The integral cohomology of the Hilbert scheme of points
on a surface

Burt Totaro

The Hilbert scheme X" of n points on a smooth complex surface X is a complex
manifold of dimension 2n which can be viewed as a resolution of singularities of the
symmetric product "X . The rational cohomology of X™ is known, but the integral
cohomology is more subtle. Any torsion in cohomology or other invariants could
conceivably be useful for rationality problems.

In this paper, we show that if X is a smooth complex projective surface with
torsion-free cohomology, then the Hilbert scheme X" has torsion-free cohomology
for every n > 0. (Since we know the Betti numbers of X[ by Géttsche (stated
in Theorem 1.1), this amounts to an additive calculation of H*(X[™,Z).) We also
show that if the integral Chow motive of X is trivial (a finite direct sum of Tate
motives), then the integral Chow motive of X[ is trivial for all n (Theorem 4.1).

There are some earlier results in this direction. When X is the complex pro-
jective plane, Ellingsrud and Strgmme found an algebraic cell decomposition of the
Hilbert scheme X™ which implies that its integral cohomology is torsion-free 6,
Theorem 1.1]. Markman showed that the integral cohomology of the Hilbert scheme
X[ is torsion-free for a smooth projective surface X with a nontrivial Poisson struc-
ture, or equivalently when the anticanonical bundle — K x has a nonzero section [11,
Theorem 1]. That includes the important case where X is a K3 surface, so that X[
is hyperkahler. In this paper, we show that the Poisson assumption can be dropped
completely. The fact that H*(X,Z) torsion-free implies H*(X [, Z) torsion-free
was shown (in fact for X of any dimension) in [12, Theorem 2.2]. Finally, for X a
smooth projective surface with first Betti number zero, Li and Qin gave an explicit
basis for H*(X[, Z) modulo torsion [10, Theorem 1.2].

Our proofs combine Markman’s ideas with the reduced obstruction theory for
nested Hilbert schemes of surfaces found by Gholampour and Thomas [7].

Several related questions remain open. Do the results of this paper extend
to compact complex surfaces, or even to noncompact complex surfaces? (For the
Hilbert square X2, the answer is yes, by [12, Theorem 2.2].) Second, say for a
smooth projective surface X, is the graded abelian group H*(X ], Z) determined
by the graded abelian group H*(X,Z) when H*(X,Z) has torsion? (We know that
the graded vector space H*(X 2, F5) is not determined by the graded vector space
H*(X,Fy), by [12, Example 2.5].) Analogously, is the integral Chow motive of X ™
determined by that of X? Finally, for a complex manifold X of any dimension, does
H*(X,Z) torsion-free imply H*(X [, Z) torsion-free?
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1 Betti numbers of the Hilbert scheme

We recall here the calculation of the Betti numbers of the Hilbert schemes of points
on a surface [9, equation (2.1)]. This was proved for smooth projective surfaces by
Gottsche and generalized to all smooth complex analytic surfaces with finite Betti
numbers by de Cataldo and Migliorini [4, Theorem 5.2.1].

Define the Poincaré polynomial of a space Y by p(Y,t) =3, b; (Y)t.

Theorem 1.1. For a smooth complex analytic surface X with finite Betti numbers,
the Betti numbers of the Hilbert schemes X[™ are given by the generating function

4
Sop(x g = T (1 = (—)2-2Hgh) D),

n>0 k>15=0

2 Gholampour-Thomas’s reduced obstruction theory

Gholampour and Thomas constructed the following “reduced” obstruction the-
ory for nested Hilbert schemes of surfaces [7, Theorem 6.3]. This is easy when
HY(X,0) = H*(X,0) = 0, and in general they show how to remove the contribu-
tions of those two cohomology groups.

I would guess that the same obstruction theory exists on any complex manifold
of dimension 2. If so, then the results of this paper would extend to compact com-
plex surfaces. Also, Gholampour and Thomas consider surfaces over the complex
numbers, but their proof works verbatim over any field.

For natural numbers n; > no, let @ be the projection

Xl xlr2l o x — xIml o xlnel,

with the two universal subschemes 21, Z5. (That is, the fiber of Z; over a point
(Ay, Ag) of X[l X2l g the 0-dimensional subscheme A; of X, and the fiber of
25 is the 0-dimensional subscheme Ay.) Write Z; and Zy for the ideal sheaves of Z;
and Z» on XM x X2l x X Finally, define

RHomy(Z1,1s) := Rm.RHom(Z1,Zs)
in the derived category of X[l x X2l

Theorem 2.1. Let X be a smooth geometrically connected projective surface over a
field k. For anyny > ng, the 2-step nested Hilbert scheme X M1:m2] (of 0-dimensional
subschemes of degree mi containing a subscheme of degree ny) carries a natural
perfect obstruction theory whose virtual cycle

(X € OHy (X102

has pushforward to the Chow groups of XMl x X2l equal to the Chern class
Cun s (RHOm (T1, T2)[1]).

We only need the case nq1 = ng of Theorem 2.1. That is:



Corollary 2.2. Let X be a smooth geometrically connected projective surface over
a field k. Then the Hilbert scheme X" carries a natural perfect obstruction theory

whose virtual cycle .
[X[n]]vlr e CHQn(X[n})

has pushforward by the diagonal morphism to X" x X[ equal to the Chern class
con(RHom(Z1,Z2)[1]).

Here C Ha, (X)) is Z times the class of X[, and it follows from Gholampour-
Thomas’s construction that the class of the virtual cycle in Corollary 2.2 is the
integer 1 times the class of X[, Namely, the perfect obstruction theory on X ["1-72]
in Theorem 2.1 can be written as

{r(xtml s x2hy g — Exth(T1,T2)o}" = Liyn ny)

in the derived category of X [m1:2] [7, Corollary 6.33]. Here Ly denotes the cotangent
complex of Y and p denotes the projection X [nina] o X 5 X[l SQince 7; and
T, are flat over X" x X[2] they restrict to ideal sheaves on X[™"2] x X which
we also call Z; and Zp. At a point (I1,I5) in X172 we define

Exty(T1,I)o = coker(H' (X, 0) = Extx (I1, I)),

where that map is associated to the given inclusion I; — I.
Here &ctllj(Il,Ig)o is the tangent sheaf to X2l Therefore, the perfect ob-

struction theory on X in Corollary 2.2 is
(Tx" & TXM - xtl(T1, To)0}Y — Ly

In this case, 71 and Z, are the same, and the map is the sum of two isomorphisms
TXWM - ¢ :ctll, (Z,T)p. So this perfect obstruction theory is equivalent to the obvious
one on the smooth variety X", and so the resulting virtual cycle is 1 times the
fundamental class of X",

3 Torsion-freeness

Theorem 3.1. Let X be a smooth complex projective surface. If H*(X,Z) is
torsion-free, then H* (X["], Z) is torsion-free for every n > 0.

More generally, for any prime number p, the same proof works p-locally. That
is, if H*(X,Z) has no p-torsion, then H*(X["| Z) has no p-torsion for every n > 0.

Proof. We follow Markman’s argument on Poisson surfaces, with the extra input of
Corollary 2.2 [11, proof of Theorem 1]|. Bott periodicity says that topological K-
theory is 2-periodic. The differentials in the Atiyah-Hirzebruch spectral sequence
from H*(X,Z) to K*(X) are always torsion [2, section 2.4]. Since H*(X,Z) is
torsion-free, the spectral sequence degenerates at the Ey page. Also, the abelian
group H*(X,Z) is finitely generated because X is a closed manifold. Therefore,
K*(X) is a finitely generated free abelian group, with K°(X) of rank be(X)+2 and
K1(X) of rank 2b1(X). In this situation, the Kiinneth formula holds for K-theory:

KX xY) 2 [K'X)®z K°'(Y)] & [K'(X) ®z K'(Y)]
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for every finite CW-complex Y [1, Corollary 2.7.15].

Let {z1,...,7m} be a homogeneous basis for K°(X)® K!(X). Write u + u" for
the involution on K° of a space that takes a vector bundle to its dual, also known
as the Adams operation 1~!. (For a coherent sheaf E on a smooth scheme Y, we
interpret EV to mean RHom(E, Oy) in the derived category of Y, so it defines the
same operation on K°(Y).) Consider the Kiinneth decomposition

m
I:Z$Z®€Z
=1

of the class of the universal ideal sheaf Z in K%(X x X[™). Here the e; are some
(homogeneous) elements of K*(X[). Likewise, write

m
D)V =) e
i=1

in KO(X" x X) for some (homogeneous) elements ¢; € K*(X™). Write y: K*(X) —
Z for pushforward to a point (which is defined because X is a compact complex
manifold). For a coherent sheaf E, this is given by x(F) = Zj(—l)jhj(X, E).

Write m;; for the projection from X ("] x X x X[ to the product of the ith and
jth factors. Then we have the equality in KO(X[" x X))

m m
(m13)+[m1a(2)Y @ 753(T)] = Y Y (mis)a(ef ® (wiz)) @ ;).
i=1 j=1
For z,y € K*(X), define (z,y) = —x(zy) € Z, the sign being conventional for the
Mukai pairing. Using the projection formula, we have

m m
(mia)u[mia(T)Y ©F m3(T)] = =Y Y (i, 25)e; ® e

i=1 j=1
We need Markman’s definition of the Chern classes of an element of K!(Y),
say for a finite CW complex Y [11, Definition 19]. First, identify K'(Y) with
IN(O(EYJF), where Y+ means the union of ¥ with a disjoint base point, and K is
the reduced K-theory of a pointed space. For u € K'(Y) and i > 1/2 congruent to
1/2 modulo Z, define the Chern class ¢;(u) as the image in H*(Y, Z) of ¢;11/2(1),
where % is the corresponding element of K 0(xY ™), and we identify H?(Y,Z) with
H?* (XY * Z). For u,v € K'(Y), Markman showed that the Chern classes of
uv € K°(Y) can be written as polynomials with integer coefficients in the even-

dimensional classes ¢;(u)c;(v) [11, Lemma 21].
By Corollary 2.2, it follows that the diagonal A € H* (X" x X[ Z) is given

by
A= an<z Z(mi,xj)e; ® ej>.

i=1 j=1
By the formulas for the Chern classes of direct sums and tensor products of elements
of K°, together with the result above on Chern classes of the product of two elements
of K1, it follows that A can be expressed as a sum

AZZ&j@ﬁj,

jeJ
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where each a; and (3; is a polynomial with integer coefficients in the Chern classes
of er,...,em, €, ... €.
Viewed as a correspondence, the diagonal acts as the identity on integral coho-

mology. That is, for any element v € H*(X[™ Z), we have

u= (p1)«(A - py(u)).

Combining this with the decomposition of the diagonal above, we find that u is a
Z-linear combination of the elements «;:

u=> (/X[n] u5j>aj.

jeJ

If u is torsion, then all the intersection numbers [uf; € Z are zero, and so u = 0.
That is, H*(X [n], Z) is torsion-free, as we want. O

4 Integral Chow motive

Finally, we show that if the Chow motive with integral coefficients of a smooth
projective surface X over a field k is trivial (a direct sum of Tate motives), then
the same holds for all Hilbert schemes X[™. The analogous statement with rational
coefficients is known, by de Cataldo and Migliorini’s general description of the
motive of X[ with rational coefficients [5, Theorem 6.2.1].

The Chow motive with integral coefficients is a direct sum of Tate motives for
every smooth complex projective rational surface, but also for some Barlow surfaces,
which are of general type [3, Proposition 1.9], [13, Theorem 4.1].

Theorem 4.1. Let X be a smooth projective surface over a field k. Let R be a PID
of characteristic zero, meaning that Z is a subring of R. If the Chow motive of X
with coefficients in R is a finite direct sum of Tate motives R(a), then the Hilbert
scheme XM has the same property for every n > 0.

Proof. By Gorchinsky and Orlov, since the Chow motive of X with coefficients in
R is a finite direct sum of Tate motives and Z is a subring of R, the K-motive of X
with coefficients in R is a finite direct sum of K-motives of points [8, Proposition
4.1]. Tt follows that the Kiinneth formula holds for algebraic K-theory of products
with X, meaning that for every smooth projective variety Y, the product map

Ko(X) Xz Ko(Y) Xz R — K()(X X Y) Xz R

is an isomorphism.

Given that, the proof of Theorem 3.1 produces elements e;, e, in Ko(X "o R
using the Kiinneth formula on X x X" The argument then shows that the diagonal
in the Chow group CH?"(X M« X [”]) ® R is completely decomposable, as a sum
Zj a; ® B;. Using that R is a PID, it follows that the Chow motive of X[ with
coefficients in R is a finite direct sum of Tate motives R(a) [13, proof of Theorem
4.1]. 0



References

1]
2]

[3]

[10]

[11]

[12]

[13]

M. Atiyah. K-theory. W. A. Benjamin, New York (1967).

M. Atiyah and F. Hirzebruch. Vector bundles and homogeneous spaces. Proc.
Symp. Pure Math. 3, 7-38. Amer. Math. Soc. (1961).

A. Auel, J.-L. Colliot-Thélene, and R. Parimala. Universal unramified coho-
mology of cubic fourfolds containing a plane. Brauer groups and obstruction
problems (Palo Alto, 2013), 29-56. Birkh&auser (2017).

M. A. de Cataldo and L. Migliorini. The Douady space of a complex surface.
Adv. Math. 151 (2000), 283-312.

M. A. de Cataldo and L. Migliorini. The Chow groups and the motive of the
Hilbert scheme of points on a surface. J. Alg. 251 (2002), 824-848.

G. Ellingsrud and S. Strgmme. On the homology of the Hilbert scheme of points
in the plane. Invent. Math. 87 (1987), 343-352.

A. Gholampour and R. P. Thomas. Degeneracy loci, virtual cycles and nested
Hilbert schemes. I. Tunisian J. Math. 2 (2020), 633-665.

S. Gorchinskiy and D. Orlov. Geometric phantom categories. Publ. Math. IHES
117 (2013), 329-349.

L. Gottsche. Hilbert schemes of points on surfaces. Proceedings of the Interna-
tional Congress of Mathematicians (Beijing, 2002), v. 2, 483-494. Higher Ed.
Press, Beijing (2002).

Wei-Ping Li and Zhenbo Qin. Integral cohomology of Hilbert schemes of points
on surfaces. Comm. Anal. Geom. 16 (2008), 969-988.

E. Markman. Integral generators for the cohomology ring of moduli spaces of
sheaves over Poisson surfaces. Adv. Math. 208 (2007), 622-646.

B. Totaro. The integral cohomology of the Hilbert scheme of two points. Forum
Math. Sigma 4 (2016), €8, 20 pp.

B. Totaro. The motive of a classifying space. Geometry and Topology 20-4
(2016), 2079-2133.

UCLA MATHEMATICS DEPARTMENT, Box 951555, Los ANGELES, CA 90095-1555
TOTARO@QMATH.UCLA.EDU



	Betti numbers of the Hilbert scheme
	Gholampour-Thomas's reduced obstruction theory
	Torsion-freeness
	Integral Chow motive

