we choose a sequence of balls B% (x;) centered at x; such that z;,1 € IB%% (2;)
and B% (zi41) C Bg (z;). After finitely many of steps, we could get to the point & where

|[Vey|(2) = 1, that is, x1, 22, -+ , &y = &. The number of m depends on R and diam(M).
Repeating the three-ball inequality (4.1) at those x;, i = 2,3,--- ,m, we arrive at
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”Ve/\”LOO(]BR(mm)) < eC\/X(1+7”—+7‘—2+~~+7‘—7")567‘—"". (4.17)
Ey

Since 0 < 7,7 < 1, we obtain that

OVt ™
||V€)\HL00(MR) Ze < /\(1+7—im+ + )

> e~ CRYA|Tey || oo () (4.18)

This verifies the claim (4.12).

Next we do a propagation of smallness using the three half-ball inequality to get a
L lower bound of Ve, in the half-ball. Let #; be any point on d M. The application
of three half-ball inequality (4.2) yields that

C T
IVerl o mgnen < €V IVerl w @) (4.19)

since we have assumed that [[Vey| 1 a1y = 1. We choose &3 € OM such that B, (22) C
B, (%1). Thus, we have

[Vex ”LOO(]BE(%)) < eC\/XHve)\ ||‘£oo (B} (1)) (4.20)

For such fixed R, we again choose a sequence of balls B}, (#;) centered at &; € M such
that BE(@H) C B;R(ﬁi). Since OM is compact, after finitely many of steps, we could
get to the point z. Recall the assumption of Z in (4.13). That is, we choose a sequence
of points, &1, %9, -+ ,Zs = . The number of m depends on R and M. Repeating the
three half-ball inequality (4.2) at those &;, i = 2,3,--- ,m, we arrive at

Ayl Fm
IVexll @y < €AVl T gt o) (4.21)

Taking (4.12) and the assumption of Z in (4.13) into consideration gives that

—CVAQtrl 4o g™l
IVerlzmmsan e 7 Vel

> " @V Vex | g (- (4.22)
By rescaling, it also holds that

Vel L@, 51 = € PV [ Verll e an)- (4.23)
Y

Recall that the annulus Ag, gr,(z0) = {z € M|R1 < | — 29| < Ry}. For any
To € OM, there exist some point £; € M such that B}, (#1) C Ar, r(xo). Therefore,
4
(4.23) also implies that

IVerllzmay ptan = €OV Ver] o an)- (4.24)
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With aid of the quantitative lower bound (4.24) and the Carleman estimates (3.16),
we proceed to show the doubling inequality for the gradients of Dirichlet eigenfunctions
Ve, in the half ball.

Proof of Theorem 3. We study the elliptic systems (3.8) for U. Without loss of gener-
ality, let g = 0. Let us fix R = g, where R is the one in the three half-ball inequality
(4.2). Choose 0 < p < 4L to be arbitrarily small. We introduce a smooth cut-off function
0 < ¢ <1 as follows,

¢(r) =0 if r(z) < porr(z) > 2R,
o d(r)=1 if2p <r(z) < 2L,

.« [Vl < S ifp < r(x) < 2,

o |Vog| <O if 3 <r(z) <2R.

We apply the stronger Carleman estimates (3.16) this time. Replacing V' by ¢U and
substituting it into (3.16) gives that

_ 1 =1
(logr)~'e™* @U llgy, + Bp? |Ir = e?oU |5,
< C|lr?e™ (A(¢U) + (B, V(o)) + A~ V(9U) + A¢U |l -
It follows from the properties of ¢ and the elliptic systems (3.8) that
I(log )" Ul 2 g + €7 Ull2p6p < CUU|”Ullp,2 + 1€V 52 5p)

+Cllre™ VU |2 + lre”* VU |22 55).

Note that R is fixed. We take the exponential function e®¥ out of the norms by using
the fact that ¢ is radial and decreasing. Thus, we arrive at

3R
(%

N 5 g+ ™ ONUll2p6p < OO (UNp2p + €™ 2T 31 25)

+ (O [rVU 2 + €™ DN VU | op o).
The application of Caccioppoli inequality (4.5) further implies that
3R
VI g g+ 7O ull2p00 < CVAEH U |55 + ™02 Ullgy, ). (4.25)
Adding e#¥(®P)||U |5, to both sides of last inequality, we get that
3R
SN g g+ 7O U5 < CVAE P |U|lg; + ™02 Ullgy, ). (4.26)

We want to remove the second term in the right hand side of the last inequality. To this
end, we choose [ to satisfy
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3R
CVAPY D |Ullgs, < 5e®* P U] 5 5.

1
2
That is, at least

1 20VA|U ||+
B > B n 3R
R TH[P

— Y(R) — ¢

is needed. Thus, we obtain that
PHPONT| g g+ O U, < CVAPH DU (1.27)

To apply the Carleman estimates (3.16), we need the assumption that § > Cv/\.
Therefore, we select
! 20VA|U g5
n
(R) —v(%) Uz r

=CV\
B +¢

Furthermore, dropping the first term in (4.27), we derive that

2CVN|U ||g+
Ullps < CVA CV\ 1 3R — (6 Ullp+
I ”Bsp > exp{( er(R)_?/}(%) n ||U||§,R )(Zfi(p) ( p))}H HIBB3P
Ullg+
< o] ”Bm)CnUnw, (4.28)
Uz r 8

where we have used the fact that the bounds ¥(R) — ¢(2£) and v(p) — 1(6p) are
independent of R or p. Since U = (2 ... 9 it follows from (4.24) that

oz’ ) Oxp

IVeallss, _ cus
Vel r

Together the last inequality with (4.28), we derive that

IVerllsy, < e[ Veallp;, -
Let p = 5. The doubling inequality

IVeallsg, < e Vel (4.29)
follows for r < £ If r > £ since R is fixed, from (4.22), we can also derive that

IVerllgs < eV [ Veallps- (4.30)
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Thus, we have obtained (4.30) for any 0 < r < 7o, where C only depends on the manifold
M. Since the L™ norm and L? norm are equivalent for the elliptic equations, we arrive
at the conclusions in the theorem. O

To obtain the bounds of interior critical sets, we will make use of interior doubling
inequalities. We do the propagation arguments between the consecutive annulus of the
manifold.

Lemma 5. Let ey be the Dirichlet eigenfunctions (1.1). For any fized R > 0, there exists
a positive constant C' depending only on the manifold M and R such that

IVerll L ®ar (o) < €V [Verll L@, (o) (4.31)
for any xg € M\Msg and 0 < r < %.
Proof. We first claim that

—CRVX| ey | e

Vel (mmar) = € (M\Mp)- (4.32)

Let us normalize |[Vex|lpenmy) = 1. Assume that there exists some point & €
M\Mp such that [|[Vex| ey = [Vex(®)]. If £ € M\Mapg, the claim (4.32)
holds directly. If & € Mar\Mpg, we will use the interior three-ball inequality to do
the propagation. Let ||Vex||ro(am\mpp) = 6 < 1. There exists some point o such that
Vel e (mmarn) = [Vea(@o)|. Applying the three-ball inequality (4.1) at &g gives that

IVelLo® g @0y < VN Verll w8 1 (20
4
< OVA§T, (4.33)

Fix such R, we choose a sequence of balls B%(xi) centered at z; such that z;,4.1 €
Bx (x;) and Br (xiy1) C B (x;). After finitely many of steps, we could get to the point
% where |Vey|(2) = 1, that is, &g = z1, 22, -+, Zmm = &. The number of m depends on R
and diam(M). Repeating the three-ball inequality (4.1) at those x;, i =1,3,--- ,m, we
arrive at

[VellLo® r (@m)) < OV 47 gt ) 57 (4.34)
4

Since 0 < 7 < 1, we obtain that

—CVA(+7+32 47
gLt

v

[Vexlloe ammar) =€

> e~ ORIV Vex || oo (M\ M) - (4.35)

This verifies the claim (4.32).



22 J. Zhu / Journal of Functional Analysis 281 (2021) 109155

Next we do a propagation of smallness using the three-ball inequality (4.1) to get a
L™ lower bound of Vey in M\Mszg. Choosing any point #; € M\ Mazg, we apply the
three-ball inequality (4.1) to have

IVexllwm g @) < €IVl @y ey (4.36)
4

since we have assumed that [|[Vex| ro i mp) = 1. We choose 22 € M\ Myp such that
B (22) C B (21). Hence, it implies that

Vel g o) < €Y IVerllLm @y o) (4.37)
4

For such R, we again choose a sequence of balls B r (Z;) centered at &; € M\Map such
that Bz (Zi41) C B r (Z;). Since the closure of M\ Map is compact, finitely many of steps
of iterations lead to the point &y where the maximum of |Ve,| is achieved in M\ Mzp.
That is, we choose a sequence of points, &1, &2, - , Zm = Zo. The number of m depends
on R and M. Repeating the three-ball inequality (4.1) at those ;, ¢ =1,2,3,--- ,m, we
arrive at

Al am—1 fm
IVerllLe® g 2oy < OV e 11 B 1 (01))- (4.38)
4

Taking (4.32) into consideration gives that

—CvVx(titg 42l
IVeslowmgen ze™ 7 IVeloeianten

> =2V Ve, || oo (i M) (4.39)

Recall that the annulus Az g(%) = {z € MIE < |z - =z
xg € M\Map, there exist some point &1 € M\Mag such that B%(il) C A%

, 31 (o)
Therefore, it follows from (4.39) that
IVexlliza(an an (o) 2 e~V Ten]| ooty (4.40)

Following the proof of Theorem 3 and using the estimates (4.40), we are able to obtain
the interior doubling inequality (4.31). O

5. Upper bounds of critical sets

In this section, we will prove the upper bounds for the interior critical sets of Dirichlet
eigenfunctions in real analytic manifolds. We first prove the upper bounds in the neigh-
borhood of the boundary dM. Then we show the upper bounds in the interior of the
manifold M. We will make use of doubling inequalities (1.7), (4.31), and Lemma 2. The
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main idea is similar to the proof of Theorem 2. For the complete of the presentation, we
provide the details.

For the upper bounds in the neighborhood of the boundary, we study the gradient of
Dirichlet eigenfunctions in (3.8) in an extended region. From the analyticity results in
[20] or [19], it is clear that U(z) = (gii ) g%, I gjjl) is real analytic if the manifold
(M, g) is analytic. To do the analytic continuation across the boundary, we get rid of
the large parameter A. We introduce the following lifting argument. Let

A~

Ula,t) = eV MU (). (5.1)
Since U (z) satisfies the system of equations (3.8), then U(z,t) satisfies the equation

N+ 820+ (B, V) +A-U=0 in M x (=00, —0),
(5.2)

U, =0, =0 %=

Y Oz

(2)U,  on M x (=00, —0o0).

We introduce the ball with as
Qr = {(z,t) e R""Y|z| < R, |t| < R}
and half-cube
Qf = {(z,t) e R""!|z| < R with z, >0, [t| < R}.
Choose any point p € OM, using Fermi geodesic coordinates and rescaling arguments,

we may study the function U (z,t) locally in the ball centered at origin with the flatten
boundary. Hence, U (z,t) satisfies the following equation locally

NU+ 320+ (B, VUO)+A-U=0 inQf,
(5.3)

Uy=---U,_1=0, gg" = k(z)U, on Qf N{z, =0}.

By the analyticity results in [20] or [19], we can extend U(z,t) to the region Q,, where
p > 0 depends only on M. Moreover, we have the following growth control estimates

10l 0,) < ClIUl = (ay: (5.4)

where C' depends only on M. Since M is a real analytic Riemannian manifold with
boundary, we may embed M C M; as a relatively compact subset, where M;j is an
open real analytic Riemannian manifold having the same dimension as M. Due to the
compactness of the manifold, the extended function U satisfies

NU + 32U+ (B, VU)+A-U=0 in M\px(—p, —p), (5.5)
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where /\//\lp = {x € Myl|dist{z, M} < p}. From the uniqueness of the analytic continu-
ation, we also have that

AU+ (B, VU)+A-U+AU =0 inM,. (5.6)
It follows from (5.4) and the definition of U that
Ul ®,) < €U o o) (5.7)

See details of the similar arguments in e.g. [15]. Tterating the doubling inequality (1.7)
in the half balls finite number of steps, we can show that

VU o

IUllL~m,) <e ®5)
< ecﬁHUHLm(Bg) (5.8)
By rescaling arguments, it follows that
Ul e B2,y < €YUl B, (5.9)

for any r < £ with By, C M\p and C depending only on M.

Next we need to extend U(x) locally as a holomorphic function in C™. Applying
elliptic estimates for U in (5.5) in a ball B,(p) x (—r,7) C ./\//\lp x (—p,p) with p € OM
gives that

DU (p,0)

| < OO (5.10)

|
where « is a multi-index taken with respect to x and C; > 1 depends on M. By trans-
lation, we may consider the point p as the origin. Recall the definition of U in (5.1). We
derive that

DeU(0)

| < OO o g 0)- (5.11)

We sum up a geometric series to extend U(x) to be a holomorphic function U(z) with
z € C™. Thus, we have

sup |U(2)] < C2eCV> sup |U(z)| (5.12)

|zI<sner |z|<r

with Cy > 1. By iteration of the doubling inequality (5.9) finitely many times and the
rescaling arguments, we derive that

sup |Vex(z)] < eCsVA sup |Vex(z)] (5.13)

|z]<2r lz|<r
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for 0 < r < po < §, where py and Cs depend on M and B,(0) C M.
Thanks to the doubling inequalities (5.13), we are ready to prove the upper bounds
of critical sets of Dirichlet eigenfunctions as the arguments in Theorem 2.

Proof of Theorem 4. We first prove the critical sets in a neighborhood of the boundary
OM. Let G(x) = |Vex(x)|>. We study the nodal sets of G(x), which are just critical sets
of ex(x). By rescaling and translation, we can argue on scales of order one. Let p € By 4
be the point where the maximum of [Ve,| in B; /4 is attained. For each fixed direction
we S set G,(z) = Gp+ 2w) in z € By C C. Denote N(w) = #{z € By2(0) C
C|Gy(z) = 0}. Thanks to the doubling property (5.13) and the Lemma 2, we derive that

f{r € By 2(p)|r — p is parallel to w and |[Vey(x)| =0}
< #{z € Biys C C[Gu(2) = 0}
= N(w)
<CV (5.14)

It follows from the integral geometry estimates that

H" '({z € By 2(p)| [Vea(z)| = 0}) < e(n) / N(w) dw
Snfl
< CVAdw
J

= CVA. (5.15)
Therefore, we arrive at
H" '({z € By 4| |[Ver(z)] = 0}) < CVA. (5.16)

Since OM is compact, we can choose finitely many balls centered at M so that those
balls cover Mz . From (5.16), we arrive at

H"'({z € M| [Vex(@)| = 0}) < CVX. (5.17)

Next we deal with the measure of nodal sets in M\/\//\l eo. We have obtained the

Lo
16

in the interior doubling inequality (4.31). We also extend U(z) locally as a holomorphic
function in C". Note that U(z) satisfies (3.3) in M\ Meo. We use the lifting argument
as (5.1) to get rid of A. Thus, we have

doubling inequality (4.31) in the interior of the manifold M. We may choose R <

DU+ 030+ (B, VU) +A-U=0 in M\Mu x (—00, —00).  (5.18)
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Applying elliptic estimates in a small ball B,.(p) x (—r,r), we have

A~

DU (p,0)

= oD (5.19)

where C5 > 1 depends only on M and D% is taken with respect to x. Let us consider
the point p as the origin as well. The definition of U further implies that

DU(0 ol —ia
200 < gttt A (5.20)

By summing up a geometric series, we can extend U(z) to be a holomorphic function
U(z) with z € C™ to have

sup |U(2)] < C1eCV> sup |U(z)] (5.21)

|z|<r

with C4 > 1. By finite steps of iterations of (4.31) and rescaling arguments, we further
derive that

sup |U(2)| < eV sup |U(2)] (5.22)

|z <2r BES

holds for 0 < r < & with pp depending on M. We make use of the Lemma 2 and the
inequality (5.22) to obtain the upper bounds as the previous arguments in the neighbor-
hood of the boundary. By rescaling and translation, we can argue on scales of order one.
Let p € By /4 be the point where the maximum of |Vey| in By /4 is arrived. Recall that
G(z) = |[Vea(x)|?. For each direction w € S"71, set Gy, (2) = G(p + 2w) in 2 € By C C.
Thanks to the doubling property (5.22) and the complex growth Lemma 2, we derive
that

i{z € By 2(p)|z — p is parallel to w and |Vey(z)| = 0}
< ﬁ{Z S 81/2 C C|Gw(2) = 0}
< CV (5.23)

From the integral geometry estimates, we have

" (o € Bua(o)] [Veala)| = 0) < cl) [ Nw)do

= CVA. (5.24)
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Thus, we deduce that
H" ' ({z € By 4| [Vea(z)| = 0}) < CVA. (5.25)

Covering the compact manifold M\//\/\l 20 with finite number of coordinate charts gives
that

H™ '({z € M\Mu | [Vex ()] = 0}) < OV, (5.26)

Together with the upper bounds in (5.17) and (5.26), we arrive at the conclusion in
Theorem 4. O

6. Proof of the Carleman estimates

This section is devoted to the quantitative Carleman estimates in Proposition 1.

Proof of Proposition 1. We introduce the polar geodesic coordinates (r,6) in the half
ball B;". Following the Einstein notation, we write Laplace-Beltrami operator as

r2A = 1292 4 r? (8r In Vb + n—_l)ar + %ai(\/gbijaj)7

where 9; = ae , bij(r,0) is a metric on the geodesic sphere S™~1, b%/ is the inverse of b;;,

b = det(b;;) and Gn = —"‘ One can check that, for  small enough,

|06 < C|b¥] in term of tensors,
|0rb] < C, (6.1)
cCl<h<,
where C' depends on M. We want to transform the half ball B into a half cylinder.
Let » = €. Then 0O, e '9;. Hence the function V(¢,61,---,0,_1) is supported in

(—o0, TO] St !, Notice that Tp is negative with large enough |Tp| since r is small.
Under this new coordinate, we can write

1 -
AN =82+ (n—2+0,InVb)d, + %ai(@waj). (6.2)

Furthermore, the condition (6.1) turns into
|0:b% | < Cet|b¥| in term of tensors,
|0:b] < Ce, (6.3)
cl'<bh<C.
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The boundary conditions in (3.15) in the new coordinates change into

‘/l(taela e a0n—270) = 07 e 7‘/n—1(t5917 e 7971—2’0) = Oa
v-Vgn1V, = e'h(t,0)V, if 6,_1 =0, (6.4)

where v is the unit outer normal on S7~' N {z|z,, = 0}. Let
V =e YW (6.5)
We introduce the conjugate operator,

Ls(W) = r2PY@ A (e PY@OW) 4 12 E(2)W
= e PPON(PPOW) 4 2 E(t, 0)W. (6.6)

By straightforward calculations, it follows from (6.2) that
La(W) = 2W + (28¢' + (n— 2) + 9, In V)W
+ (820" + 86" + (n — 2)8¢' + 0, n VO )W + LW + e*EW,  (6.7)
where

DWW = (Vb 9, W)

1
0,
Vb
is the Laplace-Beltrami operator on S™~!. We introduce the following L? norm

W2 = / WPV~ dedd,

(=00, To]xST™!

where df is measure on S"~!. We write the cylinder S x (—oo, Tp] as N = [0, 27] x

(2, 2] x -+ x [0, 2] x (=00, Tp]. Then 0S8}~ N {z|z,, = 0} x (—oo, Tp] is denoted as

ON = [0,27] x [, 5] x ---{0} x (=00, Tp].

To obtain the Carleman estimates in the proposition, we aim to find a lower estimate
for [|Lg(W)||s using some elementary algebra and integration by parts arguments. Note
that ¢ is close to —oo in the later calculations. By the triangle inequality, we easily have

1£s(W)ll > A— B,
where
A= ||0FW + 280 OW + B2¢*W + X EW + DWW |4 (6.8)

and
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B =|8¢"W + (n—2)B¢'W + B0, n Vo'W + (n — 2)8,W + 8, In Vb, W | 4. (6.9)

Later on, we can show that B can be controlled by .A. Thus, our main goal is to find a
lower bound for 4. Write

./42 =A; + A + ./43, (6.10)
where
Ay = ||0FW + (829" + 2 E)W + AgW |3, (6.11)
Az = 12890, W I3, (6.12)
Az = 2(2B¢' W, OFW + B2¢*W + X EW + NgW ). (6.13)

General speaking, we compute the Carleman estimates by writing A as symmetric and
antisymmetric parts. For these quantitative Carleman estimates, it saves more compu-
tations if we suppress the terms with less contribution on . Let us first compute the
contribution from Az. We decompose the inner product Az as follows

Az = K1 + Ko + K3,

where each integration K; is

Ky, =48 / ' OWOPW ¢ ~3Vbdtdo,
N
Ky =48 / @' OW (Vb 9, W)’ 3 dtdb,
N

K3 = 4/(5%’2 + B EYO,WW ¢’ ~2Vb dtdo.
N

For K, applying the integration by parts with respect to ¢ gives that

K, = 4ﬁ/¢“|atW|2¢’*3¢Bdt do — 26/¢’|8tW|28t In vVb¢' ~3Vbdtdd. (6.14)
N N

It follows from (6.3) that we have |9; In v/b| < Cet. Considering the definition of ¢, since
Ty close to —oo, the term |0 In v/b| is controlled by |¢”| = t% and ¢’ ~ 1. Thus, we have

K, > —CB/|¢”\|8tW|2\/5¢"3 dtdo. (6.15)
N
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To estimate Ko, we first integrate with respect to 0; with the consideration that W &
Cg°(B,),

Ko = —48 / @00 WHI ;W' ~3Vbdtdd + 48 / ¢ OW ;W Y =3\/b dtdf.
N ON

=J1 + Jo, (6.16)

where

Ji = —4p / ¢’ 00, WH ;W' Vb dtdd
N

and the boundary term

Jo =48 / ¢ AW WH =D =3/bdtdd.
ON

From the boundary condition on V', we obtain that

oW
oW, = 69;5 =0,forl1<j<n-—-1,1<k<n-2 forf, =0,

v-Vegn1W, = he'W, for 6, =0. (6.17)

Thus, the boundary term in (6.16) can be converted into

Jy =4 / &' O, W, Wyhetd' Vb dtdo
ON
:—Qﬂ/|Wn|28t(het¢’_2\/l_J) dtdo, (6.18)
ON

where we have used the integration by parts in the last identity with respect to ¢. Then

| Jo| < B(||h|lcr +1)/|Wn\26t¢>"3\/5dtd9. (6.19)
ON

To deal with the contribution from the boundary, the following trace lemma is estab-
lished in [22],

[ulf§n—2 < Crllulgy— + 77 IVullgn) (6.20)

for any 7 > 1 and for u € C*(S7™"). The inequality (6.20) is obtained by the trace
lemma in R™*! and rescaling arguments. From the trace inequality (6.20), we have
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To

W, |2et¢' Vb dtdo < Cr W, |2et ¢’ ~3Vb dtdo
|
ON —00 5171
Ty
+ Ot / / VoW, |2t ¢’ —3Vbdtds. (6.21)
— 0o 5-7—71
Thus, we choose
T=B=2CQA+VI[E|c + [[hllcr) (6.22)
to have
|| < 63/|Wn|2et¢”3\/l;dtd0+ﬂ/|V9Wn|26t¢/’3\/5dtd0. (6.23)
N N

Integrating by parts with respect to ¢ for J; gives that

Jy=—48 / "W ;W ¢ —3Vbdtdd + 213 / ¢' 9, In Vb, Wb 9;W ¢' ~3v/b dtdf
N N
+ 28 / @' 00" ;W ;W' ~3V/bdtds. (6.24)
N

Denote that
VoW |* = b70,W0;W.

From the fact that —¢' is nonnegative, 3 is large and the assumption for b/, we arrive
at

Jy > 3,6/|¢”|\V9W|2¢"3\/5dtd6. (6.25)
N

Combining the estimates for J; and Jo and taking into account that |¢”] > e’ for |Tp|
large enough yield that

Ky > 26/\¢”||V9W|2¢’_3\/l_)dtd9—063/|¢”||W|2¢’_3\/5dtd0. (6.26)
N N

We carry out the similar computations for Ks,

Kg = — 263 / |W|28t In \/Eﬂdtde
N
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_ / (49" — 40" + 240, In VD) B2 E|W 26/ ~3V/b dtdd

N

-2 / ¢ 2O, E|W|? ¢’ —3Vbdtde. (6.27)
N

Since we have assumed that

B> C+VIEler + [[hller),

from the fact that |Tp| is large enough, (6.3) and ¢’ = 1, we obtain that

K3 > —-Cp3 / [W|2et¢’ ~3V/bdtdo. (6.28)
N

Combining the estimates (6.15) for K7, (6.26) for K5 and (6.28) for K3 yields that

Az > 25/ 0" |V oW |2¢' Vb dtdd — Cﬁ3/et|W|2¢’_3\/5dtd9
N

N

- CpB / | |0, W |26’ Vb dtde. (6.29)
N

We need to obtain a stronger L? norm of W. To this end, we consider A;. Choose
some small positive constant § which is to be determined later. Since |¢”| < 1 and 8 > 1,
it follows that

A > ﬁftl, (6.30)
B
where A; is given by
Ay = 19”12 (FW + (8202 + X EYW + AgW)| 2. (6.31)
Furthermore, we decompose A; as
Ay =K1+ Ko + K3 (6.32)
where
Ko = [l6"% (7W + 2o W13
and

’CQ _ |||¢//|%(ﬁ2¢/2 +€2tE)W||?¢
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and
Ks =2(|¢"[(0FW + DgW), (B2¢'2 + 2 E)W),. (6.33)

We further split K3 into K3 = Hy + Ho, where

Hy = Q/afw(ﬁ%/? + 2 EYW|¢"|¢' ~3Vbdtdd
N

and

H, = 2/ 0" | AW (8202 + 2 BYW ¢ ~3V/b dtds.
N

Integration by parts with respect to ¢ gives that

Hy =/¢”(52¢’2 + e E)|0,W|*¢' 3Vbdtdo
N

+2 / 0 (820’ + e* E)¢" ¢/ —3Vb|Wa,W dtds. (6.34)
N

By Cauchy-Schwartz inequality and the assumption of 3, we obtain that

H, > -Cp? / 10" (|0, W 2 + W [2)¢' Vb dtdo. (6.35)
N

We perform the integration by part arguments with respect to 9; gives that
H, :2/¢”|V9W|2(52¢’2 + e E)¢ 3Vbdtdo
N
+2 / ¢, Wb 9, EW ¢ ~3V/bdtdd
N
-2 / ¢"e! (B2¢'? + * B)hW2¢' ~3Vbdtdd, (6.36)
N

where we have used the boundary conditions (6.17). From Cauchy-Schwartz inequality
and the assumption of 3, it holds that

0; EbIO,WW | < CB2(|VeW |* + [W|?).

Therefore, we further obtain that
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Hy > — 062/|¢”|(|V9W|2 + [W|?)¢' Vb dtdo
N
— Clfhjen B / 6|2 W2 ~3/b dtdd. (6.37)
ON

With the aid of the trace inequality (6.20) by choosing 7 = § and the assumption of 3,
we derive that

||h||clﬁ2 / |¢”|62tW3¢/_3\/5dtd9 < Cﬁ4/|¢//|62twg¢/—3\/gdtd0
ON ¢
+Cp? / |6 €|V oW, |6’ —3Vbdtdd. (6.38)
N

Thus, we learn from (6.33), (6.35), (6.37) and (6.38) that

o 2 ~C8° [ 10710 + VoW + W) ~*Vhdido
N
- cpt / |¢" e |W |2’ —3Vb dtdb. (6.39)
N

Since ¢’ is close to 1 and e?! is sufficiently small as |Tp| is large enough, it follows that

Ky > Cp* / 1" ||W 26" —3V/b dtde. (6.40)
N

Note that I > 0. It follows from (6.30), (6.32), (6.39) and (6.40) that

A z—Cﬁ5/|¢”|<\atW|2+|v9W\2>¢'*3¢6dtd0
N
+CB3s / " | W [2¢' ~3Vbdtds. (6.41)
N

Combining the estimates from (6.10), (6.12), (6.29) and (6.41), we derive that

A% > 0535/|¢"||W|2¢’*3\/Edtda+462/|¢'||atW|2¢’*3\/Bdtd9
N N

+2,6/|¢”||V9W|2¢’_3\/5dtd9—063/et\W|2¢’_3\/l_)dtd9
N

N
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~ €9 [ 161 + [VaW )V eds
N

~ s [ 16" 0w e Vb s (6.42)
N

Since § can be chosen to be small and e’ is small enough compared with |¢”|, it follows
that

A% > Cﬂ?’/|¢”\|W|2¢’_3\/5dtd9+052/|¢’||8tW\2¢’_3\/5dtd6
N N
+ 0B / 16|V W P8 VB dtdo. (6.43)
N

It is easy to check that we can absorb B to A if |Tp| is large enough and § is chosen to
be large. Thus, we obtain that

1£aW)I2 = CB° [ 167IWPe 5 Videds + CB [ 16000~V dtas
N

N

+CB / 10" ||V oW |[2¢’ ~3Vb dtde. (6.44)
N

Since |¢”| is much smaller compared with |¢'|, we have that

1L (W2 > CB? / 6 [W[26 Vb dtdo + CB / 167110, 26 /b dtdo
N

+CB / 10" || VoW [2¢' —3V/b dtde, (6.45)
N
where C' can be chosen arbitrarily smaller than C. Recall that the conjugate operator
V = e PYW. It leads to

2P (AV + EV)|2 > C8%l1¢" |2 V|3 + CBl||¢"| 2?10,V |12
— CR||¢" 2P0V 2 + CB16" |26 VoV, (6.46)

Since C' is chosen to be smaller than C , we derive that

[e2ePY (AV + EV)|2 > CB%l¢" |2 VI3 + CB||¢" 2?0,V ||12
+CB¢" ||V V3. (6.47)
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Note that the volume element in polar coordinates is r"~1v/bdrdf and ¢’ ~ 1. It follows
from (6.47) that

|r2ePY(AV + EV)r—2 ||]23T+0 > CB3||(logr)~tef¥Vr—2 ”]23%

+ CB|(logr) LY |VV[r—% |2, . (6.48)

B,

By replacing 8 by 3+ 5, which only changes the lower bound of 3 by a constant in the
Carleman estimates, we arrive at the desired estimates (3.11).

Next we prove stronger Carleman estimates with some strong assumption on V.
Suppose that suppV C {x € B/ |r(z) > p}. Let Ty = In p. The application of Cauchy-
Schwarz inequality gives that

/8t|W|Qe_t\/I;dtd9 < 2(/|atW|Qe—t\/Edtd9)%(/|W|Qe—f\/5dtd9)%. (6.49)
N N N

For the left hand side of (6.49), applying the integration by parts shows that

/8t|W|2e_t\/I;dtd9:/|W|26_t\/5dtd9—/\W|Qe_t6t(1n Vo)Vbdtdd. (6.50)
N N N

Since |9, Inv/b| < Cet for |Ty| large enough, we obtain that

/6t|W|Qe_t\/5dtd9 > c/ (W 2e~ Vb dtdb. (6.51)
N N

Taking (6.49) and (6.51) into consideration gives that

e‘T"/\atWF\/Edth > /|8tW\26_t\/5dtd9
N N

>C / W 2e~t Vb dtdo. (6.52)
N

Notice that e~7 = p=1. From (6.43), we deduce that

A% > C,BQp/ (W 2e~t¢' —3Vb dtdb. (6.53)

N

Thus, together with (6.43) and (6.53), we arrive at

A% > 063/|¢”|\W|2¢’_3\/l_)dtd9+062/|¢’||8tW|2¢’_3\/5dtd9
N N
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—|—Cﬁ/|¢”||V9W|2¢>’_3\/5dtd9+Cﬁ2p/|W|Qe_t¢>’_3\/5dtd0. (6.54)
N N

Therefore, the Carleman estimates (3.13) follow from (6.54) as the deduction of (3.11)
in the previous arguments. O
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