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Abstract—Internet of drones (IoD), which deploys several
drones in the air to collect ground information and send them
to the IoD gateway for further processing, can be applied in
traffic surveillance and disaster rescue. The performance of IoD
is greatly affected by drones’ battery capacities. We hence utilize
the energy harvesting technology to charge the batteries and the
wireless power control to adjust the drone wireless transmission
power in order to address this challenge. In our work, we
investigate the joint optimization of power control and energy
harvesting control to determine each drone’s transmission power
and the transmitted energy from the charging station in time-
varying IoD networks. Our objective is to minimize the long-
term average system energy cost constrained by the drones’
battery capacities and quality of service (QoS) requirements. A
Markov Decision Process (MDP) is formulated to characterize
the power and energy harvesting control process in time-varying
IoD networks. A modified actor-critic reinforcement learning
algorithm is then proposed to tackle our problem and its
performance is demonstrated via extensive simulations.

Index Terms—Internet of drones (IoD), power control, en-
ergy scheduling, energy harvesting, deep reinforcement learning,
actor-critic, quality of service (QoS).

I. INTRODUCTION

Internet of things (IoT) interconnects billions of smart
devices to exchange network information and provisions var-
ious applications such as smart industry, city, transportation,
and healthcare [1]. Drones, also known as unmanned aerial
vehicles (UAVs), are used for a growing number of purposes
such as environment monitoring, disaster investigation and
surveillance [2], [3]. Internet of drones (IoD) utilizes drones
as the IoT devices to provision applications such as object
tracking and disaster rescue [4]. One of the fundamental
IoD applications is the sensing service (i.e., data collection
service) where several drones are deployed in the air to collect
the environmental information (e.g., temperature, air pollutant
index, and ground pictures). The collected data are then sent
to the IoD gateway for further processing.

IoD has been utilized for a growing number of applications.
However, its performance is greatly limited by the drone’s
battery capacity. Many IoD applications are deployed in
hard-to-reach or hazardous areas, and so it is impractical to
replace batteries. To address this challenge, energy-efficient
IoD communication system should be designed to reduce the
drone’s energy consumption. Adjusting the drone’s wireless
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transmission power can help reduce the energy consumption
of transmitting the collected IoD data [5]. It is thus important
to investigate the wireless power control.

Energy harvesting can also be a good alternative to prolong
the lifetime of drone batteries [6]. Energy harvesting may use
the ambient energy sources, e.g., solar and wind, to harvest
energy. However, the ambient sources may not guarantee the
quality of service (QoS) requirements (e.g., minimum data
transmission time) because they are random and uncertain.
Hence, controllable energy sources, e.g., radio frequency (RF)
signals from a power station, can be considered to supply
energy on demand [7]. We hence utilize a charging station
to charge drone batteries to help maintain drones’ operations,
where the radio signals are sent from the charging station
to carry energy in the form of electromagnetic radiation.
Then, the energy harvesting device of each drone converts the
radio signals to its battery energy [8]. The harvested energy
depends on the transmitted energy of the charging station
and the path loss between drones and the charging station
[9]. Hence, energy harvesting control, which determines the
transmitted energy from the charging station, is important to
be investigated.

The dynamic and time-varying IoD networks also pose a
great challenge of wireless power control and energy har-
vesting control. The varying network states (e.g., collected
data, battery level, and QoS requirement) at different time
epochs require different power control and energy harvesting
control policies to achieve the optimum performance. In or-
der to characterize the time-varying IoD network, a Markov
decision process (MDP) can be utilized [10]. It is usually
difficult to obtain the complete and accurate information of
the MDP model in the unknown and dynamic IoD networks.
We hence design a deep reinforcement learning algorithm to
address the MDP model, i.e., the sequential decision-making
problem in time-varying IoD networks [11]. Specifically, the
reinforcement learning is a learning process of trials and errors
that interacts with the network environment by observing
network states (i.e., collected data and battery levels) and then
taking actions (i.e., determining the wireless power control
and energy harvesting control policies). Deep reinforcement
learning uses the deep neural networks (DNNs) to approximate
the state-action values in measuring the possible system cost
brought by each state-action pair [11].

Motivated by the above analysis, we investigate the wireless
power control and energy harvesting control in time-varying
IoD networks for the sensing service. Specifically, we try to
optimize each drone’s wireless transmission power and the
transmitted energy from the charging station to each drone at
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each time epoch with the objective to minimize the long-term
average system energy cost constrained by the drone battery
capacities and the QoS requirements. We further adopt an
MDP to model this problem and propose a deep reinforcement
learning algorithm to solve it.

The rest of this paper is organized as follows. Section II
summarizes the related works. Our energy harvesting aided
IoD architecture is described in Section III. Then, the joint
optimization of the wireless data transmission power control
and energy harvesting control is formulated in Section IV.
In Section V, we propose a deep reinforcement learning
algorithm to address the joint optimization problem. The
simulation results are presented and analyzed in Section VI.
Finally, Section VII concludes this paper.

II. RELATED WORKS

The IoD network was proposed in [4], in which a conceptual
model of the IoD system’s organization, the features, and
the implementation are described in detail. The authors also
demonstrated that the IoD network can be applied for package
delivery, disaster rescue, and traffic surveillance. Wazid et al.
[12] proposed a lightweight user authentication scheme in an
IoD network for the users to access data from drones and
demonstrated that their scheme provides better security than
existing schemes. Bera et al. [13] proposed a blockchain based
secure framework for data management in IoD networks,
which provides better security and also incurs less commu-
nication and computation overheads. Yao and Ansari [14]
designed an online algorithm to address the joint optimization
of task allocation and flying speed control in an IoD network to
minimize the drone’s journey completion time during which a
drone generates computing tasks, offloads them to a fog node,
and visits different locations of interest.

Energy harvesting is a prominent technology to charge bat-
teries. Altinel et al. [15] proposed Markov energy model to an-
alyze the energy outage, shortage and service loss probabilities
of energy harvesting aided communication systems. Nguyen et
al. [16] designed an energy-harvesting-aware routing protocol
for IoT networks to improve the lifetime of IoT devices under
variable traffic load and energy availability conditions. Yao
and Ansari [17] proposed a Stackelberg game in cached-
enabled energy-harvesting-aided IoT networks to incentivize
the charging station to transmit energy to the IoT devices.
Jawad et al. [18] utilized the magnetic resonant coupling
(MRC) technology for the wireless power transfer to charge
the drone batteries. They demonstrated that the battery life of
the drone was extended from 30 to 851 minutes.

The above works do not consider wireless power control in
reducing the energy consumption of IoT/IoD networks. Yao
and Ansari [19] jointly optimized the power control and fog
resource provisioning in fog-aided IoT networks to minimize
the system cost while guaranteeing QoS requirements. Lee and
Hong [20] proposed a power control scheme for secure device-
to-device communication in IoT networks to improve system
energy efficiency. Mach and Becvar [21] proposed a distributed
power control algorithm to increase the delivery ratio of com-
putation results constrained by the QoS requirements in mobile

edge networks. Yao and Ansari [5] investigated the power
control in IoD networks for the data collection service to
minimize the drone’s energy consumption while satisfying the
QoS requirement. However, none of the above works consider
the joint optimization of power control and energy harvesting
control in IoD networks. Challita et al. [22] proposed a deep
reinforcement learning algorithm to optimize the transmission
power, path, and cell association of each UAV to minimize the
interference level and the wireless transmission delay in multi-
UAV-aided networks. Pace et al. [23] proposed a cognitive
transmission power control scheme in IoT networks by a muli-
agent Q-learning algorithm where each IoT sensor learns its
own power control policy.

Deep reinforcement learning has been utilized in time-
varying IoT/IoD networks to improve the performance of
network strategies [24]. Lei et al. [25] proposed a joint
computation offloading and multiuser scheduling problem in
IoT edge system to minimize the average weighted sum
of delay and power consumption. They further designed a
deep reinforcement learning algorithm to solve this joint
optimization problem. Yao and Ansari [26] investigated the
content placement problem in time-varying cache-enabled IoT
networks to minimize the data transmission delay constrained
by the cache storage capacity and IoT data freshness. Liu et
al. [27] proposed a data collection and secure sharing scheme
by combining Ethereum blockchain and deep reinforcement
learning to create a reliable and safe IoT environment. How-
ever, none of the above works consider utilizing deep re-
inforcement learning to solve the power control in energy
harvesting aided IoD networks.

Our preliminary results of wireless power control in energy
harvesting aided IoD networks by deep reinforcement learning
was presented at ICC2020 [28]. We extend our preliminary
work by additionally consider the energy harvesting control
(i.e., determining the amount of transmitted energy to each
drone) to further reduce our system energy cost. In this work,
we investigate the joint optimization of wireless power control
and energy harvesting control in time-varying IoD networks
to minimize the long-term average system cost constrained
by the drone battery capacities and QoS requirements. A deep
reinforcement learning algorithm is proposed to solve this joint
optimization problem.

III. SYSTEM MODEL
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Fig. 1. Data collection in energy harvesting aided IoD.

Consider our system model with N drones hovering in the
flying plane at the height of H , as shown in Fig. 1. We denote
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the set of drone indexes as N = {1, 2, ..., N}. The drones
sense the environmental data (e.g., pictures and videos) at
different locations and send them to the IoD gateway. The
IoD gateway can further process the sensed data and send
them to a monitor or users who request these data. Owing
to the limited drone battery capacities, a charging station is
utilized to charge the drone batteries in order to support their
operations. Specifically, the drone battery can harvest energy
by converting the received radio frequency (RF) signals from
the charging station to power [29]. The charging station can
use the license-free frequency bands (e.g., 915 MHz [30] and 5
GHz [31]) for energy transfer and provide controllable energy.

We assume the network operates at discrete time epochs
and the network states remain static within a time epoch but
vary over different ones [32]. At each time epoch, the IoD
gateway determines each drone’s wireless transmission power
to transmit its sensed data and the transmitted energy from the
charging station to each drone. In our work, we characterize
the QoS requirement as the minimum data transmission time
[19].

A. Drone Data Transmission Delay

The drone’s data transmission rate depends on the wireless
channel between the drone and the IoD gateway. In our work,
we adopt the widely used probability model which assumes
that the signal between the drone the IoD gateway is either
Line-of-Sight (LoS) with probability PrLoS or Non-Line-of-
Sight (NLoS) with probability PrNLoS [33]. The probabilities
PrLoS and PrNLoS can be calculated by

PrLoS =
1

1 + α exp(−β[ 180π arcsin(Hd )− α])
, (1)

and
PrNLoS = 1− Pr(LoS), (2)

respectively. α and β are environment-related (e.g., rural and
urban) constants [33], H is the drone’s flying height, and d is
the distance between the drone and the IoD gateway, as shown
in Fig. 1. The path losses for LoS signals PLLoS and NLoS
signals PLNLoS are calculated by [33]

PLLoS = 20 log10(
4πfcd

c
) + ξLoS , (3)

and

PLNLoS = 20 log10(
4πfcd

c
) + ξNLoS , (4)

where fc is the carrier frequency, c is the speed of light, and
ξLoS and ξNLoS are environment-related constants. The path
loss between the drone and IoD gateway is then modeled as
the average path loss between the LoS and NLoS signal, and
is calculated by

PL = PrLoSPLLoS + PrNLoSPLNLoS . (5)

The wireless channel gain between drone i and IoD gateway
GBSi is a function of the path loss, i.e.,

GBSi = 10−
PLi
10 , (6)

where PLi is the path loss between drone i and the IoD
gateway. Therefore, drone i’s wireless transmission rate ri can
be calculated by the Shannon’s formula

ri =Wi log2(1 +
piG

BS
i

N0Wi
), (7)

where GBSi is the wireless channel gain between drone i
and the IoD gateway, pi is drone i’s wireless transmission
power, Wi is the system bandwidth allocated to drone i and
N0 is the noise power spectrum density. Hence, drone i’s
wireless transmission time of sending the sensed data to the
IoD gateway is

τi =
li
ri

=
li

Wi log2(1 +
piGBS

i

N0Wi
)
, (8)

where li is the data size of drone i’s sensed data.

B. Drone’s Energy Consumption

Drone i’s energy consumption for transmitting the sensing
data can be expressed as [34]

Etrsi = piτi =
pili

Wi log2(1 +
piGBS

i

N0Wi
)
, (9)

where τi is drone i’s wireless data transmission time which is
defined in Eq. (8).

We assume RF energy harvesting technology is used to
charge the drone batteries, and the amount of the harvested
energy depends on the transmitted energy from the charging
station and the wireless channel gain between the charging
station and the drone. Hence, we utilize the widely used linear
energy harvesting model [9] to calculate the harvested energy
Ehrvi , i.e.,

Ehrvi = ηiG
EH
i ei, (10)

where ηi is drone i’s energy harvesting efficiency, GEHi is
the wireless channel gain between drone i and the charging
station and can be similarly calculated by Eq. (6), and ei is
the transmitted energy from the charging station to drone i.

In our work, all drone batteries are rechargeable, and the
charged energy can be stored in the battery for future use
[35]. We denote the system battery level vector at time epoch
t as

b(t) = [b1(t), b2(t), ..., bN (t)], (11)

where bi(t) ∈ [0, Bmaxi ], i ∈ N is drone i’s battery level
at time epoch t and is bounded between 0 and the battery
capacity Bmaxi . Hence, drone i’s battery level evolves from
time epoch t to time epoch t+ 1 by

bi(t+ 1) = min{bi(t) + Ehrvi (t)− Etrsi (t), Bmaxi }, (12)

where bi(t+ 1) ≥ 0, i.e.,

bi(t) + Ehrvi (t)− Etrsi (t) ≥ 0, (13)

which is equivalent to

bi(t) + ηiG
EH
i ei(t)−

pi(t)li(t)

Wi log2(1 +
pi(t)GBS

i

N0Wi
)
≥ 0. (14)
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We assume the system energy cost comes from both drone
energy consumption and charging station energy consumption,
and can be calculated by

Esys(t) = c1

N∑
i=1

Etrsi (t) + c2

N∑
i=1

ei(t), (15)

where c1 and c2 is the energy cost per joule of drone’s battery
and charging station, respectively [7]. ei(t) is the transmitted
energy from the charging station to drone i in time epoch t.

IV. PROBLEM FORMULATION

In this section, we formulate the wireless power control
and the harvested energy control problem for sensing service
in IoD networks, where drones are deployed to sense the en-
vironmental information. In order to build an energy efficient
system, our objective is to minimize the long-term average
system energy cost. Then, the problem can be formulated as

P0: min
pi(t),ei(t)

1

M

M∑
t=1

[c1

N∑
i=1

Etrsi (t) + c2

N∑
i=1

ei(t)] (16)

s.t. pi(t) ≤ Pmi , ∀i ∈ N , t ∈M, (17)

li

Wi log2(1 +
piGBS

i

N0Wi
)
≤ T thi , ∀i ∈ N , t ∈M, (18)

bi(1) = Bmaxi , ∀i ∈ N , (19)

bi(t+ 1) = min{bi(t) + ηiG
EH
i ei(t)

− pi(t)li(t)

Wi log2(1 +
pi(t)GBS

i

N0Wi
)
, Bmaxi }, ∀i ∈ N , t ∈M,

(20)

bi(t) + ηiG
EH
i ei(t)−

pi(t)li(t)

Wi log2(1 +
pi(t)GBS

i

N0Wi
)
≥ 0,

∀i ∈ N , t ∈M.

(21)

In Eq. (16), M ∈ {1, 2, ...,∞} denotes the total number
of time epochs and the objective is to minimize the average
system energy cost from time epoch 1 to time epoch M . For
simplicity, we define M as the set {1, 2, ...,M} to denote
time epochs from 1 to M . Eq. (17) imposes drone i’s wireless
transmission power to be less than the maximum transmission
power Pmi . Eq. (18) is the QoS requirement which imposes
drone i’s wireless data transmission time to be less than
the threshold T thi . Eq. (19) imposes drone i’s initial battery
level to be Bmaxi . Eq. (20) denotes the drone battery level
evolution. Eq. (21) indicates the feasibility of each drone’s
battery level. Although the energy consumed for drone’s air
hovering also accounts for the drone energy consumption [36],
it is related to the drone’s physical properties (e.g., weight and
propellers) and hence is fixed at each equal-length time epoch
[37]. The hovering energy consumption is affected by neither
the wireless power control nor the energy harvesting control

strategies. The energy cost generated by the drone hovering is
hence a constant and can be ignored in the objective function
which minimizes the average system energy cost. Therefore,
we do not include the hovering energy consumption and only
focus on the energy consumption for wireless transmission.

Lemma 1. Constraint (20) is equivalent to

bi(t+ 1) = bi(t) + ηiG
EH
i ei(t)−

pi(t)li(t)

Wi log2(1 +
pi(t)GBS

i

N0Wi
)
,

(22)
and

bi(t) + ηiG
EH
i ei(t)−

pi(t)li(t)

Wi log2(1 +
pi(t)GBS

i

N0Wi
)
≤ Bmaxi ,

∀i ∈ N , t ∈M.

(23)

Proof: We use the proof of contradiction to demonstrate
this lemma.

Assume that solution 〈p∗i (t), e∗i (t)〉 achieves the minimum
system energy cost

φ∗ =
1

M

M∑
t=1

[c1

N∑
i=1

Etrsi (t) + c2

N∑
i=1

e∗i (t)] (24)

while satisfying that bi(t + 1) = bi(t) + ηiG
EH
i e∗i (t) −

p∗i (t)li(t)

Wi log2(1+
p∗
i
(t)GBS

i
N0Wi

)
> Bmaxi . We can always find another

〈p∗i (t), ẽi(t)〉, where ẽi(t) < e∗i (t), that satisfies bi(t + 1) =

bi(t) + ηiG
EH
i ẽi(t) − p∗i (t)li(t)

Wi log2(1+
p∗
i
(t)GBS

i
N0Wi

)
≤ Bmaxi and

achieves the system energy cost

φ̃ =
1

M

M∑
t=1

[c1

N∑
i=1

Etrsi (t) + c2

N∑
i=1

ẽi(t)]. (25)

Since ẽi(t) < e∗i (t), it can be observed that φ̃ < φ∗ which
violates the assumption that φ∗ is the optimum solution to
minimize the system energy cost. Hence, the lemma is proved.

It is challenging to obtain the global optimum solution of
Problem P0 because of its non-convexity [38]. Additionally,
drones’ battery levels are coupled with each other over differ-
ent time epochs and the complete battery level information of
all time epochs are required in order to achieve the optimum;
this may not be practical in reality. Note that problem P0 can
be considered as a sequential decision-making problem (i.e.,
wireless transmission power and harvested energy) in a time-
varying IoD environment. To solve the time-varying decision-
making problem, we first utilize a Markov decision process
(MDP) to model the time-varying decision-making problem
[10], and then solve the MDP model by a deep reinforcement
learning algorithm [39] in the following section.

V. DEEP REINFORCEMENT LEARNING

To obtain the solution of problem P0, which is a sequential
decision-making problem in a time-varying IoD environment,
an MDP is utilized to model problem P0. We then describe
our proposed Power and Energy hArvesting control deep
Reinforcement Learning (PEARL) algorithm, which is a modi-
fied actor-critic deep reinforcement learning algorithm to solve
the MDP model.
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A. MDP model
We use a MDP 〈S,A,F , C〉 to model the power and energy

harvesting control in a time-varying IoD network, which
consists of the network state space S , action space A, state
transition probability density functions F : S × A × S 7→
[0,∞), and cost functions C : S × A 7→ [0,∞). Specifically,
at each time epoch t, the IoD gateway (acting as the network
controller) observes the network state s(t) and takes an action
a(t). The network system then generates a system cost c(t)
according to the action, and transits to the next network state
s(t+ 1).

1) Network state: We define the network state s(t) at time
epoch t as a set of drones’ sensed data sizes and battery levels

s(t) = [l1(t), l2(t), ..., lN (t), b1(t), b2(t), ..., bN (t)], (26)

where li(t) and bi(t) are drone i’s sensed data size and battery
level, respectively. Hence, the network state space S can be
defined as

S(t) = {s(t) | li(t) ≥ 0, 0 ≤ bi(t) ≤ Bmaxi , i ∈ N}. (27)

2) Action: The action of the network system a(t) at time
epoch t determines pi(t) (drone i’s power control strategy)
and ei(t) (the transmitted energy from the charging station to
drone i). Hence, a(t) can be defined as

a(t) = [p1(t), p2(t), ..., pN (t), e1(t), e2(t), ..., eN (t)]. (28)

Note that constraints (17) and (18) must be satisfied, which
are equivalent to

N0Wi

GBSi
(2

li(t)

Tth
i

Wi − 1) ≤ pi(t) ≤ Pmi . (29)

Also, transmitting more energy than the drone battery capacity
is a waste of energy in practice, and hence

0 ≤ ei ≤ Bmaxi . (30)

We hence define the action space A(t) at epoch t as

A(t) = {a(t) | amin(t) ≤ a(t) ≤ amax(t)}, (31)

where

amin(t) = [
N0W1

GBS1

(2
l1

Tth
1 W1 − 1),

N0W2

GBS2

(2
l2

Tth
2 W2 − 1), ...,

N0WN

GBSN
(2

lN
Tth
N

WN − 1), 0, 0, ..., 0],

(32)
and

amax(t) = [Pm1 , P
m
2 , ..., P

m
N , B

max, Bmax, ..., Bmax],
(33)

3) System cost: The generated cost c(t) is related to the
network state s(t) and the taken action a(t), and defined as
the energy cost at time epoch t. Note that constraints (21) and
(23) should be satisfied, i.e.,

0 ≤ bi(t) + ηiG
EH
i ei(t)−

pi(t)li(t)

Wi log2(1 +
pi(t)GBS

i

N0Wi
)
≤ Bmaxi .

(34)
If the taken action a(t) = [p(t), e(t)] violates Eq. (34), a
penalty should be given to the energy cost. Hence, we define
the energy cost at time epoch t as

c(t) =

{
M, if Eq. (34) is violated,∑N
i=1 c1E

trs
i (t) + c2ei(t), otherwise,

(35)

where M is a very large number to penalize the actions that
violate Eq. (34).

c(t) =


∑N
i=1 c1E

trs
i (t) + c2ei(t), if 0 ≤ bi(t) + ηiG

EH
i ei(t)− pi(t)li(t)

Wi log2(1+
pi(t)G

BS
i

N0Wi
)
≤ Bmaxi

M, otherwise.
(36)

4) Network state evolution: The network state s(t) at time
epoch t transits to s(t+1) at time epoch t+1 according to the
taken action a(t). A drone’s sensed data size is only related
to the dynamic environment and hence drone i’s sensed data
size li(t) at time epoch t and li(t+1) at time epoch t+1 are
independent with each other. On the other hand, the battery
levels of different time epochs are coupled with each other and
evolves as bi(t+1) = bi(t)+ηiG

EH
i ei(t)− pi(t)li(t)

Wi log2(1+
pi(t)G

BS
i

N0Wi
)

(i.e., Eq. (22)).
5) Aim of MDP: The aim of a general MDP model is to

find an action at each time epoch to minimize the accumulated
generated cost in the long run [10]. In our system model, the
MDP model tries to find the optimal wireless transmission
power and the charging station transmitted energy policy
τ(s, a) = Pr{a(t) = a | s(t) = s}, which denotes the
probability that action a is taken for a certain state s at time
epoch t, in order to minimize the accumulated generated cost
in the long term. Note that problem P0 minimizes the long-
term average energy cost which is equivalent to minimizing
the long-term accumulated energy cost by dividing the total
number of time epochs M .

To evaluate the long-term generated energy cost, we define
the state-action value function [39]

Q(s(t), a(t)) = E{
M∑
i=t

γ(i−t)c(t)}, (37)

which denotes the expected value of all future discounted cost
starting from time epoch t in network state s(t) with action
a(t) taken. γ ∈ [0, 1] is the discounted factor to measure the
importance of future cost. A larger γ puts more importance on
the future time epochs. For example, the energy costs of future
time epochs are of equal importance when γ = 1. However,
we only focus on minimizing the energy cost of time epoch
t when γ = 0. Therefore, the objective of the MDP is to
minimize the state-action value function Q(s(t), a(t)) starting
from the first time epoch 1, i.e.,

J (π) = E{Q(s(0), a(0))}, (38)

where J (π) is the long-term discounted energy cost.
The basic idea of solving the MDP model is to choose

the action with the smallest Q(s(t),a(t)) value for network
state s(t) at time epoch t [10]. However, it is challenging
to obtain the solution of our MDP model because its actions
are continuous. It is impossible to represent all state-action
values Q(s(t), a(t)). Also, there are infinite action possibilities
to be searched and compared in the lookup table where the
state-action values are stored [39]. Therefore, to solve the
MDP model, we utilize the actor-critic deep reinforcement
learning algorithm [11], which is specifically applicable to the
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time-varying decision making problem with continuous action
space.

B. Actor-critic deep reinforcement learning
The actor-critic deep reinforcement learning learns the op-

timum action for each time epoch by interacting with the
network environment to minimize the generated cost [40].
The basic idea of actor-critic deep reinforcement learning is
to combine two deep neural networks (DNNs), i.e., an actor
and a critic, to learn optimum power control and energy
harvesting control policies. The actor generates continuous
actions according to the current network state while the critic
evaluates the generated actions and helps the actor update its
parameters to generate the actions with better performance, as
shown in Fig. 2.

Fig. 2. Actor-critic deep reinforcement learning.

1) Actor DNN: The actor uses parameterized function
πϑ(s), where ϑ is the parameter of actor DNN, to generate
continuous actions for network state s. The actor takes the
network state s(t) as the input and outputs the action a(t).
Specifically, the number of nodes of the actor’s input layer
is 2N which represents the dimension of the network state
vector s(t), and the number of nodes of the actor’s output
layer is 2N which represents the dimension of the action a.
The parameters of the actor DNN is updated by the policy
gradient method [11] with the objective to minimize the long-
term energy cost J (πϑ) (defined in Eq. (38)). The gradient of
the objective function is

OϑJ (πϑ) =
∂J (πϑ)

∂πϑ

∂πϑ
∂ϑ

= E{OaQθ(s, a)Oϑπϑ(s)}, (39)

where Qθ(s, a) is the parametrized station-action value func-
tion of the critic and θ is the critic DNN’s parameter. Then,
the actor’s parameter ϑ is updated by the gradient descend

ϑ = ϑ− ωaOϑJ (πϑ), (40)

where ωa is the actor’s learning rate.
Note that the generated action may not be optimal. We

hence consider the tradeoff between the exploitation and
exploration [39]. Specifically, we prefer to exploit the actions
with predicted smallest energy cost (i.e., the generated actions
by the actor). Moreover, we still need to explore the unknown
actions. Therefore, the chosen action can be calculated as

a(t) =

{
random feasible action, with probability ε,
actor generated a(t), with probability 1− ε,

(41)

where ε is the probability of exploring random actions.
2) Critic DNN: The critic evaluates the actor’s generated

action by adapting the parametrized state-action value function
Qθ(s, a), where θ is the critic DNN’s parameter. The critic
takes both the network state and the actor’s action [s(t), a(t)]
as the input, and hence the node number of the input
layer becomes 4N . The critic outputs the state-action value
Q(s(t), a(t)) and its node number of the output layer is 1. To
improve the accuracy of the critic, its parameter is updated at
each time epoch by analyzing the actual generated cost from
the environment with the temporal difference method [11].
The temporal difference error δ(t) is defined to measure the
accuracy of the critic, and can be calculated as [11]

Q(s(t), a(t)) = c(t) + γQ(s(t+ 1), a(t+ 1)), (42)

a(t) = argmin
a
Q(s(t), a) (43)

δ(t) = c(t)+ γQθ(s(t+1), a(t+1))−Qθ(s(t), a(t)), (44)

where s(t), c(t), s(t + 1), and a(t + 1) can be found in the
replay memory. The critic’s parameter θ is then updated by
the gradient descend to minimize the temporal difference error
δ(t), i.e.,

θ = θ − ωcOθQθ(s(t),a(t)), (45)

where ωc is the critic’s learning rate.
3) Replay memory: To train the critic DNN (i.e., update

the critic’s parameter), the network state, action, and gen-
erated cost should be stored in a replay memory, which
is a finite sized first-in-first-out cache. The training sample
〈s(t), a(t), c(t), s(t+ 1)〉 is collected after the action is made
by the actor at each time epoch. When the replay memory is
full, the old samples will be discarded. At each time epoch,
a mini-batch is sampled from the replay memory to train the
critic DNN and update its parameter θ.

4) Operation process: The detailed process of actor-critic
deep reinforcement learning is shown in Fig. 2. At each
time epoch, the following steps (i.e., steps 1-8 in Fig. 2) are
processed:

1) The network state s(t) is inputted to the actor DNN.
2) The actor generates the action a(t).
3) The action a(t) acts on the environment and generates

the cost c(t).
4) One training sample 〈s(t), a(t), c(t), s(t+1)〉 is collected

and stored in the replay memory.
5) The network state s(t) and the actor’s action a(t) are

combined and inputted to the critic DNN.
6) The critic generates the state-action value Q(s(t), a(t)).
7) The state-action value Q(s(t), a(t)) is then utilized to

update the actor’s parameter ϑ according to Eqs. (39)
and (40).

8) A mini-batch is sampled from the replay memory to
update the critic’s parameter θ according to Eqs. (44)
and (45).
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C. Modified actor-critic deep reinforcement learning

The actor-critic deep reinforcement learning generates the
power control and energy harvesting control actions from the
action space A(t) defined in Eq. (31). The generated action
may not be feasible and violate the constraint Eq. (34). In this
case, the actor-critic deep reinforcement learning algorithm
adds a penalty (which is usually a large number) to the
generated energy cost. Hence, it may take a very long time
to converge because many infeasible solutions are considered
and compared in the action space. In order to address this
problem, we propose PEARL which is a modified actor-critic
deep reinforcement learning algorithm.

Algorithm 1: PEARL

Input : N,M,GBSi , GEHi , N0,Wi, li, T
th
i , Pmi , B

max
i ,

c1, c2, γ, ωa, ωc, ε
Output: policy π

1 Initialize the actor and critic DNNs with weight
parameters ϑ and θ, respectively ;

2 Initialize the time epoch t = 1 ;
3 Initialize network state s(1) ;
4 for each time epoch t do
5 Calculate the action a(t) = [p(t), e(t)] based on

the actor DNN according to Eq. (41);
6 Choose the wireless transmission power

p∗(t) = p(t) ;
7 Calculate the feasible transmitted energy e∗(t)

according to Eq. (48) ;
8 Choose the action a∗(t) = [p∗(t), e∗(t)] ;
9 Generate the cost c(t) according to Eq. (51) ;

10 Observe the network state s(t+ 1) ;
11 Store the tuple 〈s(t), a∗(t), c(t), s(t+ 1)〉 in the

replay memory ;
12 Update the actor DNN parameter ϑ according to

Eqs. (39) and (40) ;
13 Sample a mini-batch of tuples from the replay

memory ;
14 Update the critic DNN parameter θ according to

Eqs. (44) and (45);
15 t← t+ 1 ;
16 end

The basic of PREAL is to only utilize the power control
policy p∗i (t), i ∈ N from the actor-critic deep reinforcement
learning algorithm, and substitute p∗i (t) to the constraint Eq.
(34). Hence, we have

1

ηiGEHi
[

p∗i (t)li(t)

Wi log2(1 +
p∗i (t)G

BS
i

N0Wi
)
− bi(t)] ≤ ei(t)

≤ 1

ηiGEHi
[Bmaxi +

p∗i (t)li(t)

Wi log2(1 +
p∗i (t)G

BS
i

N0Wi
)
− bi(t)]

(46)

1

ηiGEHi
[

p∗i (t)li(t)

Wi log2(1 +
p∗i (t)G

BS
i

N0Wi
)
− bi(t)] ≤ ei(t) ≤

1

ηiGEHi
[Bmaxi +

p∗i (t)li(t)

Wi log2(1 +
p∗i (t)G

BS
i

N0Wi
)
− bi(t)]

(47)

which is then utilized to constrain the transmitted energy
ei(t). Then, the feasible transmitted energy e∗i (t) can be
calculated by

e∗i (t) =

 emini (t), if ei(t) < emini (t),
emaxi (t), if ei(t) > emaxi (t),
ei(t), otherwise,

∀i ∈ N , (48)

where we denote

emini (t) =
1

ηiGEHi
[

p∗i (t)li(t)

Wi log2(1 +
p∗i (t)G

BS
i

N0Wi
)
− bi(t)] (49)

and

emaxi (t) =
1

ηiGEHi
[Bmaxi +

p∗i (t)li(t)

Wi log2(1 +
p∗i (t)G

BS
i

N0Wi
)
− bi(t)]

(50)
for simplicity. Since the action [p∗(t), e∗(t)] guarantees the
feasibility, the generated energy cost from the IoD networks
can be calculated by

c(t) =
N∑
i=1

[c1
p∗i (t)li

Wi log2(1 +
p∗i (t)G

BS
i

N0Wi
)
+ c2e

∗
i (t)]. (51)

The detailed process of our proposed PEARL is delineated
in Alg. 1. Lines 1-3 initialize the actor, critic, and network
state. Lines 4-16 are operated at each time epoch. Line 5
calculates the generated action a(t) based on the actor DNN.
Lines 6-8 fix the power control policy p(t), try to find
a feasible energy harvesting policy e∗(t), and choose the
modified action a∗(t). Lines 9-11 generate the energy cost
c(t) and observe the next network state s(t + 1). Line 11
stores a training sample 〈s(t), a∗(t), c(t), s(t+1)〉 in the replay
memory. Line 12 update the actor DNN parameter ϑ. Lines
13-14 sample a mini-batch from the replay memory to update
the critic DNN parameter θ.

VI. PERFORMANCE EVALUATION

We setup simulations to evaluate the performances of our
proposed algorithm, PEARL, in this section. The simula-
tions are implemented in Python by TensorFlow which is
a machine learning platform [41]. The implementation of
a real drone testbed will be left as our future work. We
compare PEARL with two benchmark algorithms No-energy-
control and Greedy. No-energy-control is a deep reinforcement
learning algorithm proposed in our ICC2020 paper [28], where
only the drones’ wireless transmission powers are optimized.
Greedy minimizes the transmitted energy at each time epoch
to minimize the system energy cost while fixing the wireless
transmission power as the maximum power to minimize the
wireless transmission delay.

In our simulations, we consider a 1000 m × 1000 m, where
the IoD gateway is located at the center of the area. The
charging station is located near the IoD gateway. There are
N = 12 drones deployed in the flying plane at the height
of H = 50 m. The drones are randomly distributed in the
flying plane to collect information from the ground. The
environment-related parameters in Eq. (1) are α = 9.6 and
β = 0.28. The carrier frequency fc = 2 GHz. The speed of
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Fig. 3. Average system energy cost vs number of
drones
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Fig. 4. Average system energy cost vs amount of
sensed data
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Fig. 5. Average system energy cost vs QoS require-
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Fig. 6. Average system energy cost vs time epochs
with different algorithms
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Fig. 7. Average system energy cost vs time epochs
with different numbers of drones
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Fig. 8. Average system energy cost vs time epochs
with different amount of sensed data
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Fig. 9. Average system energy cost vs time epochs
with different maximum wireless transmission pow-
ers
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Fig. 10. Average system energy cost vs time epochs
with different QoS requirements
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Fig. 11. Average system energy cost vs time epochs
with different discounted factors

light c = 3×108 m/s. The environment-related parameters for
calculating the path losses in Eqs. (3) and (4) are ξLoS = 1
and ξNLoS = 20 dB. The system bandwidth W = 20 MHz
and is evenly allocated to all drones. The noise power density
N0 = −174 dBm/Hz. The amount of sensed data of each
drone is randomly chosen from 100 to 200 Mb. Each drone’s
maximum wireless transmission power is Pm = 5 W. The
battery capacity of each drone is Bmax = 800 J. The energy
harvesting efficiency η = 0.5. The unit energy cost c1 and c2
are normalized as 1 and 10−12, respectively. In PEARL, the
discounted factor γ = 0.9, both actor and critic DNN are fully
connected and have 1 hidden layer, and each hidden layer has
64 nodes. Note that the above parameters are default values
and they may change if we specify them.

Fig. 3 illustrate the average system energy cost of three
different algorithms after convergence with different numbers
of drones ranging from 10 to 18. The average system energy
costs of all three algorithms increase with the number of
drones because more drones incur more battery charging and
a larger amount of transmitted data and hence more energy
consumption. PEARL generates the less energy cost than No-
energy-control because it jointly optimizes the wireless trans-
mission power and the transmitted energy from the charging
station, while No-energy-control only optimizes the transmis-
sion power and assumes that all drones’ batteries are charged
to its fullest. PEARL performs better than Greedy because
PEARL considers the policies over different time epochs and
utilizes the past experiences to improve its performance, while
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Greedy only optimizes its solution within one time epoch.
Fig. 4 compares the average system energy cost of PEARL

with that of No-energy-control and Greedy with different
amounts of sensed data ranging from 40 to 200 Mb. The
average system energy costs of all three algorithms become
larger when the amount of sensed data increases because
more sensed data means more energy is required to transmit
these data, thus increasing the system energy cost. PEARL
generates the least average system energy cost among the three
algorithms for the same reason as in Fig. 3.

Fig. 5 evaluates the PEARL’s average system energy cost
with different QoS requirements (i.e., minimum data trans-
mission delay) ranging from 8 to 10 s. The average system
energy cost of all three algorithms decreases when the QoS
requirement becomes less strict (i.e., larger minimum data
transmission delay), because a less strict QoS requirement
implies that less energy is required to meet the requirement.
Similarly, PEARL performs better than No-energy-control and
Greedy.

Fig. 6 illustrates how PEARL, No-energy-control and
Greedy converge at different time epochs. Greedy indepen-
dently optimizes its solutions within each time epoch and
so is more likely to obtain similar results at different time
epochs when the network status is stable. Hence, Greedy
achieves a fast convergence rate. However, both PEARL and
No-energy-control are deep reinforcement learning algorithms
which are trial-and-error processes, and hence require more
time to converge. Additionally, we can observe that PEARL
performs the best among the three algorithms for the similar
reason in Fig. 3.

We then investigate the impacts of different parameters on
the performance of PEARL in Figs. 7 to 11. Fig. 7 illustrates
PEARL’s average system energy cost with three different
numbers of drones including 10, 12, and 14. A larger number
of drones incur more energy cost because more drones imply
more data to be transmitted and more energy to transmit these
data. Fig. 8 compares the PEARL’s average system energy
costs with different amounts of sensed data including 120,
160, and 200 Mb. A larger amount of sensed data incurs more
energy cost because more sensed data requires more energy
to transmit them. Fig. 9 evaluates PEARL’s average system
energy cost with different maximum wireless transmission
powers including 3, 4, and 5 W. A larger maximum wireless
transmission power incurs less energy cost because a larger
maximum wireless transmission power provides a larger action
space and more possible solutions, hence improving the proba-
bility of finding a solution with better performance. However, a
larger action space requires more time to converge. Therefore,
a larger maximum wireless transmission power incurs a slower
convergence rate. Fig. 10 evaluates PEARL’s performance with
difference QoS requirements including 8, 9, and 10 s. A stricter
QoS requirement (i.e., smaller minimum data transmission
delay) incurs less system energy cost because less energy
is required to meet the QoS requirement. Fig. 11 illustrates
PEARL’s average energy cost with different discounted factors
including 0.1, 0.5, and 0.9. The discounted factor measures the
importance of future time epochs. Since we try to minimize
the long-term average system energy cost, a larger gamma,

which puts more importance to future time epochs, achieves
a better performance, i.e., less average system energy cost.

VII. CONCLUSION

In this paper, we have investigated the joint optimization of
power control and energy harvesting control in time-varying
IoD networks. We have formulated our joint optimization
problem to determine each drone’s wireless transmission
power and the transmitted energy from the charging station to
each drone at each time epoch with the objective to minimize
the long-term average system energy cost constrained by the
drones’ battery capacities and QoS requirements. An MDP has
been formulated to characterize our problem in time-varying
IoD networks to show how the network status evolves with dif-
ferent power and energy harvesting control policies. We have
designed a modified actor-critic deep reinforcement learning
algorithm to solve our problem. We have demonstrated via
extensive simulations that our proposed algorithm performs
better than the existing algorithms and the impacts of different
parameters on the performance of our proposed algorithm.

REFERENCES

[1] J. Yao and N. Ansari, “Task allocation in fog-aided mobile IoT by
Lyapunov online reinforcement learning,” IEEE Trans. Green Commun.
Netw., vol. 4, no. 2, pp. 556–565, Jun. 2020.

[2] N. Ansari et al., “SoarNet,” IEEE Wireless Commun., vol. 26, no. 6, pp.
37–43, Dec. 2019.

[3] H. Ghazzai et al., “Energy-efficient management of unmanned aerial
vehicles for underlay cognitive radio systems,” IEEE Trans. Green
Commun. Netw., vol. 1, no. 4, pp. 434–443, Dec. 2017.

[4] M. Gharibi, R. Boutaba, and S. L. Waslander, “Internet of drones,” IEEE
Access, vol. 4, pp. 1148–1162, Mar. 2016.

[5] J. Yao and N. Ansari, “QoS-aware power control in internet of drones
for data collection service,” IEEE Trans. Veh. Technol., vol. 68, no. 7,
pp. 6649–6656, Jul. 2019.

[6] L. Gupta, R. Jain, and G. Vaszkun, “Survey of important issues in UAV
communication networks,” IEEE Commun. Surveys Tuts., vol. 18, no. 2,
pp. 1123–1152, 2016.

[7] M. Lu et al., “Wireless charging techniques for UAVs: A review,
reconceptualization, and extension,” IEEE Access, vol. 6, pp. 29 865–
29 884, 2018.

[8] X. Lu et al., “Wireless networks with RF energy harvesting: A con-
temporary survey,” IEEE Commun. Surveys Tuts., vol. 17, no. 2, pp.
757–789, 2015.

[9] I. Krikidis, S. Timotheou, S. Nikolaou, G. Zheng, D. W. K. Ng, and
R. Schober, “Simultaneous wireless information and power transfer in
modern communication systems,” IEEE Commun. Mag., vol. 52, no. 11,
pp. 104–110, Nov. 2014.

[10] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. John Wiley & Sons, 2014.

[11] I. Grondman et al., “A survey of actor-critic reinforcement learning:
Standard and natural policy gradients,” IEEE Trans. Cybern., vol. 42,
no. 6, pp. 1291–1307, Nov. 2012.

[12] M. Wazid et al., “Design and analysis of secure lightweight remote
user authentication and key agreement scheme in internet of drones
deployment,” IEEE Internet Things J., vol. 6, no. 2, pp. 3572–3584,
Apr. 2019.

[13] B. Bera et al., “Blockchain-envisioned secure data delivery and collec-
tion scheme for 5G-based IoT-enabled internet of drones environment,”
IEEE Trans. Veh. Technol., vol. 69, no. 8, pp. 9097–9111, Aug. 2020.

[14] J. Yao and N. Ansari, “Online task allocation and flying control in fog-
aided internet of drones,” IEEE Trans. Veh. Technol., vol. 69, no. 5, pp.
5562–5569, May 2020.

[15] D. Altinel and G. K. Kurt, “Modeling of hybrid energy harvesting
communication systems,” IEEE Trans. Green Commun. Netw., vol. 3,
no. 2, pp. 523–534, Jun. 2019.



10

[16] T. D. Nguyen, J. Y. Khan, and D. T. Ngo, “A distributed energy-
harvesting-aware routing algorithm for heterogeneous IoT networks,”
IEEE Trans. Green Commun. Netw., vol. 2, no. 4, pp. 1115–1127, Dec.
2018.

[17] J. Yao and N. Ansari, “Caching in energy harvesting aided internet of
things: A game-theoretic approach,” IEEE Internet Things J., vol. 6,
no. 2, pp. 3194–3201, Apr. 2019.

[18] A. M. Jawad et al., “Wireless power transfer with magnetic resonator
coupling and sleep/active strategy for a drone charging station in smart
agriculture,” IEEE Access, vol. 7, pp. 139 839–139 851, 2019.

[19] J. Yao and N. Ansari, “QoS-aware fog resource provisioning and mobile
device power control in IoT networks,” IEEE Trans. Netw. Service
Manag., vol. 16, no. 1, pp. 167–175, Mar. 2019.

[20] K. Lee and J. Hong, “Power control for energy efficient D2D commu-
nication in heterogeneous networks with eavesdropper,” IEEE Commun.
Lett., vol. 21, no. 11, pp. 2536–2539, Nov. 2017.

[21] P. Mach and Z. Becvar, “Cloud-aware power control for real-time
application offloading in mobile edge computing,” Trans. Emerg.
Telecommun. Technol., vol. 27, no. 5, p. 648661, May 2016. [Online].
Available: https://doi.org/10.1002/ett.3009

[22] U. Challita, W. Saad, and C. Bettstetter, “Interference management
for cellular-connected UAVs: A deep reinforcement learning approach,”
IEEE Trans. Wireless Commun., vol. 18, no. 4, pp. 2125–2140, Apr.
2019.

[23] P. Pace et al., “Intelligence at the edge of complex networks: The case of
cognitive transmission power control,” IEEE Wireless Commun., vol. 26,
no. 3, pp. 97–103, 2019.

[24] N. C. Luong et al., “Applications of deep reinforcement learning in
communications and networking: A survey,” IEEE Commun. Surveys
Tuts., vol. 21, no. 4, pp. 3133–3174, 2019.

[25] L. Lei et al., “Multiuser resource control with deep reinforcement
learning in IoT edge computing,” IEEE Internet Things J., vol. 6, no. 6,
pp. 10 119–10 133, Dec. 2019.

[26] J. Yao and N. Ansari, “Caching in dynamic IoT networks by
deep reinforcement learning,” IEEE Internet Things J., 2020, doi:
10.1109/JIOT.2020.3004394, early access.

[27] C. H. Liu, Q. Lin, and S. Wen, “Blockchain-enabled data collection
and sharing for industrial IoT with deep reinforcement learning,” IEEE
Trans. Ind. Informat., vol. 15, no. 6, pp. 3516–3526, Jun. 2019.

[28] J. Yao and N. Ansari, “Power control in internet of drones by deep
reinforcement learning,” in Proc. IEEE ICC 2020, Dublin, Jun. 7-11,
2020, pp. 1–6.

[29] M. Ku et al., “Advances in energy harvesting communications: Past,
present, and future challenges,” IEEE Commun. Surveys Tuts., vol. 18,
no. 2, pp. 1384–1412, 2016.

[30] R. G. Bernacki and N. Salamon, “Experimental study of energy harvest-
ing in UHF band,” in J. Phys. Conf. Ser., vol. 709, 2016, p. 012009.

[31] J. Ho and M. Jo, “Offloading wireless energy harvesting for IoT devices
on unlicensed bands,” IEEE Internet Things J., vol. 6, no. 2, pp. 3663–
3675, 2019.

[32] B. Kiumarsi and F. L. Lewis, “Actorcritic-based optimal tracking for
partially unknown nonlinear discrete-time systems,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 26, no. 1, pp. 140–151, Jan. 2015.

[33] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Drone small cells
in the clouds: Design, deployment and performance analysis,” in Proc.
IEEE GLOBECOM 2015, San Diego, CA, USA, Dec. 2015, pp. 1–6.

[34] G. Auer et al., “How much energy is needed to run a wireless network?”
IEEE Wireless Commun., vol. 18, no. 5, pp. 40–49, Oct. 2011.

[35] S. Sudevalayam and P. Kulkarni, “Energy harvesting sensor nodes:
Survey and implications,” IEEE Commun. Surveys Tuts., vol. 13, no. 3,
pp. 443–461, Third quater 2011.

[36] Y. Zeng and R. Zhang, “Energy-efficient UAV communication with
trajectory optimization,” IEEE Trans. Wireless Commun., vol. 16, no. 6,
pp. 3747–3760, Jun. 2017.

[37] J. Gundlach, Designing unmanned aircraft systems: a comprehensive
approach. American Institute of Aeronautics and Astronautics, 2012.

[38] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimization.
Cambridge university press, 2004.

[39] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[40] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[41] M. Abadi et al., “Tensorflow: A system for large-scale machine learn-
ing,” in Proc. USENIX OSDI 2016, Savannah, GA, USA, 2016, pp.
265–283.

Jingjing Yao (S17) received the B.E.
degree in information and communica-
tion engineering from Dalian University
of Technology (DUT) and the M.E. de-
gree in information and communication
engineering from University of Science
and Technology of China (USTC). She

is currently working towards the Ph.D. degree in Computer
Engineering at the New Jersey Institute of Technology (NJIT),
Newark, New Jersey. Her research interests include Internet of
Things, Machine Learning, Drone-assisted Network, Mobile
Edge Computing/Caching.

Nirwan Ansari (S78-M83-SM94-
F09), Distinguished Professor of
Electrical and Computer Engineering at
the New Jersey Institute of Technology
(NJIT), received his Ph.D. from Purdue
University, MSEE from the University of
Michigan, and BSEE (summa cum laude
with a perfect GPA) from NJIT. He is
also a Fellow of National Academy of

Inventors (NAI).
He authored Green Mobile Networks: A Networking Per-

spective (Wiley-IEEE, 2017) with T. Han, and co-authored
two other books. He has also (co-)authored more than 600
technical publications. He has guest-edited a number of special
issues covering various emerging topics in communications
and networking. He has served on the editorial/advisory board
of over ten journals including as Associate Editor-in-Chief
of IEEE Wireless Communications Magazine. His current
research focuses on green communications and networking,
cloud computing, drone-assisted networking, and various as-
pects of broadband networks.

He was elected to serve in the IEEE Communications
Society (ComSoc) Board of Governors as a member-at-large,
has chaired some ComSoc technical and steering committees,
is current Director of ComSoc Educational Services Board,
has been serving in many committees such as the IEEE
Fellow Committee, and has been actively organizing numerous
IEEE International Conferences/Symposia/Workshops. He is
frequently invited to deliver keynote addresses, distinguished
lectures, tutorials, and invited talks. Some of his recognitions
include several excellence in teaching awards, a few best
paper awards, the NCE Excellence in Research Award, several
ComSoc TC technical recognition awards, the NJ Inventors
Hall of Fame Inventor of the Year Award, the Thomas Alva
Edison Patent Award, Purdue University Outstanding Electri-
cal and Computer Engineering Award, the NCE 100 Medal,
and designation as a COMSOC Distinguished Lecturer. He has
also been granted more than 40 U.S. patents.


