
Automatica 123 (2021) 109330

P
a

b

c

d

B
t
l
w
t
p
(
b

(

h
0

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Multi-competitive viruses over time-varying networkswithmutations
and human awareness✩

hilip E. Paré a,∗, Ji Liu b, Carolyn L. Beck c, Angelia Nedić d, Tamer Başar c

School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States of America
Department of Electrical and Computer Engineering, Stony Brook University, NY, United States of America
Coordinated Science Laboratory, ECE Department, University of Illinois at Urbana–Champaign, IL, United States of America
School of Electrical, Computer and Energy Engineering, Arizona State University, AZ, United States of America

a r t i c l e i n f o

Article history:
Received 27 August 2019
Received in revised form 11 August 2020
Accepted 17 September 2020
Available online 18 November 2020

a b s t r a c t

In this paper, we introduce a model for multiple competing viruses over networks, derived using each
state variable of the model as the infection percentage of a group or a subpopulation. We show that the
model is well-posed, and also compare it to a full probabilistic Markov model. We provide a necessary
and sufficient condition for uniqueness of the healthy state (the origin) of the multi-virus model over
static graphs. We also provide several sufficient conditions for convergence to the healthy state for
mutating viruses over dynamic networks. We analyze various endemic states of the multi-virus model
over static graphs, including providing necessary and sufficient conditions for the existence of parallel
equilibria. We further extend the model to include an awareness state, allowing nodes to become
alerted to the fact that viruses are spreading in the system and therefore reduce their susceptibility,
and analyze the equilibria of such a model. Finally, we propose several antidote control techniques
and present a set of illustrative simulations.

© 2020 Elsevier Ltd. All rights reserved.
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1. Introduction

Spread dynamics have been studied for hundreds of years;
ernoulli developed one of the first known models inspired by
he smallpox virus (Bernoulli, 1760). The importance of this prob-
em has been highlighted recently by the COVID-19 pandemic,
hich spread across the world due to time-varying connec-
ions (Dong et al., 2020) and a possibly mutating virus. In this
aper, we focus exclusively on susceptible–infected–susceptible
SIS) epidemiological models, which have been developed for
oth continuous (Ahn & Hassibi, 2013; Fall et al., 2007; Kermack

& McKendrick, 1932; Mieghem et al., 2009) and discrete time
domains (Ahn & Hassibi, 2013; Peng et al., 2010; Wang et al.,
2003). SIS models consist of multiple agents, or subpopulations,
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that are either infected or healthy (susceptible) at any time t ,
and which may cycle (aperiodically) between these two states.
The rate of infection combined with the connectivity of the ith
agent to an infected neighbor j (denoted by βij) positively affects
the probability of being infected, or proportion of the infected
subpopulation, while the healing rate δi negatively affects the
infection probability, or proportion of the infected subpopulation.
This dynamic is depicted in Fig. 1(a). In this work, we focus on the
group/subpopulation interpretation.

Competitive virus models, where each node can be infected
by only one spreading process, have been motivated in the liter-
ature by competing viral strains (Nowak, 1991) and incompatible
ideas spreading on different social networks (Sahneh & Scoglio,
2014), but they can also have broader applications to adoption
of competing products, political stances, and alternative farm-
ing practices. The idea of two competitive SIS viruses, namely
the bi-virus model, has been recently pursued in Karrer and
Newman (2011), Liu et al. (2016, 2019), Nowak (1991), Prakash
t al. (2012), Sahneh and Scoglio (2014), Santos et al. (2015),
atkins et al. (2016) and Wei et al. (2013). Competitive SIS
odels were first introduced by Nowak in Nowak (1991), which

s an extension of Kermack and McKendrick (1932), where the
odel considers the dynamics of three groups: (1) susceptible,

2) infected by virus one, and (3) infected by virus two. These
ynamics were modeled using three differential equations where
ull connectivity of the agents is assumed (i.e., the infection graph
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Fig. 1. The ith node can be either in a susceptible or an infected condition (the
ummations are over j).

s a complete graph), and where both viruses are assumed to be
omogeneous. A virus is homogeneous if all agents have the same
nfection rate and healing rate. Otherwise, the virus is referred to
s heterogeneous. In Watkins et al. (2016), Watkins et al. provide
necessary and sufficient condition for local exponential stabil-

ty of the origin for two competing heterogeneous viruses over
trongly connected graphs. In addition, a geometric programming
roblem is formulated, working toward optimal stabilization and
ate control of the viruses. In Liu et al. (2016, 2019), Liu et al.
rovide global analysis for healthy and endemic states for the bi-
irus model over strongly connected graphs and investigate dis-
ributed control techniques. The idea of information diffusion on
wo layered networks has also been explored using a susceptible–
nfected–recovered (SIR) model in Yagan et al. (2013). Additional
wo-virus work can be found in Ahn et al. (2006) and Funk and
ansen (2010).

The main motivations for studying the bi-virus model are
hose of competing viral strains (Nowak, 1991) and competing
deas spreading on different social networks (Sahneh & Scoglio,
014). However, these models have broader applications to polit-
cal stances, adaptation of competing products, competing prac-
ices in farming, etc., and can be generalized to more than two
iruses. Consider, for example, the case of three competing
iruses, for which each node has four possible conditions: sus-
eptible, infected by virus 1, 2, or 3. This scenario is depicted in
ig. 1(b).
To the best of our knowledge, the only work that has consid-

red more than two competing SIS viruses is presented in Xu et al.
2012), where Xu et al. propose a multi-virus model to capture
he behavior of the spread of computer viruses. This model is
ifferent than the model we consider herein, in that it allows
iruses to ‘‘rob’’ each other and requires the viruses to spread on
he same static graph. In addition, the analysis presented in Xu
t al. (2012) considers only the healthy state.
The modeling of mutating viruses has previously been ad-

ressed in Gubar and Zhu (2013), Kutch and Gurfil (2002) and
ingh (2006). In Kutch and Gurfil (2002), Kutch and Gurfil in-
roduce differential equations describing infection by viruses im-
une to different HIV drugs. In Singh (2006), Singh models virus
utation using the addition of another virus. In Gubar and Zhu

2013), Gubar and Zhu use evolutionary dynamics to model the
irus mutations. To the best of our knowledge no work has
een done on studying mutating viruses over nontrivial networks.
n this work we model the mutating viruses by allowing the
nfection and healing rates to change over time, which we believe
s novel.
2

Previous work on competing viruses has focused on non-
utating viruses over static graph structures, which we posit
re not realistic given the dynamic nature of human contact
etworks. There are also recent results for single-virus models
ver time-varying networks (Bokharaie et al., 2010; Paré et al.,
015, 2018; Prakash et al., 2010; Rami et al., 2014; Schwarzkopf
t al., 2010). Some of the ideas from Paré et al. (2018) will be
mployed in this paper and applied to a more general model.
dditional work on virus spread over dynamic graph structures
an be found in Fefferman and Ng (2007) and Volz and Meyers
2009).

Given an active outbreak, since agents in a population com-
unicate with each other, it is possible they become aware of the
irus and change their behavior in order to reduce susceptibility,
hich has been seen with the recent COVID-19 pandemic and
ocial distancing (Lewnard & Lo, 2020). Virus spread models that
ccount for human awareness have been studied in Funk et al.
2009), Granell et al. (2013), Liu et al. (2017), Ogura and Preciado
(2016), Paarporn et al. (2017), Sahneh and Scoglio (2011, 2012)
and Shakeri et al. (2015). The only work that includes human
wareness with competing viruses is Liu et al. (2017), where
nly the bi-virus case is considered. In this work, we extend our
esults from Liu et al. (2017) to a more general scenario, which
ncorporates human awareness with multi-virus models.

Mathematical models of viruses are studied in order to un-
erstand the spreading behavior and to develop suppression and
itigation strategies that minimize the impact of outbreaks. Vari-
us control techniques have been applied to SIS virus systems (Liu
t al., 2019; Vijayshankar & Roy, 2012; Wan et al., 2007, 2008;

Watkins et al., 2016); these techniques regard the healing rate
as a control variable. In Liu et al. (2019), it is shown that there
exists no distributed linear feedback control that can stabilize the
system, and in fact, such a control structure will destabilize the
system. Alternative approaches focus on reducing the maximum
eigenvalue of the linearized system using the healing rate and/or
the infection rate. In Wan et al. (2007, 2008), distributed control
techniques for setting healing rate and quarantine protocols are
proposed and implemented on a severe acute respiratory syn-
drome (SARS) simulation model. In Vijayshankar and Roy (2012),
a bound is provided for the cost of fairness of mitigating the
spread of disease, that is, the difference between the optimal
solution and the fair or homogeneous solution, for several classes
of graphs. In Preciado et al. (2014), geometric programming ideas
are used to control single SIS virus systems and the authors
present a polynomial time algorithm illustrated on an air trans-
portation network. In Watkins et al. (2016), ideas similar to
those in Preciado et al. (2014) are applied to the bi-virus model.
In Pasqualetti et al. (2014), a network control technique is applied
to a discretized, linearized version of the model from Mieghem
et al. (2009).

1.1. Paper contributions

In this paper, we present a generalization of the bi-virus model
from Liu et al. (2019) to include an arbitrary finite number of
competing viruses, which is represented by a set of m ordinary
differential equations (ODEs). We provide conditions for stability
of the healthy state, where all viruses are eradicated, for compet-
ing viruses over static graphs as well as for mutating competing
viruses over time-varying graph structures. We also explore the
endemic states of the model by (1) providing sufficient conditions
for stability of the case when only one virus survives, and (2)
providing a necessary and sufficient condition for the existence of
parallel endemic states, meaning the equilibrium for each virus is
a scaled version of the others. In order to capture more realistic
behavior, we extend the model to incorporate human awareness,
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how that the extended model is well defined, determine the
quilibria where the virus is eradicated, and present a set of suf-
icient conditions for the healthy states. Leveraging the stability
esults, we provide two control techniques based on minimizing
he maximum eigenvalue of the linearized system. These control
echniques, which are different from previous approaches in the
iterature, allow every agent to have a base healing rate and
n additive control term. The corollaries, theorems, and control
echniques are then illustrated via simulations.

Some of the material in this paper was partially presented
arlier in Paré et al. (2017); this paper provides a more compre-
ensive treatment of the work, expands to the case of mutating
iruses, and includes human awareness. Specifically, the paper
rovides (1) a derivation of the multi-virus model in Section 2,
nterpreting each state variable of the model as the infection
roportion of a group or subpopulation; (2) a presentation of the
ull probabilistic (m + 1)n state model with a comparison to the
DE model via simulations; (3) complete proofs of all the results;
4) a new parallel equilibrium result (Theorem 6) that is both nec-
ssary and sufficient, including a generalization of earlier results
nly shown to be sufficient but herein proven to be necessary as
ell; (5) an extension of the model to include human awareness;
6) a relaxation of the control problems, no longer requiring a
ymmetric graph; and (7) additional illustrative simulations in
ection 7, none which was included in Paré et al. (2017). The
utating, time-varying results in Section 3.2 are extensions of the
ingle-virus work presented in Paré et al. (2018), but are extended
to the case with mutating (time-varying) virus parameters. The
analysis of the endemic states in Section 4 is based on extensions
of the work in Liu et al. (2016, 2019); therefore we state some
of the results as corollaries. The novelty in the work presented
herein is the extension of the model to an arbitrary number of
competing viruses and to capture mutating viruses and human
awareness, and the proposed control techniques in Section 6.

The paper is organized as follows. We first introduce in Sec-
tion 2 the SIS model and derive the competing virus model for m
viruses. In Sections 3 and 4 , we analyze the model, providing con-
ditions for stability of the healthy state and the endemic states.
In Section 5 we extend the multi-virus model to include human
awareness and provide results on stability of the healthy states,
and in Section 6, we provide an antidote control formulation. In
Section 7, we present a set of illuminating simulations of various
competing virus models over static and time-varying networks.
We conclude in Section 8.

1.2. Notation

For any positive integer n, we use [n] to denote the set
{1, 2, . . . , n}. We view vectors as column vectors. We use xT
and ∥x∥ to denote the transpose and the 2-norm of a vector x,
respectively. The ith entry of a vector x will be denoted by xi. The
ijth entry of a matrix A will be denoted by aij, and also by [A]ij
when convenient. We use 0 and 1 to denote the vectors whose
entries are all 0 and 1, respectively, and I to denote the identity
matrix; dimensions of vectors and matrices are to be understood
from the context. For any vector x ∈ Rn, we use diag(x) to denote
the n× n diagonal matrix whose ith diagonal entry is xi. For any
two sets A and B, we use A \ B to denote the set of elements in
A but not in B.

For any two real vectors a, b ∈ Rn, we write a ≥ b if
ai ≥ bi for all i ∈ [n], a > b if a ≥ b and a ̸= b, and
a ≫ b if ai > bi for all i ∈ [n]. For a real square matrix M , we
use s(M) to denote the largest real part among its eigenvalues,
i.e., s(M) = max {Re(λ) : λ ∈ σ (M)}, where Re(·) is the real
part of the argument and σ (M) denotes the spectrum of M , and
∥M∥ indicates the induced 2-norm of M (the maximum singular
3

value of M). For a symmetric matrix M , we use λ1(M) to denote
its largest eigenvalue. The notation 1a=b denotes the indicator
unction which takes value one if a equals b and zero otherwise.
or 1A=b, where A is a matrix and b is a scalar, the result is a
inary matrix of the same dimensions as A with entries 1aij=b.

2. The model

The generic SIS model is a generalization of models introduced
in Fall et al. (2007) and Mieghem et al. (2009), given by

ṗi(t) = (1− pi(t))
n∑

j=1

βijpj(t)− δipi(t), (1)

where pi can be interpreted as the proportion of infected indi-
viduals in group i (Fall et al., 2007) or as the probability that
agent i is infected (Mieghem et al., 2009), the βij’s are (possibly
asymmetric) infection rates incorporating the nearest-neighbor
graph structure, and δi is the healing rate. Neighbor relationships
among the n nodes are described by a directed graph G on n
vertices with an arc from vertex j to vertex i whenever node i
can be infected by node j. The nodes can be thought of as single
individuals, or as groups of people in which case the neighbor
graph G can have self-arcs at all n vertices. Hence, βij equals zero
if there is no edge in G from node j to node i.

This model has been extended to two viruses and studied
in Liu et al. (2016), Sahneh and Scoglio (2014) and Santos et al.
(2015). We need not restrict ourselves to two viruses, however.
We are interested in the following continuous-time distributed
model for m competing viruses. Consider a network consisting
of n > 1 groups of individuals, labeled 1 to n. There are m
competing viruses spreading over the network. An individual can
be infected with at most one virus at any time t . An individual
may be infected with one of the viruses, but only by those in its
own and neighboring groups. Neighbor relationships among the n
groups are described by a directed graph G on n vertices with an
arc from vertex j to vertex i whenever the individuals in group
i can be infected by those in group j. Thus, the neighbor graph
G has self-arcs at all n vertices and the directions of arcs in G
represent the directions of contagion. Each virus spreads over a
spanning subgraph of G. The m subgraphs can be different. Their
union is the neighbor graph G. It is assumed that each of the m
subgraphs is strongly connected, that is, for every pair of distinct
vertices i and j, there is a directed path from i to j in the graph,
and, thus, so is G.

Let Si(t) denote the number of susceptible individuals in group
i at time t ≥ 0, and, for every k ∈ [m], let Iki (t) denote the number
of individuals infected by virus k in group i at time t ≥ 0. Assume
the total number of individuals in each group i, denoted by Ni,
does not change over time. In other words, Si(t)+

∑m
k=1 I

k
i (t) = Ni,

for all i ∈ [n] and t ≥ 0. Several parameters are associated with
each group i: birth rate µi, death rate µ̄i, and healing rates γ k

i
and infection rates αk

ij for every virus k ∈ [m], i, j ∈ [n]. Since Ni
is constant, µ̄i = µi. The evolution of the number of infected and
susceptible individuals in each group i is as follows:

Ṡi(t) = µiNi − µ̄iSi(t)+
m∑

k=1

γ k
i I

k
i (t)−

m∑
k=1

n∑
j=1

αk
ij
Si(t)
Ni

Ikj (t)

=

m∑
(µi + γ k

i )I
k
i (t)−

m∑ n∑
αk
ij
Si(t)
Ni

Ikj (t), (2)

k=1 k=1 j=1
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nd for every virus k ∈ [m],

˙k
i (t) = −γ k

i I
k
i (t)− µ̄iIki (t)+

n∑
j=1

αk
ij
Si(t)
Ni

Ikj (t)

= (−γ k
i − µi)Iki (t)+

n∑
j=1

αk
ij
Si(t)
Ni

Ikj (t). (3)

To simplify the model, for every virus k ∈ [m], define the
proportion of infected individuals in group i by

pki (t) =
Iki (t)
Ni

,

and let

βk
ij = αk

ij
Nj

Ni
, δki = γ k

i + µi.

rom (3), it follows that for every virus k ∈ [m],

˙
k
i (t) = (1− p1i (t)− · · · − pmi (t))

n∑
j=1

βk
ijp

k
j (t)− δki p

k
i (t). (4)

he competition feature of the model is captured by the first term
here if agent i is infected completely with virus l, i.e., pli = 1,
hen it cannot be infected with any virus k ̸= l.

This representation can be written in matrix form as:

˙
k(t) = ((I − P1(t)− · · · − Pm(t))Bk

− Dk)pk(t), (5)

where pk is the vector of the pki ’s, B
k is the matrix of the βk

ij ’s,
Pk

= diag(pk), and Dk
= diag(δk1, . . . , δ

k
n). The set

D =

{
(p1, . . . , pm) | pk ≥ 0, k ∈ [m],

m∑
k=1

pk ≤ 1

}
(6)

is invariant with respect to the system defined by (5). By the
above derivation where the state variables are representative of
the proportion of infected members of a group or subpopulation,
it is natural to assume that their initial values are in [0, 1],
as otherwise the values will lack any physical meaning for the
epidemic model considered herein. Alternatively, if pki denotes
the probability of infection of agent i by virus k and 1−

∑m
k=1 p

k
i

denotes the probability of agent i being healthy, the state vari-
ables should also be bounded between zero and one. Note that the
group interpretation allows for self loops in the model while the
individual probabilistic interpretation does not Paré et al. (2018).
For completeness, we provide a full description of the (m + 1)n
state Markov model in the Appendix. We now show that (4) is
ell-defined.

emma 1. Suppose that for all i ∈ [n], k ∈ [m], we have δki ≥ 0,
nd the matrices Bk are non-negative. If for all i ∈ [n], k ∈ [m], we
ave pki (0), (1 − p1i (0) − · · · − pmi (0)) ∈ [0, 1], then pki (t), p

1
i (t) +

· · + pmi (t) ∈ [0, 1] for all i ∈ [n], k ∈ [m] and t ≥ 0.

roof. Suppose that at some time τ , p1i (τ )+ · · · + pmi (τ ) ∈ [0, 1]
nd pki (τ ) ∈ [0, 1] for all i ∈ [n], k ∈ [m]. Consider an index
∈ [n]. If pki (τ ) = 0, then from (4) and the assumption that

he matrices Bk are non-negative, ṗki (τ ) ≥ 0. The same holds for
1
i (τ )+· · ·+pmi (τ ). If p

k
i (τ ) = 1, then from (4) and the assumption

hat the matrices Bk are non-negative, ṗ1i (τ ) ≤ 0. The same holds
or p1i (τ )+ · · · + pmi (τ ). It follows that pki (t), p

1
i (t)+ · · · + pmi (t) ∈

0, 1] for all i ∈ [n], k ∈ [m] and t ≥ τ . Since, by assumption,
k
i (0), (1− p1i (0)− · · · − pmi (0)) ∈ [0, 1] for all i ∈ [n], k ∈ [m], it
ollows that pki (t), p

1
i (t)+· · ·+pmi (t) ∈ [0, 1] for all i ∈ [n], k ∈ [m]
nd t ≥ 0. □ (

4

Henceforth we assume pki (0), (1 −
∑m

j pji(0)) ∈ [0, 1] for all
∈ [n], k ∈ [m].
It has been shown that there are a healthy state equilibrium

nd endemic equilibria for the single-virus system (Khanafer
t al., 2014, 2016; Paré et al., 2015, 2018), as well as for the two-
irus system (Liu et al., 2019). The multi-virus case is similar,
lthough more complicated because all viruses can reach the
ealthy state, or an endemic state, or there may be some viruses
t a healthy state and some at an endemic state. We explore
everal conditions for convergence to these equilibria.

. Stability analysis of the healthy state

We provide conditions for the stability of the healthy state
or both the non-mutating, static graph case, and the mutating,
ynamic graph case. For results on non-mutating viruses over
tatic graphs, we assume that the Bk matrices are irreducible.
his assumption implies that the underlying graph is strongly
onnected, that is, there is a directed path from every node to
very other node in the graph. Note that this assumption is not
ade in the case of mutating viruses over time-varying graphs.

.1. Static non-mutating case

In the following we consider the non-mutating, static graph
ersion of the system defined by the state equations given in
4). We first give conditions under which the healthy state is
symptotically stable.

emma 2. Suppose for all i ∈ [n], k ∈ [m], we have δki ≥ 0 and
atrices Bk are non-negative and irreducible. If s(Bk

− Dk) ≤ 0 for
ll k ∈ [m], then the healthy state is the unique equilibrium of (5),
hich is asymptotically stable with domain of attraction D defined

n (6).

roof. To prove the lemma, it is sufficient to show that for all
∈ [m], pk(t) will asymptotically converge to 0 as t → ∞ for

ny initial condition.
Since for all k ∈ [m], pki (t) is always non-negative by Lemma 1,

rom (4) it follows that

˙
1
i (t) ≤ −δ1i p

k
i (t)+ (1− pki (t))

n∑
j=1

βk
ijp

1
j (t), (7)

hich implies that the trajectories of pki (t) are bounded above
y those of the single-virus model. Since matrices Bk are non-
egative and irreducible, by Proposition 2 in Liu et al. (2019), pk(t)
ill asymptotically converge to 0 as t → ∞ for all k ∈ [m]. Thus,
he healthy state is the unique equilibrium of (5). □

We now show the condition in Lemma 2 is necessary and
ufficient for eradication of all viruses.

heorem 1. Suppose δki ≥ 0 for all i, k, and matrices Bk are
on-negative and irreducible for all k. Then, the healthy state is the
nique equilibrium of (5) if and only if s(Bk

−Dk) ≤ 0 for all k ∈ [m].

roof. Sufficiency has been shown in Lemma 2. Therefore, all that
emains to be shown is that if for some j ∈ [m], s(Bj

− Dj) > 0,
he system (5) admits an endemic state.

Without loss of generality, suppose s(B1
− D1) > 0. Set

k
= 0 for all k = 2, . . . ,m. Then, the dynamics of p1 sim-

lifies to a single-virus system, which admits an endemic state
y Proposition 3 in Liu et al. (2019). Therefore, when s(B1

−
1) > 0, the system (5) always admits an equilibrium of the form
˜1 ˜1
p , 0, . . . , 0) with p ≫ 0. □
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We next provide a result on global exponential stability for
the case when the underlying subgraphs are undirected and the
infection rates are symmetric.

Theorem 2. Suppose Bk is symmetric, and the maximum eigenvalue
of Bk

−Dk is less than zero, that is λ1(Bk
−Dk) < 0. Then, the healthy

state is exponentially stable for virus k, with domain of attraction D
in (6).

Proof. Consider the Lyapunov function V (pk) =
1
2 (p

k)Tpk. For
pk ̸= 0,

V̇ (pk) = (pk)T ṗk

= (pk)T
(
Bk

−

m∑
l=1

P lBk
− Dk

)
pk

≤ (pk)T (Bk
− Dk)pk

≤ λ1(Bk
− Dk)∥pk∥2 < 0.

The first inequality holds as (P lBk)ij ≥ 0, ∀l, i, j by construction,
since each pli(t) is a probability. The second inequality holds by
the Rayleigh–Ritz Theorem since Bk

−Dk is symmetric. Therefore,
the system converges exponentially to the origin by Theorem 8.5
in Khalil (1996). □

3.2. Mutating dynamic graph case

We generalize the model from (4) to the dynamic graph case
and allow the viruses to mutate over time giving

ṗki (t) = (1− p1i (t)− · · · − pmi (t))
n∑

j=1

βk
ij(t)p

k
j (t)− δki (t)p

k
i (t), (8)

where βk
ij(t) and δki (t) are functions of time and (8) holds for

k = 1, . . . ,m. We now provide a sufficient condition for global
exponential stability of the healthy state.

Theorem 3. Suppose Bk(t) is symmetric, Bk(t)−Dk(t) is piecewise-
continuous in t and bounded, and supt≥0 λ1(Bk(t)−Dk(t)) < 0. Then,
the healthy state is exponentially stable for virus k, with domain of
attraction D, as given in (6).

Proof. Consider the Lyapunov function V (pk) =
1
2 (p

k)Tpk. For
pk ̸= 0,

V̇ (pk) = (pk)T ṗk

= (pk)T
(
Bk(t)−

m∑
l=1

P lBk(t)− Dk(t)

)
pk

≤ (pk)T (Bk(t)− Dk(t))pk

≤ λ1(Bk(t)− Dk(t))∥pk∥2

≤ (sup
t≥0

λ1(Bk(t)− Dk(t)))∥pk∥2 < 0.

The first inequality holds since (P lBk(t))ij ≥ 0, ∀l, i, j and ∀t ≥ 0,
by construction and Lemma 1. The second inequality holds by the
Rayleigh–Ritz Theorem since Bk(t)− Dk(t) is symmetric. The last
inequality holds by definition of the supremum. Thus the system
converges exponentially to the origin by Theorem 8.5 in Khalil
(1996). □

Note that Theorem 3 is a generalization of Theorem 2, and
heorem 1 in Paré et al. (2015, 2018), and guarantees that if

the healing rates dominate the infection rates coupled with the
network structure, assuming symmetric infection graphs, then
the viruses will be eradicated.
5

Under additional assumptions we can also show exponential
stability for the case when infection rates are not symmetric and
the underlying subgraphs are undirected.

Definition 1. For a given virus k, assume that for all t ≥ 0, there
exist ck(t), λk(t) > 0 such that

∥Bk(t)− Dk(t)∥ ≤ ck(t)e−λk(t)t
∀t ≥ 0. (9)

We then define

γ k
1 := sup

t≥0

∫
∞

0
ck(t)2e−2λk(t)τdτ . (10)

Note that

γ k
1 ≥

∫ ∞

0
e(B

k(t)−Dk(t))T τ e(B
k(t)−Dk(t))τdτ

 , (11)

which follows from the definition of γ k
1 and the upper bound

assumption in (9).

Theorem 4. Consider the dynamics for virus k in (8) with Bk(t)−
Dk(t) continuously differentiable and bounded, that is, there exists
an L > 0 such that ∥Bk(t)−Dk(t)∥ ≤ L ∀t. Assume supt≥0 s(Bk(t)−
Dk(t)) < 0, and γ k

1 in Definition 1 is finite. If supt>0 ∥Ḃk(t) −
Ḋk(t)∥ < 1

2(γ k
1 )

2 or
∫ t+T
t ∥Ḃk(s)−Ḋk(s)∥ds ≤ µT+α for small enough

> 0, then the healthy state is exponentially stable for virus k, with
omain of attraction D, as given in (6).

roof. Note that since (P l(t)Bk(t))ij ≥ 0 ∀l, i, j, by construction,

ṗk = (Bk(t)−
m∑
l=1

P lBk(t)− Dk(t))pk

≤ (Bk(t)− Dk(t))pk.

Therefore, by the Grönwall–Bellman Inequality (p. 651, Khalil,
1996), the solution of the original system will be bounded above
by the solution of the linear system. Thus, by Lemma 2 in Paré
et al. (2016), the healthy state is exponentially stable for virus
k. □

Note that Theorem 4 is a generalization of a single-virus result
provided in Paré et al. (2016, 2018), which is for a less gen-
eral, non-mutating model; however the arguments for Lemma 2
in Paré et al. (2016) hold by replacing BA(t) with Bk(t), D with
Dk(t), and BȦ(t) − D with Ḃk(t) − Ḋk(t). Theorem 4 states that if
the linearized system is Hurwitz for all time, that is, the healing
rates dominate the infection rates, and the virus does not mutate
nor the graph change too quickly, then the virus is eradicated in
exponential time.

Now we consider a case where the linearized system is not
required to be always Hurwitz, that is, s(Bk(t)− Dk(t)) < 0 is not
necessary for all t > 0, but only on the average. We also allow
perturbations on the spread graph, denoted by ∆k(t).

Theorem 5. Consider the dynamics for single virus k:

ṗk = (Bk(t)+ ∆k(t)−
m∑
l=1

P l(Bk(t)+ ∆k(t))− Dk(t))pk.

Assume for all t0 ≥ 0 that

lim
T→∞

1
T

∫ t0+T

t0

∥Bk(s)− Dk(s)∥ds ≤ a < ∞, (12)

nd for some ν > 0 there exists an h > 0 such that

∥Bk(t + h)− Dk(t + h)− (Bk(t)− Dk(t))∥ ≤ νhγ , (13)
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or all t ≥ 0 and some γ , 0 < γ ≤ 1. Assume further that

lim
T→∞

1
T

∫ t0+T

t0

s1(Bk(s)− Dk(s))ds ≤ ᾱ (14)

or some negative scalar ᾱ and for all t0 ≥ 0,

lim
T→∞

1
T

∫ t0+T

t0

∥∆k(s)∥ds ≤ η < ∞, (15)

or all t0 ≥ 0, and for all i, j and t ≥ 0, the perturbation satisfies the
nequality

∆k
ij(t)| ≤ βk

ij(t). (16)

hen, the origin is exponentially stable for virus k.

roof. Since (P l(t)(Bk(t)+∆k(t)))ij ≥ 0 ∀i, j by (16) and Lemma 1,

˙
k
= (Bk(t)+ ∆k(t)−

m∑
l=1

P l(Bk(t)+ ∆k(t))− Dk(t))pk

≤ (Bk(t)+ ∆k(t)− Dk(t))pk.

herefore, by the Grönwall–Bellman Inequality the solution of the
riginal system will be bounded above by the solution of the
inear system. Thus, by Theorem 2 in Solo (1994), the origin is
xponentially stable for virus k. □

This result says that if the linearized system is bounded on
he average, slowly time-varying, Hurwitz on the average (but
ot necessarily strictly Hurwitz for all t ≥ 0), that is, the healing
ates do not need to always dominate the infection rates, and the
erturbations are bounded and not too large, then the system
onverges to the healthy state. This fact is useful in control
esign; see Section 6.

. Stability analysis of the endemic states

While virus eradication is the goal, it is not always attainable.
ften viruses will persist and reach a nonzero equilibrium, which
e call endemic states. In the following, similar to Section 3.1
e consider the non-mutating, static graph version of the system
efined by the state equations given in (4). There are a number of
ifferent endemic equilibria for this system. The simplest scenario
s when one virus is in an endemic state and the remaining
iruses are eradicated.

orollary 1. Suppose that δki ≥ 0 for all i, k, and the matrices
k are non-negative and irreducible for all k. If for some i ∈ [m],
(Bi

− Di) > 0 and s(Bk
− Dk) ≤ 0 for all k ̸= i, then (5) has two

quilibria, the healthy state (0, . . . , 0), where the system converges
o this equilibrium for all initial conditions in {(p1, . . . , pm)|pi =

and pk ∈ [0, 1]n ∀k ̸= i}, and a unique endemic state of the
orm (0, . . . , 0, p̃i, 0, . . . , 0) with p̃i ≫ 0, which is asymptotically
table with domain of attraction D \ {(p1, . . . , pm)|pi = 0 and pk ∈
0, 1]n ∀k ̸= i}, with D defined in (6).

Note that the healthy state can be shown to be an unstable
quilibrium by evaluating the Jacobian linearization at the origin.
small perturbation of virus i from the origin will drive the

ystem to the unique endemic state.

roof. From the proof of Lemma 2, pk(t) will asymptotically
onverge to 0 as t → ∞ for all initial values (p1(0), . . . pm(0)) ∈
(p1, . . . , pm)|pi = 0 and pk ∈ [0, 1]n ∀k ̸= i}, for k ̸= i. From (5),

˙
i(t) = (Bi

− Di
− P i(t)Bi)pi(t)−

∑
Pk(t)Bkpk(t).
k̸=i

6

Thus, we can regard the dynamics of pi(t) as an autonomous
system

ṗi(t) = (Bi
− Di

− P i(t)Bi)pi(t), (17)

with a vanishing perturbation −
∑

k̸=i P
k(t)Bipi(t), which con-

erges to 0 as t → ∞. From Proposition 3 in Liu et al. (2019), the
utonomous system (17) will asymptotically converge to a unique
ndemic state (0, . . . , 0, p̃i, 0, . . . , 0) for any (p1(0), . . . , pm(0)) ∈
\ {(p1, . . . , pm)|pi = 0 and pk ∈ [0, 1]n ∀k ̸= i}, with D defined

n (6).
Let y(t) = pi(t)− p̃i. Then ẏ(t) = f (y(t))+ g(t, y(t)), where

(y(t)) = (−Di
+ (I − P̃ i)Bi

− diag(Bipi(t)))y(t)

g(t, y(t)) = −

∑
k̸=i

Pk(t)Bi(y(t)+ p̃i).

Consider the Lyapunov function candidate

V (y(t)) = max
l∈[n]

|yl(t)|
p̃il

.

Then,

V̇ (y(t)) =
∂V
∂y

f (y(t))+
∂V
∂y

g(t, y(t)).

rom the proof of Proposition 3 in Liu et al. (2019), ∂V
∂t +

∂V
∂y f (t, y)

< 0 unless y(t) = 0, i.e., xi(t) = x̃i (note Proposition 3 in Liu
et al. (2019) is for the single virus case; we assert the obvious
that if it is negative for one virus then additional viruses make
it more negative). Since, ∀k ̸= i, pk(t) asymptotically converges
to 0, so does ∂V

∂y g(t, y(t)). This implies that after a sufficiently
long time, V̇ (y(t)) < 0 if xi(t) does not equal x̃i. Using the same
argument as in the proof of Proposition 3 in Liu et al. (2019),
p1(t), . . . , pm(t)) will asymptotically converge to the unique en-
emic state (0, . . . , 0, p̃i, 0, . . . , 0) for any (p1(0), . . . , pm(0)) ∈

\ {(p1, . . . , pm)|pi = 0 and pk ∈ [0, 1]n ∀k ̸= i}, with D as in
6). □

Note that Corollary 1 states that if the healing parameters
ominate the infection rates for all viruses except one, then only
hat one virus will survive. The result is a direct extension of
heorem 2 in Liu et al. (2019).
Another possible endemic state is that of coexisting equilibria,

hat is where more than one virus survives. To facilitate the next
heorem that establishes this result, we rewrite the single virus
odel in (1) in matrix form:

˙(t) = (B1
− Z(t)B1

− D1)z(t), (18)

here z is the vector of pi’s and Z = diag(z).

heorem 6. Suppose that δ1i = µ2δ
2
i = · · · = µmδmi > 0,

i ∈ [n], β1
ij = µ2β

2
ij = · · · = µmβm

ij ∀βk
ij ̸= 0, k ∈ [m],

k > 0 ∀k ∈ [m]\{1}, the matrix B1 is non-negative and irreducible,
nd s(−D1

+ B1) > 0. We have that (p̃1, . . . , p̃m) with p̃k > 0 ∀k ∈

m] is an equilibrium of (4) if and only if p̃k ≫ 0 ∀k ∈ [m],
˜ i = αikp̃k ∀i, k ∈ [m], for some constants αik > 0, such that
˜ = p̃1 + · · · + p̃m, where z̃ is the nonzero endemic state of (18).

roof. From the assumption δ1i = µ2δ
2
i = · · · = µmδmi > 0,

i ∈ [n] and β1
ij = µ2β

2
ij = · · · = µmβm

ij ∀βk
ij ̸= 0, k ∈ [m] and

k > 0 ∀k ∈ [m] \ {1}, we have B1
= µ2B2

= · · · = µmBm and
1
= µ2D2

= · · · = µmDm. These expressions, with (5), give

kṗk(t) = (−D1
+ B1

− (P1(t)+ · · · + Pm(t))B1)pk(t) (19)

or k ∈ [m] \ {1}. Thus, an equilibrium of p1(t)+ µ2p2(t)+ · · · +

mpm(t) satisfies

−D1
+ B1

− ZB1
]z = 0, (20)
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here z = p1 + · · ·+ pm, which is equivalent to the condition for
n equilibrium of the single-virus model (18). From Proposition 2
f Liu et al. (2019) and the assumption s(−D1

+ B1) > 0, z(t) has
a unique nonzero equilibrium in [0, 1]n. Thus, z̃ = p̃1 + · · · + p̃m
is unique.

We will now show that p̃1+· · ·+ p̃m ≪ 1. Suppose that, to the
contrary, there exists an i such that p̃1i + · · · + p̃mi = 1. Therefore,
there exists a k ∈ [m] such that, by (4),

ṗki = −δki p̃
k
i < 0,

by the assumption that δki > 0. Thus, p̃1i + · · · + p̃mi = 1 is not an
equilibrium, which is a contradiction. Therefore, p̃1+· · ·+p̃m ≪ 1.
Thus, −D1

+ (I − (P̃1
+ · · · + P̃m))B1

= −D1
+ (I − Z̃)B1 is an

irreducible Metzler matrix. By Lemma 4 in Liu et al. (2019), since
(20) holds and p1(t)+ · · · + p2(t) ≫ 0, we have

s(−D1
+ B1

− Z̃B1) = 0 (21)

with the corresponding eigenvector z̃ = p̃1 + · · · + p̃m.
From (5) and (19), the equilibria of ṗ1(t)−µ2p2(t)−· · ·−ṗm(t),

. . . , ṗ1(t)+ · · · + µm−1pm−1(t)− µmpm(t) satisfy

(−D1
+ B1

− Z̃B1)(p̃1 − p̃2 − · · · − p̃m) = 0,
... (22)

(−D1
+ B1

− Z̃B1)(p̃1 + · · · + p̃m−1
− p̃m) = 0.

From Lemma 3 in Liu et al. (2019), the eigenvector correspond-
ing to s(−D + B − Z̃B) is unique up to a constant and is strictly
greater than zero. Therefore, by (21), either

p̃1 + · · · + p̃m = γ1(p̃1 + · · · + p̃m−1
− p̃m)

... (23)

= γm−1(p̃1 − p̃2 − · · · − p̃m),

for some constants γi > 0, or the vectors are all equal to 0.
Without loss of generality, if the first equation of (22) has the
vector equal to 0, then p̃1 = p̃2+· · ·+p̃m. Using these expressions
and/or the expressions from (23), for any i, p̃i = αikp̃k for some
constant αik > 0, and thus p̃1, . . . , p̃m ≫ 0. This completes the
sufficiency proof.

Now, for necessity, assume there exist p̃k ≫ 0 ∀k ∈ [m], where
p̃i = αikp̃k ∀i, k ∈ [m], for some constants αik > 0, such that
z̃ = p̃1 + · · · + p̃m, where z̃ is the nonzero endemic state of (18).
Since z̃ = p̃1 + · · · + p̃m is an equilibrium of (18), (20) holds. By
the assumption that p̃i = αikp̃k ∀i, k ∈ [m], z̃ = (1+

∑
i̸=k αik)p̃k.

Since p̃k ≫ 0 ∀k ∈ [m] and from Lemma 3 in Liu et al. (2019) we
know that z̃ is unique up to a scalar, we have, for each k ∈ [m],

[−D1
+ B1

− ZB1
]p̃k = 0.

Therefore, from (19), we have that (p̃1, . . . , p̃m) is an equilibrium
of (4). □

We can now state the following two corollaries of Theorem 6,
which are non-trivial extensions (necessity is added) of Theorems
6 and 7 in Liu et al. (2019), respectively.

Corollary 2. Consider the model in (4) with each virus propagat-
ing over the same strongly connected graph G with corresponding
adjacency matrix A, and each virus homogeneous in healing and
infection rates, that is, for each k ∈ [m] δki = δk > 0 ∀i ∈ [n]
and βk

i = βk > 0 ∀i ∈ [n]. Suppose s(A) > δ1

β1 = · · · =
δm

βm . We
hen have (p̃1, . . . , p̃m) with p̃k > 0 ∀k ∈ [m] is an equilibrium of
4) if and only if p̃k ≫ 0 ∀k ∈ [m], p̃i = αikp̃k ∀i, k ∈ [m], for
ome constants αik > 0, such that z̃ = p̃1 + · · ·+ p̃m, where z̃ is the
onzero endemic state of (18).
 a

7

Fig. 2. Two competing viruses with an awareness state. The label on the black

arrow is
n∑

j=1

κij

m∑
k=1

pkj +
n∑

j=1

κ̄ijyj .

Corollary 3. Suppose that δ1i = · · · = δmi > 0, ∀i ∈ [n] (which
implies that D1

= · · · = Dm
= D), β1

ij = · · · = βm
ij ∀βk

ij ̸= 0, k ∈

[m] (which implies that B1
= · · · = Bm

= B), the matrix B is non-
negative and irreducible, and s(−D + B) > 0. We then have that
p̃1, . . . , p̃m) with p̃k > 0 ∀k ∈ [m] is an equilibrium of (4) if and
only if p̃k ≫ 0 ∀k ∈ [m], p̃i = αikp̃k ∀i, k ∈ [m], for some constants
αik > 0, such that z̃ = p̃1+· · ·+p̃m, where z̃ is the nonzero endemic
state of (18).

While stability of the time-varying case has been explored
in Paré et al. (2018), the existence of an endemic limit cycle is an
open problem, even for the single-virus case. Sufficient conditions
for the existence of a periodic endemic cycle for a single-virus
switching system are provided in Rami et al. (2014).

5. Human awareness

As has been seen with COVID-19, when agents become aware
of viral spread in their vicinity, their behaviors change (Lewnard &
Lo, 2020). We extend the model in (4) to allow agents to become
alerted when viruses are pervading the system, as in Fig. 2. Such
awareness reduces the likelihood of becoming infected, by scaling
the spread parameters. We introduce yi(t) to denote the portion
of alert individuals in group i. Thus, for every k ∈ [m],

ṗki (t) =
(
1− p1i (t)− · · · − pmi (t)− yi(t)

) n∑
j=1

β1
ijp

k
j (t)

− δki p
k
i (t)+ yi(t)

n∑
j=1

β̄k
ijp

k
j (t), (24)

ẏi(t) = −µiyi(t)− yi(t)
m∑

k=1

n∑
j=1

β̄k
ijp

k
j (t) (25)

+ (1− p1i (t)− · · · − pmi (t)− yi(t))
n∑

j=1

κij

m∑
k=1

pkj (t)

+ (1− p1i (t)− · · · − pmi (t)− yi(t))
n∑

j=1

κ̄ijyj(t),

here µi is the death rate, κij are the alerting rates from infected
eighbors, κ̄ij are the alerting rates from alerted neighbors, and
¯ 1
ij and β̄2

ij are the infection rates associated with the alert state,
ith β̄1

ij < β1
ij and β̄2

ij < β2
ij for all i, j ∈ [n]. Note that κij
llows for awareness from infected individuals and κ̄ij allows for
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wareness from individuals who are already aware. We define K
nd K̄ as the matrices of κij’s and κ̄ij’s, respectively. The model
n (25) can be derived in a manner similar to that in Section 2,
ollowing (Liu et al., 2017), and is still well defined, as illustrated
y the following lemma.

emma 3. Suppose that for all i ∈ [n], k ∈ [m], we have δki ≥ 0,
i ≥ 0, and the matrices Bk, B̄k, K , K̄ are non-negative. If for all

i ∈ [n], k ∈ [m], we have pki (0), yi(0), (1 − p1i (0) − · · · − pmi (0) −
yi(0)) ∈ [0, 1], then pki (t), yi(t), p

1
i (t)+ · · · + pmi (t)+ yi(t) ∈ [0, 1]

for all i ∈ [n], k ∈ [m] and t ≥ 0.

The proof follows the lines similar to those of Lemma 1.
Following the definitions in Liu et al. (2017), an equilibrium

p1, . . . , pm, y) of (24)–(25) is a healthy state if p1 = · · · = pm = 0,
ndependent of the value of y, since at such an equilibrium, all
ndividuals in the network are healthy. We call the equilibrium
here p1 = · · · = pm = y = 0 the trivial healthy state. If a
ealthy state has y > 0, it is an alert state, which implies that all
ndividuals are healthy, but some of them are alert. Similar to the
ulti-virus model, the system with human awareness also admits
ndemic states which are equilibria with nonzero pk’s, which will
e illustrated via simulations in Section 7. The following theo-
em provides a sufficient condition for global stability of healthy
tates.

heorem 7. Suppose that for all i ∈ [n], k ∈ [m], we have
k
i ≥ 0 and the matrices Bk, B̄k are non-negative and irreducible.
f s(Bk

− Dk) ≤ 0 for all k ∈ [m], then the system in (24)–(25)
symptotically enters the set of healthy states. Suppose, in addition,
hat K̄ is irreducible. If s(−M+ K̄ ) ≤ 0, then the system in (24)–(25)
as a unique equilibrium (0, . . . , 0), which is asymptotically stable
ith domain of attraction D defined in (6). If s(−M + K̄ ) > 0, then
he system in (24)–(25) has two equilibria, the trivial healthy state
0, . . . , 0), which is asymptotically stable with domain of attraction
(p1, . . . , pm, 0)|p1 ≥ 0, . . . , pm ≥ 0, p1 + · · · + pm ≤ 1}, and
unique alert state (0, . . . , 0, ỹ) with ỹ ≫ 0, which is asymptot-

cally stable with domain of attraction D \ {(p1, . . . , pm, 0)|p1 ≥

, . . . , pm ≥ 0, p1 + · · · + pm ≤ 1}.

roof. Since p1i (t), . . . , p
m
i (t), and yi(t) are always nonnegative by

emma 3, from (24)–(25), we have for every k ∈ [m], ṗki (t) ≤

δki p
k
i (t) + (1 − pki (t))

∑n
j=1 βk

ijp
k
j (t), which implies that each of

he trajectories of each pki (t) is bounded above by a single-virus
odel. Therefore, if s(−Dk

+ Bk) ≤ 0 for every virus k ∈ [m],
k
i (t) will asymptotically converge to 0 as t → ∞, for every virus
∈ [m], and thus the system asymptotically enters the set of

ealthy states.
Next suppose that K̄ is irreducible. From (25), we have

˙(t) = −My(t)− Y (t)
m∑

k=1

B̄kpk(t)

+ (I − P1(t)− · · · − Pm(t)− Y (t))K ×

(p1(t)+ · · · + pm(t))
+ (I − P1(t)− · · · − Pm(t)− Y (t))K̄ y(t).

hus, we can regard the dynamics of y(t) as an autonomous
ystem,

˙(t) = (K̄ − Y (t)K̄ −M)y(t),

ith a vanishing perturbation −Y (t)
∑n

j=1 β1
ijp

k
j (t)+ (I − P1(t)−

· ·−Pm(t)−Y (t))K (p1(t)+· · ·+pm(t))−(P1(t)+· · ·+Pm(t))K̄ y(t),
hich converges to 0 as t → ∞ since all p1(t), . . . , pm(t) con-
erge to 0. From Propositions 3 and 5 in Liu et al. (2016), it can
e verified that y(t) will asymptotically converge to 0 for any
8

y(0) ∈ [0, 1]n if s(−M + K̄ ) ≤ 0, or a unique nonzero state ỹ ≫ 0
for any y(0) ∈ [0, 1]n \ {0} if s(−M+ K̄ ) > 0. Therefore, if s(−M+

¯ ) ≤ 0, system (5) has a unique equilibrium (0, . . . , 0), which is
symptotically stable with domain of attraction D, and if s(−M+

¯ ) > 0, system (5) has a unique alert state (0, . . . , 0, ỹ) with
˜ ≫ 0, which is asymptotically stable with domain of attraction
\ {(p1, . . . , pm, 0)|p1 ≥ 0, . . . , pm ≥ 0, p1 + · · · + pm ≤ 1},

nd (0, . . . , 0) is asymptotically stable with domain of attraction
(p1, . . . , pm, 0)|p1 ≥ 0, . . . , pm ≥ 0, p1 + · · · + pm ≤ 1}. □

Theorem 7 provides conditions for eradication of all the
iruses, and the agents either return to a normal state or remain
n an alert state. The alert equilibrium can be interpreted as
he outbreak permanently changing people’s behavior even after
radication.

. Antidote control formulation

In this section, using the results from the preceding sections
e develop mitigation strategies that minimize the impact of
utbreaks. Let us assume that for each agent, or group (depending
n the model interpretation), there is a control input ui(t) that
cts as an additive boost to the healing rate. This implies that
he controller can increase the ability of the agents, or groups, to
ecover from the virus, which can be thought of as administration
f an antidote or some other type of treatment. This effect is
ortrayed in the model as

˙
k
i (t) = (1− p1i (t)− · · · − pmi (t))

n∑
j=1

βk
ijp

k
j (t)− (δki (t)+ uk

i (t))p
k
i (t).

e define U(t) = diag(u) with u = [u1(t), . . . , un(t)]T . To
implify the discussion in this section, we assume Bk(t) − Dk(t)
s piecewise continuous in t and bounded ∀t ≥ 0. Similar to the
pproaches in Pasqualetti et al. (2014), Preciado et al. (2014), Vi-
ayshankar and Roy (2012) and Wan et al. (2007, 2008), we focus
n minimizing the maximum eigenvalue of Bk(t)−(Dk(t)+Uk(t)).
ven though these control techniques are generally effective, we
elieve the approaches herein are more general and simpler, and
herefore more scalable. The assumption that our control input is
dditive to the base healing rate is novel and more sensible for
he motivating examples, that is, every agent, or group, has some
nderlying inherent healing rate that should not be reduced by
he controller.

While the solutions to the following posed problems may not
eet the conditions of Lemma 2 and Theorem 4, that is, they may
ot result in the maximum real part of the eigenvalues always be-
ng less than zero, they push the system toward those conditions,
onsistent with the principle of the time-average being less than
ero, presented in Theorem 5. And in practice, illustrated by sim-
lations in the next section, these techniques reduce the spread of
he epidemics. For static graphs/non-mutating viruses, these pro-
rams only need to be solved once, but if the system parameters
graph structure and/or spread parameters) change as a function
f time, then the programs should be solved at a rate, preferably,
hat is faster than the change in the graph/spread parameters.
nder the aforementioned assumptions we can formulate the
ollowing optimization problem for each virus k:

minimize
uki (t)

s(Bk(t)− (Dk(t)+ Uk(t)))

subject to
n∑

i=1

uk
i (t) ≤ ck, t ≥ 0,

Uk(t) = diag(uk
1(t), . . . , u

k
n(t)),

k
ui (t) ≥ 0, i = 1, . . . , n, t ≥ 0.
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From the Gershgorin Disk Theorem (Horn & Johnson, 2012,
p. 344) it is clear that by sufficiently increasing the uk

i ’s, the
onditions of Lemma 2 and Theorems 4 will be satisfied. Thus,
we can relax the above optimization problem to the following:

Problem 1. For each virus k ∈ [m],

minimize
ηk,uki (t)

ηk

subject to ηk
≥

n∑
j=1

βk
ij(t)− (δki (t)+ uk

i (t)), i = 1, . . . , n,

n∑
i=1

uk
i (t) ≤ ck,

uk
i (t) ≥ 0, i = 1, . . . , n, t ≥ 0.

This is clearly a linear program and can easily be solved.
To make this a more compelling and realistic problem, we can

impose a constraint on the number of agents, or groups, that
can be affected, which is a reasonable assumption because the
cost of providing a low-dose treatment to all agents, or groups, is
higher than that of providing that same amount of total treatment
divided among a few select members of the population (such as
the most infectious or most susceptible agents, or groups).

Employing the sparsity metric, ∥ · ∥0, defined as the number
of the non-zero entries in its argument, results in the following
problem, with a capacity constraint and a sparsity constraint for
each virus k ∈ [m]:

minimize
ηk,uki (t)

ηk

subject to ηk
≥

n∑
j=1

βk
ij(t)− (δki (t)+ uk

i (t)), i = 1, . . . , n,

n∑
i=1

uk
i (t) ≤ ck,

∥uk(t)∥0 ≤ dk,

uk
i (t) ≥ 0, i = 1, . . . , n, t ≥ 0,

where dk is the maximum number of agents, or groups, that can
be treated for virus k. At first glance, the second and third con-
straints may seem redundant; however, the ℓ1 constraint limits
the total amount of antidote that can be used while the sparsity
constraint limits the number of agents, or groups, that can be
treated. The inclusion of the ℓ1 constraint prevents assigning an
amount of antidote greater than that available for administra-
tion to the limited number of agents, or groups, allowed by the
sparsity constraint.

It is well known that ∥ · ∥0 is highly non-convex (Wright et al.,
2009), making the above problem difficult to solve. Therefore, we
employ a relaxation using the reweighted ℓ1 norm (Candes et al.,
2008).

Definition 2. The weighted ℓ1 norm is

∥xk∥ℓ̂1
:=

n∑
i=1

wk
i |x

k
i |, (26)

with wi > 0, which can be a constant or depend on time.

In view of Definition 2, we can rewrite the above problem with
the sparsity metric as the following:
9

Fig. 3. ATA Algorithm.

Problem 2. For each virus k ∈ [m],

minimize
ηk,uki (t)

ηk
+ κ∥uk(t)∥ℓ̂1

subject to ηk
≥

n∑
j=1

βk
ij(t)− (δki (t)+ uk

i (t)), i = 1, . . . , n,

n∑
i=1

uk
i (t) ≤ ck,

uk
i (t) ≥ 0, i = 1, . . . , n, t ≥ 0,

where κ is a constant weighting factor.

There are various heuristics for solving the reweighted ℓ1
minimization problem (Candes et al., 2008; Daubechies et al.,
2010; Lai et al., 2013); we employ the process for the selection of
he weights wk

i ’s in (26) proposed in Candes et al. (2008), which
s, for some small ϵ > 0,

k+1
i =

1
|xki | + ϵ

. (27)

For completeness, we include the Antidote Treatment Admin-
istration (ATA) Algorithm in Fig. 3, which explains the imple-
mentation of this heuristic to solve Problem 2. The notation
Problem 2(wk−1) indicates that wk−1 is used for the weighted ℓ1
norm in the objective function of Problem 2 in the kth iteration.
Employing this heuristic yields a good solution to Problem 2 but
clearly is computationally expensive, since it requires the calcu-
lation of multiple solutions. The effectiveness of this approach is
illustrated in the following section via simulation.

7. Simulations

In this section, we present a set of simulations of various com-
peting virus models over static and time-varying graph structure
networks. Due to the difficulty in adequately displaying multiple
viruses over networks of high dimensions, for the simulations we
employ only three competing viruses, m = 3. Virus 1 is depicted
by the color red (r), virus 2 is depicted by the color blue (b), and
virus 3 is depicted by the color green (g). For all i ∈ [n], the color
at each time t for node i is given by

p1i (t)∑3
k=1 p

k
i (t)

r +
p2i (t)∑3
k=1 p

k
i (t)

b+
p3i (t)∑3
k=1 p

k
i (t)

g. (28)

When p1i (t)+p2i (t)+p3i (t) = 0, the color is black, which indicates
completely healthy/susceptible. These color variations are used to
facilitate the depiction of the parallel equilibrium (p̃1 = α2p̃2 =

α3p̃3), which are illustrated by all the nodes converging to the
same color. For all i ∈ [n], the diameter of node i is given by

d0 + (p1i (t)+ p2i (t)+ p3i (t))r0, (29)

with d0 being the default/smallest diameter and r0 being the
scaling factor depending on the total combined infection level of
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Fig. 4. Viruses 1 and 2 of this three-virus system meet the assumptions of
heorem 3 and so converge quickly to the healthy state, as does the third
irus eventually. The colors and diameters follow (28) and (29) and the graph

structure follows (30)–(32). A video of this simulation can be found at youtu.
be/j_MHm08dA_o. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 5. The maximum eigenvalues of the three viruses from the simulation in
Fig. 4. Note that the maximum eigenvalues for viruses 1 and 2 are indicated
by horizontal lines (red and blue, resp.) just below the 0 axis, and maximum
eigenvalues of virus 3 are given by the green line. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

node i. Therefore, the color indicates the type of virus(es) each
gent/group has and the diameter indicates degree of infection
or each agent/group.

For systems with three different subgraphs, viruses 1, 2, and
spread over graphs depicted by gray, green, and pink edges,

espectively. If all viruses spread on the same graph, the edges
re gray.
The simulation in Fig. 4 has three viruses spreading over the

ame time-varying graph. Similar to Paré et al. (2018), the graph
tructure is determined by

ij(t) =

{
βe−∥zi(t)−zj(t)∥2 , if ∥zi(t)− zj(t)∥ < r̂,
0, otherwise,

(30)

here zi(t) ∈ R2 is the position of node i, with r̂ = 10. The nodes
have piece-wise constant drifts, that is,

ż(t) = φ(t), (31)

where φ(t) ∈ R2 and is determined, for each dimension l ∈ [2],
by

φl =

{
−φl, if zl = zcl + γ /2 or zl = zcl − γ /2,
φl, otherwise,

(32)

and the nodes hover around a square, centered at some point zc .
The initial positions and φ’s are chosen randomly. Each virus is
homogeneous in infection rate. The first two viruses meet the
assumptions of Theorem 3, while the maximum eigenvalue of the
third virus fluctuates between being positive and negative. See
Fig. 5 for a plot of the maximum eigenvalues of the three-virus
10
Fig. 6. This three-virus system meets the assumptions of Corollary 1 so virus
1 reaches an endemic state while the other viruses are eradicated. The colors
and diameters follow (28) and (29). A video of this simulation can be found
at youtu.be/gPGwAdLo_DU. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 7. This three-virus system meets the assumptions of Corollary 2 and the
iruses converge to a parallel equilibrium. The colors and diameters follow (28)
nd (29). A video of this simulation can be found at youtu.be/yzV8HxDkEJc.
For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

Fig. 8. Average infections for Figs. 6 and 7.

dynamics. Consistent with Theorem 3 the first two viruses are
eradicated quickly; the third virus takes longer to eliminate. This
is illustrated in Fig. 4(b) by all the nodes being black.

The simulation shown in Fig. 6 meets the assumptions of
Corollary 1, where s(B1

− D1) > 0, s(B2
− D2) < 0 and s(B3

−

D3) < 0. Therefore, the first virus, depicted in red, reaches an
endemic equilibrium, while the other two viruses are eradicated.
The average infection values over time are shown in Fig. 8(a).

The simulation shown in Fig. 7 meets the assumptions of
orollary 2, that is, the three viruses are each homogeneous with

δ1

β1 =
δ2

β2 =
δ3

β3 , and propagate over the same graph structure.
There are 15 nodes with initial conditions given in Fig. 7(a). Con-
sistent with the corollary, the dynamics of the system converge
to a co-existing parallel equilibrium, depicted in Fig. 7(b) by the
nodes being all the same color.

Similarly, the simulation shown in Fig. 9 meets the assump-
ions of Corollary 3, that is, the viruses are heterogeneous but
dentical for each node, with δ1i = · · · = δmi , β1

i = · · · =
m
i ∀i ∈ [n], and propagate over the same graph structure. There
re 15 nodes with initial conditions given in Fig. 9(a). Consistent

https://youtu.be/j_MHm08dA_o
https://youtu.be/j_MHm08dA_o
https://youtu.be/gPGwAdLo_DU
https://youtu.be/yzV8HxDkEJc


P.E. Paré, J. Liu, C.L. Beck et al. Automatica 123 (2021) 109330

v
a
(
r

v
a
i
r

a
T
s

a
b
W

k
t
d
t

Fig. 9. This three-virus system meets the assumptions of Corollary 3 and the
iruses converge to a parallel equilibrium. The colors and diameters follow (28)
nd (29). A video of this simulation can be found at youtu.be/VIgoHe74P1w.
For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

Fig. 10. This three-virus system meets the assumptions of Theorem 6 and the
iruses converge to a parallel equilibrium. The colors and diameters follow (28)
nd (29). A video of this simulation can be found at youtu.be/nyCl5FfRrZQ. (For
nterpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

Fig. 11. Average infections for Figs. 9 and 10.

with the corollary, the dynamics of the system converge to a co-
existing parallel equilibrium, as shown in Fig. 9(b) by the nodes
being all the same color.

We now consider a system that meets the assumptions of
Theorem 6, that is, the three viruses are heterogeneous and B1

=

2B2
= 0.5B3 and D1

= 2D2
= 0.5D3. There are 15 nodes with

initial conditions given in Fig. 10(a). Consistent with the theorem,
the dynamics of the system converge to a co-existing parallel
equilibrium, as shown in Fig. 10(b) by the nodes being all the
same color.

Next, we illustrate the coupling of the multi-virus model with
human awareness, as expounded upon in Section 5. To illustrate
these results, we shift from circle nodes to polygons. The aware-
ness variable is depicted by the rotation of the polygon, with the
11
Fig. 12. This three-virus system meets the assumptions of Theorem 7 with
s(−M + K̄ ) > 0 and the dynamics of the system converge to an alert state.
The colors, sizes, and oreintations follow (28), (29) and (33). A video of this
simulation can be found at youtu.be/Hq63uXpmjjM. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 13. This three-virus system does not meet the assumptions of Theorem 7
nd the dynamics of the system converge to an alert, parallel endemic state.
he colors, sizes, and oreintations follow (28), (29) and (33). A video of this
imulation can be found at youtu.be/dXnjSJQa4Qo. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

awareness state corresponding to different angles:

yi = 0 : diamond orientation,
yi = 1 : square orientation,

(33)

nd, for values in between, the orientation is linearly interpolated
etween the two. The coloring and size schemes remain the same.
e consider a system that meets the assumptions of Theorem 7,

that is, s(Bk
−Dk) ≤ 0 for all k ∈ [3] and s(−M+K̄ ) > 0. Consistent

with the theorem, the dynamics of the system converge to an
alert state, where the viruses vanish but the nodes remain alert,
as shown in Fig. 12(b), by the black nodes (healthy) with rotated
polygons (alert), and Fig. 14(a), by the average level of the viruses
going to zero but the average awareness level converging to a
nonzero value.

In Fig. 13, we depict a system where s(Bk
− Dk) > 0 for all

∈ [3] and s(−M + K̄ ) > 0. As expected, this system converges
o an endemic state. It is worth noting that the system here was
esigned to meet the assumptions in Corollary 2, that is, the
hree viruses are homogeneous, with δ1

β1 =
δ2

β2 =
δ3

β3 , and the
system converges to a parallel equilibrium similarly, even when
awareness is included, depicted in Fig. 13(b) by the nodes being
all the same color. The average infection values over time are
shown in Fig. 14(b).

We conclude with implementations of the control techniques
presented in Section 6. Consider the single-virus system in Fig. 15.

https://youtu.be/VIgoHe74P1w
https://youtu.be/nyCl5FfRrZQ
https://youtu.be/Hq63uXpmjjM
https://youtu.be/dXnjSJQa4Qo
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Fig. 14. Average infections for Figs. 12 and 13. Magenta depicts the average
wareness level. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

Fig. 15. This is a single-virus (therefore blue indicates healthy here) endemic
equilibrium comparing control techniques, depicting the final states with no
control, using Problem 1, and implementing Algorithm 3 on Problem 2. A video
f this simulation can be found at youtu.be/MhW95R8s_Po. (For interpretation

of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 16. The average infections for no control, Problem 1, and implementation
f Algorithm 3 on Problem 2, for the systems in Fig. 15, are depicted by the
olid line, dashed line, and dotted line, respectively.

his system is homogeneous in infection rate, with β = 0.4592.
We compare the system with no controller (Fig. 15(a)), a con-
troller based on solving a linear program as given in Problem 1
(Fig. 15(b)), and a controller that uses Algorithm 3 to solve Prob-
lem 2 iteratively with κ = 0.05 (Fig. 15(c)). The sums of the final
probabilities of infection for all nodes (

∑n
i=1 pi(100)) for the three

plots are 10.7, 4.92, and 3.6, respectively. Therefore, Algorithm 3
performed best; however, both showed significant improvement
over the uncontrolled simulation. The maximum eigenvalues of
the three linearized systems are, from left to right, 1.893, 0.557,
and 0.421; so none of the linearized systems is Hurwitz. There-
fore, consistent with Theorem 1, the systems are all at an endemic
state. However, even though the control efforts do not completely
eradicate the virus, they do mitigate its effect (see Fig. 16). Note
that in other simulations the controller obtained using the lin-
ear programming formulation (cf. Problem 1) outperformed the
controller obtained by Algorithm 3 (which solves Problem 2).
12
8. Conclusion

We have explored a competing multi-virus SIS model through
several corollaries and theorems exploring stability of the equilib-
ria for the static graphs and mutating, time-varying graphs as well
as with an awareness state. We have also proposed several con-
trol techniques that appeal to the analysis results, providing two
efficient centralized antidote distribution/allocation protocols.

The results herein provide insight for real-world applications.
In the context of virus spread mitigation (diseases, computer
viruses, etc.), the control techniques offer insight into antidote
treatment options. In the context of competing products, a mar-
keting team could appeal to the parallel equilibrium results and
try to mimic the proportion of spread parameters of their product
to ensure survival.

In future work, we would like to analyze more generic cases of
co-existing endemic states for the competing viruses over static
graphs, endemic cycles for mutating viruses over time-varying
graphs, and endemic states of competing viruses with human
awareness. Many control techniques focus on changing the pa-
rameters of the model, which typically leads to more tractable
algorithms. However, has been seen, e.g. with the COVID-19 pan-
demic, when a vaccine does not yet exist, this becomes difficult
to implement. Therefore, more efforts on the removal of edges
from the graph (Enns et al., 2012; Paré et al., 2018) should be
considered, although this is an NP-hard problem (Mieghem et al.,
2011).

Appendix. Comparison to full probabilistic model

For completeness, we provide a description of the (m + 1)n
tate Markov model and compare to (4) via simulation; note the
imilarities to Liu et al. (2019) and Paré et al. (2018). Each state
f the chain, Yκ (t), corresponds to an m-radix-valued string s of
ength n, where si = 0 or si = k indicate the ith agent is,
espectively, either susceptible or infected by virus k ∈ [m]. The
tate transition matrix, Q , is defined by

κ l =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δki , if si = k, κ = l+ k(m+ 1)i−1

n∑
j=1

βk
ij1sj=k, if si = 0, κ = l− k(m+ 1)i−1

−

∑
j̸=l

qjl, if κ = l

0, otherwise,

(A.1)

or i ∈ [n]. Here each virus k ∈ [m] is propagating over a
etwork whose infection rates are given by βk

ij (nonnegative, with
k
ii = 0, ∀i, k), δki is the associated healing rate of the ith agent,
nd si = 0 or si = k indicate, respectively, the ith agent is either
usceptible or infected by virus k. The state vector y(t) is defined
s

κ (t) = Pr[Yκ (t) = κ], (A.2)

ith
∑3n

κ=1 yκ (t) = 1. The Markov chain evolves as

dy′(t)
dt

= y′(t)Q . (A.3)

Let vk
i (t) = Pr[Xi(t) = k], where Xi(t) is the random variable

representing whether the ith agent is susceptible or infected with
one of the m viruses. Then

(vk)′(t) = y′(t)Mk, (A.4)

where the ith column of Mk indicates the states in the Markov
chain where agent i is infected by virus k (all m-radix strings

https://youtu.be/MhW95R8s_Po
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Fig. A.17. A plot of ∥[v1(T ); v2(T ); v3(T )] − [p1(T ); p2(T ); p3(T )]∥ for the line
raph, T = 10,000. Results from using the different initial conditions
p11 (0), p21 (0), p31 (0)), (p12 (0), p22 (0), p32 (0)), (p13 (0), p23 (0), p33 (0)) are depicted
y the blue lines, red dashed lines, and black dash–dot lines, respectively.

here si = k), that is, Mk
= 1M=k, where M ∈ R(m+1)n×n

as rows of lexicographically-ordered m-radix numbers, bit re-
ersed.1 Therefore, vk

i (t) reflects the summation of all probabil-
ties where si = k. Note that the first state of the chain, which
orresponds to s = 0, the healthy state, for δki ∀i, k, is the
bsorbing, or sink, state of the chain. This means that the Markov
hain will never escape this state once in it, and further, since it is
he only absorbing state, the system will converge to the healthy
tate with probability one (Norris, 1998). The model in (4) can be
erived from a first-order approximation of this (m + 1)n state
arkov model, similar to the single-virus case (Mieghem et al.,
009).
We compare the model in (4) to the full probabilistic (m+1)n

tate model in (A.1)–(A.4) via simulations to illustrate the effec-
iveness of the approximation. We set m = 3, and use line graphs,
tar (hub–spoke) graphs, and complete graphs. All adjacency
atrices for these graphs are symmetric and binary-valued, and
oth viruses spread over the same graph. In the star graph, the
entral node is the first agent. Each simulation was run for 10,000
ime steps (final time T = 10,000), with three initial conditions:
1) the first, second, and third nodes are infected by virus 1, virus
, and virus 3, respectively, p11 (0) = [1 0 · · · 0]⊤, p21 (0) =

0 1 0 · · · 0]⊤, p31 (0) = [0 0 1 0 · · · 0]⊤; (2) the first two nodes
re infected by virus 1 and the third and fourth nodes are infected
y viruses 2 and 3, respectively, p12 (0) = [1 1 0 · · · 0]⊤, p22 (0) =
0 0 1 0 · · · 0]⊤, p32 (0) = [0 0 0 1 0 · · · 0]⊤; and (3) the
irst and second nodes are infected by viruses 1 and 2, re-
pectively, and the remaining nodes are infected by virus 3,
13 (0) = [1 0 0 · · · 0]⊤, p23 (0) = [0 1 0 · · · 0], p23 (0) =

[0 0 1 · · · 1]. In these tests we explore identical homogeneous
viruses, (β, δ) = (β1, δ1) = (β2, δ2) = (β3, δ3). The (β, δ) pairs
are [(0.1, 1), (0.215, 1), (0.464, 1), (0.5, 0.5), (1, 0.464), (1, 0.215)
(1, 0.1)], and the numbers of agents are n = 4, 6. We limited
simulations to these n values since mean field approximations are
typically worse for small values of n and there is a computational
limitation due to the size of the (m+ 1)n state model.

The results are given in Figs. A.17–A.19 in terms of the 2-
norm of the difference between the states of (5) at the final time
([p1(T ); p2(T ); p3(T )]), and the means of the m = 3 viruses in the
(m+1)n state Markov model at the final time ([v1(T ); v2(T ); v3(T )]
as defined by (A.4)).

The accuracy of the approximation appears to be very similar
to the single virus case (Mieghem et al., 2009; Paré et al., 2018)

1 Matlab code: M = fliplr(dec2base(0 : ((m+ 1)n)− 1,m+ 1)−′ 0′)
13
Fig. A.18. A plot of ∥[v1(T ); v2(T ); v3(T )] − [p1(T ); p2(T ); p3(T )]∥ for the star
graph, T = 10,000. Results from using the different initial conditions
(p11 (0), p21 (0), p31 (0)), (p12 (0), p22 (0), p32 (0)), (p13 (0), p23 (0), p33 (0)) are depicted
y the blue lines, red dashed lines, and black dash–dot lines, respectively.

Fig. A.19. A plot of the error ∥[v1(T ); v2(T ); v3(T )]−[p1(T ); p2(T ); p3(T )]∥ for the
complete graph, T = 10,000. Results from using the different initial conditions
(p11 (0), p21 (0), p31 (0)), (p12 (0), p22 (0), p32 (0)), (p13 (0), p23 (0), p33 (0)) are depicted
y the blue lines, red dashed lines, and black dash–dot lines, respectively.

nd to the two-virus case (Liu et al., 2019). Since (5) is an upper
bounding approximation, the results show that the two models
converge to the healthy state for the smaller values of β

δ
, resulting

in small errors between the two models. For many of the larger
values of β

δ
, (5) again performs well since it is at an epidemic

tate and the (m + 1)n state model does not appear to reach
he healthy state in the finite time considered in the simulations
T = 10,000). Therefore for certain values of β

δ
and certain time

scales, (5) is a sufficient approximation of the (m + 1)n state
arkov model. For values of β

δ
that are near 1, the models are

notably different, similar to the single- and two-virus cases. The
(m+1)n state model appears, in most cases, to be at or close to the
healthy state while (5) is at an endemic state, resulting in large
errors.
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