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Abstract. Secure installation of Internet of Things (IoT) devices
requires configuring access control correctly for each device. In order
to enable correct configuration Manufacturer Usage Description (MUD)
has been developed by Internet Engineering Task Force (IETF) to auto-
mate the protection of IoT devices by micro-segmentation using dynamic
access control lists. The protocol defines a conceptually straightforward
method to implement access control upon installation by providing a list
of every authorized access for each device. This access control list may
contain a few rules or hundreds of rules for each device. As a result, val-
idating these rules is a challenge. In order to make the MUD standard
more usable for developers, system integrators, and network operators,
we report on an interactive system called MUD-Visualizer that visualizes
the files containing these access control rules. We show that, unlike man-
ual analysis, the level of the knowledge and experience does not affect the
accuracy of the analysis when MUD-Visualizer is used, indicating that
the tool is effective for all participants in our study across knowledge and
experience levels.

Keywords: Usable security · Internet of Things · Network security ·
Usable access control · IoT · MUD · Manufacturer Usage Description

1 Introduction

The forecast for the number of connected IoT devices in 2025 is now raised to
30.9 billion [13], yet their (in)security is still a major concern [16]. There is a
need for secure onboarding meaning that the device is secured as soon as it is
connected to the network. One major component of secure onboarding both for
cyber-physical systems and IoT is firewall configuration. Without access control,
IoT devices are susceptible to participate in DDoS attacks [10], are vulnerable to
ransomware [24], and enable information exfiltration from within networks [6].
It is the nature of botnets that the subverted devices need to be controlled by
the attackers’ command and control (C2) infrastructure [3]. Secure onboarding
that implements allow-list access control limits exposure of devices to attacks
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and prevents any subverted device from connecting to the attackers’ C2 points.
Unlike traditional botnets, the control servers in IoT are highly dynamic so the
typical response of identifying then block-listing is infeasible [21].

To this end, the Internet Engineering Task Force (IETF) has developed the
Manufacturer Usage Description (MUD); a standard that provides an isolation-
based defense for IoT devices using dynamic access control [12]. The urgency
and scale of the need for such a solution are shown by the fact that MUD is also
a part of the National Institute of Standard and Technology (NIST) security
for IoT initiatives [5]. In addition, the Department of Commerce has a working
group to integrate the Software Bill of Materials (SBoM) initiative with MUD1

and the IETF has a proposed standard integrating SBoM with MUD2. MUD
can also be used for mitigating DDoS attacks in the Fog [1].

MUD relies on manufacturers for an Access Control List (ACL) in the form
of a MUD-File. A MUD-File defines the allowed and expected behaviors of the
associated device. The clear implication is that developers must be able to write
clear and correct MUD-Files and network operators must be able to read and val-
idate the MUD-Files to ensure that unnecessary communications, either locally
or over the Internet, are not allowed. These are difficult problems, and like many
security tasks, are not well aligned with human cognitive abilities [15].

In this work, we report on the usability analysis of the MUD-Visualizer [2];
a tool that is intended to support developers and network operators in evalu-
ating overlaps, duplication, and possible conflicts in MUD-Files. We report on
the design and results of our human subjects research that we conducted to
investigate the following research questions:

RQ1: How does security knowledge affect the accuracy of the analysis of the
MUD-Files?

RQ2: How does security experience affect the accuracy of the analysis of the
MUD-Files?

RQ3: To what extent does level of knowledge and experience affect the
accuracy of the analysis of the MUD-Files?

2 The MUD Standard

In this section, we briefly review the MUD standard for those readers who are
unfamiliar with MUD. MUD is comprised of six main components: MUD-File
which is a YANG-based JSON file (RFC 7951) created and digitally signed by
the manufacturer. It embeds the behavioral profile of the IoT device in an access
control list. MUD-Files should be hosted on manufacturer’s MUD file server.
The location of these files on the Internet is the MUD-URI which is stored
on the IoT device. Upon connection of the device to a MUD-compliant network,
the device sends the embedded MUD-URI to the Authentication, Authorization,

1 https://www.ntia.doc.gov/files/ntia/publications/ntia practices model and
summary 19-02-20 0.pdf.

2 https://tools.ietf.org/html/draft-lear-opsawg-mud-sbom-00.
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and Accounting, i.e., AAA server. The MUD-Manager is the core of MUD
architecture. After receiving the MUD-URI, it will retrieve the MUD-File from
the manufacturer’s MUD file server and communicates the MUD-File rules to
the AAA server [12]. The Network Access Device (NAD) (i.e., the router)
is equipped with an internal firewall that is configured by the AAA server. MUD
provides seven abstractions that can be used to define the behavior of and con-
straints on an IoT device in a MUD-File. The domain-name abstraction is
used to enforce restrictions on cloud access. The local-networks abstraction
defines the communication of a device with other devices on the network. With
the manufacturer abstraction, the authority component (i.e., domain name)
of a device is matched against the MUD-URI of another node which restricts
devices’ access to specific manufacturers. Similarly, the same-manufacturer
abstraction defines when devices built by one manufacturer can communicate
with each other but not with devices built by other manufacturers. Both of the
controller and my-controller abstraction are used when devices use a con-
troller to communicate. Lastly, the model abstraction constrains a device to
communicate only with other instances of the same device (e.g., only lightbulbs
interact) [12].

To address the human factors challenges in the analysis of the MUD-Files,
Andalibi et al. [2] proposed and implemented MUD-Visualizer with the goal of 1)
protocol checking to avoid formatting errors in the MUD-File to prevent coding
errors 2) identifying internal inconsistencies and inefficiencies to prevent logic
errors 3) enabling both manufacturers and sysadmins to review and validate the
MUD-Files by processing the abstractions’ access control rules and visualizing
them. This processing is performed by encoding the merged Access Control
Entries (ACEs) into a tree (i.e., ACE Tree) followed by pruning that tree to
remove the duplicate ACEs that are generated by merging the MUD abstractions
in two or more MUD-Files [2]. MUD-Visualizer can be deployed either as a stand-
alone app or as a web app. It is scalable, open-source, and publicly available
online on GitHub [2].

3 Related Work

Currently there are five implementations of MUD: Cisco MUD3, NIST MUD4,
osMUD5, Masterpeace MUD (closed-source), and CableLabs Micronets MUD6.
NIST details the efficacy of these implementations against network-based attacks
[5]. Regarding the MUD-Files, mudmaker7 is a web app specifically for creat-
ing MUD-Files. For devices that are not MUD-compliant, Hamza et al. created
MUDgee that uses the network traffic of the target IoT device to generate its
MUD-File [8]. Beside MUD-Visualizer, which is the focus of this paper, mudpp8

3 https://github.com/CiscoDevNet/MUD-Manager.
4 https://tsapps.nist.gov/publication/get pdf.cfm?pub id=927289.
5 https://github.com/osmud/osmud.
6 https://github.com/cablelabs/micronets-mud-tools.
7 https://www.mudmaker.org.
8 https://github.com/iot-onboarding/mudpp.
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(MUD Pretty Printer) is another tool that is developed for summarizing the
ACL in the MUD-File. However, since it does not perform any analysis on the
interaction between the MUD-Files we did not consider it for our study.

Usable access control has long been a challenge in usable security. An early
study on the mitigation of human error in access control management was done
by Maxion and Reeder [14]. They found that visualization improves the rate of
completing the assigned task by a factor of three. The error in these completed
tasks was also reduced by up to 94%. This study is particularly relevant to our
work here because, like Maxion and Reeder, we selected computer and network
science students with significant expertise.

The study conducted by Vaniea et al. [22] also investigated the difficulty of
translating policy rules into access control rules where they recommend visual
feedback. They implemented SPARCLE [22] to present the data in a table as a
commonly used method of information visualization. The Expandable Grid devel-
oped by Reeder et al. [18] for improving file permissions in Windows XP is
another example in this category.

Graph Visualization was previously used by [11] which is more similar to
MUD-Visualizer’s flow-based visualization [2]. Another study that concludes
the importance of visualization is the work by Xu and colleagues [23]. They
investigate the uncertainties in access control decisions and found that a lack of
feedback forced the administrators who intend to resolve access control conflicts
into a trial and error mode. Moreover, Smetters et al. [20] found that limita-
tions in the UI would lead to the reluctance to change the access control settings
which applies to MUD deployment as well; manual evaluation of the interaction
between multiple MUD-Files is a difficult and time-consuming task for system
administrators.

Erbenich et al. [7] studied the efficacy of the link visualization to better
protect the end-users against phishing. They break down the URL and only
visualize the most critical part of it for successful phishing detection. The same
concept was used in MUD-Visualizer where only the summary of the MUD-Files
was presented to the users. In another work, Scott and Ophoff [19] conducted
a user study to study the effectiveness of information security knowledge in
decision making. By analyzing the knowledge-behavior gap, they found that a
deeper technical understanding of cyber threats will help the user to effectively
derive a more cautious and preventing behavior. This motivates one of our goals;
to find out whether MUD-Visualizer can help the users with higher knowledge
and expertise in the analysis of the MUD-Files.

4 Method

Our survey incorporated two groups of participants: the first group used MUD-
Visualizer for the analysis and the second group directly analyzed plain-text
MUD-Files (hereinafter referred to as mudviz and plain groups respectively).
The plain group acted as a control group to measure the efficacy of the mudviz
group. We asked a total of 81 questions, including three screening questions,
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five demographic questions, twenty-three questions related to the analysis of
the MUD-Files (main experiment), forty expertise questions, and ten usability
questions from the participants.

Our screening questionnaire and recruitment were designed to ensure
that the participants have the required knowledge for analyzing a MUD-File.
Before inclusion, participants had to show the knowledge of fundamentals of
computer networking (i.e., understanding IP, Port, and access control) through
manual parsing of components of a MUD-File. We focused on recruitment in an
advanced computer networking course.

The demographic questions contained questions about age, gender, edu-
cation, employment status, and income motivated from the study about the
privacy for WEIRD populations [9].

The core of the experiment design was 23 questions about the analysis
of the MUD-Files. We first asked the participants about the remote servers or
local devices allowed for a specific device given its MUD-File. This included two
questions about the number of nodes devices allow-listed, seven questions about
the name of these allowed nodes, and one question about between-node commu-
nication. We also included thirteen questions about the Transport and Network
layer protocols that are allow-listed for use, e.g. IP version, Port number, TCP
vs UDP.

The post-experiment questions comprised 50 questions in two categories:
forty expertise questions incorporating a set of computer expertise questions
from [17] and ten usability questions from the System Usability Scale (SUS) [4].

5 Results

31% of our screening survey respondents (24 out of 76) failed to answer one or
more of the screening questions and were not considered for the main study. The
participants in our study were skewed with respect to gender (84.6% male,
15.4% female). Out of the total of 52 participants, 41 were below the age of 30
years. Over 70% were students, with 50 participants having at least a technical
Bachelors’s degree. This includes only the participants who passed the screening
questions. Participants were split equally between the two groups, mudviz and
plain.

In order to evaluate participants’ security and computer expertise,
they were presented with a set of 13 question categories. These questions were
obtained from the set of computer expertise questions from [17]. For measures of
knowledge, these were knowledge-based questions on (i) phishing (Kphish) (ii)
certificates (Kcert) (iii) SQL commands (Ksql) (iv) intrusion detection systems
(Kids) (v) port 80 (K80) (vi) Website markers for security (Kweb) (vii) defining
IoT (Kiot) and (viii) access control (Kac). For single response questions, if the
participants’ answers matched the correct responses, these variables were coded
as 1, otherwise 0. For multiple response questions (Kphish and Kcert), if the
participants’ got a sum of correct values above the median in each category, the
variables were coded as 1, otherwise 0. Since, all participants got responses to
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Kiot correct, these responses were removed in calculating the covariance matrix
for factor analysis.

We then performed a factor analysis on the remaining seven variables
to create a TotalKnowledge variable. A scree plot and a test of hypothesis
showed that a factor of one was sufficient to measure knowledge. This factor,
TotalKnowledge, was a combination of four factors, calculated by the equation
below:

TotalKnowledge ← (−0.5 ∗ Kcert) + (0.6 ∗ Ksql) + (0.6 ∗ Kids) + (0.7 ∗ K80)

TotalExperience was similarly a combination of weighted factors, given by the
equation below:

TotalExperience ← (0.5 ∗ Eyears) + (0.4 ∗ Elang) + (0.4 ∗ Efreq)

That is, for the measure of experience, the remaining five questions on expe-
rience were evaluated - (i) prior computer expertise (Eexp) (ii) prior security
expertise (Etech) (iii) programming languages known (Elang) (iv) years of expe-
rience working in security (Eyears) and (v) frequency of dealing with security
problems (Efreq). Since the answers to these questions cannot be evaluated
as correct/incorrect, we normalized each of the five variables and performed a
second-factor analysis to create a TotalExperience variable. A scree plot and a
test of hypothesis showed that a factor of one was sufficient to measure knowl-
edge.

We then evaluated the Effect of Knowledge on Accuracy by first cal-
culating TotalKnowledge and TotalExperience. Accuracy was measured as a
summation of the correct answer to the 23 questions in the experiment, providing
a raw accuracy percentage for each participant.

In order to answer RQ1, we first performed a linear regression to measure the
effect of the independent variable TotalKnowledge on the dependent variable
Accuracy for both groups (Fig. 1a and 1b). Unsurprisingly, knowledge has a
positive effect on the accuracy of the analysis of the MUD-Files. We also found
that the effect of TotalKnowledge on Accuracy is significant in the plain group
(b = 7.689, p − value = 0.0164) but not for the mudviz group (b = 2.148, p −
value = 0.406). Thus, participants in the mudviz group seemed to have the same
level of accuracy across computer and security knowledge levels. However, this
is not the case for plain text files. Participants with greater TotalKnowledge
seemed to have significantly high Accuracy in the plain group. This suggests
that normally a high level of security expertise is needed to understand textual
MUD-Files, but that an effective visualization can result in accuracy by moderate
experts indistinguishable from that of the most expert.

The results of a linear regression conducted on each of the factors indicate
that none of the factors in the mudviz have a significant effect on Accuracy, but
some factors in the plain group are significant. Table 1 shows the regression of
individual knowledge factors for both groups. We see that the Kphish, Kids, K80,
and, Ksql are more strongly significant than the other factors in contributing to
Accuracy.
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To answer the first part of RQ3, we analyzed whether TotalKnowledge
can be divided into sub-groups of knowledge and expertise respectively; and
how these interact with Accuracy. We sorted the participants from each of the

Table 1. Regression analysis for individual knowledge factors versus accuracy in MUD
analysis (showing significant components only).

Factors Mudviz Plain

coefficient p-value coefficient p-value

Kphish 7.412 0.136 12.847 0.0445 *

Kids 1.967 0.624 11.594 0.0413 *

K80 3.370 0.411 9.576 0.0968 .

Ksql 1.733 0.701 11.957 0.0348 *

TotalKnowledge 2.148 0.406 7.689 0.0164 *
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Fig. 1. (a) and (b) show the scatter plot of Accuracy against TotalKnowledge. (c) and
(d) show Accuracy for four groups, indicating that the effect of the MUD-Visualizer is
consistently positive across knowledge groups.
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mudviz and plain groups in ascending order based on their TotalKnowledge
with 13 participants in each sub-group. A signed Wilcoxon Rank-sum test indi-
cated significant difference between the four sub-group categories, with p-values
between the low and high groups of less than 0.001. We conducted an ordinal
logistic regression between the two categories (low and high) for each of the
two groups for TotalKnowledge against Accuracy, (a) Mudviz and (b) Plain.
As seen in Fig. 1c, the accuracy in correct interpretation of the MUD-Files did
not vary significantly between high and low knowledge categories in the Mudviz
group (b = −0.018, p − value = 0.663). However, in case of the plain group
(Fig. 1d) TotalKnowledge played a significant role in increasing the accuracy
(b = −0.066, p − value = 0.054). The accuracy was consistently higher in the
mudviz group compared to the plain group in all cases.

To investigate the Effect of Experience onAccuracy (RQ2) we began with
a linear regression to measure the effect of independent variable TotalExperience
on Accuracy for the both groups. Figure 2a and 2b show the scatterplot and
the regression lines for each of the mudviz and plain groups respectively.
Unsurprisingly, experience has a positive effect on Accuracy in case of mudviz.
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Fig. 2. (a) and (b) show the scatter plot of Accuracy against TotalExperience. (c) and
(d) show Accuracy for four groups, indicating that the effect of the MUD-Visualizer is
consistently positive across all experience groups.
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Yet there appears to a weak negative effect on Accuracy in case of plain in
Fig. 2d, which we delve into in Table 2 below.

TotalExperience is not significant for Accuracy in either case of the
plain group (b = −1.879, p − value = 0.687) or the mudviz group (b =
2.018, p−value = 0.425); although differences in the distribution of the plain are
apparent. Thus, participants in the group that were presented with the MUD-
Visualizer seemed to have the same level of accuracy across computer and secu-
rity experience levels.

Table 2. Regression analysis for individual experience factors versus accuracy in MUD
analysis.

Factors Mudviz Plain

coefficient p-value coefficient p-value

Eexp 1.187 0.393 6.505 0.00299 **

Efreq 1.789 0.259 −4.797 0.18

Eyears 0.345 0.899 −0.050 0.989

TotalExperience 2.018 0.425 −1.879 0.687

Taking a closer look at the experience factors by conducting a linear regression
for each of the factors, we see that none of the factors in the mudviz group affect
Accuracy significantly, but the Eexp factor in the plain group does. In that case,
Eexp is significant and positive. Table 2 shows the regression of individual experi-
ence factors for both groups. Eexp is a set of Booleans from querying if participants
had experience with any of the following: designing a website, registering a domain
name, using SSH, configuring a firewall, creating a database, installing a computer
program, andwriting a computing program.The intriguing but not significant neg-
ative effect on Accuracy is due to Efreq (frequency of handling security incidents)
and Eyears (years of experience working in the security field). It is possible that
this may result from less experienced people defining security incidents (e.g., spam
vs. an intrusion) or being in the security field differently (e.g., total years in course-
work vs. years in incident response not DevOps).

To answer the second part of the RQ3, we analyzed whether
TotalExperience can be divided into sub-groups of knowledge and expertise
respectively, and how they affect the Accuracy. We sorted the participants
from each of the mudviz and plain groups in ascending order based on their
TotalExperience. Again, we considered 13 participants in each sub-group. A
signed Wilcoxon Rank-sum test showed that the four sub-group categories are
significantly different, with p−values between each of the low versus high groups
being less than 0.001. We conducted an ordinal logistic regression between the
two categories (low and high) for each of the two groups of TotalExperience
against Accuracy, (a) Mudviz (b) Plain. The results illustrated that for Mudviz
(b = 2.018, p − value = 0.425), the accuracy in interpreting the MUD-File cor-
rectly was the nearly the same for low and high TotalExperience (Similar to
TotalKnowledge).
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6 Conclusions

In this work, we sought to evaluate the efficacy of MUD-Visualizer for correct
evaluation of MUD-File by participants with some expertise. We report on the
increase in efficacy among all participants, showing that the difference in the
performance of network engineers with and without knowledge of security or
security expertise was significant. More-so, accuracy of participants using the
MUD-Visualizer showed knowledge of security to be insignificant (among these
participants). Given the difficulty of providing network engineers with security
expertise, having a visualization that decreases the cost of inexperience argues for
the importance of human factors in standards. Beyond that we found evidence
that interpretation of security questions may be having a subtle impact on the
results; those with less experience may not be reporting experience with the same
baseline as those with more. This phenomena is worthy of additional research,
although in this case any impact would strengthen the results.
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