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a b s t r a c t 

We present a convolutional neural network (CNN) framework for classifying different types of plastic ma- 

terials that are commonly found in mixed plastic waste (MPW) streams. The CNN framework uses exper- 

imental ATR-FTIR (attenuated total reflection-Fourier transform infrared spectroscopy) spectra to classify 

ten different plastic types. An important aspect of this type of spectral data is that it can be collected in 

real-time; as such, this approach provides an avenue for enabling the high-throughput characterization of 

MPW. The proposed CNN architecture (which we call PlasticNet) uses a Gramian angular representation of 

the spectra. We show that this 2-dimensional (2D) matrix representation highlights correlations between 

different frequencies (wavenumber) and leads to significant improvements in classification accuracy, com- 

pared to the direct use of spectra (a 1D vector representation). We also demonstrate that PlasticNet can 

reach an overall classification accuracy of over 87% and can classify certain plastics with 100% accuracy. 

Our framework also uses saliency maps to analyze spectral features that are most informative. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Plastics are essential materials that are used in a wide range of 

pplications such as food packaging, construction, transportation, 

ealth care, and electronics. Since 1856 (when the first plastic cel- 

uloid was invented), the plastics industry has grown rapidly not 

nly in terms of volume, but also in terms of the variety of ma- 

erials produced. This rapid expansion has resulted in a massive 

nvironmental footprint; to give some perspective, in 2015, nearly 

81 million tons of mixed plastic waste (MPW) were produced, 

his is more than the total weight of humans on earth (316 mil- 

ion tons). Notably, only 20% of all plastics produced were recycled 

 Ritchie and Roser, 2018 ); this recycling rate is notably low com- 

ared to that of other materials (e.g., aluminum has a recycling 

ate of nearly 100%). Most MPW end up in landfills and inciner- 

tors; landfills are not sustainable, especially when land availabil- 

ty is constrained ( Abdel-Shafy and Mansour, 2018 ). MPW inciner- 

tion reduces the need for landfills, but this process can release 

azardous substances into the atmosphere ( Hopewell et al., 2009 ). 
∗ Corresponding author. 
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MPW recycling is essential for mitigating the environmen- 

al impact of plastics, but this practice faces many obstacles 

 Schlesinger, 2013 ). Most of the recycled plastic is reprocessed into 

owngraded products (of lower value); for instance, plastics used 

or food packaging are often converted into cheaper building ma- 

erials such as plastic lumber ( Awoyera and Adesina, 2020 ). In 

ther words, recycled plastic products are less valuable and thus 

here are limited incentives to produce them. Another key factor 

hat hinders plastic recycling is our limited ability to effectively 

haracterize and sort MPW streams, which can be quite complex 

 Milios et al., 2018 ). Traditionally, plastic components in MPW can 

nly be partially identified based on techniques such as coding, 

ensity differences, and froth-flotation ( Gundupalli et al., 2017 ). 

hese technologies are easy to implement but are low-throughput 

nd have several other limitations ( Zhu et al., 2019 ); for exam- 

le, density separation in water can effectively separate polypropy- 

ene (PP) and polyethylene (PE) from polyvinyl chloride (PVC), 

olyethylene-terephthalate (PET), and polystyrene (PS); however, 

VC cannot be removed from PET in this manner because their 

ensity ranges overlap ( Hopewell et al., 2009 ). Automated sorting 

ith high-throughput, high-accuracy, and low-labor is necessary 

or effective MPW management. 

https://doi.org/10.1016/j.compchemeng.2021.107547
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2021.107547&domain=pdf
mailto:victor.zavala@wisc.edu
https://doi.org/10.1016/j.compchemeng.2021.107547
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Fig. 1. Normalized infrared spectral intensities of various plastic materials. Each 

spectrum is a vector of length 4150. The resulting spectra contain significant noise 

and systematic errors. 
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Recent innovations in recycling technology include increasingly 

eliable detection instruments and improved materials identifica- 

ion algorithms; these have improved the accuracy and produc- 

ivity of automated sorting. Methods such as spectroscopy, hy- 

erspectral imaging (HSI), ultrasonic techniques, X-ray diffraction 

XRD), thermal imaging or infrared imaging, combined with ma- 

hine learning (ML) algorithms, have been successful in accurately 

dentifying plastics that are commonly found in MPW ( da Silva 

nd Wiebeck, 2020 ; Karlsson et al., 2016 ; Siddiqui et al., 2008 ;

ignoret et al., 2020 , 2019 ; Wu et al., 2015 ). Michel et al. (2020) an-

lyzed four different spectroscopic methods with various machine 

earning (ML) algorithms, such as k -nearest neighbors (KNN), linear 

iscriminant analysis (LDA), and support vector machines (SVM), 

o identify marine plastic debris and consumer plastic. Among the 

our spectroscopic methods, the attenuated total reflection-Fourier 

ransform infrared spectroscopy (ATR-FTIR) technique performed 

est, with an accuracy of 89–98%. Da Silva et al. (2020) devel- 

ped a method to identify nine different types of plastics, including 

olyamide (PA) and polycarbonate (PC), based on μFTIR hyperspec- 

ral imaging and ML. Roh et al. (2018) used laser-induced break- 

own spectroscopy with an algorithm-based radial basis function 

eural network to identify black plastics, including PP, PS, and 

crylonitrile-butadiene-styrene (ABS), and achieved an accuracy of 

ver 95%. Allen et al. (1999) proposed an automated sorting system 

sing near-infrared spectroscopy to identify waste from electronic 

nd electrical equipment (WEEE). Gundupalli et al. (2017) used a 

hermal imaging camera integrated with a robotic manipulator to 

lassify recyclable materials in MSW and achieved a 90% accu- 

acy. While these results are highly encouraging, these methods are 

low and low-throughput and are not tailored to real-time sorting 

they rely on manual sample collection). 

ATR-FTIR can analyze plastic components found in MPW in real- 

ime; as such, one can envision the development of fast, online ML 

echniques that can analyze ATR-FTIR spectra to characterize MPW 

treams. Recently, ML methods such as convolutional neural net- 

orks (CNNs) have been used to analyze spectral data ( Ng et al., 

019 ). A key advantage of CNNs over other ML methods is their 

bility to automatically extract and organize discriminative fea- 

ures directly from raw data (without the need to pre-compute 

and-crafted features). The training of powerful CNN models can 

e facilitated by the availability of advanced computing hardware 

e.g., GPUs) and of vast data streams found in online systems. The 

ntegration of online ATR-FTIR and CNNs thus provides a potential 

venue to sort plastic waste with high accuracy and throughput in 

eal-time. 

In this work, we propose a computational framework to charac- 

erize plastic components of MPW by analyzing ATR-FTIR spectra 

sing CNNs. Experimental data was obtained by preparing small 

heets of plastics of different shapes and used ATR-FTIR to scan 

heets for 10 different types; this data collection approach mimics 

ow rigid waste plastics are found in online processing of MPW 

treams. The proposed framework uses CNNs to analyze the spec- 

ra and sort/classify plastic components. The spectra collected can 

e represented as 1D vectors and analyzed by using 1D CNNs 

 Chen et al., 2019 ). The 1D CNN extracts features of a spectrum by

onvolving it with different filters. A limitation of this approach, 

owever, is that it might fail to capture correlations across fre- 

uencies (wavenumbers which may compromise the prediction ac- 

uracy). To deal with this issue, we present a new data represen- 

ation that captures signal correlation information; specifically, we 

epresent a spectrum as Gramian angular fields (GAFs). GAFs are 

atrices (2D data objects) that can be analyzed using 2D CNNs 

 Oates, 2015 ) and these data objects can better capture spectral 

orrelations. A problem with this approach, however, is that the 

raining of 2D CNNs is significantly more computationally expen- 

ive than that of 1D CNNs. To ameliorate this issue, we use a Piece- 
2 
ise Aggregate Approximation (PAA) approach to reduce the di- 

ension of the input GAF matrices ( Keogh and Pazzani, 20 0 0 ). This

ramework also uses saliency analysis ( Sundararajan et al., 2017 ) to 

nderstand the most important features of spectra that can help 

dentify different plastic components. We demonstrate that this 

NN framework (which we call PlasticNet) can reach an overall 

lassification accuracy of over 87% and can classify certain plastics 

ith 100% accuracy. The conjunction of ATR-FTIR and CNN creates 

 powerful, low-cost, and rapid method for analyzing the composi- 

ion of plastic waste and enables future recycling and reproduction 

f high-quality plastics. 

The paper is structured as follows. In Section 2 we describe the 

xperimental data collection and preparation. In Section 3 we dis- 

uss computational framework, including Gramian angular fields, 

D and 2D convolutional neural networks. In Section 4 we describe 

he results and discussion. In Section 5 we present conclusions and 

uggests directions of future work. 

. Experimental data collection and preparation 

The dataset studied included ATR-FTIR spectra for 10 differ- 

nt, commercially-available plastic materials (see Fig. 1 ). These in- 

lude thermoplastic polymers, natural, and synthetic rubber that 

re common in the MPW. Specifically, these were ABS, acrylic (AC), 

E, PET, polybutadiene (BR), polycarbonate (PC), polyisoprene (PI), 

S, PP, and PVC. The spectra were collected using a Thermo Sci- 

ntific, Nicolet-iS5 FTIR spectrometer equipped with an attenuated 

otal reflectance (ATR) accessory (ZnSe crystal, iD5), taken with 64 

cans with 4 cm 
-1 resolution between 20 0 0 and 40 0 0 cm 

−1 . Spec-

ral data was collected using Omnic v9.8 software, and then ex- 

racted using TQ analyst EZ software (Thermo Nicolet) and com- 

iled for analysis. 

The plastics purchased consist of different shapes; round- 

haped beads were cut into less than 1 mm thickness and con- 

erted into flattened thin sheets (10 × 10 mm). For each plastic 

ample, 50 spectra were measured as the training set for the ML 

lgorithms, and 20 spectra were used as the testing set. To ob- 

cure the spectra, the sample was not kept in close contact with 

he crystal and each spectrum was taken with only one scan. The 

ackground was repeated after every measurement with 64 scans. 

or each plastic, 70 online measurements of were obtained. Each 

pectrum had 4150 data points, where each point represents the 

ntensity at a given wavenumber (cm 
−1 ). Each spectrum is encoded 
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Fig. 2. Schematic illustration of 5-fold cross-validation procedure used to train and 

test models. The training-to-testing split is 4:1. Within the training set, we ran- 

domly select 30% of the data as the validation set to tune the parameters of the 

model. 
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n a vector in R 
4150 . For the 10 types of plastics, a total of 700 IR

pectra were obtained. For the analysis, all spectra were normal- 

zed to be in the range [0, 1]: 

ˆ  = 

x − min ( X ) 

max ( X ) − min ( X ) 
(1) 

here x ∈ R 
4150 is the original vector (a raw spectrum), ˆ x ∈ R 

4150 is 

he normalized vector (normalized spectrum), and X ∈ R 
700 × 4150 

s a matrix obtained by stacking all raw spectra. By stacking all 

he normalized vectors, we obtain the normalized spectra matrix 
ˆ  ∈ R 

700 × 4150 , which is randomly partitioned into a training set 

nd a test set. The training set is the dataset used in the learning

rocess to fit the parameters of the ML models. The test set is a 

ataset that is independent of the training set and is used to exam- 

ne the performance (accuracy) of the ML model. A total of 30% of 

he elements of the training set were randomly selected and used 

s the validation set for tuning the ML architecture and prevent- 

ng overfitting ( Ng and Ng, 1997 ). For validation, we use a five-fold

ross-validation approach; here, the original dataset is randomly 

plit into five subsets of equal size. Among the five subsets, a sub- 

et was retained as the test set, and the remaining four subsets 

ere used as training data. The cross-validation process was re- 

eated five times, with each of the five subsets used exactly once 

s test data. A schematic of the five-fold cross-validation process 

s shown in Fig. 2 . The training, validation, and test set consist of

92, 168, and 140 spectra, respectively. A stratification was imple- 

ented to ensure that each fold represents all strata of the data. 

hat is, in each fold, each plastic type accounts for 10% of the data

n the training and test sets. The final reported accuracy is the av- 

rage of all accuracies of the five folds. The model is robust and 

eneralizable if the test sets of each fold have similar accuracy. 

The types of plastic (labels) that need to be predicted by the ML 

odels are one-hot encoded. Specifically, each label can be repre- 

ented by a vector of size 10 (only one entry in the vector is 1 and

ll other entries are 0). This vector representation is necessary to 

alculate the loss of categorical cross-entropy in our ML models. 

. Computational framework 

The proposed framework includes a CNN architecture, that we 

alled PlasticNet; this architecture can process spectra as vectors 

1D data objects); as such, PlasticNet can operate as a 1D CNN. The 

ramework also includes a Gramian angular transformation method 

hat transforms the spectra vectors into GAF matrices (2D objects); 

s such, PlasticNet can also operate as a 2D CNN. The framework 

lso includes saliency analysis techniques, which are useful tools 
3 
hat allow us to understand features that the CNN might be search- 

ng for in the spectra in classifying plastic types. 

.1. 1D CNN 

IR spectra vectors can be analyzed directly with a 1D CNN; 

D CNNs are widely in applications such as electrocardiography 

 Kiranyaz et al., 2016 ), near-infrared spectroscopy ( Chen et al., 

019 ), and optimal control ( Jiang and Zavala, 2021 ). The architec- 

ure of the proposed 1D CNN is shown in Fig. 3 . 1 D CNNs extract

nd summarize features from spectra using convolution and pool- 

ng operations. In our architecture, each convolution filter is a vec- 

or of size three. The output of a convolution operation is a single 

calar value that marks the presence (high value) or absence (low 

alue) of the pattern the filter is trying to identify or highlight. A 

ingle convolution operation maps a given vector to another vec- 

or of the same dimension after a nonlinear transformation (i.e., 

ectified linear unit). In the architecture used, a set of these fil- 

ers is referred as a convolutional layer. Convolutional operations 

reatly increase the amount of information that needs to be pro- 

osed; therefore, it is necessary to summarize such information. In 

ur architecture, we use a max-pooling layer to reduce dimension- 

lity. A max-pooling operation takes a subset of a given vector, in 

his case a part of size two, and reduces it to a single value by

xtracting only the maximum value. This greatly reduces the di- 

ensionality of the vectors created by the convolutional layer and 

istills the important information extracted by the convolutional 

lters. 

An IR vector of size 4150 is fed into the 1D CNN, which we 

all PlasticNet (1D). This architecture contains four convolutional 

ayers, two max-pooling layers, and three fully-connected layers. 

his simple architecture achieves high accuracy and facilitates fast 

raining. The convolutional layer has 64 filters of size 3 and the 

ax-pooling layer has filters of size 2. Each of the fully-connected 

ayers has 64 nodes and the activation functions between layers 

re rectified linear units (ReLUs) which is as following: 

R eLU ( z ) = max ( 0 , z ) (2) 

here z ∈ R is the input to a node. We apply activation function to

ach node. 

Between each of two fully-connected layers is a dropout layer 

ith a dropout ratio of 0.2 to prevent overfitting. The output layer 

ses a SoftMax activation function to perform classification. The 

utput for plastic classification is a vector of dimension 10, corre- 

ponding to the probability of the IR spectra being from a specific 

ype of plastic. The loss function coupled with the SoftMax acti- 

ation function is the categorical cross-entropy. The equations of 

oftMax and categorical cross-entropy are shown as following: 

s oftmax ( z ) i = 
e z i ∑ k 
j=1 e 

z j 

 C E = −
k ∑ 

i =1 

y i log ( σs oftmax ( z ) i ) 
(3) 

here σs oftmax (z) i is the i- th entry of SoftMax activated vector of 

he output layer vector z, which corresponds to the probability of 

elonging the i th plastic type. The total number of plastic types is 

 . C C E is the categorical cross-entropy, where y i is the true proba- 

ility that the data is of the i th plastic type. If the data belongs to

lastic t , y i = 1 only if i = t , otherwise y i = 0 . 

In the proposed CNN architecture, convolutional layers and 

ax-pooling layers are performed recursively. The idea behind this 

ecursion is to extract information at both local and global scales 

hile condensing it so that simple classification can be performed, 

nd the corresponding plastic types can be predicted. A recent re- 

iew on fundamentals of CNNs can be found in Jiang and Zavala 

2021 ). We use the Adam optimizer ( Kingma and Ba, 2014 ) with a
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Fig. 3. Architectures of (a) PlasticNet (1D) and (b) PlasticNet (2D). PlasticNet (1D) inputs a vector of 4150 and outputs the predicted plastic type. It contains 4 1D convolu- 

tional layers (each has 64 filters of dim 3), 2 1D max-pooling layers (each has a pooling window size of 2), a flatten layer, and 3 fully-connected layers (each has 64 units 

and a dropout ratio of 0.2). The activation functions between the layers are ReLUs. The final output activation function is softmax. PlasticNet (2D) inputs a GASF and a GADF 

matrix. The input size varies from 50 × 50 × 2 to 250 × 250 × 2. It has 4 2D convolutional layers (each has 64 filters of 3 × 3), 2 2D max-pooling layers (each has a pooling 

window size of 2 × 2). The flatten, fully-connected layers and activation function setups are the same as the ones of PlasticNet (1D). 

l

l

c

3

r

i

d

A

i

c

s

p

t

c

c

A

fi

s

fi

t

o

n

φ

w  

t

m

G

G

w

l

i

w

o

5

c

F

3

c

s

o

b

s

t

i

e

p

a

p

c

o

v

w

c

c

t

2

t

a

earning rate of 0.001. The best weights with the lowest validation 

oss are saved using Keras model checkpoints. You may find the 

ode in https://github.com/zavalab/ML/tree/master/CNN_Plastic. 

.2. Gramian angular fields 

Although the vector representation of IR spectra already car- 

ies rich information, the correlation between different frequencies 

s not explicitly encoded in the vector representation and this is 

ifficult to extract using convolution operations. Recently, Gramian 

ngular fields (GAF) have been used to encode time-series objects 

nto matrices that capture correlation structures and that are pro- 

essed using 2D CNNs; this data transformation approach has been 

hown to improve classification accuracy ( Oates, 2015 ). Our hy- 

othesis was that a similar principle can be applied to IR spectra 

o improve prediction accuracy. A GAF represents vectors in a polar 

oordinate system and converts these angles into symmetric matri- 

es using various operations. There are two types of GAFs: Gramian 

ngular Summation fields (GASF) and Gramian Angular Difference 

elds (GADF). Each element of GASF and GADF is the cosine of the 

um and the sine of the difference of the angles, respectively. The 

rst step in constructing the GAF matrix is to normalize the spec- 

ral data to a value between 0 and 1. After normalization, the sec- 

nd step is to represent the normalized vector ˆ x in a polar coordi- 

ate system by using the following transformations: 

i = arccos 
(
ˆ x i 
)
, i = 1 , . . . , 4150 r i = 

i 

4150 
, i = 1 , . . . , 4150 , 

(4) 

here i is the index of the vector entry, φ ∈ R 
4150 is the angle vec-

or, and r ∈ R 
4150 is the radius vector. Finally, the GASF and GADF 

atrices are obtained as: 

ASF = cos 
(
φi + φ j 

)
= ˆ x T ˆ x −

√ 

I − ˆ x 2 
T √ 

I − ˆ x 2 

ADF = sin 
(
φi − φ j 

)
= 

√ 

I − ˆ x 2 
T 

ˆ x − ˆ x T 
√ 

I − ˆ x 2 
(5) 

here I = [ 1 , . . . , 1 ] is a unit row vector of size 4150. 
4 
The resulting GASF , GADF ∈ R 
4150 × 4150 matrices are dense and 

arge, but can be reduced using the Piecewise Aggregation Approx- 

mation (PAA) technique ( Keogh and Pazzani, 20 0 0 ). In this study, 

e also compared the effect of the magnitude of matrix reduction 

n the results. That is, we compared matrices with the shape of 

0 × 50, 100 × 100, 150 × 150, 200 × 200, and 250 × 250. The 

onversion of spectra to GASF and GADF matrices is illustrated in 

ig. 4 . Here, the matrices are represented as grayscale images. 

.3. 2D CNN 

2D CNNs are typically used to classify images, which are multi- 

hannel matrices (tensors). 2D CNNs are commonly used, for in- 

tance, to classify RGB images (each channel is a color channel). In 

ur approach, we use a two-channel, data representation that em- 

eds the GASF and GADF matrices as channels. Depending on the 

cale of reduction, the size of the input varies from 50 × 50 × 2 

o 250 × 250 × 2 . The 2D convolution operation extracts mean- 

ngful patterns from GASF and GADF matrices. In our architecture, 

ach 2D convolution filter is a matrix of shape 3 × 3 . The out- 

ut of a 2D convolution operation also indicates the presence or 

bsence of the pattern that the filter is searching for. A 2D max- 

ooling operation to reduce the dimension of the convolved matri- 

es was also used. A 2D max-pooling operation takes a subregion 

f 2 × 2 and reduces it to a single value by taking the maximum 

alue. 

The two-channel GASF/GADF object is fed into a 2D CNN, which 

e refer to as PlasticNet (2D). PlasticNet (2D) contains four 2D 

onvolutional layers, two 2D max-pooling layers, and three fully 

onnected layers ( Fig. 3 ). The 2D convolutional layer has 64 fil- 

ers of size 3 × 3 and the 2D max-pooling layer has filters of size 

 × 2 . The settings for the fully-connected layers, activation func- 

ions between layers, dropout ratio, final layer activation function, 

nd the loss function are the same as those used in PlasticNet (1D). 
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Fig. 4. Conversion from 1D signal to GASF and GADF matrices. The 1D signal is first mapped to the polar coordinate system and finally converted to GASF and GADF matrices. 

Encoding the 1D signal into GAF matrices captures the relationship between the signal intensity at different wavenumbers. 
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Fig. 5. Comparison of the accuracy of CNN-based methods and other ML algo- 

rithms. PlasticNet (2D) with an input size of 200 × 200 × 2 has the highest ac- 

curacy of 87.29%. SVM with RBF kernels has a comparable accuracy of 86.14%. The 

accuracy of PlasticNet (2D) is always higher than that of PlasticNet (1D), indicating 

that the conversion from the original 1D signal to 2D GAF matrices captures more 

information. The accuracy of PlasticNet (2D) increases as the input matrix increases, 

indicating that a larger input matrix contains more information. 
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.4. Saliency analysis 

Saliency maps are a powerful tool used for highlighting features 

n the input data that are considered relevant to the predictions of 

he CNN model. In our case, these techniques try to highlight as- 

ects in a given input data object that the CNN is searching for. 

mong all saliency map methods, an integrated gradient (IG) was 

sed that has the most theoretical completeness ( Adebayo et al., 

018 ; Sundararajan et al., 2017 ). For the PlasticNet (2D) case, let 

 ∈ R 
200 × 200 × 2 be the input and θ be the parameter vector, the 

NN can be written as a large and complicated equation F ( V; θ ) : 

 
200 × 200 × 2 �→ R 

10 , where the output is the classification proba- 

ility. The loss function is then L ( F ( V; θ ) ) : R 
10 �→ R . The saliency

ap S ∈ R 
200 × 200 × 2 calculated by the IG as: 

 = abs 

( (
V − V̄ 

)
·

1 ∫ 
0 

∂L 
(
F 
(
V̄ + β

(
V − V̄ 

)
; θ

))
∂V dβ

) 

(6) 

here V̄ ∈ R 
200 × 200 × 2 is a baseline input that represents the 

bsence of a feature in the input V . Typically, V̄ only contains 
ero values. Saliency maps on the GASF/GADF will not only illus- 

rate the signals that are significant at a given frequency (cm 
−1 ) 

ut will also highlight important relationships between the signals. 

aliency maps can help us understand why CNNs can accurately 

lassify plastic types. 

. Results and discussion 

Classification results for PlasticNet (1D) and (2D) are presented 

n Fig. 5 , along with comparisons of different input sizes. The re- 

ults reveal that PlasticNet (2D) has a higher accuracy when the 

nput size is larger than 100 × 100, compared to PlasticNet (1D) 

n raw IR spectra (77.7%). Specifically, PlasticNet (2D) with an in- 

ut size of 200 × 200 increases the accuracy of the PlasticNet (1D) 

y 12.4%; this confirms that correlation information in spectra is 

mportant for classification. The classification accuracy of Plastic- 

et (2D) improves as the input matrix size increases until reach- 

ng a size of 200 × 200. This suggests that larger input matrices 

ay contain richer information, which is important for classifica- 
5 
ion. The accuracy of the input size of 250 × 250 has a slightly 

ower accuracy (86.9%) than the one of 200 × 200 (87.3%). This in- 

icates that the input matrix with a size of 200 × 200 contains 

ufficient information and continuing to increase the matrix size 

an lead to overfitting. Table 1 provides a comparison of the over- 

ll accuracy obtained with all CNN architectures explored. 

We obtain further insight into classification accuracies obtained 

or different plastic types by using confusion matrices. Each row 

f the confusion matrix represents instances of the predicted class 

nd each column represents instances of the true class. The en- 

ries along the diagonal lines are where the instances are correctly 

lassified. The confusion matrix for PlasticNet (2D) with an input 

ize of 200 × 200 ( Fig. 6 ) indicates that plastic types are correctly 

redicted 87.3% of the time. The confusion matrix also indicates 

hat PC has the lowest classification accuracy among the 10 plas- 

ics, with 9% of PC classified as AC and 6% as PB, respectively. It 

as also found that PE, PET, and PI have classification accuracies 

hat were close to 100%. These results indicate that certain plas- 

ics can be more easily classified than others (their spectra have 

ore unique features). This information can be useful in identify- 

ng strategies to target specific types of plastics (e.g., by tuning IR 

quipment). 
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Table 1 

Overall classification accuracies found with different CNN architectures. 

1D 2D (50 × 50) 2D (100 × 100) 2D (150 × 150) 2D (200 × 200) 2D (250 × 250) 

77.77% 78.14% 84.29% 85.57% 87.29% 86.86% 

Fig. 6. Confusion matrix for PlasticNet (2D) with an input size 200 × 200 × 2. 

The overall accuracy is 87.3%. Each column represents a true plastic species, and 

each row represents a model predicted plastic species. The entries along the diago- 

nal are where the plastic species are correctly classified. Many diagonal entries are 

close to one, indicating that the PlasticNet (2D) has excellent classification accuracy. 

However, some plastic types cannot be classified with high accuracy (e.g., PC and 

AC). 

Fig. 7. Saliency analysis for PE. The average (a) GASF and (b) GADF matrices of size 

200 × 200, where darker colors represent larger values. (c) The average saliency 

map of size 200 × 200. The darker regions are the most important regions for clas- 

sification. (d) The average IR spectrum and the most important signals, shaded in 

gray. The most important region includes the bands between 2800 and 2900 cm 
−1 , 

which are the characteristic IR peaks of the PC. 

Table 2 

Overall accuracies obtained with other ML al- 

gorithms. 

RBF-SVM RF k-NN GPC 

86.14% 72.57% 65.00% 63.29% 
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6 
To validate the effectiveness of the proposed CNN models, 

e compared the average accuracies over 5-fold cross-validation 

f 1D CNN and 2D CNNs with four commonly used ML classi- 

ers, including Radial Basis Function (RBF) based Support Vec- 

or Machine (RBF-SVM) ( Vapnik, 1998 ), Random Forest (RF), k - 

earest Neighbors (kNN) ( Dickerson et al., 1992 ), Gaussian Pro- 

ess Classifier (GPC) ( KI Williams, 2006 ). SVM is a learning method 

hat was designed to find optimal decision boundaries between 

lasses. The use of the RBF function in SVM allows for map- 

ing patterns nonlinearly into a high-dimensional feature space 

 Schölkopf et al., 1997 ), and it introduces a kernel parameter ( γ ) 

n addition to penalty parameter (i.e., C) in linear SVM. In our 

xperiments, These are two parameters ( γ and C) were selected 

rom a wide range of values, i.e., γ ∈ { 10 −2 
, 10 −1 

, 10 0 , 10 1 , 10 2 } 
nd C ∈ { 10 −2 

, 10 −1 
, 10 0 , 10 1 , 10 2 , 10 3 } , using grid search ap- 

roach ( Staelin, 2003 ) that performed on the training data. RF is 

n ensemble ML method that utilizes predictions from many ran- 

omized decision trees and it is found to be well suited to high- 

imensional data modeling. There are two parameters in RF that 

eed to be tuned to optimized the model performance, they are 

he number of trees to be grown in the run ( ntree ) and the num-

er of features used in each split ( mtry ). We set ntree = 500 and

try is set to the square root of the number of features as rec- 

mmended by many studies ( Immitzer et al., 2012 ; Sidike et al., 

019 ). KNN is another popular ML algorithm, which involves the 

easurement of k -nearest neighbors of a test sample and it is the 

lass label that is decided on a majority vote. The number of neigh- 

ors in KNN is fixed to 5 in the experiments. GCP can be modeled 

ased on a GP prior and the latent function. The default parame- 

ers used in GCP, as specified in the Scikit-learn ( Pedregosa et al., 

011 ) ML library. Table 2 provides a comparison of the overall ac- 

uracy of these ML algorithms. It can be observed that RBF-SVM 

ields the best accuracy, while kNN and GPC demonstrate similar 

erformance but lower accuracy than RBF-SVM and RF. 

A comparison between the CNN-based methods and other ML 

lgorithms is shown in Fig. 5 . The accuracy of PlasticNet (2D) is 

lightly higher ( ∼1%) than that of RBF-SVM when the input size is 

arger than 200 × 200. This indicates that RBF-SVM is compara- 

le to CNN-based methods; however, SVMs provide limited infor- 

ation on features that drive predictions and offer limited flexi- 

ility to capture different representations for IR data. The results 

btained with SVM confirm that there appears to be enough sep- 

ration (differences) in the spectra that can be exploited to clas- 

ify different types of plastic materials. However, the accuracy of 

ll methods saturates at 87%, which suggests that the dataset itself 

ontains significant errors that neither the CNN-based nor the SVM 

ethods can explain. 

To understand exactly what the CNNs have learned from the 

pectra, we used saliency maps to find the most important regions 

or classification. We used the results for PlasticNet (2D) with an 

nput size of 200 × 200, since this has the highest accuracy. Fig. 7 

hows the average (a) GASF, (b) GADF, (c) saliency map, (d) spec- 
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Fig. 8. Saliency analysis for PC. The average (a) GASF and (b) GADF matrices of size 

200 × 200. (c) The average saliency map of size 200 × 200. (d) The average IR 

spectrum and the most important signals, shaded in gray. 

Fig. 9. Saliency analysis for ABS. The average (a) GASF and (b) GADF matrices of 

size 200 × 200. (c) The average saliency map of size 200 × 200. (d) The average IR 

spectrum and the most important signals, shaded in gray. 
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rum and its important regions of PE. The average saliency map for 

ach plastic was studied because each spectrum has some subtle 

ifferences, and the common significant patterns were of interest. 

he darker regions in Fig. 7 c are the most important ones. Specif- 

cally, the horizontal bands near 2900 cm 
−1 and vertical bands 

400 cm 
−1 were dark, which indicates the importance of the sig- 

al at these frequencies. Fig. 7 d, shows the significant signal loca- 

ions (shaded regions) and the raw spectrum. The bands between 

800 and 2900 cm 
−1 were of importance. This region provides 

haracteristic IR bands for PE. A similar trend is observed for other 

lastics, such as PC and ABS shown in Fig. 8 and Fig. 9 . Saliency

nalysis shows that the regions of interest for PlasticNet (2D) are 
7 
xactly the most physically informative regions. This confirms in- 

uition that might be exploited by humans to compare different 

pectra. 

. Conclusion 

A convolutional neural network (CNN) framework for classify- 

ng different types of plastic materials that are commonly found 

n MPW based on ATR-FTIR spectra was developed. An important 

spect of this type of spectral data is that it can be collected in 

eal-time; as such, this approach provides an avenue for the high- 

hroughput characterization of MPW. The proposed CNN frame- 

ork (which we call PlasticNet) uses a Gramian angular represen- 

ation of the IR spectra and we show that this approach reaches 

verall classification accuracies of 87%. Moreover, it has been found 

hat certain plastics can be classified with 100% accuracy. As part 

f future work, we aim to test the proposed framework using high- 

hroughput data collected in an online system and to account for 

ther sources of complexity and noise arising in MPW systems 

e.g., presence of pigments). We will also compare CNNs with other 

tate-of-the-art network types, such as long and short-term mem- 

ry and graph neural networks. 
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