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ABSTRACT

Purpose Machine learning is an attractive tool for identifying heterogeneous treatment effects (HTE) of
interventions but generalizability of machine learning derived HTE remains unclear. We examined gen-
eralizability of HTE detected using causal forests in two similarly designed randomized trials in type II
diabetes patients.

Methods We evaluated published HTE of intensive versus standard glycemic control on all-cause mor-
tality from the Action to Control Cardiovascular Risk in Diabetes study (ACCORD) in a second trial, the
Veterans Affairs Diabetes Trial (VADT). We then applied causal forests to VADT, ACCORD, and pooled data
from both studies and compared variable importance and subgroup effects across samples.

Results HTE in ACCORD did not replicate in similar subgroups in VADT, but variable importance
was correlated between VADT and ACCORD (Kendall’s tau-b 0.75). Applying causal forests to pooled
individual-level data yielded seven subgroups with similar HTE across both studies, ranging from risk
difference of all-cause mortality of -3.9% (95% CI -7.0, -0.8) to 4.7% (95% CI 1.8, 7.5).

Conclusions Machine learning detection of HTE subgroups from randomized trials may not general-
ize across study samples even when variable importance is correlated. Pooling individual-level data may
overcome differences in study populations and/or differences in interventions that limit HTE generaliz-
ability.

Published by Elsevier Inc.
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Machine learning methods are powerful tools for predicting
outcomes with ever-increasing accuracy. More recently, there has
also been interest in using machine learning to identify heteroge-
neous treatment effects (HTE) of clinical interventions, particularly
in settings in which univariate subgroup analyses are unrevealing
[1-7]. However, the replicability of subgroup effects detected using
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machine learning methods across study samples is not often tested
as multiple studies investigating similar intervention-outcome ef-
fects are rarely available. Moreover, the absence of replicability
could arise from differences in study design or study population
characteristics even when the underlying machine learning method
is valid.

One context in which multiple similarly designed intervention
studies have been performed is the evaluation of the effect of
glycemic control intensity on mortality and diabetes-related com-
plications in type II diabetes patients. Three randomized trials
compared clinical outcomes in type II diabetes patients treated to
an intensive versus standard glycemic control target [8-10]. None
of the three studies found an association of glycemic control in-
tensity with the primary outcome of cardiovascular disease events,
and one, the Action to Control Cardiovascular Risk in Diabetes (AC-
CORD) Study, found an association of intensive glycemic control
with higher all-cause mortality [8-10]. To evaluate the mortal-
ity findings further, using the causal forests machine learning ap-
proach, three variables were identified that defined subgroups in
the ACCORD study with different risk for mortality in response to
intensive glycemic control [11,12]. Whether the HTE of intensive
glycemic control in ACCORD generalize remains unexplored.

We evaluated the generalizability of HTE across two similarly
designed studies in distinct diabetes patient populations. We used
individual-level data from the ACCORD study and the Veterans Af-
fairs Diabetes Trial (VADT), two of the three aforementioned ran-
domized trials of intensive versus standard glycemic control, to ex-
amine HTE identified in ACCORD in the VADT, to compare variable
prioritization by causal forests between the two trials, and to de-
termine if HTE could be identified that generalize across both stud-
ies.

Material and methods
Study samples

Individual-level data from two randomized clinical trials were
included in this study. The ACCORD and VADT studies have been
described in detail previously [8,9]. We opted to analyze these
trials as both studies were publicly funded and US-based with
individual-level data publicly available (ACCORD) or accessible to
US Department of Veterans Affairs investigators through a data
use agreement (VADT). Both studies included adults with advanced
type II diabetes and a hemoglobin Alc (HbA1c) >7.5%. The VADT
study enrolled participants from December 2000 —-May 2003, and
follow-up continued through May 2008. Median follow-up time in
the VADT study was 5.6 years. The ACCORD study intentionally en-
rolled participants at high cardiovascular risk from January-June
2001 and from February 2003-October 2005, and follow-up in the
ACCORD study continued until June 2009. An interim evaluation in
December 2007 suggested harm from intensive glycemic control,
prompting discontinuation of that treatment arm; as a result, AC-
CORD study participants had a median on-protocol follow-up time
of 3.7 years and a median total follow-up time of 4.9 years. Both
studies randomized participants to receive intensive or standard
glycemic control but the definitions of those targets differed. In the
VADT study, different doses of oral diabetes medications and dif-
ferent thresholds for adding insulin were used between treatment
arms to achieve a goal of at least 1.5% lower HbA1c in participants
randomized to intensive control compared to standard control. In
the ACCORD study, participants received open-label diabetes treat-
ment to a target of HbAlc less than 6% for intensive glycemic con-
trol versus 7%-7.9% for standard glycemic control. In this secondary
analysis, we included data from all 1791 VADT study participants
and 10,251 ACCORD study participants. The Colorado Multiple In-
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stitutional Review Board and local VA Research and Development
Committee provided human subjects oversight and approval of the
study.

Outcome

The primary outcome was all-cause mortality as ascertained in
each of the original studies. Major adverse cardiovascular events,
defined as fatal or non-fatal myocardial infarction or stroke, was a
secondary outcome.

Predictors

We included baseline variables that were common to the
two studies, including patient demographics, comorbidities, dia-
betes and cardiovascular disease medications, and laboratory val-
ues (Table 1). Estimated glomerular filtration rate (eGFR) was cal-
culated using the Modification of Diet in Renal Disease Study equa-
tion [13]. Hemoglobin glycation index (HGI) was estimated as the
residual between measured HbAlc and HbAlc predicted by re-
gressing on fasting glucose [14]. As the basis for this analysis was a
prior HTE examination in the ACCORD study [11], we used the re-
gression equation of HbA1c on fasting glucose from ACCORD study
participants to estimate HGI. Body mass index (BMI) was calcu-
lated as the weight in kilograms divided by the height in meters
squared.

Statistical approach

To evaluate previously published HTE subgroups from the AC-
CORD study [11], VADT study participants were separated into one
of four subgroups identified by a representative tree found in the
previous article. We then estimated the crude average treatment
effect of all-cause mortality within each subgroup. To address dif-
ferences in participant characteristics between the VADT and AC-
CORD study samples and thus improve external validation of the
ACCORD HTE study [11], we weighted participants in the VADT
based on their likelihood of being sampled for the ACCORD study
and re-estimated the crude average treatment effect of all-cause
mortality within each of the four subgroups in the weighted VADT
study sample. This causes the VADT participants to appear more
like the ACCORD participants based on the sample moments of the
marginal covariate distributions. The weights themselves are re-
flective of the inverse odds of sampling and are estimated directly
using a method of moments estimator [15].

Next, we fit causal forests on both the VADT and ACCORD sam-
ples with the goal of identifying variables that contribute the most
to HTE. We used causal forests [12,16,17] for this analysis rather
than alternative machine learning algorithms to facilitate direct
comparability with previously published analysis of the ACCORD
study [11]. Briefly, the causal forests method builds a series of de-
cision trees by randomly splitting the study population and rank-
ing a random subset of predictor variables based on their modi-
fication of the treatment effect (defined as the risk difference in
all-cause mortality between intensive and standard glycemic treat-
ment in our case) in the subsample. Each tree is then tuned in
the second study subsample to identify cut-points for each variable
that maximizes between-subgroup treatment effects in the termi-
nal subgroups at the bottom of the tree. Variable importance can
then be assessed across all trees in the forest based on their rel-
ative position in a tree which corresponds to their influence on
HTE. When applying causal forests to the ACCORD and VADT study
data, both forests contained 5000 trees and a minimum node size
of approximately 5% of the total sample size. Again, these param-
eters were selected for comparability with the prior HTE analysis



JID: AEP

S. Raghavan, K. Josey, G. Bahn et al.

Table 1
Study population characteristics
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ACCORD VADT ACCORD + VADT
Standard control Intensive control Standard control Intensive control Standard control Intensive
control

N = 5123 N = 5128 N = 899 N = 892 N = 6022 N = 6020
Age, mean (SD) 62.8 (6.7) 62.8 (6.6) 60.3 (8.6) 60.5 (8.8) 62.4 (7.0) 62.4 (7.0)
Sex, n female (%) 1969 (38.4) 1983 (38.7) 26 26 1995 (33.1) 2009 (33.4)

(2.9) (2.9)

Race, n (%)
Black 956 (18.7) 997 (19.4) 147 (16.4) 152 (17.0) 1103 (18.3) 1149 (19.1)
Hispanic 379 (7.4) 358 (7.0) 136 (15.1) 155 (17.4) 515 (8.6) 513 (8.5)
HbA1lc (% [mmol/mol]), 8.3 (1.1) [ 8.3 (1.1) [ 94 (1.6) | 9.4 (1.5) [ 8.5(1.2) [ 8.5(1.2) [
mean (SD) 67 [9]]) 67 [9]] 79 [13]]) 79 [13]] 69 [10]] 69 [10]]
Glucose (mg/dL), mean 175.7 (56.4) 174.7 (55.9) 205.9 (69.0) 203.5 (67.8) 180.2 (59.5) 179.0 (58.7)
(SD)
Hemoglobin glycation -0.07 (0.9) -0.08 (1.0) 8 (1.4) 8 (1.4) 0.06 (1.1) 0.05 (1.1)
index (unitless), mean
(SD)
Total cholesterol 183.3 (41.6) 183.3 (42.1) 184.7 (52.7) 181.6 (40.4) 183.5 (43.5) 183.1 (41.8)

(mg/dL), mean (SD)
Triglycerides (mg/dL),
mean (SD)

189.4 (148.6) 190.9 (148.2)

222.8 (351.8)

200.8 (161.8) 194.4 (193.5) 192.4 (150.3)

LDL cholesterol 104.9 (33.8) 104.9 (34.0) 108.2 (34.0) 107.0 (30.9) 105.4 (33.9) 105.2 (33.6)
(mg/dL), mean (SD)

HDL cholesterol 41.9 (11.5) 41.8 (11.8) 35.8 (10.4) 36.2 (9.9) 41.0 (11.5) 41.0 (11.7)
(mg/dL), mean (SD)

Creatinine (mg/dL), 0.9 (0.2) 9 (0.2) 0 (0.2) 1.0 (0.2) 0.9 (0.2) 0.9 (0.2)
mean (SD)

eGFR 91.3 (28.4) 90.8 (25.8) 87.5 (22.6) 87.3 (24.2) 90.7 (27.7) 90.3 (25.6)
(mL/min/1.73m?),

mean (SD)

ALT (mg/dL), mean 27.7 (14.9) 27.5 (17.4) 31.9 (17.4) 30.8 (15.2) 28.3 (15.3) 28.0 (17.1)
(SD)

SBP (mm Hg), mean 136.5 (17.2) 136.2 (17.0) 131.8 (16.8) 131.4 (16.6) 135.8 (17.2) 135.5 (17.1)
(SD)

DBP (mm Hg), mean 75.0 (10.7) 74.8 (10.7) 76.1 (10.2) 76.0 (10.4) 75.2 (10.6) 75.0 (10.6)
(SD)

BMI (kg/m?), mean 32.2 (5.4) 32.2 (5.4) 31.2 (4.4) 31.3 (4.4) 32.1 (5.3) 32.1(5.3)
(SD)

Diabetes duration (y), 10.9 (7.6) 10.7 (7.6) 11.5(7.2) 11.5 (7.8) 11.0 (7.6) 10.9 (7.6)
mean (SD)

Insulin use, n (%) 1832 (35.8) 1750 (34.1) 467 (51.9) 466 (52.2) 2299 (38.2) 2216 (36.8)
Sulfonylurea use, n (%) 2707 (52.9) 2767 (54.0) 561 (62.4) 529 (59.3) 3268 (54.3) 3296 (54.8)
Metformin use, n (%) 3285 (64.1) 3269 (63.7) 632 (70.3) 605 (67.8) 3917 (65.1) 3874 (64.4)
Glinide use, n (%) 131 (2.6) 126 (2.5) 4 (0.4) 5(0.6) 135 (2.2) 131 (2.2)
Acarbose use, n (%) 45 (0.9) 50 (1.0) 16 (1.8) 20 (2.2) 1(1.0) 70 (1.2)
Thiazolidinedione use, 1125 (22.0) 1133 (22.1) 171 (19.0) 166 (18.6) 1296 (21.5) 1299 (21.6)
n (%)

History of amputation, 106 (2.1) 111 (2.2) 27 (3.0) 8 (3.1) 133 (2.2) 139 (2.3)

n (%)

History of eye surgery, 1169 (22.9) 1119 (21.9) 150 152 1319 (22.3) 1271 (21.5)
n (%) (18.3) (18.9)

Current smoker, n (%) 607 (11.8) 640 (12.5) 145 (16.2) 154 (17.3) 752 (12.5) 794 (13.2)
History of MI, n (%) 803 (15.7) 787 (15.3) 170 (19.0) 166 (18.6) 973 (16.2) 953 (15.8)
History of stroke, n (%) 325 (6.3) 305 (5.9) 41 (4.6) 56 (6.3) 366 (6.1) 361 (6.0)
History of CHF, n (%) 245 (4.8) 249 (4.9) 48 (5.3) 61 (6.8) 293 (4.9) 310 (5.2)
History of angina, n 560 (10.9) 608 (11.9) 166 (18.5) 167 (18.7) 726 (12.1) 775 (12.9)
(%)

Prior coronary 556 (10.9) 615 (12.0) 183 (20.4) 182 (20.4) 739 (12.3) 797 (13.2)

revascularization, n (%)

Abbreviations: ACCORD = action to control cardiovascular risk in diabetes study; VADT = veterans affairs diabetes trial; HbAlc = hemoglobin Alc; DBP = diastolic
blood pressure; SBP = systolic blood pressure; eGFR = estimated glomerular filtration rate; BMI = body mass index; ALT = alanine amino transferase; HDL = high-

density lipoprotein; LDL = low-density lipoprotein; MI =

of the ACCORD study [11], and the 5% minimum node size was ad-
ditionally selected to ensure that any detected HTE would poten-
tially impact treatment decisions for a substantial number of dia-
betes patients. Each tree is fit using an honest splitting and esti-
mation approach described briefly above [12,16,17] from random
samples representing half of the stratified samples, respectively.
Furthermore, to avoid overfitting, each tree only considers half of
the covariates for splitting. These covariates are randomly selected
from the set of covariates identified in Table 1. To evaluate which
variables contribute the most to HTE, we employed a variable im-
portance statistic included in the grf package in R which generates

myocardial infarction; CHF = congestive heart failure

a weighted average of importance for each variable defined as

i L Aji/ (K?By)
K 1k
Here K is the maximum depth over all the causal trees, Aj, is
the total number of splits of the variable X; at depth k, where j is
an index of covariates included in the algorithm and B, is the total
number of splits at depth k over every tree in the forest [16,17].
With the outputted variable importance statistics, we computed
Kendall’s tau-b between the two causal forests to evaluate the level
of concordance of variables contributing to HTE.

Imp(X;) =
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Table 2

[m5G;August 8, 2021;3:1]

Annals of Epidemiology xxx (xXxx) xxx

Replication of heterogeneous treatment effects of all-cause mortality from the ACCORD study in the VADT study

ACCORD (Basu et al [11])

Subgroup N(%) Risk difference 95% CI N

1 877(8.6) -2.3% -4.5,-0.2  140(7.8)
2 1717(16.7)  0.7% -1.6, 3.1 192(10.7)
3 4678(45.6) 0.9% -0.4, 2.1 517(28.9)
4 2529(24.7)  3.7% 1.5 6.0 940(52.5)

VADT unweighted

VADT weighted to ACCORD

Risk difference 95% ClI N Risk difference  95% CI
2.2% -6.0,104 NA -6.7% -19.7, 6.3
3.4% -73,142 NA -0.8% -10.0, 8.5
2.4% -2.9, 7.7 NA  -0.2% -2.8, 2.5
-0.8% -4.8, 3.1 NA 1.3% -5.1, 7.7

Subgroup 1: Hemoglobin glycation index (HGI) < 0.44, Body mass index (BMI) < 30kg/m?2, Age less than 61 years

Subgroup 2: HGI < 0.44, BMI < 30kg/m?, Age > 61 years
Subgroup 3: HGI < 0.44, BMI > 30kg/m?
Subgroup 4: HGI > 0.44

Risk difference: negative values indicate lower mortality in intensive glycemic control arm; positive values indicate higher mortality in intensive

glycemic control arm.

We then pooled the ACCORD and VADT samples and fit causal
forests on the combined sample using the same model parame-
ters used for each study separately. We used the five most impor-
tant variables to construct a single representative causal tree using
honest cross-validation and once again requiring at least 5% of the
total sample in every terminal node [18].

All analyses were conducted in R (version 3.5.3, R Foundation
for Statistical Computing, Vienna, Austria). Statistical code is avail-
able upon request.

Results

Data from 10,251 ACCORD study participants and 1791 VADT
study participants were included in this analysis. The ACCORD
study included a larger proportion of women and a smaller pro-
portion of individuals of Hispanic ancestry (Table 1). Compared to
VADT study participants, ACCORD study participants at baseline
were older on average, had lower HbAlc, were less likely using
insulin, and less frequently had history of myocardial infarction,
congestive heart failure, angina, and prior coronary revasculariza-
tion (Table 1). The average treatment effects - risk differences - of
intensive glycemic control on all-cause mortality were 1.2% (95%
Confidence Interval [CI] 0.2, 2.3) in the ACCORD study and 0.9%
(95% CI -2.1, 3.9) in the VADT study, with positive values indicat-
ing increased mortality in the intensive treatment arm.

HTE analysis using causal forests applied to the ACCORD study
[11] found that HGI, BMI, and age could be used to divide the sam-
ple into four subgroups in which the intervention effect on all-
cause mortality ranged from a risk difference of -2.3% (95% CI: -4.5,
-0.2), indicating benefit from intensive glycemic control, in individ-
uals with low glycemic variability (indicated by low HGI), BMI be-
low the obese range, and of younger age (<61 years) to -3.7% (95%
CI: 1.5, 6.0) in individuals with high glycemic variability (indicated
by high HGI) (Table 2). When the VADT study sample was divided
into four subgroups using the variables and cut-points derived in
ACCORD, the same pattern of association of intensive glycemic con-
trol with all-cause mortality was not observed (risk difference of
mortality of 2.2% [95% CI: -6.0, 10.4] and -0.8% [95% CI: -4.8, 3.1]
in the two most extreme subgroups; Table 2). After reweighting
the VADT sample to balance the likelihood of sampling between
VADT and ACCORD, the trend in the risk differences of mortality
between intensive and standard glycemic control across subgroups
was similar to that observed in the ACCORD study, but with confi-
dence intervals that consistently included the null (risk difference
of mortality of -6.7% [95% CI: -19.7, 6.3] and 1.3% [95% CI: -5.1, 7.7]
in the two most extreme subgroups; Table 2).

Next, we applied causal forests to ACCORD and VADT study data
separately and after pooling data from both studies to compare
variable importance for defining HTE of glycemic control on all-
cause mortality. As in prior work, causal forests applied to the AC-
CORD study prioritized HGI, age, and BMI most highly for HTE of
intensive glycemic control on all-cause mortality [11]. Of the ten

Table 3

Variable importance scores and ranks for top ten variables influencing hetero-
geneous treatment effects of intensive glycemic control on all-cause mortality
after pooling ACCORD and VADT study data

Variable ACCORD + VADT  ACCORD VADT
Score Rank Score Rank  Score Rank

Age 0.106 1 0.087 2 0.079 2
HGI 0.066 2 0.094 1 0.038 9
DBP 0.066 3 0.063 5 0.044 8
eGFR 0.0.06 4 0.058 6 0069 3
BMI 0.06 5 0.068 4 0.018 15
HbAlc 0.052 6 0.0.68 3 0.021 14
Triglycerides 0.045 7 0.04 13 0.052 5
LDL cholesterol 0.044 8 0.044 10 0.088 1
Total cholesterol 0.044 9 0.04 12 0.055 4
Glucose 0.044 10 0.049 8 0.047 7

Abbreviations: ACCORD = action to control cardiovascular risk in diabetes
study; VADT = veterans affairs diabetes trial; HGI = hemoglobin glycation in-
dex; DBP = diastolic blood pressure; eGFR = estimated glomerular filtration
rate; BMI = body mass index; HbAlc = hemoglobin Alc; LDL = low-density
lipoprotein

most highly prioritized variables when applying causal forests to
the pooled study data, the majority were also among the most
highly prioritized variables when performing the analysis in each
contributing study (Table 3). When an indicator variable for study
(ACCORD or VADT) was included in the causal forest analysis of the
pooled data, the study indicator variable had an importance score
of 0.002 or 25th out of 46 variables. Comparing variable impor-
tance in ACCORD and VADT, the Kendall’s tau-b correlation coeffi-
cient was 0.717 (Fig. 1).

Using the five most highly prioritized variables from the causal
forest analysis of the pooled ACCORD and VADT study data (age,
HGI, diastolic blood pressure, eGFR, and BMI) to generate a rep-
resentative causal tree yielded a summary tree that utilized only
four of the five candidate variables (diastolic blood pressure, BMI,
eGFR, and age) to split the pooled sample into seven subgroups
(Fig. 2). Subgroup two, those with relatively normal diastolic blood
pressure (>65 mm Hg), at most class one obesity, younger age
(<61 years), with low-normal or early-stage chronic kidney dis-
ease - comprising 11.5% of the pooled sample, demonstrated lower
all-cause mortality from intensive glycemic control (risk difference
of -3.0% [95% CI: -5.2, -0.8]; Fig. 2). Subgroup two also demon-
strated consistent direction of effect of intensive glycemic control
on all-cause mortality in the ACCORD (risk difference -2.9% [95%
Cl: -5.3, -0.5]) and VADT (risk difference -3.1% [95% CI: -8.4, 2.1])
studies but with 95% confidence intervals that included the null
in VADT likely due to a smaller relative sample size. There was
directional consistency of decreased major adverse cardiovascular
events, the trial primary outcome, from intensive glycemic control
in Subgroup two across the pooled sample, the ACCORD study, and
the VADT study, though the 95% confidence intervals did not ex-
clude the null (risk difference of -3.2% [95% CI: -6.3, 0.1] in pooled
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Fig. 1. Correlation of variable importance rank from causal forest in the VADT and ACCORD studies. Variable importance score in VADT study on x-axis and in ACCORD study
on y-axis. Perfect correlation represented by green line; actual correlation represented by blue line. Key variables indicated (HbAlc = hemoglobin Alc; HGI = hemoglobin
glycation index; DBP = diastolic blood pressure; eGFR = estimated glomerular filtration rate; BMI = body mass index; TG = triglycerides) (Color version of the figure is

available online.)

sample, -2.8% [95% CI: -6.2, 0.5] in ACCORD, and -4.2% [95% CI: -
11.6, 3.2] in VADT; Fig. 2). A second subgroup comprising 14.8% of
the pooled sample (Subgroup one, Fig. 2) defined by relatively nor-
mal diastolic blood pressure, at most class one obesity, and older
age (=67 years) also had lower all-cause mortality associated with
intensive glycemic control but the 95% confidence intervals did not
exclude the null in the pooled sample (risk difference -2.4% [95%
CI -5.3, 0.6]), in the ACCORD study (risk difference -2.6% [95% -
5.7, 0.5]), or in the VADT study (risk difference -1.7% [95% CI -10.0,
6.7]).

Three subgroups (subgroups four,six, and seven) demonstrated
higher all-cause mortality from intensive glycemic control in the
pooled sample. Subgroup four was defined by diastolic blood pres-
sure >65 mm Hg, BMI below 35 kg/m?, and a narrow age range of
61 -67 years, and the effect of intensive glycemic control on all-
cause mortality differed between the ACCORD (risk difference 2.7%
[95% CI: 0.5, 5.0]) and VADT (risk difference -1.1% [95% CI: -10.1,
8.0]) studies (Fig. 2). Among individuals with diastolic blood pres-
sure >65 mm Hg, Subgroup six was defined by individuals with
class two or greater obesity and older age (>62 years). In con-
trast to Subgroup four, Subgroup six individuals exhibited consis-
tent effects across the ACCORD (risk difference 4.5% [95% CI: 0.8,
8.1]) and VADT (risk difference 9.5% [95% Cl: -5.8, 24.8]) studies,
though with the confidence interval including null in VADT pos-
sibly owing to smaller sample size (Fig. 2). Subgroup seven, de-
fined by low diastolic blood pressure (<65 mm Hg), had consis-
tently increased mortality associated with intensive glycemic con-
trol in the ACCORD and VADT samples (risk difference of 4.7%
[95% CI: 1.8, 7.5] in the pooled ACCORD+VADT sample, 3.8% [95%
Cl: 0.9, 6.7] in ACCORD, and 10.9% [95% CI: 1.2, 20.7] in VADT;
Fig. 2).

Conclusions

A summary causal tree defining HTE subgroups for all-cause
mortality associated with intensive glycemic control from one ran-
domized trial did not generalize to a second randomized trial with
a similar design. Weighting participants in the second trial based
on resemblance to participants in the first improved replicability
of HTE subgroup effects, suggesting differences in study samples
at least partially contribute to differential subgroup effects. When
performing identical analyses on both study samples, variable im-
portance for defining HTE using causal forests was similar in each
of the two studies, and a summary causal tree with several con-
sistent HTE subgroups across both studies could be generated by
applying causal forests to pooled individual-level data from the
two trials. Taken together, the results suggest that applying causal
forests to define HTE in a single study may yield results that can-
not be directly applied to a second study or second population.
This limitation may be due to spurious associations that would not
be replicable under any conditions, to varying imbalance of prog-
nostic factors in subgroups from different studies inducing con-
founding in the subgroup analyses [19,20], to sensitivity of the al-
gorithm to user-defined parameters of the causal forests method,
to sensitivity of the algorithm to differences in study populations,
or to sensitivity of the algorithm to differences in study and/or in-
tervention design even when seemingly similar. To overcome the
latter two potential limitations, our results support the value of
replication in multiple studies and/or pooling individual-level data
when possible.

Much attention has recently focused on the challenges of re-
producibility and replicability of machine learning applications in
health care [21-23]. By reproducibility, we mean arriving at the
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Lo J L2 s J[efls ] 6] ’
ACCORD + VADT N=1776 N=1385 N=1876 N=1774 N=2081 N=1202 N=1948
Risk difference -2.4% -3.0% 0.7% 2.4% 1.1% 4.8% 4.7%
(95% Cl) (-5.3,0.6) (-5.2,-0.8) (-1.0,2.4) (0.2,4.6) (-0.8,2.9) (1.2, 8.5) (1.8,7.5)
2 ACCORD N=1479 N=1085 N=1516 N=1591 N=1800 N=1083 N=1697
g Risk difference -2.6% -2.9% 0.4% 2.7% 1.8% 4.5% 3.8%
o (95% CI) (-5.7,0.5) (-5.3,-0.5) (-1.4,2.3) (0.5,5.0) (-0.1,3.8) (0.8,8.1) (0.9, 6.7)
= VADT N=297 N=300 N=360 N=183 N=281 N=119 N=251
Risk difference -1.7% -3.1% 1.8% -1.1% -4.4% 9.5% 10.9%
(95% CI) (-10.0,6.7) (-8.4,2.1) (-2.0,5.7) (-10.1, (-10.8,2.1) (-5.8,24.8) (1.2, 20.7)
8.0)
ACCORD + VADT
Risk difference -2.0% -3.2% -1.3% 1.8% -1.3% 0.0 -0.1%
(95% CI) (-5.3,1.2) (-6.3,0.1) (-3.5,0.9) (-0.9,4.5) (-3.7,1.0) (-3.7,3.7) (-3.3, 3.1)
ACCORD
g Risk difference -2.8% -2.8% -0.8% 2.1% -1.6% -0.3% 0.1%
o (95% Cl) (-6.3,0.7) (-6.2,0.5) (-3.2,1.7) (-0.6,4.9) (-4.1,0.9) (-4.1,3.4) (-3.3, 3.5)
VADT
Risk difference 1.7% -4.2% -3.6% -1.6% -0.3% 4.0% -1.1%
(95% CI) (-6.9, 10.2) (-11.6, 3.2) (-8.6,1.4) (-12.4, (-8.0, 7.5) (-10.3, 18.2) (-10.6, 8.4)
9.1)

Fig. 2. Summary causal tree of heterogeneous treatment effects of intensive glycemic control on all-cause mortality. Splitting variables and cut-points for each split are
shown, resulting in seven terminal subgroups. Size, risk difference of all-cause mortality, and risk difference of major adverse cardiovascular events (CVD) from intensive
versus standard glycemic control in each subgroup are shown for pooled data, the ACCORD study, and the VADT study. Negative risk differences indicate better outcomes in
intensive glycemic control arm. Units for splitting variables are mm Hg for DBP (diastolic blood pressure), kg/m? for BMI (body-mass index), and years for age.

same result on multiple occasions using identical data and analy-
ses. By replicability, we mean arriving at the same result in sepa-
rate experimental studies with similar analyses. In this study, we
were able to reproduce the causal forests variable importance re-
sults previously published for the ACCORD study [11], but were
unable to replicate the HTE in the VADT study. The variable im-
portance derived from causal forests was reasonably correlated be-
tween the ACCORD study and VADT study, suggesting at least par-
tial replicability of the casual forests HTE algorithm in disparate
samples. Furthermore, an indicator variable for the parent study
(ACCORD or VADT) was not important for HTE detection when ap-
plying causal forests to pooled data from both studies, suggest-
ing differences between the studies did not preclude identification
of consensus HTE. Furthermore, the representative tree based on
the 5 most highly ranked variables from causal forests analysis of
the pooled data found that intensive glycemic control was asso-
ciated with lower mortality in relatively leaner (BMI <35 kg/m?)
and younger (age <61 years) individuals - two features identi-

fied in the prior analysis of the ACCORD study [11]. That pooling
individual-level data yielded consistent HTE subgroups across stud-
ies may suggest that the causal forests algorithm is sensitive to
subtle between-study differences that were smoothed-out in the
pooled data. Our results support the need for replication of HTE
detection if multiple similar studies are available, with cautious
interpretation or application to clinical care until results are con-
firmed.

While the results presented in the summary causal tree using
pooled data from the ACCORD and VADT studies are potentially
clinically relevant, they should be interpreted with caution. Nei-
ther the ACCORD study nor the VADT study, or the similarly de-
signed ADVANCE study, found a benefit of intensive glycemic con-
trol for the primary outcome of cardiovascular events, and the AC-
CORD study found higher mortality associated with intensive con-
trol [8-10]. The initial split in the summary causal tree with indi-
viduals with diastolic blood pressure less than 65 mm Hg exhibit-
ing higher mortality with intensive glycemic control fits with prior
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studies of blood pressure and blood pressure variability and cardio-
vascular outcomes in the VADT study [24,25]. However, the sum-
mary causal tree presented here is otherwise difficult to interpret
from the perspective of relating variable cut-points to physiology
and clinical outcomes and would not be intuitive to institute into
clinical practice in its current form. The analyses presented here
highlight the generalizability challenges inherent to using machine
learning for identifying HTE, and additional evaluation is needed
to assess the performance of the HTE subgroups in the summary
causal tree in diabetes patients drawn from the VA health system
and in the general population.

There are several limitations to acknowledge. First, interpreta-
tion of the results should remain limited to the populations repre-
sented in the ACCORD and VADT studies. That is, though pooling
data from the two studies broadens the general population rep-
resentation in our analysis, the resulting pooled sample is still de-
rived from a select randomized trial sample and does not necessar-
ily better represent the diabetes patient population at risk. Second,
we found that the causal forests results were sensitive to the min-
imum node size parameter, particularly if smaller nodes (terminal
subgroups) were allowed (see Supplemental Material for compari-
son of variable importance across a range of minimum node sizes).
We used a minimum node size of 5% of the total study popula-
tion to align this study with the prior HTE analysis of the ACCORD
study [11] and to retain a reasonably sized potential patient popu-
lation who might be affected by any HTE. Third, while we demon-
strate limitations to generalizability of causal forests for identi-
fying HTE between two study samples, we do not propose spe-
cific strategies to overcome the limitations aside from pooling data
from multiple studies, a solution that is often impractical. Whether
methods for generalizability and/or transportability of trial data to
a target population [26-30] can be tailored to machine learning al-
gorithms for HTE detection will be explored in future work. Fourth,
the VADT study was less than 20% the size of the ACCORD study,
so some of the between-sample variation in significance of sub-
group effects may be attributable to the differences in sample size.
Finally, we evaluated only one machine learning algorithm for HTE
detection - causal forests - in our analysis, based on previously
published work. Therefore, we cannot necessarily generalize the
findings with causal forests to other machine learning algorithms
that can be used to identify HTE. While active research in refining
machine learning algorithms has yielded improvements in HTE de-
tection [31], it is unclear if better within-sample HTE identification
would translate to better between-sample generalizability.

In conclusion, using data from two randomized trials of inten-
sive glycemic control in type Il diabetes patients, we found limited
replicability or generalizability of HTE on all-cause mortality iden-
tified using the causal forests machine learning approach despite
similar variable prioritization in each study. We speculate that dif-
ferences in the study population characteristics or specifics of the
intervention can undermine generalizability of HTE even for sim-
ilarly designed randomized trials and urge caution in interpreting
and/or applying HTE results in the absence of replication. While
the limitations of causal forests could be overcome by pooling
individual-level data from multiple studies, this solution is not al-
ways feasible. These findings motivate development of additional
methods for meta-analyzing machine learning applications for HTE
detection and for generalizing machine learning results from trials
to target populations.
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