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{
−�geλ(x) = λeλ(x), x ∈ M,

eλ(x) = 0, x ∈ ∂M,
(1.1)

where (M, g) is a smooth and compact n-dimensional Riemannian manifold with bound-
ary (n ≥ 2). With the sharp doubling inequalities of the gradients on the boundary and 
in the interior of the manifold, we are able to obtain the sharp upper bounds of critical 
sets of Dirichlet eigenfunctions by standard techniques. Doubling inequalities are in-
equalities with norms in a ball controlling the norms in a double ball. They are effective 
tools to control the local growth of the functions. Thus, these inequalities are important 
in the quantitative characterization of the strong unique continuation property and in 
the study of the measure of zero-level sets of given functions.

Let us briefly review the relations of doubling inequalities and the measure of nodal 
sets (zero-level sets) of eigenfunctions. The doubling inequalities have played important 
roles in the measure of nodal sets of eigenfunctions

−�gφλ = λφλ (1.2)

on compact manifolds (M, g) without boundary. The celebrated problem about nodal 
sets centers around the famous Yau’s conjecture for smooth manifolds. Yau [25] con-
jectured that the upper and lower bound of nodal sets of eigenfunctions in (1.2) are 
controlled by

c
√

λ ≤ Hn−1({x ∈ M|φλ(x) = 0}) ≤ C
√

λ (1.3)

where C, c depend only on the manifold M. The conjecture was shown to be true for 
real analytic manifolds by Donnelly-Fefferman in [6], [7]. Lin [14] also proved the upper 
bound for the analytic case using a different approach. The following doubling inequality

‖φλ‖L∞(B2r(x)) ≤ eC
√

λ‖φλ‖L∞(Br(x)) (1.4)

for any Br(x) ⊂ M is essential in the derivations of bounds (1.3). Note that (1.4) was 
obtained in the smooth manifold. For the conjecture (1.3) on the measure of nodal sets on 
smooth manifolds, there are important breakthrough made by Logunov and Malinnikova 
[18], [16] and [17] in recent years.

It is well known that eigenfunctions eλ change signs as eigenvalues λ increase. The 
nodal sets of eigenfunctions may intersect other interior nodal sets or may intersect the 
boundary. Critical sets of eigenfunctions are sets where the gradients of eigenfunctions 
∇eλ vanish. The critical sets appear at the intersections of nodal sets or inside of nodal 
domains. We aim to study the measure of critical sets on the boundary {x ∈ ∂M||∇eλ| =
0}, where ∇eλ is the full derivative in M. Since eλ = 0 on boundary, those critical sets 
on the boundary can be regarded as singular sets, that is, {x ∈ ∂M|eλ = |∇eλ| =
0}. By Hopf lemma, we can check that these critical sets are the intersection of nodal 
sets in the interior manifold with the boundary. More intuitively, these critical sets are 
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where interior nodal sets touch the boundary. We can also consider these sets as the 
intersection of different nodal sets if we can extend the Dirichlet eigenfunction across 
the boundary. Since the boundary ∂M is (n − 1) dimensional, the boundary critical sets 
{x ∈ ∂M||∇eλ| = 0} are with dimension no more than (n − 2). To obtain the measure 
of boundary critical sets, we study the measure of zero sets of the normal derivatives 
∂eλ

∂ν on the boundary, where ν is a unit outer normal on the boundary. Based on the 
relations of doubling inequalities and zero-level sets, in order to obtain the measure of 
boundary critical sets, we need to obtain the doubling inequality for normal derivatives 
on the boundary for smooth manifolds.

Theorem 1. Let eλ be the Dirichlet eigenfunctions in (1.1). There exist positive constants 
C and r0 depending only on the smooth manifold M such that

‖∂eλ

∂ν
‖L∞(B2r(x)) ≤ eC

√
λ‖∂eλ

∂ν
‖L∞(Br(x)) (1.5)

for any 0 < r < r0 and any B2r(x) ⊂ ∂M.

Together with zeros counting results for complex analytic functions, we can show the 
following sharp upper bounds for the boundary critical sets.

Theorem 2. Let M be a real analytic manifold with boundary and eλ be the Dirichlet 
eigenfunctions in (1.1). There exists a positive constant C depending on M such that

Hn−2({x ∈ ∂M| |∇eλ| = 0}) ≤ C
√

λ. (1.6)

For planar analytic domains, such upper bounds for boundary critical sets of Dirich-
let eigenfunctions was derived by Toth and Zelditch [23] among other interesting results 
using a different method. Theorem 2 improves such upper bounds to general dimensions 
in the analytic manifold. See also [24] for their related interesting work on nodal inter-
sections with a certain analytic hypersurface in the analytic manifold without boundary.

Next we focus on the study of interior critical sets and interior doubling inequalities. 
For elliptic equations without zero order term, the critical sets of the solutions are at 
most (n −2)-dimensional. Exponential upper bounds have been established for Hausdorff 
measure of critical sets of solutions in smooth manifolds by Naber and Valtorta [21], see 
also other work on the study of critical sets or singular sets of elliptic equations, [5], 
[8], [9], [11], [12], just name a few. For the Laplace eigenfunctions, the dimension of 
critical sets of eigenfunction can be varied. It is shown by Jackobson and Nadirashvili 
[13] that there exists a Riemannian metric on two dimensional torus T 2 such that the 
number of critical points is uniformly bounded for some sequence of eigenfunctions, which 
disproves the Yau’s conjecture [25] on the increase of the number of critical points. 
Recently, Buhovsky, Logunov and Sodin [4] constructed a Riemannian metric on the 
two dimensional torus T 2, such that for infinitely many eigenvalues, each corresponding 
eigenfunction has infinitely many isolated critical points.
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There exist examples of Dirichlet eigenfunctions which have (n −1)-dimensional critical 
sets. Let (N , g) be a (n − 1)-dimensional compact manifold and M = [0, 1] × N . The 
compact manifold M is equipped with the product metric. Then the boundary M is given 
by ∂M = {0, 1} × N . We can check that ek(x) = sin(2πkx) are Dirichlet eigenfunctions 
with eigenvalues λ = 4π2k2 on M. We can also see that the critical set is (n − 1)-
dimensional. Furthermore, c

√
λ ≤ Hn−1({x ∈ M||∇ek| = 0}) ≤ C

√
λ, where c, C

depend on the manifold M. There are also some surfaces of revolution with (n − 1)-
dimensional critical sets, see also [26]. Since the critical sets of Dirichlet eigenfunction 
are at most (n −1)-dimensional, we can bound the Hausdorff measure of critical sets as we 
do for zero-level sets. We first need to obtain the doubling inequality for the gradients of 
Dirichlet eigenfunctions near the boundary. For Dirichlet eigenfunctions, even if we can 
do an odd extension to have a double manifold, we can not directly show the doubling 
inequalities for ∇eλ, because the metric for the double manifold is only Lipschitz. To 
avoid the use of the double manifold, we develop the quantitative Carleman estimates 
in the half balls, and then show new propagation arguments to obtain the doubling 
inequalities.

Theorem 3. Let eλ be the Dirichlet eigenfunction in (1.1). There exist positive constants 
C and r0 depending only on the smooth manifold M such that

‖∇eλ‖L∞(B+
2r(x0)) ≤ eC

√
λ‖∇eλ‖L∞(B+

r (x0)) (1.7)

for any 0 < r < r0 and any B+
2r(x0) ⊂ M and x0 ∈ ∂M.

Thanks to the doubling inequality in half balls (1.7), and the interior doubling in-
equality in Lemma 5, and zeros counting results, the upper bounds of interior critical 
sets are derived.

Theorem 4. Let M be a real analytic manifold with boundary and eλ be the Dirichlet 
eigenfunctions in (1.1). There exists a positive constant C depending on M such that

Hn−1({x ∈ M||∇eλ| = 0}) ≤ C
√

λ. (1.8)

For real analytic manifolds without boundary, the same strategy was used in [2] to 
obtain the upper bounds of critical sets of eigenfunctions in (1.2). In our proof of Theo-
rem 4, we need to overcome the difficulties on the presence of the boundary. Specifically, 
we have to deal with the critical sets in the neighborhood of the boundary and in the in-
terior of the manifold. Furthermore, new challenges arise when dealing with the doubling 
inequalities of the gradients of Dirichlet eigenfunctions.

The following remark provides new insights for the techniques used in the proof of 
Theorem 3.
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Remark 1. The method in the proof of Theorem 3 provides new ways to prove the 
doubling inequality for smooth manifolds if the double manifold is not available. It has 
interesting applications to the study of nodal sets or other quantitative properties of 
eigenfunctions of general eigenvalue problems. For example, the Steklov problem is often 
considered in this more general form with physical background{

�geλ = 0 in M,

∂eλ

∂ν = λ�(x)eλ on ∂M.
(1.9)

The weight function �(x) represents the mass density along the boundary ∂M. Another 
example is a general type of Robin eigenvalue problem with weight functions on the 
boundary {

−�geλ = λeλ in M,

∂eλ

∂ν = αV (x)eλ on ∂M.
(1.10)

The double manifold does not seem to be available because of the presence the function 
�(x) or V (x). The technique in Theorem 3 provides the way to prove the doubling 
inequality for the half balls centered at the boundary for eλ in (1.9) or (1.10). We can 
further prove the upper bounds of interior nodal sets of eλ in the manifold. See also 
other work e.g. [3], [27], [29], [30], [31], [15] on the upper bounds of interior nodal sets 
or boundary nodal sets for eigenfunctions as (1.9) or (1.10).

The outline of the paper is as follows. Section 2 is devoted to the proof of Theorem 1
and Theorem 2. In section 3, we first derive the systems of equations which gradients of 
eigenfunctions ∇eλ satisfy. Then we state the quantitative Carleman estimates on the 
half balls. As applications of Carleman estimates, we prove three half-ball inequalities 
and Theorem 3 in section 4. New propagation arguments are applied to bypass the use of 
the double manifold. In section 5, we derive the proof of Theorem 4. The last section is for 
the proof of the quantitative Carleman estimates in half balls. The letter c, C, Ci denote 
generic positive constants and do not depend on λ. They may vary in different lines and 
sections. In the paper, since we study the asymptotic properties for eigenfunctions, the 
eigenvalue λ is assumed to be sufficiently large.

Acknowledgment. The author appreciates Professor Fang-hua Lin for helpful discussions 
on the topic in the paper. The author also thanks Professor Steve Zelditch for bringing 
[24] to our attentions and for information on the possible extension of their results to 
critical sets.

2. Boundary critical sets

In this section, we first prove the sharp doubling inequalities for the normal deriva-
tives, then show the upper bounds of the measure of critical sets on the boundary for 
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Dirichlet eigenfunctions. In the local coordinate charts, using the Einstein notations (the 
summation notation is understood), the equation is written as

−�geλ = −g− 1
2 ∂i(g

1
2 gij ∂eλ

∂xj
) = λeλ, (2.1)

where gij denotes the inverse of the metric gij and g = det(gij). We will write �g as �
if the context is understood. We need to pay special attention to the equation around 
the boundary ∂M. For any point p ∈ ∂M, the Fermi exponential map at p which 
gives the Fermi coordinate systems, is defined on a half ball of Rn

+ ≈ Tp(∂M) centered 
at origin. Suppose (x1, · · · , xn−1) is the geodesic normal coordinate of ∂M at p. Let 
xn = dist(x, ∂M). Note that dist(x, ∂M) is smooth in a small open neighborhood 
of p in M if M is smooth. We can locally identify ∂M as xn = 0. By Fermi geodesic 
coordinates,

−g− 1
2 ∂i(g

1
2 gij ∂eλ

∂xj
) = λeλ (2.2)

with gnn = 1, gin = 0 and gij(x′, xn) �= 0 for 1 ≤ i, j ≤ n − 1.
We will take advantage of the new quantitative propagation smallness results for the 

second order elliptic equations in the half ball shown in [31], that is, quantitative two 
half-ball and one lower dimensional ball inequality. Let us present the results in a general 
setting. Let u be the solutions of

−aijDiju + bi(x)Diu + c(x)u = 0 in B+
1/2, (2.3)

where aij is C1, b(y) and c(y) satisfy⎧⎨⎩ ‖b‖W 1,∞(B+
1/2) ≤ C(τ1 + 1),

‖c‖W 1,∞(B+
1/2) ≤ C(τ2

1 + τ2),
(2.4)

and τ1 and τ2 are positive constants with possible large values. The quantitative two 
half-ball and one lower dimensional ball inequality is stated as follows.

Lemma 1. Let u ∈ C∞
0 (B+

1/2) be a solution of (2.3). Denote the lower dimensional ball

B1/3 = {(x′, 0) ∈ Rn|x′ ∈ Rn−1, |x′| <
1
3}.

Assume that

‖u‖H1(B1/3) + ‖∂u

∂ν
‖L2(B1/3) ≤ ε << 1 (2.5)

and ‖u‖L2(B+ ) ≤ 1. There exist positive constants C and β such that

1/2
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‖u‖L2( 1
256B

+
1 ) ≤ eC(τ1+√

τ2)εβ . (2.6)

More precisely, we can show that there exists 0 < κ < 1 such that

‖u‖L2( 1
256B

+
1 ) ≤ eC(τ1+√

τ2)‖u‖κ
L2(B+

1/2)
(
‖u‖H1(B1/3) + ‖∂u

∂ν
‖L2(B1/3)

)1−κ
. (2.7)

These qualitative results were established in [14] and [1]. We obtained the quantitative 
results with the consideration of the quantitative behavior of τ1 and τ2 by some global 
Carleman estimates. The estimates (2.7) have already shown their important applications 
on the measure of boundary nodal sets of Neumann eigenfunctions in [31].

For the Dirichlet eigenfunctions, the following sharp doubling inequalities hold

‖eλ‖L2(B+
2r(x)) ≤ eC

√
λ‖eλ‖L2(B+

r (x)) (2.8)

in half balls for any 0 < r ≤ r0, where r0 depend only on M and x ∈ ∂M. The estimate 
(2.8) was actually established in [6], even if it was not stated for the half balls, because 
the doubling inequality in balls in the double manifold was sufficient for their results. 
Note that the sharp doubling inequalities (2.8) can also be proved by the technique 
developed in section 4 without using the technique of the double manifold.

Together with Lemma 1 and doubling inequalities (2.8) in half balls, we can read-
ily derive the doubling inequality for the gradients of Dirichlet eigenfunctions on the 
boundary of the manifold.

Proof of Theorem 1. Because of the Fermi coordinates, we consider the Dirichlet eigen-
functions eλ in (2.2) near the boundary. We may argue on scale of order one and normalize 
eλ as

‖eλ‖L2(B+
1/2) = 1. (2.9)

Note that eλ = ∇teλ = 0 on the boundary {xn = 0}, where ∇t is the derivative in 
the tangential direction. We can write the equation (2.2) in the form of (2.3). In term 
of the assumptions (2.4), we can choose τ1 as some fixed constant depending on M and 
τ2 = λ. Hence the quantitative three-ball inequality on the half balls (2.7) holds. We 
may normalize it as

‖eλ‖L2(B+
1/512) ≤ eC

√
λ‖eλ‖κ

L2(B+
1/4)‖

∂eλ

∂xn
‖1−κ

L2(B1/6). (2.10)

By finitely many iterations of the doubling inequality in the half balls (2.8) and (2.9), 
we get

‖ ∂eλ

∂xn
‖L2(B1/6) ≥ e−C

√
λ. (2.11)
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Let η be a cut-off function such that η(r) = 1 for |r| ≤ 1
4 and vanishes for |r| ≥ 1

3 . By 
the Hardy trace inequality and elliptic estimates, it follows that

‖ ∂eλ

∂xn
‖L2(B1/4) ≤ ‖η

∂eλ

∂xn
‖L2(B1/4) ≤ ‖∇(η ∂eλ

∂xn
)‖L2(Rn

+)

≤ C‖∇2eλ‖L2(B+
1/3) + C‖ ∂eλ

∂xn
‖L2(B+

1/3)

≤ Cλ‖eλ‖L2(B+
1/2)

≤ Cλ. (2.12)

Combining the established estimates (2.11) and (2.12), we have

‖ ∂eλ

∂xn
‖L2(B1/4) ≤ eC

√
λ‖ ∂eλ

∂xn
‖L2(B1/6). (2.13)

Using the similar idea, we can show the boundary doubling inequality in L∞ norm, 
which we will use for the measure of nodal sets. From rescaling arguments and elliptic 
estimates, we have

‖ ∂eλ

∂xn
‖L∞(B1/5) ≤ Cλ

n+2
4 ‖eλ‖L2(B+

1/2)

≤ Cλ
n+2

4 .

Applying (2.11) yields the doubling inequality in L∞ norm,

‖ ∂eλ

∂xn
‖L∞(B1/5) ≤ eC

√
λ‖ ∂eλ

∂xn
‖L∞(B1/6). (2.14)

By rescaling and iteration, we arrive at

‖ ∂eλ

∂xn
‖L∞(B2r(x0)) ≤ eC

√
λ‖ ∂eλ

∂xn
‖L∞(Br(x0)) (2.15)

for any x0 ∈ ∂M and B2r(x0) ⊂ ∂M, and r < r0 for some r0 depending only on ∂M. 
This completes the proof of Theorem 1. �

To measure the number of zeros, we need a lemma concerning the growth of a complex 
analytic function. See e.g. Lemma 2.3.2 in [10].

Lemma 2. Suppose f : B1(0) ⊂ C → C is an analytic function satisfying

f(0) = 1 and sup
B1(0)

|f | ≤ 2N̂

for some positive constant N̂ . Then for any r ∈ (0, 1), there holds
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�{z ∈ Br(0) : f(z) = 0} ≤ cN̂

where c depends on r. Especially, for r = 1
2 , there holds

�{z ∈ B1/2(0) : f(z) = 0} ≤ N̂ .

With the doubling inequality (1.5) and Lemma 2 on hand, it is kind of standard to 
provide the proof of upper bounds for the boundary critical sets of Dirichlet eigenfunc-
tions. See pioneer work on the measure of nodal sets by [6], [14] and other related work 
using this idea, e.g. [30], [31], [15].

Proof of Theorem 2. To get the hypoelliptic estimates for Dirichlet eigenfunctions on 
the boundary, we perform a standard lifting argument. Let

w(x, t) = e
√

λteλ(x). (2.16)

Then w(x, t) satisfies the following equation{
�w + ∂2

t w = 0 in M × (−∞, ∞),

w = 0 on ∂M × (−∞, ∞).
(2.17)

By straightening the boundary ∂M locally, rescaling and translation. we may assume 
that (p, 0, t) ∈

(
∂B+

1/16 ∩ {xn = 0}
)

× (− 1
16 , 1

16 ) with p ∈ Rn−1. From elliptic estimates 
in Lemma 2.3 in [20], we obtain that

|∇
ᾱw(p, 0, 0)

α!(αn + 1) | ≤ CĈk+1‖w‖L∞
(
B+

1/8×(− 1
8 , 1

8 )
), (2.18)

where ᾱ = (α1, · · · , αn−1, αn + 1, 0) and |α| = |(α1, · · · , αn−1, αn)| = k, and C, Ĉ > 1
depends on M. By the definition of w and (2.11), we have that

|
∇α ∂eλ

∂xn
(p, 0)

α! | ≤ C(αn + 1)Ĉk‖w‖L∞
(
B+

1/8×(− 1
8 , 1

8 )
)

≤ CĈkeC
√

λ‖eλ‖L∞(B+
1/8)

≤ CĈkeC
√

λ‖ ∂eλ

∂xn
‖L∞(B1/4). (2.19)

Then ∂eλ

∂xn
(p, 0) is real analytic for any (p, 0) ∈ ∂B+

1/16 ∩ {xn = 0}. We may consider 
p as the origin in Rn−1. By summing up a geometric series, we derive a holomorphic 
extension of ∂eλ

∂xn
with

sup
|z|≤ 1

| ∂eλ

∂xn
(z)| ≤ eC

√
λ‖ ∂eλ

∂xn
‖L∞(B1/4), (2.20)
2nĈ
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where 1
2Ĉ

< 1
8 and z ∈ Cn−1. Note that Br is denoted as the ball in Rn−1 with radius r. 

Taking the boundary doubling inequality (2.13) and (2.20) into consideration, by finitely 
many steps of iterations, we conclude that

sup
|z|≤ 1

2nĈ

| ∂eλ

∂xn
(z)| ≤ eC

√
λ sup

x∈B 1
4nĈ

| ∂eλ

∂xn
(x)|. (2.21)

By rescaling arguments, we further derive that

sup
|z|≤2r

| ∂eλ

∂xn
(z)| ≤ eC

√
λ sup

x∈Br

| ∂eλ

∂xn
(x)|, (2.22)

where 0 < r < r̂0 and r̂0, C depend on M.
For ease of notations, let v = ∂eλ

∂xn
. Thanks to the doubling inequality (2.22) and the 

growth control lemma for zeros, i.e. Lemma 2, we can give the proof of Theorem 2. We 
may also argue on scales of one as well. Let p ∈ B1/4 ⊂ Rn−1 be the point where the 
supremum of |v| is achieved. After rescaling, we can assume that |v(p)| = 1. For each 
direction ω ∈ Sn−2, we consider the function

vω(z) = v(p + zω), z ∈ B1(0) ⊂ C.

Denote N(ω) = �{z ∈ B1/2(0) ⊂ C|vω(z) = 0}. With aid of the doubling inequality 
(2.22) and Lemma 2, we can show that

�{x ∈ B1/2(p) ⊂ Rn−1|x − p is parallel to ω and v(x) = 0}
≤ �{z ∈ B1/2(0) ⊂ C|vω(z) = 0}
= N(ω)

≤ C
√

λ. (2.23)

By the integral geometry estimates, we readily deduce that

Hn−2({x ∈ B1/2(p)| ∂eλ

∂xn
(x) = 0}) ≤

∫
Sn−2

N(ω) dω

≤
∫

Sn−2

C
√

λ dω

≤ C
√

λ. (2.24)

Thus, we obtain the upper bound of critical sets

Hn−2({x ∈ B1/4(0)| |∇eλ(x)| = 0}) ≤ C
√

λ. (2.25)
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By rescaling, it also implies that

Hn−2({Br0(p) ⊂ ∂M| |∇eλ(x)| = 0}) ≤ C
√

λ (2.26)

for some r0 depending only on M and for any p ∈ ∂M. Since the boundary ∂M is 
compact, by finite number of coverings, we complete the proof of the theorem. �
3. Quantitative Carleman estimates

In this section, we first derive the systems of elliptic equations for the derivatives of 
Dirichlet eigenfunctions. Then we will establish the quantitative Carleman estimates for 
the elliptic systems. To study the interior critical sets, we take derivative ∂k with respect 
to xk for each k = 1, · · · n in each coordinate chart. Thus, we have

− ∂kg− 1
2 ∂i(g

1
2 gij ∂eλ

∂xj
) − g− 1

2 ∂i(∂k(g 1
2 gij)∂eλ

∂xj
) − g− 1

2 ∂i((g
1
2 gij)∂k

∂eλ

∂xj
) = λ∂keλ.

(3.1)

Let U = 〈U1, U2 · · · , Un〉, where each Uk = ∂eλ

∂xk
for k = 1, · · · , n. We rearrange (3.1) as 

follows

�gUk + 〈Bk, ∇U〉 + Ak · U + λUk = 0 (3.2)

where Ak is a vector function and Bk is a matrix function depending only on the metric 
g and its derivatives. Hence, we have a system of equation for U ,

�gU + 〈B, ∇U〉 + A · U + λU = 0, (3.3)

where B a matrix consisting of Bk and A is a matrix consisting of Ak.
We also need to derive the boundary conditions for elliptic systems of the derivatives of 

Dirichlet eigenfunctions. From the Dirichlet boundary conditions, in the local coordinate, 
we derive that

∂eλ

∂x1
= · · · = ∂eλ

∂xn−1
= 0 on xn = 0. (3.4)

Thus, we know U1 = · · · = Un−1 = 0 on xn = 0. We also need to deduce another 
boundary condition for Un = ∂eλ

∂xn
. We write the equation (2.2) in local Fermi coordinates 

as

−g− 1
2 ∂i(g

1
2 gij)∂eλ

∂xj
− gij ∂2eλ

∂xi∂xj
= λeλ. (3.5)

Since the equation is smooth up to the boundary, from the boundary conditions (3.4)
and properties of Fermi coordinates, we obtain that
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−g− 1
2

∂

∂xn
(g 1

2 gnn) ∂eλ

∂xn
− gnn ∂2eλ

∂x2
n

= λeλ on xn = 0. (3.6)

By the fact that eλ = 0 on xn = 0, we show that

∂Un

∂xn
= −∂ ln g

1
2

∂xn
Un. (3.7)

Thus, to study the doubling inequalities and interior critical sets of Dirichlet eigenfunc-
tions, it is reduced to investigate the elliptic systems with boundary conditions as follows{

�gU + 〈B, ∇U〉 + A · U + λU = 0, in B+
1 ,

U1 = · · · Un−1 = 0, ∂Un

∂xn
= k(x)Un on ∂B+

1 ∩ {x|xn = 0},
(3.8)

where A(x), B(x) are matrix functions and k(x) = −∂ ln g
1
2

∂xn
is a scalar function which 

all depend on the metric g and its derivatives.
The rest of section is devoted to the statement of the quantitative Carleman estimates 

for elliptic systems in half balls with proper boundary conditions. The quantitative Car-
leman estimates are important tools for the study of three-ball inequalities and doubling 
inequalities in the next section. Let r = r(y) be the Riemannian distance from the origin 
to y, which is always less than the injectivity radius. Carleman estimates are weighted 
integral inequalities with some weight function exp{βψ(x)}. We construct the weight 
function ψ as follows. Let ψ(y) = −φ(ln r(x)), where φ(t) = t + ln t2 for (−∞, T0] and 
T0 is negative with |T0| is sufficiently large enough. It is easy to see that the function 
φ(t) satisfies the following properties

1 + 2
T0

≤ φ′(t) ≤ 1, (3.9)

lim
t→−∞

−φ′′(t)
et

= +∞. (3.10)

We are able to establish the following Carleman estimates. Note that E(x) and h(x)
below may have large C1 norm. The notation ‖ · ‖B+

R
denotes the L2 norm in the half 

ball B+
R unless otherwise stated.

Proposition 1. There exist positive constants C1, C0 and small constant r0 such that for 
any V ∈ C∞

0 ∈ B+
r0

\{0}, E(x), h(x) ∈ C1, and

β > C0(1 +
√

‖E‖C1 + ‖h‖C1),

one has

C1‖r2eβψF‖B+
r0

≥ β
3
2 ‖eβψ(log r)−1V ‖B+

r0
+ β

1
2 ‖reβψ(log r)−1∇V ‖B+

r0
, (3.11)
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where the vector function V (x) satisfies

�V + E(x)V = F (x) in B+
r0

,

V1 = 0, · · · , Vn−1 = 0,
∂Vn

∂xn
= h(x)Vn, on ∂B+

r0
∩ {x|xn = 0}. (3.12)

Furthermore, if V ∈ C∞
0 ∈ B+

r0
\B+

ρ , then

C1‖r2eβψF‖B+
r0

≥ β
3
2 ‖eβψ(log r)−1V ‖B+

r0
+ βρ

1
2 ‖r− 1

2 eβψV ‖B+
r0

+ β
1
2 ‖reβψ(log r)−1∇V ‖B+

r0
. (3.13)

Next we show a lemma which will be applied for the elliptic system (3.8) in our latter 
arguments.

Lemma 3. There exist positive constants C1, C0 and small constant r0 such that for any 
V ∈ C∞

0 (B+
r0

)\{0}, and

β > C0(1 +
√

λ),

one has

C1‖r2eβψF‖B+
r0

≥ β
3
2 ‖eβψ(log r)−1V ‖B+

r0
+ β

1
2 ‖reβψ(log r)−1∇V ‖B+

r0
, (3.14)

where V (x) satisfies

�V + 〈B, ∇V 〉 + AV + λV = F in B+
r0

,

V1 = 0, · · · , Vn−1 = 0,
∂Vn

∂xn
= k(x)Vn, on ∂B+

r0
∩ {x|xn = 0}. (3.15)

Furthermore, if V ∈ C∞
0 ∈ B+

r0
\B+

ρ , then

C1‖r2eβψF‖B+
r0

≥ β
3
2 ‖eβψ(log r)−1V ‖B+

r0
+ βρ

1
2 ‖r− 1

2 eβψV ‖B+
r0

+ β
1
2 ‖reβψ(log r)−1∇V ‖B+

r0
. (3.16)

Proof. We assume that β > C0(1 +
√

λ) and λ is large enough. Since B(x), A(x) and 
k(x) are fixed functions depending only on the metric g and its derivatives, from triangle 
inequality and (3.11), we readily have

C1‖r2eβψ(�V + 〈B, ∇V 〉 + AV + λV )‖B+
r0

≥ ‖r2eβψ(�V + λV )‖B+
r0

− ‖r2eβψ〈B, ∇V 〉‖B+
r0

− ‖r2eβψ|AV |‖B+

r0
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≥ β
3
2 ‖eβψ(log r)−1V ‖B+

r0

+ β
1
2 ‖reβψ(log r)−1∇V ‖B+

r0
− ‖r2eβψ〈B, ∇V 〉‖B+

r0

− ‖r2eβψ|AV |‖B+
r0

. (3.17)

By the assumption of β and the fact that r is small, the last two terms in the last inequal-
ity can be controlled by the right hand side of (3.11)). Thus, the Carleman estimates 
(3.14) can be derived from (3.17). The conclusion (3.16) can be arrived using the same 
strategy from the estimates (3.13). �

Inspired by the approach in [6], [2], [28] and [22], we prove the quantitative Carleman 
estimates (3.11) and (3.13) by introducing new coordinates and conjugate operators. 
Since the arguments of the Carleman estimates are long and detailed, we present the 
proof in the last section, i.e. Section 6. We will only use the Carleman estimates (3.14)
and (3.16) for the later proof of the doubling inequalities and the measure of critical sets.

4. Three-ball inequalities and doubling inequalities

In this section, thanks to the quantitative Carleman estimates (3.14) and (3.16), we 
will first show the three half-ball inequalities of the gradient of Dirichlet eigenfunctions 
in the half balls centered at the boundary. Then we will obtain the quantitative doubling 
inequalities of the gradients in those half balls. In the proof of the doubling inequality, an 
important ingredient is a lower bound estimate for L2 norm of the gradients of Dirichlet 
eigenfunctions, since the doubling manifold technique in [6] is not available directly, our 
new idea is to study the propagation between the neighborhood of the boundary and 
the interior of the manifold.

Relied on the Carleman estimates as (3.14) for interior balls, it is standard to have 
the following quantitative interior three-ball inequality

‖∇eλ‖L∞(BR
2

(x)) ≤ eC
√

λ‖∇eλ‖τ̂
L∞(BR

4
(x))‖∇eλ‖1−τ̂

L∞(BR(x)) (4.1)

if BR(x) ⊂ M, where 0 < τ̂ < 1 is a constant. For the complete of the presentation, we 
present the approach to obtain these inequalities in half balls by considering the boundary 
conditions. Recall that r(x) be the geodesic distance from x to origin. By rotation and 
translation, we may assume that 0 ∈ ∂M. Denote AR1,R2 = {x ∈ M|R1 ≤ r(x) ≤ R2}
be the annulus. Let ‖U‖R1,R2 be the L2 norm of U on AR1,R2 .

Lemma 4. There exist positive constants R̄ < r0, C and 0 < τ < 1 which depend only on 
M such that, for any R < R̄ and any x0 ∈ ∂M, the Dirichlet eigenfunctions eλ of (1.1)
satisfy

‖∇eλ‖L∞(B+ (x )) ≤ eC
√

λ‖∇eλ‖τ
∞ + ‖∇eλ‖1−τ

∞ + . (4.2)

2R 0 L (BR(x0)) L (B3R(x0))
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Proof. We study the elliptic systems (3.8) derived from the derivatives of Dirichlet 
eigenfunctions. By translation, let x0 = 0. To apply the Carleman estimates (3.14), 
we introduce a smooth cut-off function φ(r) ∈ C∞

0 (B3R) with R < r0
8 . Let 0 < φ(r) < 1

satisfy the following properties:

• φ(r) = 0 if r(x) < R
5 or r(x) > 7R

3 ,
• φ(r) = 1 if 3R

5 < r(x) < 13R
6 ,

• |∇αφ| ≤ C
R|α|

for α = (α1, · · · , αn). Thus, the function φU is supported in the annulus A R
5 , 7R

3
. Applying 

the Carelman estimates (3.14) with V = φU and considering the elliptic systems (3.8), 
we obtain that

β
3
2 ‖(log r)−1eβψφU‖B+

r0
≤ C‖r2eβψ

(
�(φU) + 〈B, ∇(φU)〉 + AφU + λφU

)
‖B+

r0

= C‖r2eβψ
(
�φU + 2∇φ∇U + 〈B, ∇φU〉

)
‖B+

r0
. (4.3)

It follows from the properties of φ that

‖eβψU‖ 3R
5 , 13R

6
≤ C(‖eβψU‖ R

5 , 3R
5

+ ‖eβψU‖ 13R
6 , 7R

3
)

+ C(‖reβψ∇U‖ R
5 , 3R

5
+ ‖reβψ∇U‖ 13R

6 , 7R
3

).

Note that the weight function ψ is radial and decreasing. We obtain that

‖eβψU‖ 3R
5 , 13R

6
≤ C(eβψ( R

5 )‖U‖ R
5 , 3R

5
+ eβψ( 13R

6 )‖U‖ 13R
6 , 7R

3
)

+ C(eβψ( R
5 )‖r∇U‖ R

5 , 3R
5

+ eβψ( 13R
6 )‖r∇U‖ 13R

6 , 7R
3

). (4.4)

The following Caccioppoli inequality for the elliptic systems (3.8)

‖∇U‖B+
c2R

≤ C(
√

λ + 1)
R

‖U‖B+
c1R

(4.5)

holds for all positive constants 0 < c2 < c1 < 1, which can be proved by multiplying the 
elliptic systems (3.8) by φ̂2U for some cut-off function φ̂ and using the trace inequality 
(6.20). Thus, the estimate (4.4) implies that

‖U‖ 3R
5 ,2R ≤ C

√
λ

(
eβ(ψ( R

5 )−ψ(2R))‖U‖B+
R

+ eβ(ψ( 13R
6 )−ψ(2R))‖U‖B+

3R

)
. (4.6)

We choose some new parameters

τ1
R = ψ(R

5 ) − ψ(2R),

τ2
R = ψ(2R) − ψ(13R ).
6
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Thanks to the definition of ψ, we learn that

0 < τ−1
1 < τ1

R < τ1 and 0 < τ2 < τ2
R < τ−1

2 ,

where τ1 and τ2 are independent of R. Adding ‖U‖ 3R
5

to both sides of the inequality 
(4.6) yields that

‖U‖B+
2R

≤ C
√

λ
(
eβτ1‖U‖B+

R
+ e−βτ2‖u‖B+

3R

)
. (4.7)

We want to incorporate the second term in the right hand side of the last inequality into 
the left hand side. To this end, we choose β such that

C
√

λe−βτ2‖U‖B+
3R

≤ 1
2‖U‖B+

2R
,

which holds if

β ≥ 1
τ2

ln
2C

√
λ‖U‖B+

3R

‖U‖B+
2R

.

Thus, we derive that

‖U‖B+
2R

≤ C
√

λeβτ1‖U‖B+
R

. (4.8)

Recall that the lower bound β > C
√

λ is required to apply the Carleman estimates 
(3.14). Hence we choose

β = C
√

λ + 1
τ2

ln
2C

√
λ‖U‖B+

3R

‖U‖B+
2R

.

Substituting such β in (4.8) gives that

‖U‖
τ2+τ1

τ2
B+

2R

≤ eC
√

λ‖U‖
τ1
τ2
B+

3R

‖U‖B+
R

. (4.9)

Raising the exponent τ2
τ2+τ1

to both sides of the last inequality yields that

‖U‖B+
2R

≤ eC
√

λ‖U‖
τ1

τ1+τ2
B+

3R

‖U‖
τ2

τ1+τ2
B+

R

. (4.10)

Set τ = τ2
τ1+τ2

. Thus, 0 < τ < 1. Recall that U = (∂eλ

∂x1
, · · · , ∂eλ

∂xn
), we arrive at

‖∇eλ‖B+
2R

≤ eC
√

λ‖∇eλ‖τ
B+

R
‖∇eλ‖1−τ

B+
3R

. (4.11)
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By the standard elliptic estimates, the L∞ norm and L2 norm of U are comparable in 
different sizes of balls. We save the efforts in changing the sizes of balls in converting the 
L2 norm in (4.11) into the L∞ norm. Thus, the three half-ball inequality in the lemma 
is completed. �

Next we aim to find some quantitative lower bounds for L2 norm of ∇eλ in half-
ball centered at the boundary ∂M. Unlike the manifold without boundary or double 
manifold, we can not iterate the three-ball inequality directly to achieve the goal. Instead, 
we combine the three half-ball inequality and interior three-ball inequality to do the 
propagation between the neighborhood on the boundary and the interior of the manifold.

First we claim that

‖∇eλ‖L∞(MR) ≥ e−C(R)
√

λ‖∇eλ‖L∞(M), (4.12)

where C(R) is a positive constant depending on R and MR = {x ∈ M|dist(x, ∂M) ≤
R}. Since ∇eλ is smooth, there exists some point x̂ ∈ M such that |∇eλ(x̂)| =
‖∇eλ‖L∞(M). We may rescale to assume that ‖∇eλ‖L∞(M) = 1. If x̂ ∈ MR, the claim 
(4.12) follows immediately. If x̂ ∈ M\MR, we apply the interior three-ball inequality 
and three half-ball inequality. Assume that there exists some point x̂0 ∈ MR such that 
|∇eλ(x̂0)| = ‖∇eλ‖L∞(MR). Then we choose some point x̄ ∈ ∂M such that x̂0 ∈ B+

R(x̄)
and

‖∇eλ‖L∞(B+
R(x̄)) = ‖∇eλ‖L∞(MR) = δ0 (4.13)

for some 0 < δ0 < 1. Applying the three half-ball inequality (4.2) at x̄, we get

‖∇eλ‖L∞(B+
2R(x̄)) ≤ eC

√
λδτ

0 . (4.14)

Then we choose a point x1 ∈ B+
2R(x̄) such that

BR
4

(x1) ⊂ B+
2R(x̄) and BR

2
(x1) �⊂ B+

2R(x̄). (4.15)

Applying the interior three-ball inequality at x1, we have

‖∇eλ‖L∞(BR
2

(x1)) ≤ eC
√

λ‖∇eλ‖τ̂
L∞(BR

4
(x1))‖∇eλ‖1−τ̂

L∞(BR(x1))

≤ eC
√

λ(1+τ̂)δττ̂
0 . (4.16)

Fix such R, we choose a sequence of balls BR
4

(xi) centered at xi such that xi+1 ∈ BR
4

(xi)
and B R

4
(xi+1) ⊂ BR

2
(xi). After finitely many of steps, we could get to the point x̂ where 

|∇eλ|(x̂) = 1, that is, x1, x2, · · · , xm = x̂. The number of m depends on R and diam(M). 
Repeating the three-ball inequality (4.1) at those xi, i = 2, 3, · · · , m, we arrive at
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‖∇eλ‖L∞(BR
4

(xm)) ≤ eC
√

λ(1+τ̂+τ̂2+···+τ̂m)δττ̂m

0 . (4.17)

Since 0 < τ, ̂τ < 1, we obtain that

‖∇eλ‖L∞(MR) ≥ e
−C

√
λ(1+τ̂+τ̂2+···+τ̂m)

ττ̂m

≥ e−C(R)
√

λ‖∇eλ‖L∞(M). (4.18)

This verifies the claim (4.12).
Next we do a propagation of smallness using the three half-ball inequality to get a 

L∞ lower bound of ∇eλ in the half-ball. Let x̂1 be any point on ∂M. The application 
of three half-ball inequality (4.2) yields that

‖∇eλ‖L∞(B+
2R(x̂1)) ≤ eC

√
λ‖∇eλ‖τ

L∞(B+
R(x̂1)) (4.19)

since we have assumed that ‖∇eλ‖L∞(M) = 1. We choose x̂2 ∈ ∂M such that B+
R(x̂2) ⊂

B+
2R(x̂1). Thus, we have

‖∇eλ‖L∞(B+
R(x̂2)) ≤ eC

√
λ‖∇eλ‖τ

L∞(B+
R(x̂1)) (4.20)

For such fixed R, we again choose a sequence of balls B+
R(x̂i) centered at x̂i ∈ ∂M such 

that B+
R(x̂i+1) ⊂ B+

2R(x̂i). Since ∂M is compact, after finitely many of steps, we could 
get to the point x̄. Recall the assumption of x̄ in (4.13). That is, we choose a sequence 
of points, x̂1, ̂x2, · · · , ̂xm̄ = x̄. The number of m̄ depends on R and ∂M. Repeating the 
three half-ball inequality (4.2) at those x̂i, i = 2, 3, · · · , m̄, we arrive at

‖∇eλ‖L∞(B+
R(x̄)) ≤ eC

√
λ(1+τ1+···+τm̄−1)‖∇eλ‖τm̄

L∞(B+
R(x̂1)). (4.21)

Taking (4.12) and the assumption of x̄ in (4.13) into consideration gives that

‖∇eλ‖L∞(B+
R(x̂1)) ≥ e

−C
√

λ(1+τ1+···+τm̄−1)
τm̄ ‖∇eλ‖L∞(MR)

≥ e−C2(R)
√

λ‖∇eλ‖L∞(M). (4.22)

By rescaling, it also holds that

‖∇eλ‖L∞(B+
R
4

(x̂1)) ≥ e−C3(R)
√

λ‖∇eλ‖L∞(M). (4.23)

Recall that the annulus AR1, R2(x0) = {x ∈ M|R1 ≤ |x − x0| ≤ R2}. For any 
x0 ∈ ∂M, there exist some point x̂1 ∈ ∂M such that B+

R
4

(x̂1) ⊂ A R
2 , R(x0). Therefore, 

(4.23) also implies that

‖∇eλ‖L∞(A R
2 , R

(x0)) ≥ e−C(R)
√

λ‖∇eλ‖L∞(M). (4.24)
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With aid of the quantitative lower bound (4.24) and the Carleman estimates (3.16), 
we proceed to show the doubling inequality for the gradients of Dirichlet eigenfunctions 
∇eλ in the half ball.

Proof of Theorem 3. We study the elliptic systems (3.8) for U . Without loss of gener-
ality, let x0 = 0. Let us fix R = R̄

8 , where R̄ is the one in the three half-ball inequality 
(4.2). Choose 0 < ρ < R

24 to be arbitrarily small. We introduce a smooth cut-off function 
0 < φ < 1 as follows,

• φ(r) = 0 if r(x) < ρ or r(x) > 2R,
• φ(r) = 1 if 2ρ < r(x) < 3R

2 ,
• |∇αφ| ≤ C

ρα ifρ < r(x) < 2ρ,
• |∇αφ| ≤ C if 3R

2 < r(x) < 2R.

We apply the stronger Carleman estimates (3.16) this time. Replacing V by φU and 
substituting it into (3.16) gives that

‖(log r)−1eβψφU‖B+
r0

+ βρ
1
2 ‖r

−1
2 eβψφU‖B+

r0

≤ C‖r2eβψ
(
�(φU) + 〈B, ∇(φU)〉 + A · ∇(φU) + λφU‖B+

r0
.

It follows from the properties of φ and the elliptic systems (3.8) that

‖(log r)−1eβψU‖ R
2 ,R + ‖eβψU‖2ρ,6ρ ≤ C(‖eβψU‖ρ,2ρ + ‖eβψU‖ 3R

2 ,2R)

+ C‖reβψ∇U‖ρ,2ρ + ‖reβψ∇U‖ 3R
2 ,2R).

Note that R is fixed. We take the exponential function eβψ out of the norms by using 
the fact that ψ is radial and decreasing. Thus, we arrive at

eβψ(R)‖U‖ R
2 ,R + eβψ(6ρ)‖U‖2ρ,6ρ ≤ C(eβψ(ρ)‖U‖ρ,2ρ + eβψ( 3R

2 )‖U‖ 3R
2 ,2R)

+ C(eβψ(ρ)‖r∇U‖ρ,2ρ + eβψ( 3R
2 )‖r∇U‖ 3R

2 ,2R).

The application of Caccioppoli inequality (4.5) further implies that

eβψ(R)‖u‖ R
2 ,R + eβψ(6ρ)‖u‖2ρ,6ρ ≤ C

√
λ(eβψ(ρ)‖U‖B+

3ρ
+ eβψ( 3R

2 )‖U‖B+
3R

). (4.25)

Adding eβψ(6ρ)‖U‖2ρ to both sides of last inequality, we get that

eβψ(R)‖U‖ R
2 ,R + eβψ(6ρ)‖U‖B+

6ρ
≤ C

√
λ(eβψ(ρ)‖U‖B+

3ρ
+ eβψ( 3R

2 )‖U‖B+
3R

). (4.26)

We want to remove the second term in the right hand side of the last inequality. To this 
end, we choose β to satisfy



20 J. Zhu / Journal of Functional Analysis 281 (2021) 109155
C
√

λeβψ( 3R
2 )‖U‖B+

3R
≤ 1

2eβψ(R)‖U‖ R
2 ,R.

That is, at least

β ≥ 1
ψ(R) − ψ(3R

2 )
ln

2C
√

λ‖U‖B+
3R

‖U‖ R
2 ,R

is needed. Thus, we obtain that

eβψ(R)‖U‖ R
2 ,R + eβψ(6ρ)‖U‖B+

6ρ
≤ C

√
λeβψ(ρ)‖U‖B+

3ρ
. (4.27)

To apply the Carleman estimates (3.16), we need the assumption that β ≥ C
√

λ. 
Therefore, we select

β = C
√

λ + 1
ψ(R) − ψ(3R

2 )
ln

2C
√

λ‖U‖B+
3R

‖U‖ R
2 ,R

.

Furthermore, dropping the first term in (4.27), we derive that

‖U‖B+
6ρ

≤ C
√

λ exp{
(
C

√
λ + 1

ψ(R) − ψ(3R
2 )

ln
2C

√
λ‖U‖B+

3R

‖U‖ R
2 ,R

)(
ψ(ρ) − ψ(6ρ)

)
}‖U‖B+

3ρ

≤ eC
√

λ(
‖U‖B+

3R

‖U‖ R
2 ,R

)C‖U‖B+
3ρ

, (4.28)

where we have used the fact that the bounds ψ(R) − ψ(3R
2 ) and ψ(ρ) − ψ(6ρ) are 

independent of R or ρ. Since U = (∂eλ

∂x1
, · · · , ∂eλ

∂xn
), it follows from (4.24) that

‖∇eλ‖B+
3R

‖∇eλ‖ R
2 ,R

≤ eC
√

λ.

Together the last inequality with (4.28), we derive that

‖∇eλ‖B+
6ρ

≤ eC
√

λ‖∇eλ‖B+
3ρ

.

Let ρ = r
3 . The doubling inequality

‖∇eλ‖B+
2r

≤ eC
√

λ‖∇eλ‖B+
r

(4.29)

follows for r ≤ R
8 . If r ≥ R

8 , since R is fixed, from (4.22), we can also derive that

‖∇eλ‖B+
2r

≤ eC
√

λ‖∇eλ‖B+
r

. (4.30)
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Thus, we have obtained (4.30) for any 0 < r < r0, where C only depends on the manifold 
M. Since the L∞ norm and L2 norm are equivalent for the elliptic equations, we arrive 
at the conclusions in the theorem. �

To obtain the bounds of interior critical sets, we will make use of interior doubling 
inequalities. We do the propagation arguments between the consecutive annulus of the 
manifold.

Lemma 5. Let eλ be the Dirichlet eigenfunctions (1.1). For any fixed R > 0, there exists 
a positive constant C depending only on the manifold M and R such that

‖∇eλ‖L∞(B2r(x0)) ≤ eC
√

λ‖∇eλ‖L∞(Br(x0)) (4.31)

for any x0 ∈ M\M2R and 0 < r ≤ R
2 .

Proof. We first claim that

‖∇eλ‖L∞(M\M2R) ≥ e−C(R)
√

λ‖∇eλ‖L∞(M\MR). (4.32)

Let us normalize ‖∇eλ‖L∞(M\MR) = 1. Assume that there exists some point x̂ ∈
M\MR such that ‖∇eλ‖L∞(M\MR) = |∇eλ(x̂)|. If x̂ ∈ M\M2R, the claim (4.32)
holds directly. If x̂ ∈ M2R\MR, we will use the interior three-ball inequality to do 
the propagation. Let ‖∇eλ‖L∞(M\M2R) = δ̄ < 1. There exists some point x̂0 such that 
‖∇eλ‖L∞(M\M2R) = |∇eλ(x̂0)|. Applying the three-ball inequality (4.1) at x̂0 gives that

‖∇eλ‖L∞(BR
2

(x̂0)) ≤ eC
√

λ‖∇eλ‖τ̂
L∞(BR

4
(x̂0))

≤ eC
√

λδ̄τ̂ . (4.33)

Fix such R, we choose a sequence of balls BR
4

(xi) centered at xi such that xi+1 ∈
BR

4
(xi) and B R

4
(xi+1) ⊂ BR

2
(xi). After finitely many of steps, we could get to the point 

x̂ where |∇eλ|(x̂) = 1, that is, x̂0 = x1, x2, · · · , xm = x̂. The number of m depends on R
and diam(M). Repeating the three-ball inequality (4.1) at those xi, i = 1, 3, · · · , m, we 
arrive at

‖∇eλ‖L∞(BR
4

(xm)) ≤ eC
√

λ(1+τ̂+τ̂2+···+τ̂m−1)δ̄τ̂m

. (4.34)

Since 0 < τ̂ < 1, we obtain that

‖∇eλ‖L∞(M\M2R) ≥ e
−C

√
λ(1+τ̂+τ̂2+···+τ̂m)

τ̂m

≥ e−C(R)
√

λ‖∇eλ‖L∞(M\MR). (4.35)

This verifies the claim (4.32).
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Next we do a propagation of smallness using the three-ball inequality (4.1) to get a 
L∞ lower bound of ∇eλ in M\M2R. Choosing any point x̂1 ∈ M\M2R, we apply the 
three-ball inequality (4.1) to have

‖∇eλ‖L∞(BR
2

(x̂1)) ≤ eC
√

λ‖∇eλ‖τ̂
L∞(BR

4
(x̂1)) (4.36)

since we have assumed that ‖∇eλ‖L∞(M\MR) = 1. We choose x̂2 ∈ M\M2R such that 
BR

4
(x̂2) ⊂ BR

2
(x̂1). Hence, it implies that

‖∇eλ‖L∞(BR
4

(x̂2)) ≤ eC
√

λ‖∇eλ‖τ̂
L∞(BR

4
(x̂1)). (4.37)

For such R, we again choose a sequence of balls BR
4

(x̂i) centered at x̂i ∈ M\M2R such 
that BR

4
(x̂i+1) ⊂ BR

2
(x̂i). Since the closure of M\M2R is compact, finitely many of steps 

of iterations lead to the point x̂0 where the maximum of |∇eλ| is achieved in M\M2R. 
That is, we choose a sequence of points, x̂1, ̂x2, · · · , ̂xm̄ = x̂0. The number of m̄ depends 
on R and M. Repeating the three-ball inequality (4.1) at those x̂i, i = 1, 2, 3, · · · , m̄, we 
arrive at

‖∇eλ‖L∞(BR
4

(x̂0)) ≤ eC
√

λ(1+τ̂1+···+τ̂m̄−1)‖∇eλ‖τ̂m̄

L∞(BR
4

(x̂1)). (4.38)

Taking (4.32) into consideration gives that

‖∇eλ‖L∞(BR
4

(x̂1)) ≥ e
−C

√
λ(1+τ̂1+···+τ̂m̄−1)

τ̂m̄ ‖∇eλ‖L∞(M\M2R)

≥ e−C2(R)
√

λ‖∇eλ‖L∞(M\MR). (4.39)

Recall that the annulus A R
4 , R

2
(x0) = {x ∈ M|R

4 ≤ |x − x0| ≤ R
2 }. For any 

x0 ∈ M\M2R, there exist some point x̂1 ∈ M\M2R such that BR
4

(x̂1) ⊂ A R
4 , 3R

4
(x0). 

Therefore, it follows from (4.39) that

‖∇eλ‖L∞(A R
4 , 3R

4
(x0)) ≥ e−C(R)

√
λ‖∇eλ‖L∞(M\MR). (4.40)

Following the proof of Theorem 3 and using the estimates (4.40), we are able to obtain 
the interior doubling inequality (4.31). �
5. Upper bounds of critical sets

In this section, we will prove the upper bounds for the interior critical sets of Dirichlet 
eigenfunctions in real analytic manifolds. We first prove the upper bounds in the neigh-
borhood of the boundary ∂M. Then we show the upper bounds in the interior of the 
manifold M. We will make use of doubling inequalities (1.7), (4.31), and Lemma 2. The 
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main idea is similar to the proof of Theorem 2. For the complete of the presentation, we 
provide the details.

For the upper bounds in the neighborhood of the boundary, we study the gradient of 
Dirichlet eigenfunctions in (3.8) in an extended region. From the analyticity results in 
[20] or [19], it is clear that U(x) = (∂eλ

∂x1
, ∂eλ

∂x2
, · · · , ∂eλ

∂xn
) is real analytic if the manifold 

(M, g) is analytic. To do the analytic continuation across the boundary, we get rid of 
the large parameter λ. We introduce the following lifting argument. Let

Û(x, t) = e
√

λtU(x). (5.1)

Since U(x) satisfies the system of equations (3.8), then Û(x, t) satisfies the equation⎧⎨⎩ �gÛ + ∂2
t Û + 〈B, ∇Û〉 + A · Û = 0 in M × (−∞, −∞),

Û1 = · · · Ûn−1 = 0, ∂Ûn

∂xn
= k(x)Ûn on ∂M × (−∞, −∞).

(5.2)

We introduce the ball with as

ΩR = {(x, t) ∈ Rn+1||x| < R, |t| < R}

and half-cube

Ω+
R = {(x, t) ∈ Rn+1||x| < R with xn ≥ 0, |t| < R}.

Choose any point p ∈ ∂M, using Fermi geodesic coordinates and rescaling arguments, 
we may study the function Û(x, t) locally in the ball centered at origin with the flatten 
boundary. Hence, Û(x, t) satisfies the following equation locally⎧⎨⎩ �gÛ + ∂2

t Û + 〈B, ∇Û〉 + A · Û = 0 in Ω+
2 ,

Û1 = · · · Ûn−1 = 0, ∂Ûn

∂xn
= k(x)Ûn on Ω+

2 ∩ {xn = 0}.
(5.3)

By the analyticity results in [20] or [19], we can extend Û(x, t) to the region Ωρ, where 
ρ > 0 depends only on M. Moreover, we have the following growth control estimates

‖Û‖L∞(Ωρ) ≤ C‖Û‖L∞(Ω+
2 ), (5.4)

where C depends only on M. Since M is a real analytic Riemannian manifold with 
boundary, we may embed M ⊂ M1 as a relatively compact subset, where M1 is an 
open real analytic Riemannian manifold having the same dimension as M. Due to the 
compactness of the manifold, the extended function Û satisfies

�gÛ + ∂2
t Û + 〈B, ∇Û〉 + A · Û = 0 in M̂ρ × (−ρ, −ρ), (5.5)
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where M̂ρ = {x ∈ M1|dist{x, M} ≤ ρ}. From the uniqueness of the analytic continu-
ation, we also have that

�gU + 〈B, ∇U〉 + A · U + λU = 0 in M̂ρ. (5.6)

It follows from (5.4) and the definition of Û that

‖U‖L∞(Bρ) ≤ eC
√

λ‖U‖L∞(B+
2 ). (5.7)

See details of the similar arguments in e.g. [15]. Iterating the doubling inequality (1.7)
in the half balls finite number of steps, we can show that

‖U‖L∞(Bρ) ≤ eC
√

λ‖U‖L∞(B+
ρ
2

)

≤ eC
√

λ‖U‖L∞(B ρ
2

) (5.8)

By rescaling arguments, it follows that

‖U‖L∞(B2r) ≤ eC
√

λ‖U‖L∞(Br) (5.9)

for any r ≤ ρ
2 with B2r ⊂ M̂ρ and C depending only on M.

Next we need to extend U(x) locally as a holomorphic function in Cn. Applying 
elliptic estimates for Û in (5.5) in a ball Br(p) × (−r, r) ⊂ M̂ρ × (−ρ, ρ) with p ∈ ∂M
gives that

|D
αÛ(p, 0)

α! | ≤ C
|α|
1 r−|α|‖Û‖L∞ , (5.10)

where α is a multi-index taken with respect to x and C1 > 1 depends on M. By trans-
lation, we may consider the point p as the origin. Recall the definition of Û in (5.1). We 
derive that

|D
αU(0)
α! | ≤ C

|α|
1 r−|α|eC

√
λ‖U‖L∞(Br(0). (5.11)

We sum up a geometric series to extend U(x) to be a holomorphic function U(z) with 
z ∈ Cn. Thus, we have

sup
|z|≤ r

2nC1

|U(z)| ≤ C2eC
√

λ sup
|x|≤r

|U(x)| (5.12)

with C2 > 1. By iteration of the doubling inequality (5.9) finitely many times and the 
rescaling arguments, we derive that

sup
|z|≤2r

|∇eλ(z)| ≤ eC5
√

λ sup
|x|≤r

|∇eλ(x)| (5.13)
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for 0 < r < ρ0 < ρ
2 , where ρ0 and C5 depend on M and Br(0) ⊂ M̂.

Thanks to the doubling inequalities (5.13), we are ready to prove the upper bounds 
of critical sets of Dirichlet eigenfunctions as the arguments in Theorem 2.

Proof of Theorem 4. We first prove the critical sets in a neighborhood of the boundary 
∂M. Let G(x) = |∇eλ(x)|2. We study the nodal sets of G(x), which are just critical sets 
of eλ(x). By rescaling and translation, we can argue on scales of order one. Let p ∈ B1/4
be the point where the maximum of |∇eλ| in B1/4 is attained. For each fixed direction 
ω ∈ Sn−1, set Gω(z) = G(p + zω) in z ∈ B1 ⊂ C. Denote N(ω) = �{z ∈ B1/2(0) ⊂
C|Gω(z) = 0}. Thanks to the doubling property (5.13) and the Lemma 2, we derive that

�{x ∈ B1/2(p)|x − p is parallel to ω and |∇eλ(x)| = 0}
≤ �{z ∈ B1/2 ⊂ C|Gω(z) = 0}
= N(ω)

≤ C
√

λ. (5.14)

It follows from the integral geometry estimates that

Hn−1({x ∈ B1/2(p)| |∇eλ(x)| = 0}) ≤ c(n)
∫

Sn−1

N(ω) dω

≤
∫

Sn−1

C
√

λ dω

= C
√

λ. (5.15)

Therefore, we arrive at

Hn−1({x ∈ B1/4| |∇eλ(x)| = 0}) ≤ C
√

λ. (5.16)

Since ∂M is compact, we can choose finitely many balls centered at ∂M so that those 
balls cover M̂ ρ0

4
. From (5.16), we arrive at

Hn−1({x ∈ M̂ ρ0
4

| |∇eλ(x)| = 0}) ≤ C
√

λ. (5.17)

Next we deal with the measure of nodal sets in M\M̂ ρ0
4

. We have obtained the 
doubling inequality (4.31) in the interior of the manifold M. We may choose R ≤ ρ0

16
in the interior doubling inequality (4.31). We also extend U(x) locally as a holomorphic 
function in Cn. Note that U(x) satisfies (3.3) in M\M̂ ρ0

4
. We use the lifting argument 

as (5.1) to get rid of λ. Thus, we have

�gÛ + ∂2
t Û + 〈B, ∇Û〉 + A · Û = 0 in M\M̂ ρ0

4
× (−∞, −∞). (5.18)
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Applying elliptic estimates in a small ball Br(p) × (−r, r), we have

|D
αÛ(p, 0)

α! | ≤ C
|α|
3 r−|α|‖Û‖L∞ , (5.19)

where C3 > 1 depends only on M and Dα is taken with respect to x. Let us consider 
the point p as the origin as well. The definition of Û further implies that

|D
αU(0)
α! | ≤ C

|α|
3 r−|α|eC

√
λ‖U‖L∞ . (5.20)

By summing up a geometric series, we can extend U(x) to be a holomorphic function 
U(z) with z ∈ Cn to have

sup
|z|≤ r

2nC3

|U(z)| ≤ C4eC
√

λ sup
|x|≤r

|U(x)| (5.21)

with C4 > 1. By finite steps of iterations of (4.31) and rescaling arguments, we further 
derive that

sup
|z|≤2r

|U(z)| ≤ eC
√

λ sup
|x|≤r

|U(x)| (5.22)

holds for 0 < r < ρ0
16 with ρ0 depending on M. We make use of the Lemma 2 and the 

inequality (5.22) to obtain the upper bounds as the previous arguments in the neighbor-
hood of the boundary. By rescaling and translation, we can argue on scales of order one. 
Let p ∈ B1/4 be the point where the maximum of |∇eλ| in B1/4 is arrived. Recall that 
G(x) = |∇eλ(x)|2. For each direction ω ∈ Sn−1, set Gω(z) = G(p + zω) in z ∈ B1 ⊂ C. 
Thanks to the doubling property (5.22) and the complex growth Lemma 2, we derive 
that

�{x ∈ B1/2(p)|x − p is parallel to ω and |∇eλ(x)| = 0}
≤ �{z ∈ B1/2 ⊂ C|Gω(z) = 0}
≤ C

√
λ. (5.23)

From the integral geometry estimates, we have

Hn−1({x ∈ B1/2(p)| |∇eλ(x)| = 0}) ≤ c(n)
∫

Sn−1

N(ω) dω

≤
∫

Sn−1

C
√

λ dω

= C
√

λ. (5.24)
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Thus, we deduce that

Hn−1({x ∈ B1/4| |∇eλ(x)| = 0}) ≤ C
√

λ. (5.25)

Covering the compact manifold M\M̂ ρ0
4

with finite number of coordinate charts gives 
that

Hn−1({x ∈ M\M̂ ρ0
4

| |∇eλ(x)| = 0}) ≤ C
√

λ. (5.26)

Together with the upper bounds in (5.17) and (5.26), we arrive at the conclusion in 
Theorem 4. �
6. Proof of the Carleman estimates

This section is devoted to the quantitative Carleman estimates in Proposition 1.

Proof of Proposition 1. We introduce the polar geodesic coordinates (r, θ) in the half 
ball B+

r . Following the Einstein notation, we write Laplace-Beltrami operator as

r2� = r2∂2
r + r2(

∂r ln
√

b + n − 1
r

)
∂r + 1√

b
∂i

(√
bbij∂j

)
,

where ∂i = ∂
∂θi

, bij(r, θ) is a metric on the geodesic sphere Sn−1, bij is the inverse of bij , 
b = det(bij) and θn−1 = xn

|x| . One can check that, for r small enough,

⎧⎪⎪⎨⎪⎪⎩
|∂rbij | ≤ C|bij | in term of tensors,

|∂rb| ≤ C,

C−1 ≤ b ≤ C,

(6.1)

where C depends on M. We want to transform the half ball B+
r into a half cylinder. 

Let r = et. Then ∂r = e−t∂t. Hence the function V (t, θ1, · · · , θn−1) is supported in 
(−∞, T0] × Sn−1

+ . Notice that T0 is negative with large enough |T0| since r is small. 
Under this new coordinate, we can write

e2t� = ∂2
t + (n − 2 + ∂t ln

√
b)∂t + 1√

b
∂i

(√
bbij∂j

)
. (6.2)

Furthermore, the condition (6.1) turns into

⎧⎪⎪⎨⎪⎪⎩
|∂tb

ij | ≤ Cet|bij | in term of tensors,

|∂tb| ≤ Cet,

C−1 ≤ b ≤ C.

(6.3)
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The boundary conditions in (3.15) in the new coordinates change into

V1(t, θ1, · · · , θn−2, 0) = 0, · · · , Vn−1(t, θ1, · · · , θn−2, 0) = 0,

ν · ∇Sn−1Vn = eth(t, θ)Vn if θn−1 = 0, (6.4)

where ν is the unit outer normal on Sn−1
+ ∩ {x|xn = 0}. Let

V = e−βψW. (6.5)

We introduce the conjugate operator,

Lβ(W ) = r2eβψ(x)�(e−βψ(x)W ) + r2E(x)W

= e2te−βφ(t)�(eβφ(t)W ) + e2tE(t, θ)W. (6.6)

By straightforward calculations, it follows from (6.2) that

Lβ(W ) = ∂2
t W +

(
2βφ′ + (n − 2) + ∂t ln

√
b
)
∂tW

+
(
β2φ′ 2 + βφ′′ + (n − 2)βφ′ + β∂t ln

√
bφ′)W + �θW + e2tEW, (6.7)

where

�θW = 1√
b
∂i(

√
bbij∂jW )

is the Laplace-Beltrami operator on Sn−1. We introduce the following L2 norm

‖W‖2
φ =

∫
(−∞, T0]×Sn−1

+

|W |2
√

bφ′ −3 dtdθ,

where dθ is measure on Sn−1. We write the cylinder Sn−1
+ × (−∞, T0] as N = [0, 2π] ×

[−π
2 , π2 ] × · · · × [0, π2 ] × (−∞, T0]. Then ∂Sn−1

+ ∩ {x|xn = 0} × (−∞, T0] is denoted as 
∂N = [0, 2π] × [−π

2 , π2 ] × · · · {0} × (−∞, T0].
To obtain the Carleman estimates in the proposition, we aim to find a lower estimate 

for ‖Lβ(W )‖φ using some elementary algebra and integration by parts arguments. Note 
that t is close to −∞ in the later calculations. By the triangle inequality, we easily have

‖Lβ(W )‖φ ≥ A − B,

where

A = ‖∂2
t W + 2βφ′∂tW + β2φ′ 2W + e2tEW + �θW‖φ (6.8)

and
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B = ‖βφ′′W + (n − 2)βφ′W + β∂t ln
√

bφ′W + (n − 2)∂tW + ∂t ln
√

b∂tW‖φ. (6.9)

Later on, we can show that B can be controlled by A. Thus, our main goal is to find a 
lower bound for A. Write

A2 = A1 + A2 + A3, (6.10)

where

A1 = ‖∂2
t W + (β2φ′ 2 + e2tE)W + �θW‖2

φ, (6.11)

A2 = ‖2βφ′∂tW‖2
φ, (6.12)

A3 = 2〈2βφ′∂tW, ∂2
t W + β2φ′ 2W + e2tEW + �θW 〉φ. (6.13)

General speaking, we compute the Carleman estimates by writing A as symmetric and 
antisymmetric parts. For these quantitative Carleman estimates, it saves more compu-
tations if we suppress the terms with less contribution on β. Let us first compute the 
contribution from A3. We decompose the inner product A3 as follows

A3 = K1 + K2 + K3,

where each integration Ki is

K1 = 4β

∫
N

φ′∂tW∂2
t Wφ′ −3

√
b dtdθ,

K2 = 4β

∫
N

φ′∂tW∂i(
√

bbij∂jW )φ′ −3 dtdθ,

K3 = 4
∫
N

(β3φ′ 2 + βe2tE)∂tWWφ′ −2
√

b dtdθ.

For K1, applying the integration by parts with respect to t gives that

K1 = 4β

∫
N

φ′′|∂tW |2φ′ −3
√

bdt dθ − 2β

∫
N

φ′|∂tW |2∂t ln
√

bφ′ −3
√

b dtdθ. (6.14)

It follows from (6.3) that we have |∂t ln
√

b| ≤ Cet. Considering the definition of φ, since 
T0 close to −∞, the term |∂t ln

√
b| is controlled by |φ′′| = 2

t2 and φ′ ≈ 1. Thus, we have

K1 ≥ −Cβ

∫
N

|φ′′||∂tW |2
√

bφ′ −3 dtdθ. (6.15)
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To estimate K2, we first integrate with respect to ∂i with the consideration that W ∈
C∞

0 (B+
r0

),

K2 = −4β

∫
N

φ′∂t∂iWbij∂jWφ′ −3
√

b dtdθ + 4β

∫
∂N

φ′∂tW∂jWbj(n−1)φ′ −3
√

b dtdθ.

= J1 + J2, (6.16)

where

J1 = −4β

∫
N

φ′∂t∂iWbij∂jWφ′ −3
√

b dtdθ

and the boundary term

J2 = 4β

∫
∂N

φ′∂tW∂jWbj(n−1)φ′ −3
√

b dtdθ.

From the boundary condition on V , we obtain that

∂tWj = ∂Wj

∂θk
= 0, for 1 ≤ j ≤ n − 1, 1 ≤ k ≤ n − 2 for θn−1 = 0,

ν · ∇Sn−1Wn = hetWn for θn−1 = 0. (6.17)

Thus, the boundary term in (6.16) can be converted into

J2 = 4β

∫
∂N

φ′∂tWnWnhetφ′ −3
√

b dtdθ

= −2β

∫
∂N

|Wn|2∂t(hetφ′ −2
√

b) dtdθ, (6.18)

where we have used the integration by parts in the last identity with respect to t. Then

|J2| ≤ β(‖h‖C1 + 1)
∫

∂N

|Wn|2etφ′ −3
√

b dtdθ. (6.19)

To deal with the contribution from the boundary, the following trace lemma is estab-
lished in [22],

‖u‖2
Sn−2 ≤ C

(
τ‖u‖2

Sn−1
+

+ τ−1‖∇u‖2
Sn−1

+

)
(6.20)

for any τ ≥ 1 and for u ∈ C∞(Sn−1
+ ). The inequality (6.20) is obtained by the trace 

lemma in Rn+1 and rescaling arguments. From the trace inequality (6.20), we have
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∫
∂N

|Wn|2etφ′ −3
√

b dtdθ ≤ Cτ

T0∫
−∞

∫
Sn−1

+

|Wn|2etφ′ −3
√

b dtdθ

+ Cτ−1
T0∫

−∞

∫
Sn−1

+

|∇θWn|2etφ′ −3
√

b dtdθ. (6.21)

Thus, we choose

τ = β ≥ C(1 +
√

‖E‖C1 + ‖h‖C1) (6.22)

to have

|J2| ≤ β3
∫
N

|Wn|2etφ′ −3
√

b dtdθ + β

∫
N

|∇θWn|2etφ′ −3
√

b dtdθ. (6.23)

Integrating by parts with respect to t for J1 gives that

J1 = − 4β

∫
N

φ′′∂iWbij∂jWφ′ −3
√

b dtdθ + 2β

∫
N

φ′∂t ln
√

b∂iWbij∂jWφ′ −3
√

b dtdθ

+ 2β

∫
N

φ′∂tb
ij∂iW∂jWφ′ −3

√
b dtdθ. (6.24)

Denote that

|∇θW |2 = bij∂iW∂jW.

From the fact that −φ′′ is nonnegative, β is large and the assumption for bij, we arrive 
at

J1 ≥ 3β

∫
N

|φ′′||∇θW |2φ′ −3
√

b dtdθ. (6.25)

Combining the estimates for J1 and J2 and taking into account that |φ′′| � et for |T0|
large enough yield that

K2 ≥ 2β

∫
N

|φ′′||∇θW |2φ′ −3
√

b dtdθ − Cβ3
∫
N

|φ′′||W |2φ′ −3
√

b dtdθ. (6.26)

We carry out the similar computations for K3,

K3 = − 2β3
∫

|W |2∂t ln
√

b
√

b dtdθ
N
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−
∫
N

(4φ′ − 4φ′′ + 2φ′∂t ln
√

b)βe2tE|W |2φ′ −3
√

b dtdθ

− 2β

∫
N

φ′e2t∂tE|W |2φ′ −3
√

b dtdθ. (6.27)

Since we have assumed that

β > C(1 +
√

‖E‖C1 + ‖h‖C1),

from the fact that |T0| is large enough, (6.3) and φ′ ≈ 1, we obtain that

K3 ≥ −Cβ3
∫
N

|W |2etφ′ −3
√

b dtdθ. (6.28)

Combining the estimates (6.15) for K1, (6.26) for K2 and (6.28) for K3 yields that

A3 ≥ 2β

∫
N

|φ′′||∇θW |2φ′ −3
√

b dtdθ − Cβ3
∫
N

et|W |2φ′ −3
√

b dtdθ

− Cβ

∫
N

|φ′′||∂tW |2φ′ −3
√

b dtdθ. (6.29)

We need to obtain a stronger L2 norm of W . To this end, we consider A1. Choose 
some small positive constant δ which is to be determined later. Since |φ′′| ≤ 1 and β ≥ 1, 
it follows that

A1 ≥ δ

β
Â1, (6.30)

where Â1 is given by

Â1 = ‖|φ′′| 1
2
(
∂2

t W + (β2φ′ 2 + e2tE)W + �θW
)
‖2

φ. (6.31)

Furthermore, we decompose Â1 as

Â1 = K1 + K2 + K3 (6.32)

where

K1 = ‖|φ′′| 1
2
(
∂2

t W + �θW
)
‖2

φ

and

K2 = ‖|φ′′| 1
2
(
β2φ′ 2 + e2tE

)
W‖2

φ
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and

K3 = 2〈|φ′′|(∂2
t W + �θW ),

(
β2φ′ 2 + e2tE

)
W 〉φ. (6.33)

We further split K3 into K3 = H1 + H2, where

H1 = 2
∫
N

∂2
t W

(
β2φ′ 2 + e2tE

)
W |φ′′|φ′ −3

√
b dtdθ

and

H2 = 2
∫
N

|φ′′|�θW
(
β2φ′ 2 + e2tE

)
Wφ′ −3

√
b dtdθ.

Integration by parts with respect to t gives that

H1 =
∫
N

φ′′(β2φ′ 2 + e2tE
)
|∂tW |2φ′ −3

√
b dtdθ

+ 2
∫
N

∂t

[
(β2φ′ 2 + e2tE)φ′′φ′ −3

√
b
]
W∂tW dtdθ. (6.34)

By Cauchy-Schwartz inequality and the assumption of β, we obtain that

H1 ≥ −Cβ2
∫
N

|φ′′|(|∂tW |2 + |W |2)φ′ −3
√

b dtdθ. (6.35)

We perform the integration by part arguments with respect to ∂i gives that

H2 =2
∫
N

φ′′|∇θW |2
(
β2φ′ 2 + e2tE

)
φ′ −3

√
b dtdθ

+ 2
∫
N

φ′′e2t∂iWbij∂jEWφ′ −3
√

b dtdθ

− 2
∫

∂N

φ′′et
(
β2φ′ 2 + e2tE

)
hW 2

nφ′ −3
√

b dtdθ, (6.36)

where we have used the boundary conditions (6.17). From Cauchy-Schwartz inequality 
and the assumption of β, it holds that

|∂jEbij∂iWW | ≤ Cβ2(|∇θW |2 + |W |2).

Therefore, we further obtain that
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H2 ≥ − Cβ2
∫
N

|φ′′|(|∇θW |2 + |W |2)φ′ −3
√

b dtdθ

− C‖h‖C1β2
∫

∂N

|φ′′|e2tW 2
nφ′ −3

√
b dtdθ. (6.37)

With the aid of the trace inequality (6.20) by choosing τ = β and the assumption of β, 
we derive that

‖h‖C1β2
∫

∂N

|φ′′|e2tW 2
nφ′ −3

√
b dtdθ ≤ Cβ4

∫
N

|φ′′|e2tW 2
nφ′ −3

√
b dtdθ

+ Cβ2
∫
N

|φ′′|e2t|∇θWn|2φ′ −3
√

b dtdθ. (6.38)

Thus, we learn from (6.33), (6.35), (6.37) and (6.38) that

K3 ≥ −Cβ2
∫
N

|φ′′|
(
|∂tW |2 + |∇θW |2 + |W |2

)
φ′ −3

√
b dtdθ

− Cβ4
∫
N

|φ′′|e2t|W |2φ′ −3
√

b dtdθ. (6.39)

Since φ′ is close to 1 and e2t is sufficiently small as |T0| is large enough, it follows that

K2 ≥ Cβ4
∫
N

|φ′′||W |2φ′ −3
√

b dtdθ. (6.40)

Note that K1 ≥ 0. It follows from (6.30), (6.32), (6.39) and (6.40) that

A1 ≥ − Cβδ

∫
N

|φ′′|(|∂tW |2 + |∇θW |2)φ′ −3
√

b dtdθ

+ Cβ3δ

∫
N

|φ′′|W |2φ′ −3
√

b dtdθ. (6.41)

Combining the estimates from (6.10), (6.12), (6.29) and (6.41), we derive that

A2 ≥ Cβ3δ

∫
N

|φ′′||W |2φ′ −3
√

b dtdθ + 4β2
∫
N

|φ′||∂tW |2φ′ −3
√

b dtdθ

+ 2β

∫
|φ′′||∇θW |2φ′ −3

√
b dtdθ − Cβ3

∫
et|W |2φ′ −3

√
b dtdθ
N N
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− Cβδ

∫
N

|φ′′|
(
|∂tW |2 + |∇θW |2)φ′ −3

√
b dtdθ

− Cβ

∫
N

|φ′′||∂tW |2φ′ −3
√

b dtdθ. (6.42)

Since δ can be chosen to be small and et is small enough compared with |φ′′|, it follows 
that

A2 ≥ Cβ3
∫
N

|φ′′||W |2φ′ −3
√

b dtdθ + Cβ2
∫
N

|φ′||∂tW |2φ′ −3
√

b dtdθ

+ Cβ

∫
N

|φ′′||∇θW |2φ′ −3
√

b dtdθ. (6.43)

It is easy to check that we can absorb B to A if |T0| is large enough and β is chosen to 
be large. Thus, we obtain that

‖Lβ(W )‖2
φ ≥ Cβ3

∫
N

|φ′′||W |2φ′ −3
√

b dtdθ + Cβ2
∫
N

|φ′||∂tW |2φ′ −3
√

b dtdθ

+ Cβ

∫
N

|φ′′||∇θW |2φ′ −3
√

b dtdθ. (6.44)

Since |φ′′| is much smaller compared with |φ′|, we have that

‖Lβ(W )‖2
φ ≥ Cβ3

∫
N

|φ′′||W |2φ′ −3
√

b dtdθ + Ĉβ

∫
|φ′′||∂tW |2φ′ −3

√
b dtdθ

+ Cβ

∫
N

|φ′′||∇θW |2φ′ −3
√

b dtdθ, (6.45)

where Ĉ can be chosen arbitrarily smaller than C. Recall that the conjugate operator 
V = e−βψW . It leads to

‖e2teβψ(�V + EV )‖2
φ ≥ Cβ3‖|φ′′| 1

2 eβψV ‖2
φ + Ĉβ‖|φ′′| 1

2 eβψ|∂tV |‖2
φ

− Ĉβ3‖|φ′′| 1
2 eβψV ‖2

φ + Cβ‖|φ′′| 1
2 eβψ|∇θV |‖2

φ. (6.46)

Since Ĉ is chosen to be smaller than C, we derive that

‖e2teβψ(�V + EV )‖2
φ ≥ Cβ3‖|φ′′| 1

2 eβψV ‖2
φ + Ĉβ‖|φ′′| 1

2 eβψ|∂tV |‖2
φ

+ Cβ‖|φ′′| 1
2 |∇θV ‖2

φ. (6.47)
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Note that the volume element in polar coordinates is rn−1
√

bdrdθ and φ′ ≈ 1. It follows 
from (6.47) that

‖r2eβψ(�V + EV )r− n
2 ‖2

B+
r0

≥ Cβ3‖(log r)−1eβψV r− n
2 ‖2

B+
r0

+ Cβ‖(log r)−1eβψ|∇V |r− n
2 ‖2

B+
r0

. (6.48)

By replacing β by β + n
2 , which only changes the lower bound of β by a constant in the 

Carleman estimates, we arrive at the desired estimates (3.11).
Next we prove stronger Carleman estimates with some strong assumption on V . 

Suppose that supp V ⊂ {x ∈ B+
r0

|r(x) ≥ ρ}. Let T̂0 = ln ρ. The application of Cauchy-
Schwarz inequality gives that∫

N

∂t|W |2e−t
√

b dtdθ ≤ 2(
∫
N

|∂tW |2e−t
√

b dtdθ) 1
2 (

∫
N

|W |2e−t
√

b dtdθ) 1
2 . (6.49)

For the left hand side of (6.49), applying the integration by parts shows that∫
N

∂t|W |2e−t
√

b dtdθ =
∫
N

|W |2e−t
√

b dtdθ −
∫
N

|W |2e−t∂t(ln
√

b)
√

b dtdθ. (6.50)

Since |∂t ln
√

b| ≤ Cet for |T̂0| large enough, we obtain that∫
N

∂t|W |2e−t
√

b dtdθ ≥ C

∫
N

|W |2e−t
√

b dtdθ. (6.51)

Taking (6.49) and (6.51) into consideration gives that

e−T̂0

∫
N

|∂tW |2
√

b dtdθ ≥
∫
N

|∂tW |2e−t
√

b dtdθ

≥ C

∫
N

|W |2e−t
√

b dtdθ. (6.52)

Notice that e−T̂0 = ρ−1. From (6.43), we deduce that

A2 ≥ Cβ2ρ

∫
N

|W |2e−tφ′ −3
√

b dtdθ. (6.53)

Thus, together with (6.43) and (6.53), we arrive at

A2 ≥ Cβ3
∫

|φ′′||W |2φ′ −3
√

b dtdθ + Cβ2
∫

|φ′||∂tW |2φ′ −3
√

b dtdθ
N N
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+ Cβ

∫
N

|φ′′||∇θW |2φ′ −3
√

b dtdθ + Cβ2ρ

∫
N

|W |2e−tφ′ −3
√

b dtdθ. (6.54)

Therefore, the Carleman estimates (3.13) follow from (6.54) as the deduction of (3.11)
in the previous arguments. �
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