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a b s t r a c t 

Purpose Machine learning is an attractive tool for identifying heterogeneous treatment effects (HTE) of 

interventions but generalizability of machine learning derived HTE remains unclear. We examined gen- 

eralizability of HTE detected using causal forests in two similarly designed randomized trials in type II 

diabetes patients. 

Methods We evaluated published HTE of intensive versus standard glycemic control on all-cause mor- 

tality from the Action to Control Cardiovascular Risk in Diabetes study (ACCORD) in a second trial, the 

Veterans Affairs Diabetes Trial (VADT). We then applied causal forests to VADT, ACCORD, and pooled data 

from both studies and compared variable importance and subgroup effects across samples. 

Results HTE in ACCORD did not replicate in similar subgroups in VADT, but variable importance 

was correlated between VADT and ACCORD (Kendall’s tau-b 0.75). Applying causal forests to pooled 

individual-level data yielded seven subgroups with similar HTE across both studies, ranging from risk 

difference of all-cause mortality of -3.9% (95% CI -7.0, -0.8) to 4.7% (95% CI 1.8, 7.5). 

Conclusions Machine learning detection of HTE subgroups from randomized trials may not general- 

ize across study samples even when variable importance is correlated. Pooling individual-level data may 

overcome differences in study populations and/or differences in interventions that limit HTE generaliz- 

ability. 

Published by Elsevier Inc. 
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ntroduction 

Machine learning methods are powerful tools for predicting 

utcomes with ever-increasing accuracy. More recently, there has 

lso been interest in using machine learning to identify heteroge- 

eous treatment effects (HTE) of clinical interventions, particularly 

n settings in which univariate subgroup analyses are unrevealing 

1–7] . However, the replicability of subgroup effects detected using 
1 Deceased. 

ability of heterogeneous treatment effects based on causal forests 
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achine learning methods across study samples is not often tested 

s multiple studies investigating similar intervention-outcome ef- 

ects are rarely available. Moreover, the absence of replicability 

ould arise from differences in study design or study population 

haracteristics even when the underlying machine learning method 

s valid. 

One context in which multiple similarly designed intervention 

tudies have been performed is the evaluation of the effect of 

lycemic control intensity on mortality and diabetes-related com- 

lications in type II diabetes patients. Three randomized trials 

ompared clinical outcomes in type II diabetes patients treated to 

n intensive versus standard glycemic control target [8–10] . None 

f the three studies found an association of glycemic control in- 

ensity with the primary outcome of cardiovascular disease events, 

nd one, the Action to Control Cardiovascular Risk in Diabetes (AC- 

ORD) Study, found an association of intensive glycemic control 

ith higher all-cause mortality [8–10] . To evaluate the mortal- 

ty findings further, using the causal forests machine learning ap- 

roach, three variables were identified that defined subgroups in 

he ACCORD study with different risk for mortality in response to 

ntensive glycemic control [ 11 , 12 ]. Whether the HTE of intensive 

lycemic control in ACCORD generalize remains unexplored. 

We evaluated the generalizability of HTE across two similarly 

esigned studies in distinct diabetes patient populations. We used 

ndividual-level data from the ACCORD study and the Veterans Af- 

airs Diabetes Trial (VADT), two of the three aforementioned ran- 

omized trials of intensive versus standard glycemic control, to ex- 

mine HTE identified in ACCORD in the VADT, to compare variable 

rioritization by causal forests between the two trials, and to de- 

ermine if HTE could be identified that generalize across both stud- 

es. 

aterial and methods 

tudy samples 

Individual-level data from two randomized clinical trials were 

ncluded in this study. The ACCORD and VADT studies have been 

escribed in detail previously [ 8 , 9 ]. We opted to analyze these

rials as both studies were publicly funded and US-based with 

ndividual-level data publicly available (ACCORD) or accessible to 

S Department of Veterans Affairs investigators through a data 

se agreement (VADT). Both studies included adults with advanced 

ype II diabetes and a hemoglobin A1c (HbA1c) ≥7.5%. The VADT 

tudy enrolled participants from December 20 0 0 –May 2003, and 

ollow-up continued through May 2008. Median follow-up time in 

he VADT study was 5.6 years. The ACCORD study intentionally en- 

olled participants at high cardiovascular risk from January–June 

001 and from February 2003–October 2005, and follow-up in the 

CCORD study continued until June 2009. An interim evaluation in 

ecember 2007 suggested harm from intensive glycemic control, 

rompting discontinuation of that treatment arm; as a result, AC- 

ORD study participants had a median on-protocol follow-up time 

f 3.7 years and a median total follow-up time of 4.9 years. Both 

tudies randomized participants to receive intensive or standard 

lycemic control but the definitions of those targets differed. In the 

ADT study, different doses of oral diabetes medications and dif- 

erent thresholds for adding insulin were used between treatment 

rms to achieve a goal of at least 1.5% lower HbA1c in participants 

andomized to intensive control compared to standard control. In 

he ACCORD study, participants received open-label diabetes treat- 

ent to a target of HbA1c less than 6% for intensive glycemic con- 

rol versus 7%–7.9% for standard glycemic control. In this secondary 

nalysis, we included data from all 1791 VADT study participants 

nd 10,251 ACCORD study participants. The Colorado Multiple In- 
2 
titutional Review Board and local VA Research and Development 

ommittee provided human subjects oversight and approval of the 

tudy. 

utcome 

The primary outcome was all-cause mortality as ascertained in 

ach of the original studies. Major adverse cardiovascular events, 

efined as fatal or non–fatal myocardial infarction or stroke, was a 

econdary outcome. 

redictors 

We included baseline variables that were common to the 

wo studies, including patient demographics, comorbidities, dia- 

etes and cardiovascular disease medications, and laboratory val- 

es ( Table 1 ). Estimated glomerular filtration rate (eGFR) was cal- 

ulated using the Modification of Diet in Renal Disease Study equa- 

ion [ 13 ]. Hemoglobin glycation index (HGI) was estimated as the 

esidual between measured HbA1c and HbA1c predicted by re- 

ressing on fasting glucose [14] . As the basis for this analysis was a 

rior HTE examination in the ACCORD study [11] , we used the re- 

ression equation of HbA1c on fasting glucose from ACCORD study 

articipants to estimate HGI. Body mass index (BMI) was calcu- 

ated as the weight in kilograms divided by the height in meters 

quared. 

tatistical approach 

To evaluate previously published HTE subgroups from the AC- 

ORD study [11] , VADT study participants were separated into one 

f four subgroups identified by a representative tree found in the 

revious article. We then estimated the crude average treatment 

ffect of all-cause mortality within each subgroup. To address dif- 

erences in participant characteristics between the VADT and AC- 

ORD study samples and thus improve external validation of the 

CCORD HTE study [11] , we weighted participants in the VADT 

ased on their likelihood of being sampled for the ACCORD study 

nd re-estimated the crude average treatment effect of all-cause 

ortality within each of the four subgroups in the weighted VADT 

tudy sample. This causes the VADT participants to appear more 

ike the ACCORD participants based on the sample moments of the 

arginal covariate distributions. The weights themselves are re- 

ective of the inverse odds of sampling and are estimated directly 

sing a method of moments estimator [15] . 

Next, we fit causal forests on both the VADT and ACCORD sam- 

les with the goal of identifying variables that contribute the most 

o HTE. We used causal forests [ 12 , 16 , 17 ] for this analysis rather

han alternative machine learning algorithms to facilitate direct 

omparability with previously published analysis of the ACCORD 

tudy [11] . Briefly, the causal forests method builds a series of de- 

ision trees by randomly splitting the study population and rank- 

ng a random subset of predictor variables based on their modi- 

cation of the treatment effect (defined as the risk difference in 

ll-cause mortality between intensive and standard glycemic treat- 

ent in our case) in the subsample. Each tree is then tuned in 

he second study subsample to identify cut-points for each variable 

hat maximizes between-subgroup treatment effects in the termi- 

al subgroups at the bottom of the tree. Variable importance can 

hen be assessed across all trees in the forest based on their rel- 

tive position in a tree which corresponds to their influence on 

TE. When applying causal forests to the ACCORD and VADT study 

ata, both forests contained 50 0 0 trees and a minimum node size 

f approximately 5% of the total sample size. Again, these param- 

ters were selected for comparability with the prior HTE analysis 
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Table 1 

Study population characteristics 

ACCORD VADT ACCORD ± VADT 

Standard control Intensive control Standard control Intensive control Standard control Intensive 

control 

N = 5123 N = 5128 N = 899 N = 892 N = 6022 N = 6020 

Age, mean (SD) 62.8 (6.7) 62.8 (6.6) 60.3 (8.6) 60.5 (8.8) 62.4 (7.0) 62.4 (7.0) 

Sex, n female (%) 1969 (38.4) 1983 (38.7) 26 

(2.9) 

26 

(2.9) 

1995 (33.1) 2009 (33.4) 

Race, n (%) 

Black 956 (18.7) 997 (19.4) 147 (16.4) 152 (17.0) 1103 (18.3) 1149 (19.1) 

Hispanic 379 (7.4) 358 (7.0) 136 (15.1) 155 (17.4) 515 (8.6) 513 (8.5) 

HbA1c (% [mmol/mol]), 

mean (SD) 

8.3 (1.1) [ 

67 [9]]) 

8.3 (1.1) [ 

67 [9]] 

9.4 (1.6) [ 

79 [13]]) 

9.4 (1.5) [ 

79 [13]] 

8.5 (1.2) [ 

69 [10]] 

8.5 (1.2) [ 

69 [10]] 

Glucose (mg/dL), mean 

(SD) 

175.7 (56.4) 174.7 (55.9) 205.9 (69.0) 203.5 (67.8) 180.2 (59.5) 179.0 (58.7) 

Hemoglobin glycation 

index (unitless), mean 

(SD) 

-0.07 (0.9) -0.08 (1.0) 0.8 (1.4) 0.8 (1.4) 0.06 (1.1) 0.05 (1.1) 

Total cholesterol 

(mg/dL), mean (SD) 

183.3 (41.6) 183.3 (42.1) 184.7 (52.7) 181.6 (40.4) 183.5 (43.5) 183.1 (41.8) 

Triglycerides (mg/dL), 

mean (SD) 

189.4 (148.6) 190.9 (148.2) 222.8 (351.8) 200.8 (161.8) 194.4 (193.5) 192.4 (150.3) 

LDL cholesterol 

(mg/dL), mean (SD) 

104.9 (33.8) 104.9 (34.0) 108.2 (34.0) 107.0 (30.9) 105.4 (33.9) 105.2 (33.6) 

HDL cholesterol 

(mg/dL), mean (SD) 

41.9 (11.5) 41.8 (11.8) 35.8 (10.4) 36.2 (9.9) 41.0 (11.5) 41.0 (11.7) 

Creatinine (mg/dL), 

mean (SD) 

0.9 (0.2) 0.9 (0.2) 1.0 (0.2) 1.0 (0.2) 0.9 (0.2) 0.9 (0.2) 

eGFR 

(mL/min/1.73m 
2 ), 

mean (SD) 

91.3 (28.4) 90.8 (25.8) 87.5 (22.6) 87.3 (24.2) 90.7 (27.7) 90.3 (25.6) 

ALT (mg/dL), mean 

(SD) 

27.7 (14.9) 27.5 (17.4) 31.9 (17.4) 30.8 (15.2) 28.3 (15.3) 28.0 (17.1) 

SBP (mm Hg), mean 

(SD) 

136.5 (17.2) 136.2 (17.0) 131.8 (16.8) 131.4 (16.6) 135.8 (17.2) 135.5 (17.1) 

DBP (mm Hg), mean 

(SD) 

75.0 (10.7) 74.8 (10.7) 76.1 (10.2) 76.0 (10.4) 75.2 (10.6) 75.0 (10.6) 

BMI (kg/m 
2 ), mean 

(SD) 

32.2 (5.4) 32.2 (5.4) 31.2 (4.4) 31.3 (4.4) 32.1 (5.3) 32.1 (5.3) 

Diabetes duration (y), 

mean (SD) 

10.9 (7.6) 10.7 (7.6) 11.5 (7.2) 11.5 (7.8) 11.0 (7.6) 10.9 (7.6) 

Insulin use, n (%) 1832 (35.8) 1750 (34.1) 467 (51.9) 466 (52.2) 2299 (38.2) 2216 (36.8) 

Sulfonylurea use, n (%) 2707 (52.9) 2767 (54.0) 561 (62.4) 529 (59.3) 3268 (54.3) 3296 (54.8) 

Metformin use, n (%) 3285 (64.1) 3269 (63.7) 632 (70.3) 605 (67.8) 3917 (65.1) 3874 (64.4) 

Glinide use, n (%) 131 (2.6) 126 (2.5) 4 (0.4) 5 (0.6) 135 (2.2) 131 (2.2) 

Acarbose use, n (%) 45 (0.9) 50 (1.0) 16 (1.8) 20 (2.2) 61 (1.0) 70 (1.2) 

Thiazolidinedione use, 

n (%) 

1125 (22.0) 1133 (22.1) 171 (19.0) 166 (18.6) 1296 (21.5) 1299 (21.6) 

History of amputation, 

n (%) 

106 (2.1) 111 (2.2) 27 (3.0) 28 (3.1) 133 (2.2) 139 (2.3) 

History of eye surgery, 

n (%) 

1169 (22.9) 1119 (21.9) 150 

(18.3) 

152 

(18.9) 

1319 (22.3) 1271 (21.5) 

Current smoker, n (%) 607 (11.8) 640 (12.5) 145 (16.2) 154 (17.3) 752 (12.5) 794 (13.2) 

History of MI, n (%) 803 (15.7) 787 (15.3) 170 (19.0) 166 (18.6) 973 (16.2) 953 (15.8) 

History of stroke, n (%) 325 (6.3) 305 (5.9) 41 (4.6) 56 (6.3) 366 (6.1) 361 (6.0) 

History of CHF, n (%) 245 (4.8) 249 (4.9) 48 (5.3) 61 (6.8) 293 (4.9) 310 (5.2) 

History of angina, n 

(%) 

560 (10.9) 608 (11.9) 166 (18.5) 167 (18.7) 726 (12.1) 775 (12.9) 

Prior coronary 

revascularization, n (%) 

556 (10.9) 615 (12.0) 183 (20.4) 182 (20.4) 739 (12.3) 797 (13.2) 

Abbreviations: ACCORD = action to control cardiovascular risk in diabetes study; VADT = veterans affairs diabetes trial; HbA1c = hemoglobin A1c; DBP = diastolic 

blood pressure; SBP = systolic blood pressure; eGFR = estimated glomerular filtration rate; BMI = body mass index; ALT = alanine amino transferase; HDL = high- 

density lipoprotein; LDL = low-density lipoprotein; MI = myocardial infarction; CHF = congestive heart failure 
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f the ACCORD study [11] , and the 5% minimum node size was ad-

itionally selected to ensure that any detected HTE would poten- 

ially impact treatment decisions for a substantial number of dia- 

etes patients. Each tree is fit using an honest splitting and esti- 

ation approach described briefly above [ 12 , 16 , 17 ] from random

amples representing half of the stratified samples, respectively. 

urthermore, to avoid overfitting, each tree only considers half of 

he covariates for splitting. These covariates are randomly selected 

rom the set of covariates identified in Table 1 . To evaluate which 

ariables contribute the most to HTE, we employed a variable im- 

ortance statistic included in the grf package in R which generates 
3 
 weighted average of importance for each variable defined as 

mp 
(
X j 

)
= 

∑ K 
k =1 A jk / ( k 

2 B k ) 
∑ K 

k =1 1 / k 
2 

. 

Here K is the maximum depth over all the causal trees, A jk is 

he total number of splits of the variable X j at depth k , where j is 

n index of covariates included in the algorithm and B k is the total 

umber of splits at depth k over every tree in the forest [ 16 , 17 ].

ith the outputted variable importance statistics, we computed 

endall’s tau-b between the two causal forests to evaluate the level 

f concordance of variables contributing to HTE. 
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Table 2 

Replication of heterogeneous treatment effects of all-cause mortality from the ACCORD study in the VADT study 

ACCORD (Basu et al [11] ) VADT unweighted VADT weighted to ACCORD 

Subgroup N(%) Risk difference 95% CI N Risk difference 95% CI N Risk difference 95% CI 

1 877(8.6) -2.3% -4.5, -0.2 140(7.8) 2.2% -6.0, 10.4 NA -6.7% -19.7, 6.3 

2 1717(16.7) 0.7% -1.6, 3.1 192(10.7) 3.4% -7.3, 14.2 NA -0.8% -10.0, 8.5 

3 4678(45.6) 0.9% -0.4, 2.1 517(28.9) 2.4% -2.9, 7.7 NA -0.2% -2.8, 2.5 

4 2529(24.7) 3.7% 1.5 6.0 940(52.5) -0.8% -4.8, 3.1 NA 1.3% -5.1, 7.7 

Subgroup 1: Hemoglobin glycation index (HGI) < 0.44, Body mass index (BMI) < 30kg/m 
2 , Age less than 61 years 

Subgroup 2: HGI < 0.44, BMI < 30kg/m 
2 , Age ≥ 61 years 

Subgroup 3: HGI < 0.44, BMI ≥ 30kg/m 
2 

Subgroup 4: HGI ≥ 0.44 

Risk difference: negative values indicate lower mortality in intensive glycemic control arm; positive values indicate higher mortality in intensive 

glycemic control arm. 
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Table 3 

Variable importance scores and ranks for top ten variables influencing hetero- 

geneous treatment effects of intensive glycemic control on all-cause mortality 

after pooling ACCORD and VADT study data 

Variable ACCORD ± VADT ACCORD VADT 

Score Rank Score Rank Score Rank 

Age 0.106 1 0.087 2 0.079 2 

HGI 0.066 2 0.094 1 0.038 9 

DBP 0.066 3 0.063 5 0.044 8 

eGFR 0.0.06 4 0.058 6 0.069 3 

BMI 0.06 5 0.068 4 0.018 15 

HbA1c 0.052 6 0.0.68 3 0.021 14 

Triglycerides 0.045 7 0.04 13 0.052 5 

LDL cholesterol 0.044 8 0.044 10 0.088 1 

Total cholesterol 0.044 9 0.04 12 0.055 4 

Glucose 0.044 10 0.049 8 0.047 7 

Abbreviations: ACCORD = action to control cardiovascular risk in diabetes 

study; VADT = veterans affairs diabetes trial; HGI = hemoglobin glycation in- 

dex; DBP = diastolic blood pressure; eGFR = estimated glomerular filtration 

rate; BMI = body mass index; HbA1c = hemoglobin A1c; LDL = low-density 

lipoprotein 
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We then pooled the ACCORD and VADT samples and fit causal 

orests on the combined sample using the same model parame- 

ers used for each study separately. We used the five most impor- 

ant variables to construct a single representative causal tree using 

onest cross-validation and once again requiring at least 5% of the 

otal sample in every terminal node [18] . 

All analyses were conducted in R (version 3.5.3, R Foundation 

or Statistical Computing, Vienna, Austria). Statistical code is avail- 

ble upon request. 

esults 

Data from 10,251 ACCORD study participants and 1791 VADT 

tudy participants were included in this analysis. The ACCORD 

tudy included a larger proportion of women and a smaller pro- 

ortion of individuals of Hispanic ancestry ( Table 1 ). Compared to 

ADT study participants, ACCORD study participants at baseline 

ere older on average, had lower HbA1c, were less likely using 

nsulin, and less frequently had history of myocardial infarction, 

ongestive heart failure, angina, and prior coronary revasculariza- 

ion ( Table 1 ). The average treatment effects – risk differences – of 

ntensive glycemic control on all-cause mortality were 1.2% (95% 

onfidence Interval [CI] 0.2, 2.3) in the ACCORD study and 0.9% 

95% CI -2.1, 3.9) in the VADT study, with positive values indicat- 

ng increased mortality in the intensive treatment arm. 

HTE analysis using causal forests applied to the ACCORD study 

11] found that HGI, BMI, and age could be used to divide the sam- 

le into four subgroups in which the intervention effect on all- 

ause mortality ranged from a risk difference of -2.3% (95% CI: -4.5, 

0.2), indicating benefit from intensive glycemic control, in individ- 

als with low glycemic variability (indicated by low HGI), BMI be- 

ow the obese range, and of younger age ( < 61 years) to –3.7% (95%

I: 1.5, 6.0) in individuals with high glycemic variability (indicated 

y high HGI) ( Table 2 ). When the VADT study sample was divided

nto four subgroups using the variables and cut-points derived in 

CCORD, the same pattern of association of intensive glycemic con- 

rol with all-cause mortality was not observed (risk difference of 

ortality of 2.2% [95% CI: -6.0, 10.4] and -0.8% [95% CI: -4.8, 3.1] 

n the two most extreme subgroups; Table 2 ). After reweighting 

he VADT sample to balance the likelihood of sampling between 

ADT and ACCORD, the trend in the risk differences of mortality 

etween intensive and standard glycemic control across subgroups 

as similar to that observed in the ACCORD study, but with confi- 

ence intervals that consistently included the null (risk difference 

f mortality of -6.7% [95% CI: -19.7, 6.3] and 1.3% [95% CI: -5.1, 7.7]

n the two most extreme subgroups; Table 2 ). 

Next, we applied causal forests to ACCORD and VADT study data 

eparately and after pooling data from both studies to compare 

ariable importance for defining HTE of glycemic control on all- 

ause mortality. As in prior work, causal forests applied to the AC- 

ORD study prioritized HGI, age, and BMI most highly for HTE of 

ntensive glycemic control on all-cause mortality [11] . Of the ten 
4 
ost highly prioritized variables when applying causal forests to 

he pooled study data, the majority were also among the most 

ighly prioritized variables when performing the analysis in each 

ontributing study ( Table 3 ). When an indicator variable for study 

ACCORD or VADT) was included in the causal forest analysis of the 

ooled data, the study indicator variable had an importance score 

f 0.002 or 25th out of 46 variables. Comparing variable impor- 

ance in ACCORD and VADT, the Kendall’s tau-b correlation coeffi- 

ient was 0.717 ( Fig. 1 ). 

Using the five most highly prioritized variables from the causal 

orest analysis of the pooled ACCORD and VADT study data (age, 

GI, diastolic blood pressure, eGFR, and BMI) to generate a rep- 

esentative causal tree yielded a summary tree that utilized only 

our of the five candidate variables (diastolic blood pressure, BMI, 

GFR, and age) to split the pooled sample into seven subgroups 

 Fig. 2 ). Subgroup two, those with relatively normal diastolic blood 

ressure ( ≥65 mm Hg), at most class one obesity, younger age 

 < 61 years), with low-normal or early-stage chronic kidney dis- 

ase - comprising 11.5% of the pooled sample, demonstrated lower 

ll-cause mortality from intensive glycemic control (risk difference 

f -3.0% [95% CI: -5.2, -0.8]; Fig. 2 ). Subgroup two also demon- 

trated consistent direction of effect of intensive glycemic control 

n all-cause mortality in the ACCORD (risk difference -2.9% [95% 

I: -5.3, -0.5]) and VADT (risk difference -3.1% [95% CI: -8.4, 2.1]) 

tudies but with 95% confidence intervals that included the null 

n VADT likely due to a smaller relative sample size. There was 

irectional consistency of decreased major adverse cardiovascular 

vents, the trial primary outcome, from intensive glycemic control 

n Subgroup two across the pooled sample, the ACCORD study, and 

he VADT study, though the 95% confidence intervals did not ex- 

lude the null (risk difference of -3.2% [95% CI: -6.3, 0.1] in pooled 
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Fig. 1. Correlation of variable importance rank from causal forest in the VADT and ACCORD studies. Variable importance score in VADT study on x-axis and in ACCORD study 

on y-axis. Perfect correlation represented by green line; actual correlation represented by blue line. Key variables indicated (HbA1c = hemoglobin A1c; HGI = hemoglobin 

glycation index; DBP = diastolic blood pressure; eGFR = estimated glomerular filtration rate; BMI = body mass index; TG = triglycerides) (Color version of the figure is 

available online.) 

s

1  

t

m

a

i

e

C

5

6

h

p

s  

6

c

[

8

s

c

t

t

8

t

s

fi

t

t

[

C

F

C

m

d

a

o

o

a

p

p

o

s

a

t

f

n

T

b

n

f  

g

t

o

t

l

r

w

p

h

ample, -2.8% [95% CI: -6.2, 0.5] in ACCORD, and -4.2% [95% CI: - 

1.6, 3.2] in VADT ; Fig. 2 ). A second subgroup comprising 14.8% of

he pooled sample (Subgroup one , Fig. 2 ) defined by relatively nor- 

al diastolic blood pressure, at most class one obesity, and older 

ge ( ≥67 years) also had lower all-cause mortality associated with 

ntensive glycemic control but the 95% confidence intervals did not 

xclude the null in the pooled sample (risk difference -2.4% [95% 

I -5.3, 0.6]), in the ACCORD study (risk difference -2.6% [95% - 

.7, 0.5]), or in the VADT study (risk difference -1.7% [95% CI -10.0, 

.7]). 

Three subgroups (subgroups four,six, and seven) demonstrated 

igher all-cause mortality from intensive glycemic control in the 

ooled sample. Subgroup four was defined by diastolic blood pres- 

ure ≥65 mm Hg, BMI below 35 kg/m 
2 , and a narrow age range of

1 –67 years, and the effect of intensive glycemic control on all- 

ause mortality differed between the ACCORD (risk difference 2.7% 

95% CI: 0.5, 5.0]) and VADT (risk difference -1.1% [95% CI: -10.1, 

.0]) studies ( Fig. 2 ). Among individuals with diastolic blood pres- 

ure ≥65 mm Hg, Subgroup six was defined by individuals with 

lass two or greater obesity and older age ( ≥62 years). In con- 

rast to Subgroup four, Subgroup six individuals exhibited consis- 

ent effects across the ACCORD (risk difference 4.5% [95% CI: 0.8, 

.1]) and VADT (risk difference 9.5% [95% CI: -5.8, 24.8]) studies, 

hough with the confidence interval including null in VADT pos- 

ibly owing to smaller sample size ( Fig. 2 ). Subgroup seven, de- 

ned by low diastolic blood pressure ( < 65 mm Hg), had consis- 

ently increased mortality associated with intensive glycemic con- 

rol in the ACCORD and VADT samples (risk difference of 4.7% 

95% CI: 1.8, 7.5] in the pooled ACCORD + VADT sample, 3.8% [95% 

I: 0.9, 6.7] in ACCORD, and 10.9% [95% CI: 1.2, 20.7] in VADT; 

ig. 2 ). 
5 
onclusions 

A summary causal tree defining HTE subgroups for all-cause 

ortality associated with intensive glycemic control from one ran- 

omized trial did not generalize to a second randomized trial with 

 similar design. Weighting participants in the second trial based 

n resemblance to participants in the first improved replicability 

f HTE subgroup effects, suggesting differences in study samples 

t least partially contribute to differential subgroup effects. When 

erforming identical analyses on both study samples, variable im- 

ortance for defining HTE using causal forests was similar in each 

f the two studies, and a summary causal tree with several con- 

istent HTE subgroups across both studies could be generated by 

pplying causal forests to pooled individual-level data from the 

wo trials. Taken together, the results suggest that applying causal 

orests to define HTE in a single study may yield results that can- 

ot be directly applied to a second study or second population. 

his limitation may be due to spurious associations that would not 

e replicable under any conditions, to varying imbalance of prog- 

ostic factors in subgroups from different studies inducing con- 

ounding in the subgroup analyses [ 19 , 20 ], to sensitivity of the al-

orithm to user-defined parameters of the causal forests method, 

o sensitivity of the algorithm to differences in study populations, 

r to sensitivity of the algorithm to differences in study and/or in- 

ervention design even when seemingly similar. To overcome the 

atter two potential limitations, our results support the value of 

eplication in multiple studies and/or pooling individual-level data 

hen possible. 

Much attention has recently focused on the challenges of re- 

roducibility and replicability of machine learning applications in 

ealth care [21–23] . By reproducibility, we mean arriving at the 
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Fig. 2. Summary causal tree of heterogeneous treatment effects of intensive glycemic control on all-cause mortality. Splitting variables and cut-points for each split are 

shown, resulting in seven terminal subgroups. Size, risk difference of all-cause mortality, and risk difference of major adverse cardiovascular events (CVD) from intensive 

versus standard glycemic control in each subgroup are shown for pooled data, the ACCORD study, and the VADT study. Negative risk differences indicate better outcomes in 

intensive glycemic control arm. Units for splitting variables are mm Hg for DBP (diastolic blood pressure), kg/m 
2 for BMI (body-mass index), and years for age. 
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ame result on multiple occasions using identical data and analy- 

es. By replicability, we mean arriving at the same result in sepa- 

ate experimental studies with similar analyses. In this study, we 

ere able to reproduce the causal forests variable importance re- 

ults previously published for the ACCORD study [11] , but were 

nable to replicate the HTE in the VADT study. The variable im- 

ortance derived from causal forests was reasonably correlated be- 

ween the ACCORD study and VADT study, suggesting at least par- 

ial replicability of the casual forests HTE algorithm in disparate 

amples. Furthermore, an indicator variable for the parent study 

ACCORD or VADT) was not important for HTE detection when ap- 

lying causal forests to pooled data from both studies, suggest- 

ng differences between the studies did not preclude identification 

f consensus HTE. Furthermore, the representative tree based on 

he 5 most highly ranked variables from causal forests analysis of 

he pooled data found that intensive glycemic control was asso- 

iated with lower mortality in relatively leaner (BMI < 35 kg/m 
2 ) 

nd younger (age < 61 years) individuals – two features identi- 
6 
ed in the prior analysis of the ACCORD study [11] . That pooling 

ndividual-level data yielded consistent HTE subgroups across stud- 

es may suggest that the causal forests algorithm is sensitive to 

ubtle between-study differences that were smoothed-out in the 

ooled data. Our results support the need for replication of HTE 

etection if multiple similar studies are available, with cautious 

nterpretation or application to clinical care until results are con- 

rmed. 

While the results presented in the summary causal tree using 

ooled data from the ACCORD and VADT studies are potentially 

linically relevant, they should be interpreted with caution. Nei- 

her the ACCORD study nor the VADT study, or the similarly de- 

igned ADVANCE study, found a benefit of intensive glycemic con- 

rol for the primary outcome of cardiovascular events, and the AC- 

ORD study found higher mortality associated with intensive con- 

rol [8–10] . The initial split in the summary causal tree with indi- 

iduals with diastolic blood pressure less than 65 mm Hg exhibit- 

ng higher mortality with intensive glycemic control fits with prior 
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tudies of blood pressure and blood pressure variability and cardio- 

ascular outcomes in the VADT study [ 24 , 25 ]. However, the sum-

ary causal tree presented here is otherwise difficult to interpret 

rom the perspective of relating variable cut-points to physiology 

nd clinical outcomes and would not be intuitive to institute into 

linical practice in its current form. The analyses presented here 

ighlight the generalizability challenges inherent to using machine 

earning for identifying HTE, and additional evaluation is needed 

o assess the performance of the HTE subgroups in the summary 

ausal tree in diabetes patients drawn from the VA health system 

nd in the general population. 

There are several limitations to acknowledge. First, interpreta- 

ion of the results should remain limited to the populations repre- 

ented in the ACCORD and VADT studies. That is, though pooling 

ata from the two studies broadens the general population rep- 

esentation in our analysis, the resulting pooled sample is still de- 

ived from a select randomized trial sample and does not necessar- 

ly better represent the diabetes patient population at risk. Second, 

e found that the causal forests results were sensitive to the min- 

mum node size parameter, particularly if smaller nodes (terminal 

ubgroups) were allowed (see Supplemental Material for compari- 

on of variable importance across a range of minimum node sizes). 

e used a minimum node size of 5% of the total study popula- 

ion to align this study with the prior HTE analysis of the ACCORD 

tudy [11] and to retain a reasonably sized potential patient popu- 

ation who might be affected by any HTE. Third, while we demon- 

trate limitations to generalizability of causal forests for identi- 

ying HTE between two study samples, we do not propose spe- 

ific strategies to overcome the limitations aside from pooling data 

rom multiple studies, a solution that is often impractical. Whether 

ethods for generalizability and/or transportability of trial data to 

 target population [26–30] can be tailored to machine learning al- 

orithms for HTE detection will be explored in future work. Fourth, 

he VADT study was less than 20% the size of the ACCORD study, 

o some of the between-sample variation in significance of sub- 

roup effects may be attributable to the differences in sample size. 

inally, we evaluated only one machine learning algorithm for HTE 

etection – causal forests – in our analysis, based on previously 

ublished work. Therefore, we cannot necessarily generalize the 

ndings with causal forests to other machine learning algorithms 

hat can be used to identify HTE. While active research in refining 

achine learning algorithms has yielded improvements in HTE de- 

ection [31] , it is unclear if better within-sample HTE identification 

ould translate to better between-sample generalizability. 

In conclusion, using data from two randomized trials of inten- 

ive glycemic control in type II diabetes patients, we found limited 

eplicability or generalizability of HTE on all-cause mortality iden- 

ified using the causal forests machine learning approach despite 

imilar variable prioritization in each study. We speculate that dif- 

erences in the study population characteristics or specifics of the 

ntervention can undermine generalizability of HTE even for sim- 

larly designed randomized trials and urge caution in interpreting 

nd/or applying HTE results in the absence of replication. While 

he limitations of causal forests could be overcome by pooling 

ndividual-level data from multiple studies, this solution is not al- 

ays feasible. These findings motivate development of additional 

ethods for meta-analyzing machine learning applications for HTE 

etection and for generalizing machine learning results from trials 

o target populations. 
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